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Abstract

Physiologically realistic geometric models of the vasculature in the liver are indispensable for modelling
hepatic blood flow, the main connection between the liver and the organism. Current in vivo imaging
techniques do not provide sufficiently detailed vascular trees for many simulation applications, so it is
necessary to use algorithmic refinement methods.

The method of Constrained Constructive Optimization (CCO) [1] is well suited for this purpose.
Its results after calibration have been previously compared to experimentally acquired human vascular
trees [2]. The goal of this article is to extend this calibration to the case of rodents (mice and rats), the most
commonly used animal models in liver research. Based on in vivo and ex vivo micro-CT scans of rodent
livers and their vasculature, we performed an analysis of various geometric features of the vascular trees.
Starting from pruned versions of the original vascular trees, we applied the CCO procedure and compared
these algorithmic results to the original vascular trees using a suitable similarity measure.

The calibration of the postprocessing improved the algorithmic results compared to those obtained
using standard CCO. In terms of angular features, the average similarity increased from 0.27 to 0.61,
improving the total similarity from 0.28 to 0.40. Finally, we applied the calibrated algorithm to refine
measured vascular trees to the (higher) level of detail desired for specific applications. Having successfully
adapted the CCO algorithm to the rodent model organism, the resulting individual-specific refined hepatic
vascular trees can now be used for advanced modeling involving, e.g., detailed blood flow simulations.
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1. Introduction

The liver is a central organ for the mammalian metabolism as well as for clearance of xenobiotic
substances from the blood plasma. The liver is connected to the organism via four vascular systems: blood
is supplied by the portal vein (PV) and the hepatic artery (HA), the liver is drained by the hepatic vein (HV),
and the bile ducts (BD). The PV, providing about 75 % of the hepatic blood flow, distributes venous blood
rich in nutrients as it comes from the digestive system. The HA, providing the remaining hepatic blood
supply and largely running in parallel with the PV, supplies the liver with arterial blood rich in oxygen.
The HV drains the venous blood from the liver into the inferior vena cava. The BD drain the bile produced
inside the liver [3]. The actual hepatic metabolization and elimination/clearance of compounds take place
in the liver cells (hepatocytes), which are spatially organized in lobuli. Here a sinusoidal network permits
an exchange of compounds between blood flowing through the network and hepatocytes adjacent to the
sinusoids. The vascular trees of the liver thus provide the link between the organism and the functional
units of the liver. Inter-individual variations of hepatic elimination are observed already for healthy livers,
but in particular also in case of diseases [4].

1.1. Geometric Liver Models
Modeling and simulation of biophysical processes have become powerful tools for analyzing and

understanding the behavior of dynamical biological systems as well as predicting their future states. Its
impact lies, on the one hand, in basic science such as understanding how living organisms work, and on
the other hand in applications such as improving surgical interventions and pharmaceutical developments.

In order to accurately simulate hepatic physiological processes, and thus avoid the need for performing
actual experiments, single- or multi-scale models can be used. Pharmacokinetics models [5, 6] considering
the liver as a well-stirred compartment can provide phenomenologically correct descriptions of total liver
clearance or metabolization. Such models can, however, not take into account zonation [7] inside lobuli or
heterogeneity on a larger length scale due to pathological conditions, such as steatosis [8, 9], fibrosis [10],
cirrhosis [11], or hepatitis [12]). Two-scale models considering multiple sinusoids (see [13, 14] and the
references therein for an overview) permit sinusoidal zonation and can, in principle, also incorporate
different sinusoids for different regions of the liver. The same can be achieved using a two-scale model [15]
using lobuli as the fine scale [16, 17] rather than sinusoids. In both cases, only using realistic vascular trees
and organ geometry allows a mechanistic and individual-specific model. This is particularly important if
a spatially heterogeneous pathological state is to be considered [18] or the influence of specific surgical
techniques is to be assessed in rodents as model organisms. Examples of such surgical techniques include,
but are not limited to, vessel-oriented liver resection [19] and their comparison to resections with mass
ligation techniques [20].

Current contrast-enhanced radiological in vivo imaging provides sufficient resolution so that the main
vascular trees can be reconstructed [21]. In vivo computed tomography (CT) provides sufficiently detailed
vascular trees for planning liver resection surgery in humans [22, 23]. The level of detail may, however, be
insufficient for modeling, depending on the spatial pattern of heterogeneity to be considered. In mouse
livers, steady-state in vivo µCT protocols in combination with large molecular weight (long circulating)
blood pool contrast agents can be used. These allow non-invasive imaging of hepatic blood vessels at
35 µm resolution [24]. Ex vivo imaging permits higher doses of radiation and thus better image quality.
In either case, geometric parameters of the reconstructed vascular trees are subject to measurement and
analysis errors [25] as well as limitations of the image size that can be processed.

In order to bridge the gap between the currently technically achievable vascular resolution and the
one needed for accurate modeling (e.g., in [18]), algorithms for generating vascular trees can be applied,
e.g., the method of constrained constructive optimization (CCO) [26]. In [2], a procedure was presented to
evaluate and calibrate a CCO implementation to algorithmically generate geometrically realistic vascular
trees for human livers. The goal of the present article is to transfer this algorithmic procedure to rodent
hepatic vascular systems. For this purpose, we imaged vascular trees of rodents. We used twelve in vivo
scans of mouse livers from a previous study focusing on tumor imaging [27], and nine corrosion casts of
rat livers. These species are frequently used as animal models for liver investigations.
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In this article, we describe two steps involving the algorithmic CCO procedure:

1. Calibration. First, we applied the algorithmic refinement procedure starting with substantially pruned
versions of the experimentally acquired vascular trees. Comparing the results with experimentally
acquired data, we could assess the quality of the algorithmic results and calibrate the algorithm to
produce geometrically more realistic results.

2. Application. We then applied the algorithm to generate the desired level of detail in the vascular
trees, this time starting from the full experimentally acquired vascular trees.

For the calibration step, we quantified similarity in terms of different geometric features using a
statistics-based comparison described in [2]. We performed two types of analyses addressing the following
questions.

1. How similar are experimentally acquired mouse PVs to each other?
⇒ What should the algorithm reproduce?

2. How similar are algorithmically generated mouse PVs to experimentally acquired PVs?
⇒ How well does the algorithm perform?

Besides the mouse PVs, we also considered the other types of vascular trees (mouse HVs, rat PVs, and rat
HVs). Similarity is quantified on a scale from 0 to 1 (no significant differences) individually for different
geometric features and averaged over these as described in [2]. In particular, we compare neither between
PV and HV nor between species.

As for the application, we assume that the geometric properties determined in the experimentally
acquired vascular trees also hold on finer geometric scales (self-similarity) so that our corresponding
extrapolation is valid. Self-similarity is a plausible and partially verified assumption in this context, see,
e.g., [28, 29, 30].

The HA is not considered in this study. Its radii are generally smaller than those of the PV, making
it more difficult to experimentally acquire HA vascular trees in appropriate quality. For many modeling
applications, however, the HA can be assumed to geometrically lie parallel to the PV [3]. The BDs are not
considered here either since they are not part of the blood flow system on which we focus in this study.

1.2. Review of Related Work
1.2.1. Imaging of Vascular Structures

In vivo imaging of hepatic vascular trees can be performed using magnetic resonance imaging (MRI)
or micro computed tomography (µCT) [31]. While MRI does not expose the animal to X-rays, imaging
whole organs at high resolution may require a scanning time up to hours [32]. In contrast, µCT devices
allow scanning the entire organ within minutes [24], but have the drawback of using ionizing radiation.
Furthermore, the lower purchasing and maintenance costs have lead to a higher availability. Since blood
and other soft tissues have very similar radiodensity, a blood pool contrast agent is required to image the
vasculature [33].

Many µCT devices are designed for mice and have a limited bore diameter, making the excision
of rat livers a necessity for scanning in these devices. Ex vivo µCT imaging often results in a higher
resolution compared to in vivo imaging, because much higher radiation doses and scanning durations can
be used, because no motion artifacts occur, and because the scanning parameters can be optimized for the
reduced sample sizes[24]. To prepare for ex vivo scanning, the vascular system is filled with a radiopaque
polymerizing contrast agent [34], typically prior to explantation to preserve the shape of the organ. Two
frequently used contrast agents are the polymerising monomer methylmethacrylat resin (Batson’s No. 17
Plastic Replica and Corrosion Kit, Polysciences Inc., Warrington, PA, USA) and a silicone rubber polymer
(Microfil, Flow Tech Inc., Carver, MA, USA) [34]. The former is mainly used to create corrosion casts,
for which tissue is removed using a highly aggressive corrosive solution. Such casts are very fragile, but
result in a higher contrast (polymer vs. air rather than tissue). Microfil specimens, however, have a soft,
gel-like consistence, and are compatible with subsequent histological sectioning [35]. Optical imaging of
histological serial sections may lead to much higher spatial resolution then ex vivo µCT. For obtaining
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3D datasets, however, registration of the 2D slices is required, causing tremendous experimental effort [36].
The resulting 3D data sets are typically four orders of magnitude larger than µCT datasets, causing large
computational effort for processing. Furthermore, remaining distortion artifacts can cause severe problems
for subsequent image analysis. Hence we used µCT imaging for the work presented here.

1.2.2. Image Processing
In order to obtain a geometric representation of the vascular trees, several image processing steps are

necessary. For segmenting the liver and its vascular structures from the image data, numerous methods
have been proposed in the literature, we refer to [37] for an overview. For our purposes, we chose an
integrated, semi-automatic workflow including liver segmentation, vascular segmentation, and graph
conversion [38], extended by an improved automatic vascular segmentation.

Various vascular models describing the appearance and geometric properties of vasculature have
been proposed to fit in different image features [39]. Methods explicitly separating vascular models and
image features normally require more computational effort, to optimize model parameters and calculate
image features where models are fitted in [40, 41]. Therefore, vascular enhancement filters implicitly
incorporating vascular shape models during feature calculation, such as Hessian-based enhancement filters,
are favored [42, 43], in particular to enhance tube-like structures in 3D images. However, the Hessian-based
filters with multi-scale parameters again decrease the calculation efficiency. Thus, we adopt a fast and
efficient implementation of the Hessian-based filter and integrate it into a simple extraction scheme [44].

1.2.3. Morphometry
In order to quantify the similarity between different vascular trees, one should consider both geometric

features and the topology, i.e., the connectivity structure, of the trees viewed as consisting nodes (bifurcation
and end points) and edges.

The geometry of vascular edges can be described by lengths and radii (see, e.g., [45]), while bifurcations
involve angles [46, 47, 48]. From these, a decrease of radii [46] and cross-section areas [49] at bifurcations,
asymmetries [46, 50], and similar ratios for the lengths can be computed. Moreover, a bifurcation exponent
γ satisfying the relation rγ

p = rγ
1 + rγ

2 can computed, where rp is the parent radius and r{1,2} are the
daughter radii, see, e.g., [51]. This quantity has received some attention in the literature, including (but
not limited to) γ = 3 being an optimal trade-off between the metabolic cost for maintaining the blood
vessel wall and power dissipation for moving the blood if laminar Poiseuille flow can be assumed [52, 53];
γ = 2.7 being reported in [54]; and γ = 2.55 minimizing the reflection of pulse waves at bifurcations [55].
Based on additional assumptions, numerous derived have also been investigated, including pressures
inside the vascular tree [56], supplied volumes and perfusion heterogeneity [57], and transit times [58], to
name a few examples.

