A dummy first page

If you want to print 2-up, run of from page 2 (the nezt page).
This will get the book page number in the correct corner.

An introduction to
CATEGORY THEORY

in four easy movements
A. Schalk and H. Simmons

Mathematical Foundations Group
The University
Manchester

http://www.cs.man.ac.uk/mfg
This version was produced for part of a course in the

Mathematical Logic MSc
Department of Mathematics
The University of Manchester

October — December, 2005

Contents

| Development and Exercises

1 Categories

1.1

1.2

1.3

1.4

1.5

1.6

Categories defined oL L o oo
Exercises e
Diagram chasing o e
Exercises e e
Categories of structured setso L.
1.3.1 Two categories of sets
Exercises e e e
1.3.2 Groups, monoids, and semigroups
Exercises e
1.3.3 Categories of algebras
Exercises e
Categories of posets Lo e
1.4.1 The categories Pre and Pos
Exercises e e
1.4.2 The categeories Pos'and PosP
Exercises L e e
Some other categories Lo oo
1.5.1 Some less obvious categories
Exercises e
1.5.2 An arrow need not be a function
Exercises

1.5.3 Epics need not be surjective; monics need not be injective

Exercises
1.5.4 A monic that is not injective L.
Exercises
1.5.5 Monoid actions e
Exercises
1.5.6 Developingsets
Exercises
Some simple notions oL
1.6.1 Opposites and duality
Exercises e
1.6.2 Initial and final objects
Exercises e
1.6.3 Monic, epic, and thelike
Exercises e

O © 00 OO W W

i Contents

2 Functors and natural transformations 39
2.1 Functorsdefined 39
Exercises 42

2.2 Some power set functorso 43
Exercises e 44

2.3 Some section functors oo 45
Exercises 48

2.4 Some other functors e 49
2.4.1 Hom functors 49
Exercises 50

2.4.2 Functors and arrow categories 50
Exercises 51

2.4.3 Comma categories oo 51
Exercises 52

2.5 Natural transformations defined 52
Exercises 54

2.6 Examples of natural transformations 54
2.6.1 Using the power set and section functors 54
Exercises e 57

2.6.2 Using hom functors 58
Exercises 62

2.7 Adjunctions 63
2.7.1 Free constructions 63
2.7.2 Co-free constructions 66
273 Adjunctions 67
Exercises e 68

3 Limits and colimits; a universal solution 69
3.1 Productsandsums 71
Exercises 85

3.2 Equalizers and coequalizers oo 86
Exercises 90

3.3 Pullbacks and pushouts 90
Exercises 94

3.4 Limitsand colimits 94
Exercises e 96

3.5 Inverse and direct limits 96
Exercises e 99

4 Cartesian closed categories 101
4.1 Cartesian closedness 102
Exercises 104

4.2 Some simple examples oL Lo 105
Exercises 109

4.3 Monoid actions e e e e e e e e e e e e e e 110
Exercises e 114

4.4 Developingsets L e 117

Exercises 125

Contents

Il Solutions

A The solutions

A1l Forchapter 1 e
A.1.1 Forsection 1.1
A.1.2 Forsection 1.2o
A.1.3 Forsection 1.3o

For subsection 1.3.1,
For subsection 1.3.2
For subsection 1.3.3
A.1.4 Forsection 1.4 e e
For subsection 1.4.1,
For subsection 1.4.2
A.15 Forsection 1.5o
For subsection 1.5.1,
For subsection 1.5.2,
For subsection 1.5.3
For subsection 1.5.4
For subsection 1.5.5,
For subsection 1.5.6
A.16 Forsection 1.6
For subsection 1.6.1
For subsection 1.6.2,
For subsection 1.6.3

A2 Forchapter 2 e
A.2.1 Forsection2.1 e
A.2.2 Forsection2.2 e
A.2.3 Forsection 2.3o
A.2.4 TForsection 2.4

For subsection 2.4.1
For subsection 2.4.2
For subsection 2.4.3
A.25 Forsection2.b
A26 Forsection2.6
For subsection 2.6.1
For subsection 2.6.2,
A.2.7 For section 2.7o

A3 Forchapter 3
A3.1 Forsection3.1
A3.2 Forsection3.2
A3.3 Forsection3.3
A3.4 Forsection3.4
A3.5 Forsection3.b

A4 Forchapter4
A.4.1 TForsection 4.1o
A.4.2 Forsection 4.2o
A.4.3 TForsection 4.3o
A.4.4 TForsection 4.4 e e

ii

What is category theory?

In many parts of mathematics we study ‘structures’ of various kinds. These may
be algebraic, topological, geometric, or a mixture of of each. As well as looking at
each structure in isolation we also consider how two structure can be compared using
morphisms, maps, translations, or whatever. In fact, whenever we have a collections
of structures of a like kind we should always try to isolate the appropriate comparison
gadgets.

Category theory codifies these general matters. Thus a category consists of objects
to take the role of structures, and arrows to take the role of the comparison gadgets.
However, if this codification was all it did then category theory would be rather a
superficial subject.

Each category is itself a structure, so how should two categories be compared? We
match objects against objects and arrows against arrows. The resulting comparison
gadget is a functor.

It turns out that many constructions used in mathematics are functorial, and have
been around since before category theory was developed. Furthermore, once we see that
a construction is functorial we begin to understand it in a better way.

In the first instance category theory was devised (around 1945) to explain why
certain manipulations are ‘natural’ and others are not. This uncovered the notion of a
natural transformation which is the appropriate comparison gadget between functors.