The simplest topological classification for edges in a tree is the generation number [59]. A frequently
used classification is the Strahler order (e.g., in [60]) originally used to classify rivers [61], being a ‘major
improvement [. . . ] because it takes into account the asymmetric branching pattern’ [62]. Such a classification
is necessary to restrict the geometric comparison to edges of similar importance in the vascular trees.

1.2.4. Algorithmic Refinement
One popular method to algorithmically generate vascular trees is based on constrained constructive

optimization (CCO) [26], which is also the algorithmic concept we chose to use here. Alternatives to CCO
include, but are not limited to, global constructive optimization [63, 64], deterministic geometric [65], and
fractal [48, 66] construction procedures. Let us point out that the idea behind CCO is a phenomenological
description of vascular trees of adults. It is not meant to (mechanistically) model angiogenesis, for which
we refer the reader to [67, 68] and the review in [69]. Angiogenesis simulation can also be combined with
subsequent geometric optimization of the vascular tree [70]. In contrast to most algorithms generating
single vascular trees, methods to jointly generate supplying and draining vascular trees have been presented
at a sub-organ length scale [71] and for tumors [72]. Grid-based methods, such as [65, 66, 72], have the
drawback of producing a ‘somewhat stylized appearance’ [73, Fig. 1].
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2. Material and Methods

We experimentally acquired 3D image data for hepatic vascular systems in rodents. For mice, 12 PVs
and 12 HVs were obtained from 12 in vivo scans. For rats, 9 specimens were prepared, 3 showing both PV
and HV, 3 showing only PV and 3 showing only HV, thus resulting in 6 PV and 6 HV datasets. The animal
experiments were reviewed and approved by the local authorities according to German animal protection
laws.

2.1. In Vivo Imaging of Mouse Livers
The scans used here were acquired in a previous study [27]. Twelve nude mice received an iodine-based

blood-pool contrast agent (100 µl, 130 mg of iodine per ml) [74], injected through the tail vein. Subsequently,
we imaged them in a gantry-based dual energy flat-panel X-ray small animal µCT device (TomoScope
30s Duo, CT-Imaging, Erlangen, Germany). The mice were inhalation-anesthetized with 1.5 % isofluorane
in oxygen-enriched air via a face mask during in vivo measurements. The scanning duration for liver
imaging was 6 minutes, resulting in 2880 projections with 1032× 1012 pixels for each tube. We operated
the two tubes of µCT at 40 kV and 1.0 mA and at 65 kV and 0.5 mA [75], respectively. For reconstruction at
isotropic voxel size 35 µm, we used a Feldkamp-type reconstruction algorithm [76] including ring artifact
correction (Impact-CB, CT-Imaging, Erlangen, Germany). The image data (16 bit integer) in our regions of
interest had intensities in the ranges [0, 5649] to [0, 20370].

2.2. Ex Vivo Imaging of Rat Liver Specimens
For the hepatic vascular systems in rats, we prepared specimens which were subsequently scanned.
Prior to the surgical procedure to create the ex vivo rat liver specimens, we prepared Microfil polymer

as a mixture of 2 ml MV-120 and 3 ml MV-Diluent solution (Flow Tech Inc., Carver, MA, USA). All surgical
interventions were performed under inhalation anesthesia with 3 % isoflurane and an oxygen flow of
0.5 L/min (isoflurane vaporizer, Sigma Delta, UK) in an S1 operation room under sterile conditions.
Animals were subjected to laparotomy via a transverse abdominal incision. We isolated the vessels
(portal vein, hepatic artery, and inferior vena cava) under an operating microscope (Zeiss, Jena, Germany,
magnification 10–25×), and heparinized the animals by i.v. injection of Heparin (Rotexmedica GmbH,
Germany) 500 IU/kg BW 5 minutes before cannulation of the PV. Animals were sacrificed by opening the
diaphragm and the intrathoracic vena cava. Then we ligated the infrahepatic abdominal cava and perfused
the liver with 20 ml physiological saline solution at 66 ml/h using a perfusion pump (B. Braun Melsungen
AG, Germany, with a 20 ml syringe). We performed a slow manually controlled injection of polymer with
a maximal volume of up to 2 ml after adding 0.3 ml MV-curing agent (Flow Tech Inc., Carver, MA, USA) to
the solution. In order to prevent any laceration of the liver surface, we explanted the whole liver with the
catheter in place. Finally, we fixed the Microfil-injected liver sample in 4.5 % formalin solution. For one
specimen, the superior caudate lobe (forming only a small fraction of the total volume) was resected for
histological imaging outside this study.

For µCT imaging, we mounted the ex vivo rat liver specimens near the central axis of a gantry-
based dual energy flat-panel X-ray small animal µCT device (TomoScope 30s Duo, CT-Imaging, Erlangen,
Germany). We acquired 720 projections (1032× 1012 pixels) during one full gantry rotation over 90 s, now
operating both tubes at 65 kV and 0.5 mA. We reconstructed volumetric images as above with isotropic
voxel size 35 µm using the same Feldkamp-type algorithm including ring artifact correction as above
(Impact-CB, CT-Imaging, Erlangen, Germany). The (16-bit integer) image data in the regions of interest
had intensities in the ranges [0, 1814] to [0, 6512].

2.3. Image Processing
As the first step, we segmented the liver from the 3D image data using a semi-automatic procedure,

using live-wire techniques and shape-based interpolation as described in [21]. This serves two purposes,
it provides an organ mask for later use and evaluation, and it is used as the region of interest for the
segmentation of vascular trees described next. A tree representation is obtained only at the end of
this workflow, so the terms “structure” and “graph” (for pixel representations and after skeletonization,
respectively) are used throughout this section.
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2.3.1. Segmentation of Vascular Structures
We employed a semi-automatic segmentation framework requiring minimal user interactions for quick

and robust segmentation of hepatic vein and portal vein [44]. First, in the preprocessing stage, we
segmented the liver and analyzed the histogram of intensities to preclude regions with extremely low
intensities. Then, a Hessian-based vesselness filter was adopted to enhance the vascular structures. For
this purpose, we chose the multi-scale, Hessian-based vesselness filter introduced by Frangi et al. [77]
to enhance vessels in the µCT image data within the liver mask. Let σ denote the size of the Gaussian
kernel used for calculating the Hessian matrices (second derivatives) H(x, σ) of the image at every voxel
position x and assume that the eigenvalues λi = λi(x, σ), i = 1, 2, 3, of the H(x, σ) are sorted according to
|λ1| ≤ |λ2| ≤ |λ3|. For simplicity of the notation, we consider all quantities to be dimensionless and omit
the dependency on position, image intensity and filter width. Then Frangi’s vesselness filter is defined as

fσ(x) =

0 if λ2 > 0 or λ3 > 0[
1− exp

(
−R2

A
2α2

)]
· exp

(
−R2

B
2β2

)
·
[
1− exp

(
−S2

2c2

)]
otherwise

(1)

where

RA =
|λ2|
|λ3|

, RB =
|λ1|√
|λ2λ3|

, S =
√

λ2
1 + λ2

2 + λ2
3 . (2)

Note that the terms RA, RB, and S in (2) depend on x and σ. The ratio RA is designed to differentiate
vessels from sheet-like structures, whereas RB is used to distinguish vessels from blob-like structures. The
term S suppresses noise structures. We set the parameters used in this filter to α = 0.5, β = 0.5, and c = 10.
The parameter c, unlike α and β, needs to be chosen to match the range of image intensities. Considering
the radius range of the vascular structures, we heuristically chose three optimized scales for σ, 140 µm,
280 µm, and 560 µm which were able to capture vessels with thin, medium, and thick radii, respectively.
The final vesselness response was obtained by extracting the maximum across all scales.

Based on the vesselness response, we initially segmented the vascular structures utilizing an automatic
region-growing algorithm [78]. The seeds for the region-growing were automatically found by analyzing
the histogram of vesselness outputs. We took all voxels with a vesselness value between the 90th and
99th percentiles as seed points. As the lower and upper thresholds for the region growing, we chose the
75th and 99.9th percentiles, respectively. If the vascular structures possessed high contrast against their
surrounding structures, the initial segmentation typically yielded satisfactory results.

2.3.2. Bifurcative Tree Representation of Vascular Structures
In case the vascular structures exhibited low contrast, many irrelevant structures were enhanced as

well by the vesselness filter and captured in the region-growing step. For refinement, we first transformed
the segmented vessel structures into a graph representation [21]. This representation involves nodes and
edges, the latter equipped with center lines (defined by skeleton points) and radii.

Unconnected components of the segmented vessels were transformed into separate graphs. These
graphs were processed using two filters. We used a first filter to introduce a lower limit to the volume
of each individual vascular graph. The graphs with volume less than 0.05 mm3 were filtered out. Hence,
unconnected components could be removed by this filter. Additionally, we determined the edge length of
all branches in a graph tree and assigned a minimum threshold to filter out and truncate small branches
shorter than 300 µm. These parameters were heuristically determined as being able to rule out isolated
trees and prune spurious branches in the vascular trees.

We subsequently converted the vascular graphs to strictly bifurcative trees with cylindrical edges as
described in [2]. In summary, an average radius was used and any intermediate skeleton points were
discarded. Loops needed to be removed and mono-/multifurcations needed to be converted. Loops were
characterized by more than one incoming edge at a node, in this case all except the one with largest radius
were discarded. Nodes representing monofurcations were removed, setting the edge radius to the average
of the two edges involved. Multifurcations were converted to multiple bifurcations with edges of length 0
and inheriting the parent radius.
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2.4. Geometric Analysis
In order to quantify the similarity of different vascular trees we followed the approach we presented

earlier in [2]. For the edges and bifurcations in the vascular trees, different geometric features were
computed; as a topological hierarchy, Strahler-type orders [61] were assigned to the edges; histograms
for the geometric features were computed on a per-order basis; and tools from statistics were used for a
pair-wise comparison of the histograms between different vascular trees.

As geometric features, edge radii and lengths as absolute values, relative to the parent edge, and
their asymmetry between sibling edges were considered. Moreover, the bifurcation exponent introduced
above was computed. Each bifurcation was characterized by the three angles shown in Figure 1. Strahler
orders [79] were computed for each edge, their differences to the maximum Strahler order in each tree were
denoted by Strahler* order (as in [2] for a better comparison of trees with different resolution available)
and used for the later analysis.

From these features, histograms (more precisely, the empirical cumulative distribution functions, CDFs)
for each geometric feature, each Strahler* order, and each vascular tree were computed. These CDFs were
then compared using a statistical two-sample Kolmogorov–Smirnov (KS) test [80], a non-parametric test
for differences in the underlying distributions. Two CDFs were pragmatically classified as similar if the
KS test did not show a significant (p < α = 0.05) difference, even though this is, strictly speaking, a misuse
of the statistical test. This standard, albeit arbitrary, choice of the significance level [81] is the same as in [2].
It was chosen to be neither too strict (larger α would lead to more frequent classification as different, thus a
smaller similarity) nor to produce misleadingly high similarity values (for smaller α).

For one set of vascular trees (i.e., the intra-specimen comparison for mice or rats, PV or HV), the
similarity was then defined to be the number of pair-wise comparisons classified as similar divided by the
total number distinct of pairs. Note that these similarity values are still defined per geometric feature and
per Strahler* order. So, in a first averaging step, a weighted average was computed over the Strahler* orders
(weighted with the number of edges of the respective order) so that similarity values are obtained with
respect to individual geometric features. In a second step, also averages over the geometric features were
computed to obtain further simplified similarity measures. For the detailed formulas of these computations,
we refer to [2]. In addition, we computed values ζrad, ζlen, ζang, and ζtotal of the radius, length, angular,
and total similarity, respectively, as the arithmetic average over the four cases HV and PV for mice and rats.