Later category theory uncovered the idea of an adjunction which helps to unify many
different results in mathematics.

Any comments, typos, or corrections can be sent to Harold Simmons at

hsimmons @ manchester.ac.uk

Part |

Development and Exercises

Chapter 1
Categories

! ARROWS COMPARE OBJECTS !

This chapter gives the definition of a category and the definitions of some basic,
but subsidiary, notions. These are illustrated by a collection of examples. However, so
as not to disturb the flow, most of the subsidiary definitions are gathered together in
the final section. Some of these notions are mentioned in the examples in which case
they are HIGHLIGHTED in this way. This indicates that the notion is defined in the
final section, or for the more complicated notions is merely mentioned in passing. New
notions that are defined at or near that point are HIGHLIGHTED in this way.

THUS THE CHAPTER IS NOT ARRANGED IN A LINEAR FASHION, AND YOU MAY NEED
TO FLIT ABOUT WHEN YOU READ IT FOR THE FIRST COUPLE OF TIMES.

1.1 Categories defined

This section contains nothing more than the definition of a category and a few bits of
terminology.

1.1 DEFINITION. A category C consists of
e a collection Obj of entities called objects

e 3 collection Arw of entities called arrows

source
e two assignments Arw Obj
target
. . Id
e an assignment Obj Arw
e a partial composition Arw x Arw —— Arw
where this data is subjected to certain restrictions as described below. |

For each arrow f the two assigned objects
A = source(f) target(f) = B

are called (naturally enough) the source and target of the arrow. This information is
concisely conveyed in a diagram as follows.

f

A B

4 1. Categories

(This is a very small diagram, but we will meet some bigger ones later.) Sometimes the
source is called the domain and the target called the codomain of the arrow. However,
the word ‘domain’ is used for at least two other notions which can be confused with
the idea of a source. An arrow is sometimes called a morphism, but again in some
circumstances this can be confusing. This will be explained more fully later.

The arrow Id(A) assigned to the object A is called the identity arrow of A. It is often
written

idg or 1y

whichever is convenient. (Some silly people even write ‘A’ for this arrow.)
There are four restrictions on this data.

e For each object A the source and target of the arrow id4 = 14 must be A, that is

) 1
g4 14,

in the concise diagram notation.

e Certain arrows can be combined using compositions to form a third arrow. Two
arrows

A c

By By

are said to be compatible (in this order) if By = By. The composition of two
arrows is defined precisely when they are compatible. The resultant arrow is
written go f or simply gf and its source and target must be A and B respectively.
Thus

gof gf

A B

in diagram form.

¢ This composition must be associative (as far as is possible). Thus for a compatible
triple of arrows

f

A B B

the two possible composites

ho(gof) and (hog)of
must be equal. The two components of the parallel pair

ho(gef)
A D

(hog)of

of arrows are equal.

1.1. Categories defined 5

e The identity arrows behave as neutral arrows in the sense that for each arrow

f

A B

the two equalities
f o]]-A = f =]-B [e] f
must hold.

Let’s have a look at some simple examples of categories. Most of these will be
developed in more detail in this chapter or later in the notes.

Category Objects Arrows

Set sets functions

RelA sets binary relations

RelH sets with a relation relation respecting functions
Grp groups morphism

Sgp semigroups morphism

Mon monoids morphism

Rng rings morphism

Veck ;fegcit‘(l);sl sﬁizi,((ie;{over linear transformations

—— structured sets structure preserving functions
Pos posets monotone maps

PosPP posets projection embedding pairs
Pos™ posets poset adjunctions

Top topological spaces continuous maps

Top°P*" topological spaces continuous open maps

Grf graphs
—— developing sets

—— presheaves natural transformations

There are a couple of things you should notice about this table. Firstly, it is the
common practice to name a category after its objects. However, as we will see, it is
the arrows that are more important and should provide the name, but this has never
caught on. As with sets or posets or topological spaces, two categories can have the
same objects but very different arrows. In most of these examples an arrow is a function
of a certain kind, and then arrow composition is just function composition. In more
exotic examples arrows are certainly not functions. This is hinted at in the last three
examples (where the arrows are not easy to describe in a few words).

We will use C, D, ... for arbitrary categories. It is the common practice to use a
different type face to distinguish between the objects and the arrows of a category. So
far we have used upper case Roman for objects and lower case Roman for arrows, but
at other times a different convention will be more convenient (especially when there is
more than one category around).

For two objects A and B of a category C we write

C|A, B]

6 1. Categories

for the family of all arrows of the form

A B

from A to B. This family could be empty or very large. For certain technical work it
is sometimes necessary to insist that this family is a set (rather than a class). When
the category is understood (for instance, when there is only one category around), we
usually write [A, B] for C[A, B].

This family C[A, B] is often called a hom set. This is a very bad piece of terminology.
In the original examples of categories the arrows were morphisms which were then called
homomorphism, and it wasn’t realized that this family could be very large. (Some out
and out category theorists still don’t realize the significance of this. On the other hand,
some off the wall set theorists don’t realize the significance of category theory.)

Exercises

1.1 Show that each PRESET is a category, where the objects are the elements and each
arrow indicates a comparison.

Show that each MONOID is a category with exactly one object and where the arrows
are the elements of the monoid.

Each category is a mixture of a (possibly large) preset and a collection of
monoids indexed by the preset. Thus a knowledge of both these kinds of
gadgets helps to understand a little bit of category theory. However, it is
the mix of these gadgets (rather than the gadgets themselves) that makes a
category what it is.

1.2 Diagram chasing

The crucial aspect of a category is that two appropriately compatible arrows can be
combined (by composition) to form a third arrow. This leads to an algebra of arrows.
Given two compound arrows with the same sources and targets, when are they the
same arrow? Such equalities are often verified by diagram chasing to obtain commuting
diagrams.

For instance, we say the triangle commutes

precisely when the equality holds. Similarly the square commutes

{Q

O «~— O

h kof=hog

|

1.2. Diagram chasing 7

precisely when the equality holds. In this second example we have indicated each object
by e because it is not important that we know what they are. Notice that this convention
does not mean that all four objects are the same.

The two axioms of arrow algebra (that composition is associative and that identity
arrows are neutral) can be expressed by commuting diagrams. The neutral property
says that in the diagram

the two triangles commute. The associativity law is a bit more complicated. Consider
the diagram

hog

\"’\ /
7 C

where two of the arrows are composites (to ensure that the two triangles commute).
The associativity says that all the composite arrows from A to D produce the same
arrow.

D

f

A

B
go

It is often more convenient to argue with such diagrams than with the algebraic

manipulations. For example, suppose we are given 12 arrows a,b,...,l,m
J
[> @
f ° °
C A
b
l
° > ® d
\ X
e
a
[} > @

in the form of a cube as shown. Suppose we know that all except the back face commutes,
in other words that

jog:k‘oc
gob=foe cob=doa kod=moh
loe=hoa

hold. Suppose we also know that the arrow e is EPIC. Under these conditions it follows
that the back face also commutes, that is

jof=mol

8 1. Categories

holds. A proof of this can be worked out using only the given five identities and the
epic property. However, the proof is much easier to understand if we chase round the
diagram using the faces Left, Top, Front, Right, Bottom in this order.

Exercises

1.2 (a) Counsider the diagram related to associativity or arrow composition. Label all
the edges and say which four triangles must commute to ensure that the parallel pair

agree.
(b) Consider the following two diagrams.
[]
J
In both cases, show that if the two triangles commute, then so does the outer square.
(c¢) Consider the triangular pyramid of arrows.

N
/

\

Given that the three other faces commute, show that the back face also commutes.

o ——— o _

e — > © —_ e

1.3 Consider the cube of arrows a,b,...,[, m.

(e) Show that if e is EPIC and if the other five faces commute, then the back face
cominutes.

(m) Show that if m is MONIC and if the other five faces commute, then the bottom
face commutes.

1.4 Consider the diagram

and suppose the four trapeziums commute.

Show that if the inner square commutes then so does the outer square.

Conversely, show that if e is EPIC, m is MONIC, and the outer square commutes,
then so does the inner square.

1.3. Categories of structured sets 9

1.3 Categories of structured sets

In this section we will look at several particular examples of categories, of a similar
nature. In most of these categories an object is a set furnished with some ‘algebraic’
gadgetry, and an arrow is a function which preserves these furnishings. We won'’t try
to set down a general explanation of what this means for the idea will become clear
enough after a few examples.

Most of the examples will be like this, but one of the first two isn’t.

1.3.1 Two categories of sets

In this subsection we construct two categories Set and RelA with the same objects but
with different arrows. The objects of both are all possible sets (including the empty
set).

A Set-arrow

f

A B

is a function f from a set A to a set B. In other words, Set[A, B] is just this set of all
arrows from A to B (and could be written (A — B) in a different context.)

The composition of arrows is the usual function composition, so there isn’t much
work to do when verifying that this does give a category.

You should fill in the details of this brief description of Set for yourself, and observe
that something (rather obvious) has been omitted from the description.

There is a point here that it worth expanding on.

Note that since each arrow f of a category must have a uniquely defined source and
target (A and B in the above example), we can not treat a Set-arrow solely in terms of
its graph (that is as the set of ordered pairs such that ...). For instance, consider the
function which sends a real number z to its integer floor |« |. This can be viewed as a
Set-arrow in (at least) two ways, namely as

R

R Z R

with different targets. The right hand one is the left hand one composed with the
insertion

Z— R
which embeds Z into R. In most mathematical situations this embedding isn’t visible,
but that doesn’t mean it should always be ignored.

Actually the common practice of identifying a function with its graph is very silly.
If we must do that then the next example shows how it should be done.

The objects of the category RelA are all possible sets, as with Set.
A RelA-arrow

F

A B

is a subset F' C B x A which we can think of as a relation from A to B. In other words,
RelA[A, B] is just this set of all such relations from A to B.

10 1. Categories

Before we can claim this is a category we must first define the composition of these
arrows, and then check that the axioms are satisfied. To do this we use a bit of flashy
notation.

Consider an arrow F' as above, so FF C B x A, For a € A and b € B we write bFa
for (b,a) € F. For two composible arrows

A 59 ¢

we defined the composition G o F' by
¢(G o F)a <= (3b € B)[cGbFd]

for a € A,b € B. Thus we show that a is G o F' related to ¢ by passing through a
common element b € B.

It is now straight forward to check that this composition is associative, and that the
equality relation on a set gives the identity arrow.

These two categories are related in a certain way (which will be explained in more
detail later). There is a canonical way

i LT,

A B E——

of converting a Set-arrow into a RelA-arrow with the same source and target. We
simply take the graph of the function, that is we let

bl'(f)a < b= fa
fora € A,b € B.