For comparing algorithmically generated to experimentally acquired vascular trees, the same similarity
measures and averaging steps are used, except that pairs to be compared are now from two disjoint sets of
vascular trees. This is necessary to obtain meaningful values, but leads to a slightly different averaging,
so that the similarity values for the cases of one or two sets of vascular trees should not be compared
quantitatively [2]. In analogy to the values ζ above, we compute the arithmetic averages ξrad, ξled, ξang, and
ξtotal when comparing two sets of vascular trees. These numbers allow providing a single scalar measure
of the improvement by postprocessing.

2.5. Radius Accuracy Assessment
Besides the similarity analysis, we also assessed how well the radii of the experimentally acquired

vascular trees match the CCO model assumptions of homogeneous perfusion and outflow resistance.
The algorithm is described below in Section 2.6. For this purpose, we separately consider each of the

ϕa
ϕb

ϕc

r0

r1

r2

l0 l1

l2

Figure 1: Geometric characterization of bifurcations. A vascular bifurcation is characterized by nine geometric parameters: three radii
and three lengths, one each for the parent edge and the two daughter edges, and three angles. (Figure from [2])
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experimentally acquired vascular trees T and determine a vascular tree Tm for a 1-to-1 comparison. The
tree Tm has the same nodes and topology as T, its radii are modified to match the CCO model assumptions
as follows.

• The outflow from each leaf node is proportional to the volume of its Voronoı̈ cell (of the liver volume
with respect to the leaf nodes), see also the analysis in [82].

• The outflow resistance is the same for each leaf node.

• The flow resistance R of each edge e (of length l(e) and radius r(e)) is given by Poiseuille’s law as [83]

R =
8 · l(e) · η(r(e))

π · r(e)4 (3)

where the effective viscosity η depends on the radius (at least for small radii < 150 µm due to the
Fåhræus-Lindqvist effect [84] and according to the formula

η(r) =
η∞

(1 + δ/r)2 (4)

with η∞ = 4 · 10−3 Pa s, δ = 4.29 µm in the range r ∈ [4, 150]µm [85]. We extended η(r) constantly
for r < 4 µm and, in order to make η continuous at 150 µm, used a linear transition from η according
to Eq. 4 to η∞ in the range 140 µm ≤ r ≤ 160 µm.

For each edge e, let r(e) be the radius of e in the vascular tree T and rm(e) the radius in Tm. In order to
exclude edges at the resolution limit, we only considered the non-terminal edges of T to compute

d̄(T) = mean
non-terminal edge e of T

(
r(e)− rm(e)

)
(5a)

d̂(T) = stdev
non-terminal edge e of T

(
r(e)− rm(e)

)
(5b)

where d̄(T) can be interpreted as the systematic deviation between computed radii for the experimentally
acquired data and those matching the model assumptions, whereas d̂(T) is a measure for how much the
individual deviations are scattered. These values can either be viewed as absolute quantities (in µm) and
compared to the voxel size, i.e., the inherent scale of imaging and image processing; or relative (in %) to
the average radius considered for the average and standard deviation, more precisely the average radius of
the non-terminal edges of the experimentally acquired vascular trees. Note that this relative deviation is
not a relative error per edge. We were finally interested in the mean d̄ and standard deviation d̂ of d̄(T)
and d̂(T), respectively, evaluated (a) over all rat Microfil specimens and (b) over all mouse in vivo scans, in
both cases separately for PVs and HVs.

While the image processing did not work differently for PV and HV vascular trees, the experimental
conditions both for creating Microfil specimens and for contrast-enhanced perfusion were slightly different
due to the different physiology. In order to assess whether this has an influence on the accuracy of
determining radii, we again considered the d̄ and d̂ values and used a statistical test to examine them for
significant differences. As we had no reason to assume these values to follow a normal distribution (but
also no reason to doubt it), we used a non-parametric statistical Cramér–von-Mises test [86] implemented
in R [87] with p < α = 0.05 as a standard significance level [81].

2.6. Constrained Constructive Optimization
As an algorithmic procedure for generating vascular trees of arbitrary level of detail, we used CCO [26]

for the case of non-convex organs [1] subject to a calibration as described in [2]. In summary, CCO [26] is
based on the physiologically plausible assumption of minimal intravascular volume to achieve a given
perfusion. As no better data was available, we assumed homogeneous supply and drainage. The algorithm
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first determines a set of pseudo-randomly [88] distributed leaf nodes. During the selection of leaf nodes,
pair-wise minimal distance between leaf nodes is enforced in order to obtain a more or less homogeneous
distribution. Moreover, a minimal distance to the organ boundary can be prescribed. Starting with an initial
tree (e.g., the one obtained from the µCT scan or a pruned version of it), these leaf nodes are connected
one by one, each time introducing an optimal new bifurcation. Since there are edges of radius smaller than
150 µm to consider for rodent livers already at moderate resolution, the decreasing effective viscosity of the
blood due to the Fåhræus-Lindqvist effect [85] needs to be taken into account.

Livers are clearly of non-convex shape. In the human case [2], this was taken into account via a penalty
term [89] in the cost function of the optimization, penalizing bifurcation points lying outside the organ.
This approach turned out to be insufficient for rodent livers and we added corresponding penalties for n
equidistant points along each of the incident edges to the bifurcation. Heuristically, we determined n = 16
as a trade-off between accuracy and computational cost. The cost function is then the sum of all volumes
of the cylinders representing the edges of the vascular tree plus the sum of the squared distances of those
equidistant points weighted by 2.625 mm to mimic the cost function used in [2] and to match units.

During the optimization, radii at all bifurcations are balanced such that the flow resistance is equal for
both subtrees and such that the bifurcation exponents satisfy γ = 3 as in [2]. Resistances are computed
for the individual edges by Poiseuille’s law [83] and for the network by Kirchhoff’s law [90]. This results
in equal exit pressures for all the leaf nodes. After adding the desired number of leaf nodes, all leaf
nodes already present in the initial tree are removed and radii are again balanced as before. For a video
illustrating this construction behavior, we refer to [91].

2.7. Calibration and Application
The two steps of our overall workflow as in [2], calibration and application, are illustrated in Figure 5

in the results section for two of the specimens. The experimentally acquired vascular tree datasets are
pruned before CCO and subsequently a postprocessing step is applied to obtain different realizations of
vascular trees (one of which is visualized) used for assessing the quality of the results and for calibrating
the postprocessing. Finally, CCO including postprocessing is applied to the experimentally acquired trees
to obtain pairs of vascular trees of higher detail.

In order to make use of as much input data as possible, we start with the full (not pruned) experimentally
acquired vascular trees in the later application step. However, in the calibration step, we compare
algorithmic results to the experimental data and thus need to apply a pruning step to obtain appropriate
input. The pruning for each vascular tree is performed such that only the coarsest anatomic structure is
preserved, since this is not meant to be generated by CCO. For this purpose, we proceed very similar to [2],
starting from the root and recursively selecting daughter edges at bifurcations in the tree, as long as the
radius is larger than 0.15 times the maximal edge radius or the bifurcation lies outside the liver mask. The
latter condition accounts for the vascular trees originating from outside the organ.

Different random seeds for selecting the leaf nodes thus lead to different realizations of the CCO-
generated trees. Moreover, using the same set of leaf nodes in a different order typically also changes the
topology and geometry of the resulting tree. We algorithmically generated 20 different CCO trees for each
of the experimentally acquired trees considered to have a sufficiently large basis of data for the analysis.

Since standard CCO did not give satisfactory results for the geometric angle features, we use the same
postprocessing as described in [2]. The similarity in terms of ϕa is improved by shifting bifurcation points
along the angle bisector by a distance to be calibrated below. Furthermore, the similarity in terms of ϕb
is increased by moving out of the plane spanned by the three adjacent points by a pseudo-random [88]
amount according to the distribution determined in the experimental vascular trees (combined for all
Strahler* orders).

3. Results

3.1. Geometric Analysis
The results of the geometric similarity analysis for the four groups of experimentally determined

vascular trees is shown in Figure 2. The absolute radius values show a low similarity, but we also expect
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Table 1: Radius accuracy assessment. In order to assess how the radii determined in the experimentally acquired vascular trees match
the model assumptions, edge radii of the experimentally acquired vascular trees were compared, on a one-to-one basis, to those of the
topologically same trees with radii matching the model assumptions. The table lists means ± standard deviation of the systematic
deviation (d̄, see Eq. 5a), and its scattering (d̂, see Eq. 5b). For comparison, absolute values (in µm) are listed as well as values (in %)
relative to the respective average radii from the experimentally acquired vascular trees.

specimen set systematic deviation d̄ scattering d̂

mouse PV −0.6± 38.7 µm (−1.5± 23.3 %) 72.2± 17.2 µm (41.5± 7.2 %)
HV 31.7± 56.4 µm (13.2± 22.7 %) 145.9± 39.6 µm (54.2± 10.3 %)

rat PV 74.2± 60.1 µm (31.8± 24.9 %) 64.7± 13.2 µm (29.1± 6.6 %)
HV −73.4± 121.3 µm (−21.9± 33.8 %) 250.4± 75.8 µm (62.7± 16.6 %)

least robust results from the analysis. This feature is discussed in more detail in Section 3.2. The other
(derived) radius-related features show a higher similarity, so that the average similarity for the radius
features is moderate (ζrad = 0.496). Similarity in terms of length and angle features is generally moderate
to high (ζlen = 0.763 and ζang = 0.734). This results in ζtotal = 0.700. The more detailed analysis per
Strahler* order generally exhibits a decreasing similarity from the root to the periphery of the vascular
trees, see the detailed similarity analysis in the supporting information S2.

3.2. Radius Accuracy Assessment
The systematic deviation between radii determined from the experimentally acquired datasets and

those fitting the model assumptions (mean d̄, see Eq. 5a) was in the range of one voxel (−0.6 µm and
31.7 µm for mouse the PVs and HVs, respectively, with voxel size 35 µm; 74.2 µm and −73.4 µm for the
rat PVs and HVs, respectively, with voxel size 70 µm), see Table 1. This is below 30 % of the respective
average radii; interestingly with opposite sign for PV and HV for the rat cases. The average scattering of
the deviations (mean d̂, see Eq. 5b) was in the range of up to four voxels or up to more than 60 % of the
average radius. A detailed 1-to-1 comparison of radii used to compute d̄ and d̂ is shown in the supporting
information S1.

Comparing the results for PV and HV vascular trees separately for the two species, we obtained no
significant difference for the systematic deviation (d̄) in mice (p = 0.123). Significant differences were
observed for the scattering (d̂) in mice (p = 6.29 · 10−5) as well as for both measures in rats (d̄: p = 0.028,
d̂: p = 0.002).

feature mouse PV mouse HV rat PV rat HV

radius
radius decrease
radius asymmetry
bifurcation exponent

length
length decrease
length asymmetry

angle ϕa
angle ϕb
angle ϕc

radius average
length average
angle average

total average

Figure 2: Inter-individual similarity. For mouse and rat, PV and HV vascular trees, the similarity of vascular trees within the
respective groups in terms of different geometric features is shown in plots (longer gray bars stand for higher similarity).
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3.3. Calibration of Constrained Constructive Optimization
The similarity values between vascular trees generated by the standard CCO procedure and the

respective experimentally acquired vascular trees are plotted in Figure 3, separately for mouse and rat,
PV and HV vascular trees. Note that the absolute similarity values cannot be compared directly to those
shown in Figure 2, as discussed above.