Exercises

1.5 (m) Show that an arrow of Set is MONIC precisely when it is injective (as a func-
tion).
(e) Show that an arrow of Set is EPIC precisely when it is surjective (as a function).

1.6 Consider the construction I'(-) from Set-arrows to RelA-arrows. Show that
L(go f) =T(g)oI'(f)
for each pair of composable Set-arrows.

(This result more or less shows that I' is a COVARIANT FUNCTOR from Set to RelA.
This notion is discussed in the next chapter.)

1.3.2 Groups, monoids, and semigroups

! SEMIGROUPS AND MONOIDS ARE THE MATHEMATICS OF COMPOSITION !

A semigroup is a structure
(4,%)

1.3. Categories of structured sets 11

where A is a set (which may be empty) and * is an associative binary operation on A.
Almost always when working in this structure the operation symbol x is omitted. Thus
we write

(ab)(ed) for (a*b)x(cxd)
(where a,b,c,d € A). Furthermore, since the operation is associative it is usually safe
to leave out the punctuating brackets, so the term above can be written

abed

for it hardly ever matters which way the brackets should be inserted.
A monoid is a structure
(4, %,a)
where (A, x) is a semigroup and a € A is neutral for the operation x, that is
ar =z = za
holds for all z € A. As an exercise you should show that if
(A, *’ a) (A’ *, b)

are two monoids (that is, the same semigroup enriched to a monoid in two ways) then,
in fact, @ = b. Thus a semigroup can be enriched to a monoid in at most one way.

1.2 EXAMPLE. (1) Each of
(N7+’O) (Z’+70) (Q7+70) (R’-l_,o)
(N, x,1) (Zx,1) (@ x,1) (R x,1)

is a monoid.

(2) Let Nt and 2N be, respectively, the set of strictly positive natural numbers and
the set of even natural numbers. Then (Nt,+) and (2N, X) are two semigroups neither
of which contains a neutral element.

(3) For each set X the set (X — X)) of all functions from X to X under composition
is a monoid. More generally, for each object X of a category C the hom set C[X, X]
is a monoid under composition (provided, of course, that it is a set and not a class).

(4) For any set X the power set PX under either U or N gives a monoid.

(5) For any set X the set X™* of all words on X is a monoid under concatenation,
~, with the empty word, €, as the neutral element. |

Semigroups and monoids are the objects of the two categories Sgp and Mon, respec-
tively. The arrows are the structure preserving functions, the morphisms as described
in more generality in subsection 1.3.3.

1.3 EXAMPLE. Each of

(X%, "0 (o)
(PX,U,0) 9 - (PX,N, X)
)

(N, +,0) 2 - (N x,1)

ime fact f
(N, x,1) prime factors of (PN, U,0)

12 1. Categories

is a Mon-arrow. [|

Each monoid gives a semigroup by forgetting the neutral element. Furthermore,
each Mon-arrow

f

A B

is a function f which is a Sgp-arrow. Thus, for monoids A and B we have
Mon[A,B] C Sgp[A, B]

that is, we may regard Mon as a SUBCATEGORY of Sgp. However, this insertion is not
FULL.
A group is a monoid (A4, x,a) for which each element z has an inverse, that is

TXY=a=Y*xT

for some element y. A group morphism between two groups is just a monoid morphism
between the groups (viewed as monoids).

The category Grp of groups and group morphisms can be used to illustrate many
results and techniques of category theory. This category has many interesting SUBCAT-
EGORIES, such as the category of abelian groups.

Exercises

1.7 (a) Show that for groups A, B we have Grp[A, B] = Monl[A, B].

(b) Show that for monoids A, B we need not have Mon[A, B] # Sgp[A, B], that is
there may be a function from A to B which is a semigroup morphism but not a monoid
morphism.

1.8 Let A be an arbitrary semigroup and set B = AU {w} where w is not a member of
A. Define an operation * on B by

TxyY=2xY THW=T=W*T WHWw=w

for all z,y € A. Show that (B,*,w) is a monoid (and hence each semigroup can be
extended to a monoid).

1.9 For a set A let FA = A* be the monoid of words on A under concatenation. Also
let

A—"T . FA

be the obvious insertion of A into F'A. Show the following.
(i) For each Set-arrow

there is a Mon-arrow

1.3. Categories of structured sets

such that
A A, FA
f l lF (f)
B—+FB
nB
commutes.

(ii) For each monoid S and Set-arrow

A / S
there is a unique Mon-arrow
#
FA ! S
such that
A ! S
N A
FA
commutes.

(iii) For each monoid S there is a Mon-arrow

€

FS S
such that for each Mon-arrow
A ! S
the composite
oL gy

13

is the fill-in required in (ii).

This exercise illustrates many of the attributes of category theory, namely functoral-
ity, naturality, and adjointness. We will look at all of these in later chapters.

1.3.3 Categories of algebras

Many categories where the objects are ‘algebras’ are produced in the same way. In this
subsection we describe part of the general idea. (You should be warned that the word
‘algebra’ also has a technical meaning in category theory which doesn’t entirely agree

with the more general usage.)

For what we do here a ‘structure’ is a set furnished with several distinguished op-
erations (usually, but not always, binary) and several distinguished elements. We may

14 1. Categories

also want to impose some conditions on the way these furnishings interact with each
other. For example think of the various kinds of rings.

Given two such structures of the same signature (where the meaning of this you will
have to guess at) there is an obvious notion of a morphism from one to the other. This is
just a function that preserves the furnishings. Let’s look at a couple of simple examples
of this.

The objects of the category Bin are the structures

(4,%,a)
where A is a set and x is a binary operation on A and ¢ € A. A Bin-morphism

(Aa*Aa a)

(B7 *B, b)
is a function f : A — B which respects the furnishings in the sense that

flxxay) = (fr)*B (fy) fa=b

for all z,y € A. (Here we have rather tediously distinguished between the two different
carried operations. Some people find this necessary, but I’m sure you won’t.)

It is routine to check that the function composite of two morphisms is itself a mor-
phism. In this way we see that these structures and morphisms form the objects and
arrows of a category.

The second example Pno is very similar, but in the end has far more significance.
The objects of Pno are the structures (A, a,a) where A is a set, « : A — A, and
a € A. Thus we have replaced the binary operation by a singulary operation.

A Pno-morphism

(4, a,a)

(B,5,b)

is a function f : A — B which preserves the structure in the sense that
foa=pof fa=>b

hold.

Exercises

1.10 (a) Show that (N,succ,0) is a Pno-object.
(b) Show that for each Pro-object (A, a,a) there is a unique function f : N —— A
which gives a Pno-arrow.

1.4 Categories of posets

! PRESETS AND POSETS ARE THE MATHEMATICS OF COMPARISON !

This section is concerned mainly with categories whose objects are posets or pre-
sets. However, before that we look at a category RelH of a more general nature and
analogous to Bin and Pno.

1.4. Categories of posets 15

The objects of RelH are the structures (that is, relational structures rather than
algebraic structures)
(4, R)

where A is a set and R is a binary relation on A, that is R C A x A. We write zRy to
indicate that (z,y) € R (where z,y € A).
A RelH-arrow

4R L. (B9

is a function f : A — B which respects the carried relations, that is such that

Ry = f(z)Sf(y)

holds for all z,y € A. Notice that this is an implication and not an equivalence.

This category RelH has many interesting SUBCATEGORIES obtained by restricting
the nature of the relation. Thus we may consider reflexive, transitive, symmetric, anti-
symmetric, . .. relations, or any combination of these. In particular if we insist that the
relation is just equality, then we retrieve the category Set.

1.4.1 The categories Pre and Pos

In this and the next subsection we look at various categories built using posets and
the less well known presets. Incidentally, although ‘poset’ is the standard terminology,
‘preset’ isn’t and some people think there should be a better name. The usual fiver
won’t be given to the best suggestion.

We begin with the definitions.

A preset (pre-ordered set) is a structure (A, <) where A is a set and < is a pre-order
on A. This is a binary relation on A which is reflexive and transitive, that is it satisfies

r<zx zlyLz=z<z

for all z,y,z € A. Sometimes a pre-order is called a quasi-order (but in Bolton this is
regarded as more than a little twee).
A poset (partially ordered set) is a preset (A, <) where the comparison < is anti-
symmetric, that is with
TSYNYySrT=>1T=Y

for all z,y € A. Thus the comparison is a partial order.
These structures occur naturally when entities are compared.

1.4 EXAMPLE. (1) For each set S the structure (PSS, C) is a poset.

(2) Let X be any set (the alphabet) and let A = X* be the set of words (finite
strings) on X. These are partially ordered by extension. Thus for words a,b we have
a < b precisely when ¢ is an initial segment of b. This comparison is sometimes called
the the prefix ordering (usually by people only on the fringes of mathematics).

(3) Let A be the set of all real functions R — R. For f,g € A let

f<g mean (VzeR)[f(z) <g(z)]

that is impose the pointwise comparison on A. This partially orders A.

16 1. Categories

(4) More generally, let S be any partially order set and let A = (S — S), the set
of all functions on S. The pointwise comparison on A is given by

[<9< (Vz € 5)[f(z) < g(z)]

(for f,g € A) and this partially orders A. There are several variants of this idea.

(5) Let S be any set and consider the set A of all partial functions on S, that is the
set of all pairs (f, X) where X C S and f: X — S. These functions are compared by
extension. Thus, for two such functions (f, X) and (g,Y) we let

(f,X)<(9,Y) means X CY and f agrees with g on X

to obtain a partial order.
(6) For an arbitrary set S let A =PS. For X,Y € A let

X <Y mean Thereisa finite D € Awith X CYUD

(where the difference set D may depend on X,Y’). This gives a preset which, in general,
is not a poset. In particular, if S is finite, then the preset is indiscrete, that is X <Y
holds for all X,Y.
(7) Let A be the set of all functions f : N — N which are both inflationary and
monotone, that is with
r<y=z<fz<fy

for all z,y € N. Let

g eventually dominates f that is

f<g mean { (3n e N)(Vz > n)[fz < gz]

for f,g € A. Again this gives a preset which is not a poset. (This is an important idea
in the measurement of the complexity of functions.)
(8) Most logical systems F pre-order their formulas ¢,1,0,--- by ¢ I 1. [|

Presets and posets form the objects of two categories Pre and Pos both of which
are SUBCATEGORIES of RelH. In both cases the arrows are the monotone maps. Thus
given two presets (4, <) and (B, <), a Pre-arrow

is a function f : A — B such that
r<y= fr<fy

for all z,y € A. The Pos-arrows are define in the same way. (You should check that
these do form categories.)
Each Pos-object is also a Pre-object. Furthermore, for posets A and B we have

Pos[A, B] = Pre[A, B).