Radius features were not similar in the measure considered here (average ξrad = 0.048 over the species
and vascular system types), but lie in comparable ranges (see the supporting information S3). The
bifurcation exponents are fixed to γ = 3 per algorithmic construction as opposed to the measurements.
Radius asymmetry is much smaller in the algorithmically generated vascular trees. Length features show a
moderate similarity (ξlen = 0.401), the absolute lengths again lie in comparable ranges. Angle features also
show a moderate similarity (ξang = 0.274). This results in ξtotal = 0.275. For a detailed analysis, we refer to
the supporting information S3. It includes plots of the respective cumulative distribution functions which
were considered in the similarity analysis and in which the respective ranges of values can be seen.

As described above, a shift of bifurcation points along the angle bisector requires calibration of a
“push-forward ratio” in order to increase the similarity in terms of ϕa. The shift, however, also affects length
features and the other angle features. A value per group of vascular trees thus needs to be found so that
the average overall similarity is maximized. This optimum can be determined from the plots in Figure 4.
Combined with shifting bifurcations out of plane as described above, the postprocessing of the trees also
has an effect on the objective function used in the CCO procedure, average relative changes ± standard
deviations are listed in Figure 3. The values slightly larger than 1 (the result of the CCO procedure) show
that postprocessing only slightly reduces the optimality condition used for the CCO procedure. In fact, for
some individual cases the postprocessing actually decreased the cost function used in the optimization.
This is to be expected as CCO finds an optimal connection for the newly connected leaf node in each step,
but is not a global optimization approach like [64].

The similarity values for different features are also plotted in Figure 3. For the angle features, the
postprocessing lead to an increase in similarity to ξang = 0.609, in particular for ϕb. The length features
were affected by the postprocessing, with a slight increase in similarity in some cases and a slight decrease
in the others, resulting in a slight decrease to ξlen = 0.387. As the radii are not rebalanced during the
postprocessing, the similarity in terms of radius features remained unaffected by the calibration, resulting
in an increased ξtotal = 0.400.

3.4. Realistic Rodent Vascular Trees
We finally applied our calibrated procedure to algorithmically generate high-resolution vascular trees.
For the mouse liver with a computed volume of 1.142 ml (obtained from the organ segmentation in the

µCT data), we computed a number of 6281 lobuli. This was obtained by the same estimate as in [18]: We
assume a lobular cross-section area of A = 0.21 mm2, a lobular radius of r = 284.3 µm (assuming a regular
hexagonal shape; both values from Table 1 in [92]), and the same elongation (height divided by diameter)
of 1.52 as for human lobuli [3], Chapter 2.5. Based on this, a mouse lobulus has an estimated volume of
181.9 · 10−9 l, approximately 1/6281 of the total liver volume in this case. We thus chose the number of leaf
nodes to be 6281 for both PV and HV.

The rat liver considered here had a computed volume of 12.34 ml (again obtained from the organ
segmentation). Assuming the same lobule size as for mice, this corresponds to 67 990 lobuli. As this
number of leaf nodes was beyond the capabilities of our current implementation of the CCO procedure,
we reduced it by a factor of 8 and chose a number of 8500 leaf nodes for PV and HV so that the domains
drained by one terminal edge in the geometric model had twice the radius and length of a physiological
lobule. Let us point out that the rat specimen chosen for these detailed results is the one with most detail
(number of edges) in the PV vascular tree, despite the resection of the superior caudate lobe.

The resulting, algorithmically generated vascular trees for one mouse and one rat liver are visualized in
Figure 5. The corresponding datasets plus some coarser intermediate trees are provided in the supporting
information S4.
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feature mouse PV mouse HV rat PV rat HV

radius
radius decrease
radius asymmetry
bifurcation exponent

length
length decrease
length asymmetry

angle ϕa
angle ϕb
angle ϕc

radius average
length average
angle average

total average

relative cost change 1.024± 0.012 1.012± 0.006 1.015± 0.008 1.020± 0.007

Figure 3: Similarity between experimentally acquired and algorithmically generated vascular trees. For mouse and rat, PV and HV
vascular trees, the similarity of algorithmically generated and experimentally acquired vascular trees within the respective groups in
terms of different geometric features is shown. In each plot, the upper, light gray, bar stands for the standard CCO results whereas
the lower, dark gray, bar stands for the postprocessed results. This shows that the postprocessing improves the overall similarity
between algorithmic results and measurements, but not for each individual geometric feature. The last row shows the change of the
cost function (objective function used in the optimization procedure, essentially the intravascular volume) relative to the value before
postprocessing. On average, the cost slightly increases by the postprocessing.
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0.00 0.05 0.10 0.15 0.20
0.2

0.4

0.6

push-forward percentage

si
m

ila
rit

y

0.00 0.05 0.10 0.15 0.20
0.2

0.4

0.6

push-forward percentage

si
m

ila
rit

y

rat PV: 0.07 rat HV: 0.06
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Figure 4: Calibration for shifting bifurcation points. As one part of the postprocessing step subsequent to the CCO procedure,
bifurcation nodes are moved along the angle bisector of the daughter edges. These plots show the influence of different such
“push-forward ratios” on the average length and angle as well as overall similarities between (fully postprocessed) algorithmically
generated and experimentally acquired vascular trees. The optimum (maximal overall similarity) is a trade-off between improving
similarity in the angle features while worsening the similarity in the length features. For the different groups of specimens, different
optimal “push-forward ratios” are obtained.
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mouse rat

1 mm 1 mm
original pruned original pruned

standard CCO calibrated CCO standard CCO calibrated CCO

1 mm 1 mm

(SCL resected)

refined refined

Figure 5: Calibration and application. Experimentally acquired vascular trees (“original”) for a mouse (left) and a rat (right) were
pruned to have a starting point (“pruned”) for an assessment of the CCO procedure. Three out of 20 algorithmically generated CCO
realizations are visualized, before and after postprocessing (“standard CCO” and “calibrated CCO”, respectively). The postprocessing
only altered individual bifurcations, but not the overall appearance of the vascular trees. The boxes show zoomed views to illustrate
the effect of the postprocessing. Finally, the CCO procedure including postprocessing was applied to the experimentally acquired
vascular trees to obtain the desired level of detail, in our case 6281 and 8500 leaf nodes in the mouse and rat case, respectively
(“refined”). Portal veins are shown in red, hepatic veins in blue, the organ shapes in gray.
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4. Discussion

4.1. Geometric Analysis
Using experimentally acquired rodent vascular trees, we characterized the inter-individual similarity

(Figure 2). For the different geometric features, a small to high similarity was observed. A more detailed
analysis (see the supporting information S2) shows that the similarity generally decreased from the root
towards the periphery (increasing Strahler* order). This is probably due to resolution limitations of the
imaging and image processing.

In particular the radius features exhibited a low similarity among the experimentally acquired vascular
trees. The main challenge is that the radii were in the range of few voxels in the image data, preventing
robust measurements. Moreover, determined radii in the experimentally acquired vascular trees did not
closely match our model assumptions (Table 1). This is additionally due to the fact that flow resistances
play a rather central role in the geometric construction, but are highly sensitive to the radii due to the
fourth power in Equation 3. Note, however, that the comparison in Table 1 is by no means a validation of
the radius measurements as no ground truth was available.

The results in Table 1 do not give any indication whether the model assumptions about radii for
homogeneous perfusion were inadequate, whether the image data did not accurately represent the real
vascular radii, or to what extent the image processing incorrectly determined radii. Besides the limited
resolution mentioned above, imaged radii are those of the radiopaque contrast agent flowing through the
mouse livers or of the Microfil specimens after injection and polymerization in the rat livers. Both might
slightly differ from the radii of the physiological vascular structures. The radius accuracy of the image
processing could be addressed by a (software) phantom study as in [25] on the size scale of the µCT scans
and performing the image processing techniques used here.

The reason for the differences between PVs and HVs in the systematic deviation d̄ and the scattering d̂
(listed in Table 1) are unclear at present. The imaging and subsequent data processing procedures are, in
principle, independent of the type of vascular system. Thus, the differences could indicate that the two
types of vascular system differ in terms of their accessibility by the experimental procedures used here
(perfusion by contrast agent, Microfil injection), or that our CCO assumptions require a slightly different
adaption for PVs and HVs.

4.2. Calibrated Constructive Algorithm
Comparing the results of our algorithmic procedure to the experimentally acquired vascular trees

showed a moderate similarity (Figure 3). The similarity was particularly low for the radius features, which
is not surprising as this data is not robustly available for the experimentally acquired vascular trees. In
particular, the bifurcation exponents were fixed to γ = 3 in the algorithm, and are not distributed as in
the experimentally acquired vascular trees. Our calibration procedure could improve the results to some
extent (Figure 4), in particular in terms of the angle features. For the geometric features with low similarity,
we could at least verify that the values lie in comparable ranges, see the supporting information S3.

For the trees generated for calibration, let us point out that these do not necessarily match the coarse
anatomic structures of the input data, see the differences between the three CCO realizations in Figure 5.
Any anatomic details lost in the pruning process are not available to the algorithm, and the algorithm is
not meant to recover such details. In the actual application, however, we start with the full experimentally
acquired information and in particular do not lose the coarse anatomic information if it is available in the
first place.

4.3. Comparison to the Human Case
Comparing the similarity values for rodents from this study to the previous results for human data

reported in [2], we can observe that the similarity among experimentally acquired trees was slightly lower
for rodents than in the human case (Figure 2 and the overview table in supporting information S2 vs.
Table 3 in [2]). Comparing the algorithmic results to the experimentally acquired trees, the similarity
in the rodent cases was notably lower than in the human case (Figure 3 and the overview table in

14



supporting information S3 vs. Table 6 in [2]). Both can be speculated to be due to less reliable data for
the generally smaller specimens/organs and due to larger variations in the smaller number of rodent
specimens. Furthermore, the postprocessing parameters determined in the calibration also varied for the
different species as well as for PV and HV.

4.4. Limitations
As for the analysis performed here, twelve PVs and HVs for mice and six PVs and HVs for rats were

used. This is a relatively small number of specimens, in particular compared to [2] where more than
160 datasets were available. This limitation is due to the large experimental and image processing effort,
both of which are already at the limit of efficiency for batch processing. In particular, it would have been
preferable for the calibration procedure to split the datasets in training data and data used for validation.
Due to the small number of specimens, however, we decided to restrict our analysis to comparing each of
the 20n algorithmically generated vascular trees to each of the n experimentally acquired trees.

The method itself is also subject to a few limitations, mainly already stated in [2]. In our similarity
analysis, we only considered geometric features of the vascular trees. It would clearly be desirable to also
consider functional properties such as spatially resolved perfusion or metabolic capacity. However, such
data is not easily accessible by measurements, in particular in vivo. Computing them for the algorithmic
results would moreover require additional well-established and validated assumptions. The geometric
representation of vascular trees used in the analysis is a simplified approximation of the physiological
setting. Neglecting curvature as well as variable and non-circular cross-section of vascular edges permits a
consistent definition of geometric features at the cost of ignoring available geometric details. However, it is
unclear at present to what extent this kind of geometric details is preserved correctly from the physiological
setting through the experimental, imaging, and image processing procedure.