This shows that Pos is a FULL SUBCATEGORY of Pre.

1.4. Categories of posets 17

The three categories Pos, Pre, Set can be used to illustrate various functorial con-
structions and adjointness properties. We deal with these general notions in later chap-
ters, but we can look at some of the particular details here.

For each preset (A, <) we can forget the carried trappings to produce a nude set A.
This gives a simple example of a ‘forgetful’ functor

Pre Set

which has both a left and a right adjoint. (In the next section we will look at miniature
versions of these notions. The general notions are dealt with elsewhere.)
Each set S may be furnished as a preset in two extreme ways

using equality and the relation that holds everywhere. These are, respectively, the
discrete indiscrete

presets on S. These two D and I constructions are functorial, and we find that

D
Set «—i— Pre
I

are a pair of adjunctions. (Don’t worry about what this means just yet.)
Each poset is a preset, so there is another ‘forgetful’ functor

Pos Pre

(which simply ‘forget’ the extra poset property). This functor has a left adjoint.

F

Pre Pos

A

The idea is that F' converts each preset A into a poset in the ‘best possible’ way, or the
‘free-est possible’ way. We don’t need to go into the technical meaning of these words,
but you will already know the construction.

Given a preset (A, <), let = be the relation on A defined by

rry<—=zc<yNy<cz

(for z,y € A). You should check that = is an equivalence relation on A which is equality
precisely when A is a poset. Next, for each a € A, let [a] be the block, the equivalence
class, to which a belongs. Let A/~ be the set of all such blocks, the corresponding
partition of A. It is not to hard to convert A/= into a poset which is tightly connected
with the original preset A. This construction has various properties which are dealt
with in the exercises.

18 1. Categories

Exercises

These exercises illustrate three fundamental notions of category theory,
namely FUNCTOR, NATURAL TRANSFORMATION, and ADJOINT. These no-
tions are defined and developed in later chapters. The assignment F' is the
object part of a functor from Pre to Pos whose arrow part is given by the
final construction. The assignment 7 is a natural transformation, and the
commuting triangle shows that F' is left adjoint to the insertion of Pos into
Pre.

1.11 (a) Show that A/= carries a partial ordering C given by
[C) <=a<b

for a,b € A. (Warning: this is not as trivial as it looks.)
(b) Show that

AT A/~
a ——— [a]

is a Pre-arrow. (This really is trivial.)
We set F(A,<) =(4/=,C).

1.12 (a) To show that F'(A, <) is the free-est poset generated by A consider any other
poset and Pre-arrow

A ! B
where B is a poset. Show there is a unique Pos-arrow
i
FA ! B
such that the diagram
A ! B
N A
FA
commutes.
(b) To conclude let
A / B

be any Pre-arrow. For clarity write

~ —~

for the induced equivalence relations on A and B, respectively, and
[<>
for the corresponding equivalence classes. Show that
Al = M» B/ =
[a] ——— < f(a) >
is a well defined Pos-arrow from F(A) to F(B).

1.4. Categories of posets 19

1.4.2 The categeories Pos™ and Pos??

So far for almost all the categories we have looked at the arrows have been functions
of some kind or other. The only example where this is not the case is RelA, and even
there the arrows are relations. In this subsection we begin to see more sophisticated
examples of non-function arrrows.

The objects of Pos™ and PosPP are just posets, but for both cases an arrow is a
pair of functions with certain properties. In particular, they move in oposite directions.

We deal with Pos™ first.

Given two posets A and B, an adjunction from A to B (that is a poset adjunction
from A to B) is a pair of monotone functions

f

-—

9

A B

such that
fa<b<=a<gb

for all a € A and b € B. (This is a miniature instance of a more general notion which
we look at later.) By convention we call f the left adjoint and g the right adjoint of the
pair, and write

_|
Afg

B

to indicate this relationship. (There are other bits of notation asssociated with adjunc-
tions which we explain shortly.) In particular, we think of an adjunction as pointing
from A to B in the direction of the left adjoint.

The Pos™-objects are just posets, and the Pos™-arrows are the poset adjunctions.
More precisely, for posets A and B we let Pos'[A, B] be the set of adjunctions from A
to B.

Before we can claim that Pos™ is a category we must at least construct a composition
of adjunctions. Thus, given a pair

fg hk

A B C

of adjunctions with a common poset B, the composite

A C
is defined to be the pair
hof
A C
gok

obtained by composing the left and the right components. Note, however, the orders of
these function compositions. It is routine to check that this does produce an adjunc-
tion, and the construction gives a category. The relevant details are dealt with in the
exercises.

20 1. Categories

We often think of an adjunction as a single arrow

A / B
with two components
It
A B
o

the left adjoint f* and the right adjoint f,. Sometimes the Stockhausen notation, f*
for f* and f, for f,, is used for these components. (These conventions and notations
are not always adhered to, especially in the older literature. Also, the harpoon arrow
¢ —— 7 is sometimes used to indicate a partial function, and this is quite different.)

A monotone map between posets may or may not have a left adoint, it may or
may not have a right adjoint, and it can have one without having the other. This is
concerned with the completeness properties of the situtation.

What is perhaps more surprising is that it is possible to have a pair of adjunctions

It
A« fh— B
f
with a common component where the two extremes are not the same. Thus f% - fi - f,

with ff # f,. In fact, even more surprising things can happen.
The objects of PosPP are again just posets. A PosPP-arrow

1 (f.9) B

is a Pos -arrow

_|
A fg

B

for which go f = 14. You should check that these are closed under composition. The
arrows of PosPP are sometimes called projection pairs.