The assumption of homogeneous perfusion for CCO is plausible, but not experimentally funded.
However, if data were available indicating perfusion heterogeneity at the length scale considered here,
the algorithmic procedure could easily be adapted to take that heterogeneity into account. Moreover,
we extrapolated geometric properties from the level of detail available from the experimentally acquired
vascular trees to finer resolution. This is based on the plausible but not fully verified assumption of
self-similarity.

4.5. Perspective
The algorithmic CCO procedure can be improved further. In our current implementation, the PV and

HV in the same organ are generated independently, so they are not prevented from intersecting. Jointly
generating the two vascular trees, maybe also adding the HA, should probably involve a joint flow/pressure
model also including an effective representation of the organ tissue between the vascular trees, following
the ideas in [93] possibly in a multi-scale fashion [94], and additionally add a non-intersection constraint in
the construction process. It might be possible to combine this extension with a more global optimization
approach [64] in the construction.

Another potential artifact is given by potential connections between territories that are actually sup-
plied/drained separately in the physiological setting. To prevent this, the CCO procedure could be
extended to take into account a subdivision of the liver into supplied and drained territories according to
the experimentally acquired vascular trees available for our datasets [95], or into territories according to
other schemes [96] for the human case. This would prevent artificial vascular connections across territory
boundaries, which is not explicitly prevented in the current implementation. A second major advantage of
treating territories separately is that this approach permits easy and efficient parallelization. Even without
parallelization, the performance of the method can largely benefit from such a classical divide and conquer
approach due to the n2 log(n) computational complexity of the CCO implementation. Performance is a
major bottleneck in the current implementation, the refined vascular trees in Figure 5 took several days to
generate on a standard desktop PC. Let us point out, however, that this is not an issue for many simulation
applications, as the geometric input is generated only once prior to multiple model simulations.

Depending on the application, e.g., for drug discovery and development [97], one might be more
interested in geometrically “typical” (rather than individual-specific) liver models. To obtain those, shape
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averaging techniques such as [98] could be applied and one would need to investigate whether an average
of multiple liver shapes actually yields a typical shape.

5. Conclusions

The CCO procedure provides a framework for algorithmically refining hepatic vascular trees to an
arbitrary level of detail. We here transferred the CCO procedure from human [2] to rodent livers and
determined appropriate calibration parameters. The results are suitable geometric input for individual-
specific models of processes involving hepatic perfusion. These models are needed in particular when
taking into account organ-scale heterogeneity, e.g., in pharmacokinetics simulations or when assessing
specific surgical techniques.
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6. Supporting Information

In the supporting information, we provide more detailed analysis results and vascular datasets for the
two cases shown in Figure 5.

S1 [pdf]. Detailed results of the 1-to-1 comparison of measured radii and those matching the model
assumptions for each specimen

S2 [pdf]. Detailed results of the inter-individual similarity analysis among mouse PV, mouse HV, rat PV,
rat HV

S3 [pdf]. Detailed results of the similarity analysis between experimentally acquired and algorithmically
generated vascular trees, same four cases, before and after calibration

S4 [archive]. Datasets shown in Figure 5 plus intermediate generated trees (including a simple viewer tool
from [18])
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Algorithmically Generated Rodent Hepatic Vascular Trees in Arbitrary Detail
Supporting Information S2

Interindividual Variations

Lars Ole Schwen Weiwei Wei Felix Gremse Josef Ehling
Lei Wang Uta Dahmen Tobias Preusser

Legend

Edge Radii: 0.174a

Strahler* order . . . 3 . . .
similarity 0.152b

c

∅ # edges / # trees 116.750d / 12e

averaging weight 0.280f

a similarity value for this geometric feature averaged over all Strahler* orders

b similarity value for this geometric feature and this Strahler* order

c plot of the cumulative distribution functions for all trees for this geometric feature
and this Strahler* order

d average number of edges per vascular tree considered for c

e number of vascular trees considered for c

f averaging weight for b contributing to a
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Interindividual Variations Mouse PV

Edge Radii: 0.174

Strahler* order 0 1 2 3 4 5 6
similarity 0.848 0.545 0.318 0.152 0.091 0.091 n/a

∅ # edges / # trees 8.917 / 12 19.083 / 12 54.083 / 12 116.750 / 12 218.250 / 12 394.273 / 11 584.000 / 1
averaging weight 0.02 0.046 0.130 0.280 0.523 0 0

Radius Decrease: 0.552
Strahler* order 0 1 2 3 4 5 6
similarity 1.000 0.879 0.833 0.833 0.288 0.164 n/a

∅ # edges / # trees 7.917 / 12 19.083 / 12 54.083 / 12 116.750 / 12 218.250 / 12 394.273 / 11 584.000 / 1
averaging weight 0.02 0.046 0.130 0.281 0.525 0 0

Radius Asymmetry: 0.444

Strahler* order 0 1 2 3 4 5 6
similarity 0.970 0.955 0.515 0.288 0.273 n/a n/a

∅ # edges / # trees 8.917 / 12 19.083 / 12 54.083 / 12 116.750 / 12 208.000 / 11 283.000 / 1 0 / 0
averaging weight 0.045 0.096 0.272 0.587 0 0 0

Bifurcation Exponent: 0.745

Strahler* order 0 1 2 3 4 5 6
similarity 0.985 0.939 0.924 0.621 0.400 n/a n/a

∅ # edges / # trees 5.750 / 12 11.500 / 12 32.583 / 12 76.333 / 12 156.545 / 11 220.000 / 1 0 / 0
averaging weight 0.046 0.091 0.258 0.605 0 0 0
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Edge Length: 0.466

Strahler* order 0 1 2 3 4 5 6
similarity 1.000 0.894 0.652 0.576 0.303 0.127 n/a

∅ # edges / # trees 8.917 / 12 19.083 / 12 54.083 / 12 116.750 / 12 218.250 / 12 394.273 / 11 584.000 / 1
averaging weight 0.02 0.046 0.130 0.280 0.523 0 0

Length Decrease: 0.943

Strahler* order 0 1 2 3 4 5 6
similarity 1.000 1.000 1.000 0.909 0.939 0.545 n/a

∅ # edges / # trees 7.000 / 12 18.583 / 12 51.750 / 12 112.083 / 12 209.917 / 12 372.727 / 11 548.000 / 1
averaging weight 0.02 0.047 0.130 0.281 0.526 0 0

Length Asymmetry: 0.903

Strahler* order 0 1 2 3 4 5 6
similarity 1.000 0.879 0.848 0.924 0.764 n/a n/a

∅ # edges / # trees 8.917 / 12 19.083 / 12 54.083 / 12 116.750 / 12 208.000 / 11 283.000 / 1 0 / 0
averaging weight 0.045 0.096 0.272 0.587 0 0 0

Angle ϕa: 0.739

Strahler* order 0 1 2 3 4 5 6
similarity 1.000 0.939 0.848 0.636 0.600 n/a n/a

∅ # edges / # trees 7.833 / 12 17.667 / 12 50.583 / 12 108.167 / 12 203.818 / 11 276.000 / 1 0 / 0
averaging weight 0.043 0.096 0.275 0.587 0 0 0

Angle ϕb: 0.949

Strahler* order 0 1 2 3 4 5 6
similarity 0.864 0.985 0.970 0.939 0.709 n/a n/a

∅ # edges / # trees 7.667 / 12 16.833 / 12 48.583 / 12 104.083 / 12 192.636 / 11 261.000 / 1 0 / 0
averaging weight 0.043 0.095 0.274 0.587 0 0 0

Angle ϕc: 0.807

Strahler* order 0 1 2 3 4 5 6
similarity 1.000 1.000 0.848 0.742 0.655 n/a n/a

∅ # edges / # trees 7.667 / 12 16.833 / 12 48.583 / 12 104.083 / 12 192.364 / 11 261.000 / 1 0 / 0
averaging weight 0.043 0.095 0.274 0.587 0 0 0
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Interindividual Variations Mouse HV

Edge Radii: 0.129

similarity 0.197 0.258 0.152 0.076 0.167 0.190
Strahler* order 0 1 2 3 4 5

∅ # edges / # trees 19.833 / 12 35.000 / 12 73.750 / 12 138.833 / 12 258.750 / 12 469.714 / 7
averaging weight 0.074 0.131 0.276 0.519 0 0

Radius Decrease: 0.647
similarity 0.894 0.727 0.652 0.591 0.197 0.286
Strahler* order 0 1 2 3 4 5

∅ # edges / # trees 18.833 / 12 35.000 / 12 73.750 / 12 138.833 / 12 258.750 / 12 469.714 / 7
averaging weight 0.071 0.131 0.277 0.521 0 0

Radius Asymmetry: 0.466

similarity 0.833 0.773 0.500 0.318 0.476 n/a
Strahler* order 0 1 2 3 4 5

∅ # edges / # trees 19.833 / 12 35.000 / 12 73.750 / 12 138.833 / 12 226.571 / 7 0 / 0
averaging weight 0.074 0.131 0.276 0.519 0 0

Bifurcation Exponent: 0.613

similarity 1.000 0.758 0.833 0.439 0.810 n/a
Strahler* order 0 1 2 3 4 5

∅ # edges / # trees 9.917 / 12 23.917 / 12 50.000 / 12 105.000 / 12 188.714 / 7 0 / 0
averaging weight 0.053 0.127 0.265 0.556 0 0

4



Edge Length: 0.730

similarity 0.924 0.788 0.712 0.697 0.333 0.286
Strahler* order 0 1 2 3 4 5

∅ # edges / # trees 19.833 / 12 35.000 / 12 73.750 / 12 138.833 / 12 258.750 / 12 469.714 / 7
averaging weight 0.074 0.131 0.276 0.519 0 0

Length Decrease: 0.978

similarity 1.000 0.955 1.000 0.970 0.864 0.762
Strahler* order 0 1 2 3 4 5

∅ # edges / # trees 18.455 / 11 34.000 / 12 71.583 / 12 134.917 / 12 246.833 / 12 440.714 / 7
averaging weight 0.066 0.132 0.278 0.524 0 0

Length Asymmetry: 0.871

similarity 0.879 0.909 0.894 0.848 0.571 n/a
Strahler* order 0 1 2 3 4 5

∅ # edges / # trees 19.833 / 12 35.000 / 12 73.750 / 12 138.833 / 12 226.571 / 7 0 / 0
averaging weight 0.074 0.131 0.276 0.519 0 0

Angle ϕa: 0.575

similarity 0.864 0.985 0.561 0.439 0.476 n/a
Strahler* order 0 1 2 3 4 5

∅ # edges / # trees 17.833 / 12 33.167 / 12 68.500 / 12 131.500 / 12 223.714 / 7 0 / 0
averaging weight 0.071 0.132 0.273 0.524 0 0

Angle ϕb: 0.841

similarity 0.803 0.939 0.818 0.833 0.667 n/a
Strahler* order 0 1 2 3 4 5

∅ # edges / # trees 16.833 / 12 32.000 / 12 66.833 / 12 126.083 / 12 208.857 / 7 0 / 0
averaging weight 0.070 0.132 0.276 0.522 0 0

Angle ϕc: 0.661

similarity 0.879 0.818 0.833 0.500 0.762 n/a
Strahler* order 0 1 2 3 4 5

∅ # edges / # trees 16.833 / 12 32.000 / 12 66.750 / 12 126.083 / 12 208.857 / 7 0 / 0
averaging weight 0.070 0.132 0.276 0.522 0 0
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Interindividual Variations Rat PV

Edge Radii: 0.091

similarity 0.333 0.133 0.067 0.133 0.067 0 0
Strahler* order 0 1 2 3 4 5 6

∅ # edges / # trees 9.000 / 6 24.667 / 6 69.167 / 6 162.167 / 6 342.667 / 6 677.500 / 6 1117.000 / 3
averaging weight 0.01 0.041 0.114 0.267 0.564 0 0

Radius Decrease: 0.392
similarity
Strahler* order 0 1 2 3 4 5 6

∅ # edges / # trees 8.000 / 6 24.667 / 6 69.167 / 6 162.167 / 6 342.667 / 6 677.500 / 6 1117.000 / 3
averaging weight 0.01 0.041 0.114 0.267 0.565 0 0

Radius Asymmetry: 0.235

similarity 0.867 0.933 0.333 0.267 0.133 0.667 n/a
Strahler* order 0 1 2 3 4 5 6

∅ # edges / # trees 9.000 / 6 24.667 / 6 69.167 / 6 162.167 / 6 342.667 / 6 627.333 / 3 0 / 0
averaging weight 0.01 0.041 0.114 0.267 0.564 0 0

Bifurcation Exponent: 0.381

similarity 1.000 1.000 1.000 0.400 0.200 0.667 n/a
Strahler* order 0 1 2 3 4 5 6

∅ # edges / # trees 5.667 / 6 16.333 / 6 44.333 / 6 96.667 / 6 237.000 / 6 523.667 / 3 0 / 0
averaging weight 0.01 0.041 0.111 0.242 0.593 0 0
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Edge Length: 0.489

similarity 1.000 0.933 0.933 0.533 0.333 0.200 0
Strahler* order 0 1 2 3 4 5 6

∅ # edges / # trees 9.000 / 6 24.667 / 6 69.167 / 6 162.167 / 6 342.667 / 6 677.500 / 6 1117.000 / 3
averaging weight 0.01 0.041 0.114 0.267 0.564 0 0

Length Decrease: 0.810

similarity 1.000 1.000 1.000 1.000 0.667 0.400 0.333
Strahler* order 0 1 2 3 4 5 6

∅ # edges / # trees 6.333 / 6 23.167 / 6 65.667 / 6 153.333 / 6 327.833 / 6 633.000 / 6 1058.000 / 3
averaging weight 0.01 0.040 0.114 0.266 0.569 0 0

Length Asymmetry: 0.720

similarity 0.800 1.000 1.000 0.667 0.667 0.667 n/a
Strahler* order 0 1 2 3 4 5 6

∅ # edges / # trees 9.000 / 6 24.667 / 6 69.167 / 6 162.167 / 6 342.667 / 6 627.333 / 3 0 / 0
averaging weight 0.01 0.041 0.114 0.267 0.564 0 0

Angle ϕa: 0.562

similarity 1.000 0.867 0.800 0.600 0.467 1.000 n/a
Strahler* order 0 1 2 3 4 5 6

∅ # edges / # trees 7.833 / 6 23.167 / 6 62.833 / 6 144.333 / 6 323.667 / 6 616.000 / 3 0 / 0
averaging weight 0.01 0.041 0.112 0.257 0.576 0 0

Angle ϕb: 0.489

similarity 0.800 0.867 1.000 0.533 0.333 1.000 n/a
Strahler* order 0 1 2 3 4 5 6

∅ # edges / # trees 6.833 / 6 22.167 / 6 59.667 / 6 136.833 / 6 301.333 / 6 584.333 / 3 0 / 0
averaging weight 0.01 0.042 0.113 0.260 0.572 0 0

Angle ϕc: 0.641

similarity 0.867 0.867 0.867 0.733 0.533 1.000 n/a
Strahler* order 0 1 2 3 4 5 6

∅ # edges / # trees 6.833 / 6 22.167 / 6 59.667 / 6 136.833 / 6 301.000 / 6 583.333 / 3 0 / 0
averaging weight 0.01 0.042 0.113 0.260 0.572 0 0
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Interindividual Variations Rat HV

Edge Radii: 0.03

similarity 0.067 0.200 0.133 0 0 0 n/a
Strahler* order 0 1 2 3 4 5 6

∅ # edges / # trees 31.833 / 6 31.333 / 6 96.500 / 6 174.833 / 6 371.500 / 6 727.000 / 6 1758.000 / 1
averaging weight 0.045 0.044 0.137 0.248 0.526 0 0

Radius Decrease: 0.392
similarity 0.800 1.000 0.400 0.333 0.333 0 n/a
Strahler* order 0 1 2 3 4 5 6

∅ # edges / # trees 30.833 / 6 31.333 / 6 96.500 / 6 174.833 / 6 371.500 / 6 727.000 / 6 1758.000 / 1
averaging weight 0.044 0.044 0.137 0.248 0.527 0 0

Radius Asymmetry: 0.419

similarity 0.600 0.933 0.467 0.267 0 n/a n/a
Strahler* order 0 1 2 3 4 5 6

∅ # edges / # trees 31.833 / 6 31.333 / 6 96.500 / 6 174.833 / 6 371.500 / 6 939.000 / 1 0 / 0
averaging weight 0.095 0.094 0.288 0.523 0 0 0

Bifurcation Exponent: 0.696

similarity 0.867 1.000 0.733 0.600 0.067 n/a n/a
Strahler* order 0 1 2 3 4 5 6

∅ # edges / # trees 18.000 / 6 20.833 / 6 70.833 / 6 126.333 / 6 286.500 / 6 828.000 / 1 0 / 0
averaging weight 0.076 0.088 0.300 0.535 0 0 0
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Edge Length: 0.534

similarity 0.867 1.000 0.533 0.533 0.467 0.067 n/a
Strahler* order 0 1 2 3 4 5 6

∅ # edges / # trees 31.833 / 6 31.333 / 6 96.500 / 6 174.833 / 6 371.500 / 6 727.000 / 6 1758.000 / 1
averaging weight 0.045 0.044 0.137 0.248 0.526 0 0

Length Decrease: 0.683

similarity 1.000 1.000 1.000 1.000 0.400 0.533 n/a
Strahler* order 0 1 2 3 4 5 6

∅ # edges / # trees 29.167 / 6 29.667 / 6 92.333 / 6 167.000 / 6 357.000 / 6 688.667 / 6 1649.000 / 1
averaging weight 0.043 0.044 0.137 0.247 0.529 0 0

Length Asymmetry: 0.701

similarity 0.733 1.000 0.533 0.733 0.667 n/a n/a
Strahler* order 0 1 2 3 4 5 6

∅ # edges / # trees 31.833 / 6 31.333 / 6 96.500 / 6 174.833 / 6 371.500 / 6 939.000 / 1 0 / 0
averaging weight 0.095 0.094 0.288 0.523 0 0 0

Angle ϕa: 0.779

similarity 1.000 1.000 0.600 0.800 0.400 n/a n/a
Strahler* order 0 1 2 3 4 5 6

∅ # edges / # trees 29.667 / 6 28.333 / 6 90.500 / 6 160.500 / 6 357.167 / 6 923.000 / 1 0 / 0
averaging weight 0.096 0.092 0.293 0.519 0 0 0

Angle ϕb: 0.837

similarity 1.000 1.000 0.800 0.800 0.533 n/a n/a
Strahler* order 0 1 2 3 4 5 6

∅ # edges / # trees 28.667 / 6 26.667 / 6 87.000 / 6 152.833 / 6 338.167 / 6 867.000 / 1 0 / 0
averaging weight 0.097 0.090 0.295 0.518 0 0 0

Angle ϕc: 0.817

similarity 1.000 0.933 0.867 0.733 0.467 n/a n/a
Strahler* order 0 1 2 3 4 5 6

∅ # edges / # trees 28.667 / 6 26.667 / 6 87.000 / 6 152.833 / 6 337.500 / 6 867.000 / 1 0 / 0
averaging weight 0.097 0.090 0.295 0.518 0 0 0
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Overview

For mouse and rat, PV and HV vascular trees, the table lists the similarity values among the
experimentally acquired trees on a scale from 0 to 1.

mouse rat
feature PV HV PV HV

radius 0.174 0.129 0.091 0.030
radius decrease 0.552 0.647 0.392 0.392
radius asymmetry 0.444 0.466 0.235 0.419
bifurcation exponent 0.745 0.613 0.381 0.696
length 0.466 0.730 0.489 0.534
length decrease 0.943 0.978 0.810 0.683
length asymmetry 0.903 0.871 0.720 0.701
angle ϕa 0.739 0.575 0.562 0.779
angle ϕb 0.949 0.841 0.489 0.837
angle ϕc 0.807 0.661 0.641 0.817

radius average 0.568 0.554 0.330 0.530
length average 0.831 0.872 0.700 0.648
angle average 0.841 0.710 0.571 0.812

total average 0.774 0.743 0.585 0.696
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Algorithmically Generated Rodent Hepatic Vascular Trees in Arbitrary Detail
Supporting Information S3

Variations Between Algorithmically Generated
And Experimentally Acquired Vascular Trees

Lars Ole Schwen Weiwei Wei Felix Gremse Josef Ehling
Lei Wang Uta Dahmen Tobias Preusser

Legend

Edge Radii: 0.063a

Strahler* order . . . 2 . . .
similarity 0.153b

c

∅ # edges / # trees EA 54.083d / 12e

∅ # edges / # trees AG 81.771f / 240g

averaging weight 0.132h

a similarity value for this geometric feature averaged over all Strahler* orders

b similarity value for this geometric feature and this Strahler* order

c plot of the cumulative distribution functions for all trees for this geometric feature
and this Strahler* order (green: algorithmically generated, red: experimentally
acquired vascular trees)

d average number of edges per experimentally acquired vascular tree considered
for c

e number of experimentally acquired vascular trees considered for c

f average number of edges per algorithmically generated vascular tree considered
for c

g number of algorithmically generated vascular trees considered for c

h averaging weight for b contributing to a
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Algorithmically Generated vs. Experimentally Acquired Mouse PV

Edge Radii: 0.063

Strahler* order 0 1 2 3 4 5 6
similarity 0.585 0.274 0.153 0.057 0.009 0.003 0.000

∅ # edges / # trees EA 8.917 / 12 19.083 / 12 54.083 / 12 116.750 / 12 218.250 / 12 394.273 / 11 584.000 / 1
∅ # edges / # trees AG 6.825 / 240 30.804 / 240 81.771 / 240 168.042 / 240 322.600 / 240 614.427 / 239 759.100 / 80
averaging weight 0.015 0.048 0.132 0.278 0.527 0.000 0.000

Radius Decrease: 0.028
Strahler* order 0 1 2 3 4 5 6
similarity 0.949 0.295 0.006 0.000 0.000 0.000 0.000

∅ # edges / # trees EA 7.917 / 12 19.083 / 12 54.083 / 12 116.750 / 12 218.250 / 12 394.273 / 11 584.000 / 1
∅ # edges / # trees AG 7.206 / 194 30.804 / 240 81.771 / 240 168.042 / 240 322.600 / 240 614.427 / 239 759.100 / 80
averaging weight 0.014 0.048 0.132 0.278 0.528 0.000 0.000