Exercises

1.13 Consider any pair

of Pos-arrows.
(a) Show that f 4 g precisely when both 14 < go f and fog <1p.
(b) Show that if f 4 g then

fogof=yg gofog=yg

and hence g o f is a closure operation on A and f o g is a coclosure operation on B.

1.4. Categories of posets 21

1.14 Consider the ordered sets Z and R as posets, and let

[2

Z R
be the insertion.
(a) Show there are (unique) maps
A
R Z
P
such that
N 4
7z ‘TP g AT g

are adjunctions.

(c) Show also that this composite is 17 in Pos” and the other composite, on R, is
idempotent.

(d) Show that + 4 p is a PosPP-arrow, but A 4 ¢ is not.

1.15 For a poset S let LS be the poset of lower sections under inclusion.
(a) For a monotone map

¢

T S

between posets, show that setting f = ¢ (the inverse image map) produces a monotone
map
f=9¢"

LT LS

in the opposite direction.
(b) Show that f has both a left adjoint and a right adjoint

FEAfAs
where, in general, these are different.

1.16 (a) Using the construction of Exercise 1.15 each poset adjunction

g 27V

induces a pair
AR dHgHg

of double adjunctions

22 1. Categories

where the central arrows are
f=¢" , g=94%

respectively.
How are these related?
(b) Show how to generate a quadruple poset adjunction
It
L S
A T19 . p
g-h
h - h,
b

that is
fAAf4gadh-n,

for suitable posets A, B and monotone maps f*, f, g, h, h, between A and B. (In the
diagram each adjoint pair - 4 - is written between the corresponding pair of arrows, and
the extreme arrows are f* and hy.)

(c¢) Can you extend this construction to obtain even longer chains of adjunctions?

1.5 Some other categories

In this section we gather together a random collection of examples and observation. The
first three subsections are comparatively straight forward. However, subsection 1.5.4
gives a result that is perhaps surprising when first seen, and the final two subsections
discuss two families of rather more complicated categories.

1.5.1 Some less obvious categories

In this subsection we look at four examples of categories (or seven depending on how
you count them). The three examples are not related, but this is the most convenient
place to put them.

We begin with a category whose objects look very like categories.

1.5 EXAMPLE. A directed graph, or simply a graph for short, is a pair

of sets together with a pair of assignments

E v

t

(as with a category). Each member of V' is a node or a vertex, and each member of E
is an edge. Naturally, for each e € E we call

se te

1.5. Some other categories 23

the source node and the target node of e, respectively, and let

e

a——— b

indicate that se = @ and te = b. In general there are no other conditions on these edges
and nodes. In particular, there is no notion of composing edges. Notice that (modulo
the size) each category is a graph.

A morphism of graphs

is a pair of functions

fo

v

such that
sofi=foos tofi=foot

hold. Of course, there are two different source and two different target assignments
here.

(There is a common notation whereby the collections of objects and arrows of a
category C are Cy and (', respectively. Some of this notation as been taken over here.
There are extensions of the notion of a category, to those of a 2-category, a 3-category,
4-category,. .., an w-category, in which there are collections Cp, Ci, Co, Cs,... with
interacting properties. Believe me, you don’t want to know about these just yet.) W

So far for most of the categories we have seen the arrows have been functions or
pairs of functions or something similar. Only RelA has been different. Here is another
example like that.

1.6 EXAMPLE. The objects of this category are the finite sets. An arrow
f

A B

is a function

f:AxB—R

(with no imposed conditions). For each pair

f

A - B

of arrows we define
gof:Ax(C —R
by
(9o fla,c) =Y {f(a,9)9(y.c)|y € B}

for a € A,b € B. With a little work we see that this produces a category. |
There are several constructions which convert one category into another. We look

first at a simple example. As the exercises indicate, this idea can be generalized quite
a lot.

24 1. Categories

1.7 EXAMPLE. The arrows of a category C themselves for the objects of another
category variously denoted by

c~ c? 2,0

and called the arrow category of C'.
As indicated, the objects of C ™ are the arrows

A
B
of C. For this example it is convenient to write these arrows vertically. A morphism of
arrows
A c
fl lg
B D
is a pair of C-arrows
o
A C
B D
g
such that the square
o
A c
fl lg
B D
B
commutes.
By composing these morphisms in the ‘obvious’ way we find that arrows and arrow
morphisms do form a category. |

Finally, we look at two constructions which, in a sense, are duals.
1.8 EXAMPLE. Let K be a fixed object of a category C. We form two new categories
K\C C/K

called the slice
under over

K, respectively. The objects are all arrows

1.5. Some other categories 25

for varying objects A. An arrow

=

of the constructed category is an arrow of the parent category

SN NS

such that the triangle formed commutes. |

B

The slice construction C/K is often used to make sense of a ‘local’ property. Thus
if ‘nice’ is a property which a category may or may not have, then C' is ‘locally nice’ if
the slice category C/K is ‘nice’ for each object K.

Exercises

1.17 Show that graphs and graph morphisms do form a category.

1.18 Starting with a graph with nodes a, b, c... and with edges «, 8,7, ... we form the
path graph of the parent graph. This has the same nodes. A path from node a to node
b is a list of edges

Qi Qi aq
a = ay al a9 al_1—>al:b

going through the graph. This path has length [, and paths of length 0 are allowed.
Given two paths

a . > b b . . c

with a common node, as shown, the composite of the two paths is obtained by following
one by the other.