Radius Asymmetry: 0.062

Strahler* order 0 1 2 3 4 5 6
similarity 0.743 0.126 0.003 0.041 0.247 0.487 n/a

∅ # edges / # trees EA 8.917 / 12 19.083 / 12 54.083 / 12 116.750 / 12 208.000 / 11 283.000 / 1 0 / 0
∅ # edges / # trees AG 6.825 / 240 30.804 / 240 81.771 / 240 168.042 / 240 321.230 / 239 388.913 / 80 0 / 0
averaging weight 0.033 0.102 0.279 0.587 0.000 0.000 0.000

Bifurcation Exponent: 0.048

Strahler* order 0 1 2 3 4 5 6
similarity 0.811 0.218 0.000 0.000 0.000 0.000 n/a

∅ # edges / # trees EA 5.750 / 12 11.500 / 12 32.583 / 12 76.333 / 12 156.545 / 11 220.000 / 1 0 / 0
∅ # edges / # trees AG 6.825 / 240 30.804 / 240 81.771 / 240 168.042 / 240 321.230 / 239 388.913 / 80 0 / 0
averaging weight 0.033 0.099 0.272 0.596 0.000 0.000 0.000
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Edge Length: 0.130

Strahler* order 0 1 2 3 4 5 6
similarity 0.957 0.787 0.384 0.086 0.005 0.000 0.000

∅ # edges / # trees EA 8.917 / 12 19.083 / 12 54.083 / 12 116.750 / 12 218.250 / 12 394.273 / 11 584.000 / 1
∅ # edges / # trees AG 6.825 / 240 30.804 / 240 81.771 / 240 168.042 / 240 322.600 / 240 614.427 / 239 759.100 / 80
averaging weight 0.015 0.048 0.132 0.278 0.527 0.000 0.000

Length Decrease: 0.155

Strahler* order 0 1 2 3 4 5 6
similarity 0.996 0.979 0.550 0.078 0.000 0.000 0.000

∅ # edges / # trees EA 7.000 / 12 18.583 / 12 51.750 / 12 112.083 / 12 209.917 / 12 372.727 / 11 548.000 / 1
∅ # edges / # trees AG 7.206 / 194 30.804 / 240 81.771 / 240 168.042 / 240 322.600 / 240 614.427 / 239 759.100 / 80
averaging weight 0.013 0.049 0.132 0.278 0.528 0.000 0.000

Length Asymmetry: 0.761

Strahler* order 0 1 2 3 4 5 6
similarity 0.994 0.904 0.790 0.709 0.413 0.163 n/a

∅ # edges / # trees EA 8.917 / 12 19.083 / 12 54.083 / 12 116.750 / 12 208.000 / 11 283.000 / 1 0 / 0
∅ # edges / # trees AG 6.825 / 240 30.804 / 240 81.771 / 240 168.042 / 240 321.230 / 239 388.913 / 80 0 / 0
averaging weight 0.033 0.102 0.279 0.587 0.000 0.000 0.000

Angle ϕa: 0.255

Strahler* order 0 1 2 3 4 5 6
similarity 0.964 0.806 0.267 0.116 0.091 0.000 n/a

∅ # edges / # trees EA 7.833 / 12 17.667 / 12 50.583 / 12 108.167 / 12 203.818 / 11 276.000 / 1 0 / 0
∅ # edges / # trees AG 6.825 / 240 30.804 / 240 81.771 / 240 168.042 / 240 321.230 / 239 388.913 / 80 0 / 0
averaging weight 0.032 0.102 0.280 0.587 0.000 0.000 0.000

Angle ϕb: 0.810

Strahler* order 0 1 2 3 4 5 6
similarity 0.918 0.952 0.954 0.711 0.121 0.000 n/a

∅ # edges / # trees EA 7.667 / 12 16.833 / 12 48.583 / 12 104.083 / 12 192.636 / 11 261.000 / 1 0 / 0
∅ # edges / # trees AG 6.825 / 240 30.804 / 240 81.771 / 240 168.042 / 240 321.230 / 239 388.913 / 80 0 / 0
averaging weight 0.032 0.101 0.280 0.587 0.000 0.000 0.000

Angle ϕc: 0.793

Strahler* order 0 1 2 3 4 5 6
similarity 0.980 0.968 0.802 0.749 0.223 0.000 n/a

∅ # edges / # trees EA 7.667 / 12 16.833 / 12 48.583 / 12 104.083 / 12 192.364 / 11 261.000 / 1 0 / 0
∅ # edges / # trees AG 6.825 / 240 30.804 / 240 81.771 / 240 168.042 / 240 321.230 / 239 388.913 / 80 0 / 0
averaging weight 0.032 0.101 0.280 0.587 0.000 0.000 0.000
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Algorithmically Generated vs. Experimentally Acquired Mouse HV

Edge Radii: 0.018

Strahler* order 0 1 2 3 4 5 6
similarity 0.228 0.099 0.039 0.004 0.000 0.000 n/a

∅ # edges / # trees EA 19.833 / 12 35.000 / 12 73.750 / 12 138.833 / 12 258.750 / 12 469.714 / 7 0 / 0
∅ # edges / # trees AG 12.150 / 240 37.833 / 240 91.542 / 240 186.254 / 240 350.442 / 240 663.114 / 229 0 / 0
averaging weight 0.026 0.061 0.138 0.270 0.505 0.000 0.000

Radius Decrease: 0.018
Strahler* order 0 1 2 3 4 5 6
similarity 0.420 0.117 0.003 0.000 0.000 0.000 n/a

∅ # edges / # trees EA 18.833 / 12 35.000 / 12 73.750 / 12 138.833 / 12 258.750 / 12 469.714 / 7 0 / 0
∅ # edges / # trees AG 11.789 / 227 37.833 / 240 91.542 / 240 186.254 / 240 350.442 / 240 663.114 / 229 0 / 0
averaging weight 0.024 0.061 0.138 0.270 0.506 0.000 0.000

Radius Asymmetry: 0.047

Strahler* order 0 1 2 3 4 5 6
similarity 0.400 0.044 0.009 0.034 0.483 n/a n/a

∅ # edges / # trees EA 19.833 / 12 35.000 / 12 73.750 / 12 138.833 / 12 226.571 / 7 0 / 0 0 / 0
∅ # edges / # trees AG 12.150 / 240 37.833 / 240 91.542 / 240 186.254 / 240 341.275 / 229 392.448 / 29 0 / 0
averaging weight 0.053 0.123 0.279 0.545 0.000 0.000 0.000

Bifurcation Exponent: 0.029

Strahler* order 0 1 2 3 4 5 6
similarity 0.562 0.039 0.000 0.000 0.000 n/a n/a

∅ # edges / # trees EA 9.917 / 12 23.917 / 12 50.000 / 12 105.000 / 12 188.714 / 7 0 / 0 0 / 0
∅ # edges / # trees AG 12.150 / 240 37.833 / 240 91.542 / 240 186.254 / 240 341.275 / 229 392.448 / 29 0 / 0
averaging weight 0.044 0.121 0.272 0.563 0.000 0.000 0.000
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Edge Length: 0.139

Strahler* order 0 1 2 3 4 5 6
similarity 0.826 0.785 0.318 0.091 0.003 0.000 n/a

∅ # edges / # trees EA 19.833 / 12 35.000 / 12 73.750 / 12 138.833 / 12 258.750 / 12 469.714 / 7 0 / 0
∅ # edges / # trees AG 12.150 / 240 37.833 / 240 91.542 / 240 186.254 / 240 350.442 / 240 663.114 / 229 0 / 0
averaging weight 0.026 0.061 0.138 0.270 0.505 0.000 0.000

Length Decrease: 0.156

Strahler* order 0 1 2 3 4 5 6
similarity 0.993 0.884 0.459 0.054 0.000 0.000 n/a

∅ # edges / # trees EA 18.455 / 11 34.000 / 12 71.583 / 12 134.917 / 12 246.833 / 12 440.714 / 7 0 / 0
∅ # edges / # trees AG 11.789 / 227 37.833 / 240 91.542 / 240 186.254 / 240 350.442 / 240 663.114 / 229 0 / 0
averaging weight 0.024 0.061 0.139 0.272 0.504 0.000 0.000

Length Asymmetry: 0.777

Strahler* order 0 1 2 3 4 5 6
similarity 0.900 0.877 0.829 0.716 0.445 n/a n/a

∅ # edges / # trees EA 19.833 / 12 35.000 / 12 73.750 / 12 138.833 / 12 226.571 / 7 0 / 0 0 / 0
∅ # edges / # trees AG 12.150 / 240 37.833 / 240 91.542 / 240 186.254 / 240 341.275 / 229 392.448 / 29 0 / 0
averaging weight 0.053 0.123 0.279 0.545 0.000 0.000 0.000

Angle ϕa: 0.228

Strahler* order 0 1 2 3 4 5 6
similarity 0.874 0.580 0.243 0.081 0.000 n/a n/a

∅ # edges / # trees EA 17.833 / 12 33.167 / 12 68.500 / 12 131.500 / 12 223.714 / 7 0 / 0 0 / 0
∅ # edges / # trees AG 12.150 / 240 37.833 / 240 91.542 / 240 186.254 / 240 341.275 / 229 392.448 / 29 0 / 0
averaging weight 0.051 0.124 0.277 0.548 0.000 0.000 0.000

Angle ϕb: 0.759

Strahler* order 0 1 2 3 4 5 6
similarity 0.844 0.947 0.865 0.655 0.009 n/a n/a

∅ # edges / # trees EA 16.833 / 12 32.000 / 12 66.833 / 12 126.083 / 12 208.857 / 7 0 / 0 0 / 0
∅ # edges / # trees AG 12.150 / 240 37.833 / 240 91.542 / 240 186.254 / 240 341.275 / 229 392.448 / 29 0 / 0
averaging weight 0.051 0.124 0.279 0.546 0.000 0.000 0.000

Angle ϕc: 0.674

Strahler* order 0 1 2 3 4 5 6
similarity 0.892 0.814 0.809 0.553 0.109 n/a n/a

∅ # edges / # trees EA 16.833 / 12 32.000 / 12 66.750 / 12 126.083 / 12 208.857 / 7 0 / 0 0 / 0
∅ # edges / # trees AG 12.150 / 240 37.833 / 240 91.542 / 240 186.254 / 240 341.275 / 229 392.448 / 29 0 / 0
averaging weight 0.051 0.124 0.279 0.546 0.000 0.000 0.000
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Algorithmically Generated vs. Experimentally Acquired Rat PV

Edge Radii: 0.021

Strahler* order 0 1 2 3 4 5 6
similarity 0.394 0.115 0.040 0.018 0.000 0.000 0.000

∅ # edges / # trees EA 9.000 / 6 24.667 / 6 69.167 / 6 162.167 / 6 342.667 / 6 677.500 / 6 1117.000 / 3
∅ # edges / # trees AG 7.875 / 120 28.708 / 120 79.100 / 120 159.383 / 120 295.950 / 120 610.089 / 101 826.714 / 7
averaging weight 0.014 0.045 0.126 0.273 0.541 0.000 0.000

Radius Decrease: 0.034
Strahler* order 0 1 2 3 4 5 6
similarity 0.909 0.464 0.010 0.000 0.000 0.000 0.000

∅ # edges / # trees EA 8.000 / 6 24.667 / 6 69.167 / 6 162.167 / 6 342.667 / 6 677.500 / 6 1117.000 / 3
∅ # edges / # trees AG 7.301 / 113 28.708 / 120 79.100 / 120 159.383 / 120 295.950 / 120 610.089 / 101 826.714 / 7
averaging weight 0.013 0.045 0.126 0.274 0.542 0.000 0.000

Radius Asymmetry: 0.128

Strahler* order 0 1 2 3 4 5 6
similarity 0.682 0.211 0.065 0.114 0.026 0.714 n/a

∅ # edges / # trees EA 9.000 / 6 24.667 / 6 69.167 / 6 162.167 / 6 342.667 / 6 627.333 / 3 0 / 0
∅ # edges / # trees AG 7.875 / 120 28.708 / 120 79.100 / 120 159.383 / 120 316.465 / 101 419.000 / 7 0 / 0
averaging weight 0.031 0.099 0.274 0.596 0.000 0.000 0.000

Bifurcation Exponent: 0.039

Strahler* order 0 1 2 3 4 5 6
similarity 0.686 0.158 0.003 0.000 0.000 0.000 n/a

∅ # edges / # trees EA 5.667 / 6 16.333 / 6 44.333 / 6 96.667 / 6 237.000 / 6 523.667 / 3 0 / 0
∅ # edges / # trees AG 7.875 / 120 28.708 / 120 79.100 / 120 159.383 / 120 316.465 / 101 419.000 / 7 0 / 0
averaging weight 0.032 0.102 0.280 0.586 0.000 0.000 0.000
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Edge Length: 0.130

Strahler* order 0 1 2 3 4 5 6
similarity 0.969 0.744 0.399 0.111 0.004 0.000 0.000

∅ # edges / # trees EA 9.000 / 6 24.667 / 6 69.167 / 6 162.167 / 6 342.667 / 6 677.500 / 6 1117.000 / 3
∅ # edges / # trees AG 7.875 / 120 28.708 / 120 79.100 / 120 159.383 / 120 295.950 / 120 610.089 / 101 826.714 / 7
averaging weight 0.014 0.045 0.126 0.273 0.541 0.000 0.000

Length Decrease: 0.210

Strahler* order 0 1 2 3 4 5 6
similarity 0.987 0.975 0.533 0.278 0.021 0.000 0.000

∅ # edges / # trees EA 6.333 / 6 23.167 / 6 65.667 / 6 153.333 / 6 327.833 / 6 633.000 / 6 1058.000 / 3
∅ # edges / # trees AG 7.301 / 113 28.708 / 120 79.100 / 120 159.383 / 120 295.950 / 120 610.089 / 101 826.714 / 7
averaging weight 0.012 0.045 0.126 0.273 0.544 0.000 0.000

Length Asymmetry: 0.670

Strahler* order 0 1 2 3 4 5 6
similarity 0.967 0.988 0.871 0.510 0.371 0.000 n/a

∅ # edges / # trees EA 9.000 / 6 24.667 / 6 69.167 / 6 162.167 / 6 342.667 / 6 627.333 / 3 0 / 0
∅ # edges / # trees AG 7.875 / 120 28.708 / 120 79.100 / 120 159.383 / 120 316.465 / 101 419.000 / 7 0 / 0
averaging weight 0.031 0.099 0.274 0.596 0.000 0.000 0.000

Angle ϕa: 0.266

Strahler* order 0 1 2 3 4 5 6
similarity 0.949 0.836 0.400 0.071 0.023 0.000 n/a

∅ # edges / # trees EA 7.833 / 6 23.167 / 6 62.833 / 6 144.333 / 6 323.667 / 6 616.000 / 3 0 / 0
∅ # edges / # trees AG 7.875 / 120 28.708 / 120 79.100 / 120 159.383 / 120 316.465 / 101 419.000 / 7 0 / 0
averaging weight 0.031 0.101 0.276 0.593 0.000 0.000 0.000

Angle ϕb: 0.806

Strahler* order 0 1 2 3 4 5 6
similarity 0.942 0.854 0.896 0.750 0.219 0.000 n/a

∅ # edges / # trees EA 6.833 / 6 22.167 / 6 59.667 / 6 136.833 / 6 301.333 / 6 584.333 / 3 0 / 0
∅ # edges / # trees AG 7.875 / 120 28.708 / 120 79.100 / 120 159.383 / 120 316.465 / 101 419.000 / 7 0 / 0
averaging weight 0.029 0.101 0.276 0.593 0.000 0.000 0.000

Angle ϕc: 0.762

Strahler* order 0 1 2 3 4 5 6
similarity 0.931 0.900 0.890 0.671 0.111 0.000 n/a

∅ # edges / # trees EA 6.833 / 6 22.167 / 6 59.667 / 6 136.833 / 6 301.000 / 6 583.333 / 3 0 / 0
∅ # edges / # trees AG 7.875 / 120 28.708 / 120 79.100 / 120 159.383 / 120 316.465 / 101 419.000 / 7 0 / 0
averaging weight 0.029 0.101 0.276 0.593 0.000 0.000 0.000
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Algorithmically Generated vs. Experimentally Acquired Rat HV

Edge Radii: 0.016

Strahler* order 0 1 2 3 4 5 6
similarity 0.231 0.101 0.019 0.003 0.000 0.000 0.000

∅ # edges / # trees EA 31.833 / 6 31.333 / 6 96.500 / 6 174.833 / 6 371.500 / 6 727.000 / 6 1758.000 / 1
∅ # edges / # trees AG 14.358 / 120 39.400 / 120 84.317 / 120 175.767 / 120 337.900 / 120 642.363 / 113 810.000 / 16
averaging weight 0.032 0.052 0.133 0.259 0.524 0.000 0.000

Radius Decrease: 0.024
Strahler* order 0 1 2 3 4 5 6
similarity 0.534 0.143 0.007 0.000 0.000 0.000 0.000

∅ # edges / # trees EA 30.833 / 6 31.333 / 6 96.500 / 6 174.833 / 6 371.500 / 6 727.000 / 6 1758.000 / 1
∅ # edges / # trees AG 14.843 / 108 39.400 / 120 84.317 / 120 175.767 / 120 337.900 / 120 642.363 / 113 810.000 / 16
averaging weight 0.030 0.052 0.134 0.260 0.525 0.000 0.000

Radius Asymmetry: 0.159

Strahler* order 0 1 2 3 4 5 6
similarity 0.324 0.011 0.035 0.233 0.174 0.938 n/a

∅ # edges / # trees EA 31.833 / 6 31.333 / 6 96.500 / 6 174.833 / 6 371.500 / 6 939.000 / 1 0 / 0
∅ # edges / # trees AG 14.358 / 120 39.400 / 120 84.317 / 120 175.767 / 120 331.743 / 113 416.875 / 16 0 / 0
averaging weight 0.066 0.109 0.280 0.544 0.000 0.000 0.000

Bifurcation Exponent: 0.027

Strahler* order 0 1 2 3 4 5 6
similarity 0.433 0.017 0.000 0.000 0.000 0.000 n/a

∅ # edges / # trees EA 18.000 / 6 20.833 / 6 70.833 / 6 126.333 / 6 286.500 / 6 828.000 / 1 0 / 0
∅ # edges / # trees AG 14.358 / 120 39.400 / 120 84.317 / 120 175.767 / 120 331.743 / 113 416.875 / 16 0 / 0
averaging weight 0.059 0.106 0.285 0.550 0.000 0.000 0.000
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Edge Length: 0.210

Strahler* order 0 1 2 3 4 5 6
similarity 0.857 0.922 0.585 0.201 0.008 0.000 0.000

∅ # edges / # trees EA 31.833 / 6 31.333 / 6 96.500 / 6 174.833 / 6 371.500 / 6 727.000 / 6 1758.000 / 1
∅ # edges / # trees AG 14.358 / 120 39.400 / 120 84.317 / 120 175.767 / 120 337.900 / 120 642.363 / 113 810.000 / 16
averaging weight 0.032 0.052 0.133 0.259 0.524 0.000 0.000

Length Decrease: 0.291

Strahler* order 0 1 2 3 4 5 6
similarity 0.975 0.929 0.861 0.315 0.033 0.000 0.000

∅ # edges / # trees EA 29.167 / 6 29.667 / 6 92.333 / 6 167.000 / 6 357.000 / 6 688.667 / 6 1649.000 / 1
∅ # edges / # trees AG 14.843 / 108 39.400 / 120 84.317 / 120 175.767 / 120 337.900 / 120 642.363 / 113 810.000 / 16
averaging weight 0.030 0.052 0.134 0.259 0.526 0.000 0.000

Length Asymmetry: 0.778

Strahler* order 0 1 2 3 4 5 6
similarity 0.910 0.939 0.721 0.760 0.261 0.875 n/a

∅ # edges / # trees EA 31.833 / 6 31.333 / 6 96.500 / 6 174.833 / 6 371.500 / 6 939.000 / 1 0 / 0
∅ # edges / # trees AG 14.358 / 120 39.400 / 120 84.317 / 120 175.767 / 120 331.743 / 113 416.875 / 16 0 / 0
averaging weight 0.066 0.109 0.280 0.544 0.000 0.000 0.000

Angle ϕa: 0.234

Strahler* order 0 1 2 3 4 5 6
similarity 0.849 0.699 0.340 0.011 0.000 0.000 n/a

∅ # edges / # trees EA 29.667 / 6 28.333 / 6 90.500 / 6 160.500 / 6 357.167 / 6 923.000 / 1 0 / 0
∅ # edges / # trees AG 14.358 / 120 39.400 / 120 84.317 / 120 175.767 / 120 331.743 / 113 416.875 / 16 0 / 0
averaging weight 0.067 0.108 0.282 0.543 0.000 0.000 0.000

Angle ϕb: 0.779

Strahler* order 0 1 2 3 4 5 6
similarity 0.963 0.874 0.610 0.826 0.201 0.000 n/a

∅ # edges / # trees EA 28.667 / 6 26.667 / 6 87.000 / 6 152.833 / 6 338.167 / 6 867.000 / 1 0 / 0
∅ # edges / # trees AG 14.358 / 120 39.400 / 120 84.317 / 120 175.767 / 120 331.743 / 113 416.875 / 16 0 / 0
averaging weight 0.067 0.107 0.283 0.542 0.000 0.000 0.000

Angle ϕc: 0.769

Strahler* order 0 1 2 3 4 5 6
similarity 0.846 0.943 0.725 0.747 0.168 0.000 n/a

∅ # edges / # trees EA 28.667 / 6 26.667 / 6 87.000 / 6 152.833 / 6 337.500 / 6 867.000 / 1 0 / 0
∅ # edges / # trees AG 14.358 / 120 39.400 / 120 84.317 / 120 175.767 / 120 331.743 / 113 416.875 / 16 0 / 0
averaging weight 0.067 0.107 0.283 0.542 0.000 0.000 0.000
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Overview

For mouse and rat, PV and HV vascular trees, the following table lists the similarity values between
experimentally acquired and calibrated algorithmically generated vascular trees on a scale from 0
to 1.

mouse rat
feature PV HV PV HV

radius 0.063 0.018 0.021 0.016
radius decrease 0.028 0.018 0.034 0.024
radius asymmetry 0.062 0.047 0.128 0.159
bifurcation exponent 0.048 0.029 0.039 0.027
length 0.130 0.139 0.130 0.210
length decrease 0.155 0.156 0.210 0.291
length asymmetry 0.761 0.777 0.670 0.778
angle ϕa 0.255 0.228 0.266 0.234
angle ϕb 0.810 0.759 0.806 0.779
angle ϕc 0.793 0.674 0.762 0.769

radius average 0.047 0.029 0.054 0.062
length average 0.386 0.361 0.355 0.447
angle average 0.640 0.585 0.610 0.601

total average 0.410 0.362 0.395 0.434
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