Show that nodes and paths form a category.

Sort out a decent notation for paths and path composition.

1.19 Show that the construction of Example 1.6 does give a category.
Show that in this category the empty set is both in INITIAL and FINAL.

1.20 Show that the construction of Example 1.7 does convert a category C into a
category C .

1.21 A wedge in a category C is a pair or arrows

B/A\C

26 1. Categories

as shown. A wedge morphism

- Ay

SN

/

~ By

is a triple of arrows, as indicated, which make the two asssociated squares commute.
Show that wedges and wedge morphisms form a category.
Generalize this construction using other diagram templates.

1.22 Show that the constructions of Example 1.8 do produce categories.

Let 1,2 be, respectively, a 1-element set and a 2-element set. Show that 1\Set is
the category of pointed sets, and Set/2 is the category of sets with a distinguished
subsets.

1.5.2 An arrow need not be a function

For most of the examples of a category produced so far an arrow is a function of some
kind. This is not always the case, and we have seen some examples of this already. Later,
in Subsection 1.5.6 we will produce a category where each arrow is a whole bunch of
functions that fit together in a certain way. Here we give another rather simple example.

The objects of this category are the strictly positive integers 1,2,3,---. For two
such integers m,n an arrow

n m

is an m X n matrix A (with real entries). Given two compatible matrices

B A

the composite

AB

n m

is the matrix product of A and B. You should check that this gives a category.

Exercises

1.23 Make a list of all the categories you have seen where an arrow is not just a single
function.

1.24 Show that the example of this subsection is a bit of a cheat. Thus show there is
a different description of the category in which the objects are structured sets and the
arrows are the structure preserving functions.

1.5. Some other categories 27

1.5.3 Epics need not be surjective; monics need not be injective

When first seen the categorical notion of an EPIC arrow seems to be an attempt to
capture the notion of a surjection. Certainly when arrows are functions it is usually the
case that a surjective arrow is EPIC. However, the converse need not be true, and there
are some easy examples.

In a similar way when first seen the categorical notion of an MONIC arrow seems
to be an attempt to capture the notion of an injection. Certainly when arrows are
functions it is usually the case that an injective arrow is MONIC. However, the converse
need not be true, but examples are harder to find. Such an example is described in the
next subsection.

Here is a technique which sometimes can be used to show that a MONIC is injective
(assuming this makes sense). An object S of a category C is a separator (or sometimes
a generator) of for each parallel pair

A B

_ >

of distinct arrows, there is at least one arrow S —— A such that the composite pair

S A B

are distinct. Sometimes, when the objects are structured sets, the category does have a
separator S and the arrows S —— A are in bijective correspondence with the members
of A. In such a situation each MONIC is injective.

Exercises

1.25 Show that for the category Set every MONIC is injective and every EPIC is surjec-
tive, and hence Set is BALANCED.

1.26 Consider the category Pos.
(a) Using the singleton poset {#} show that each MONIC Pos-arrow is injective.
(b) To show that each EPIC Pos-arrow is surjective, consider an EPIC arrow

e

A B

and, by way of contradiction, suppose that e is not surjective. Let b € B — e[A] and
set C = B U {c} where ¢ ¢ B. Extend the ordering of B to C by b | ¢ (i.e. make ¢
incomparable with b) and
r<b=uz<c
b<r=c<z
z|b=zx|c

for all z € B — {b}. This has the effect of replacing b by a double element. Using the
obvious two Pos-arrows

B C

_—

derive the required contradiction.
(c) Show that Pos is BALANCED.

28 1. Categories

1.27 Consider the category Mon.

(a) Using the additive monoid N to separate elements, show that each MONIC Mon-
arrow is injective.

(b) Show that the insertion

Ne——7Z

(between additive monoids) is EPIC, but clearly is not surjective.
(c) Show that Mon is not BALANCED.

1.28 Show that for the category Abg every MONIC is injective and every EPIC is sur-
jective, and hence Abg is balanced.

1.5.4 A monic that is not injective

We work in a certain subcategory of the category Abg of abelian groups. Following the
usual convention we write such a group additively. Thus we consider groups (4, +,0)
where the carried operation + is commutative.
Given an abelian group A and some a € A we may iteratively combine a with itself
to get an element
at+a+---+a

using the element a certain number of times, say m € N. It is convenient to write
ma
for this compound element, thus
0a=0 la=a (m+1la=ma+a

for each a € A and m € N. (In the equality ‘Oa = 0’ the left hand ‘0’ is zero and the
right hand ‘0’ is the neutral element of A.) We say A is divisible if for each a € A and
non-zero m € N there is some b € A with mb = a.

Let Dag be the subcategory of Abg of those abelian groups which are divisible.
The arrows are just the group morphisms between these divisible abelian groups.

For instance (Q, +,0) is an object of Dag. We connect this object Q with another
special object carried by the set O of rationals ¢ with 0 < ¢ < 1.

We need a bit of notation. Each rational g can be written as

q=lq] +{q)

for some unique |g| € Z (called the integer floor of r) and some unique (g) € O (which
doesn’t seem to have a common name, nor a common notation).
Let & be the operation on Q given by

p®qg=(p+q)

for p,q € Q. To compute p@® q we add p to ¢ as normal and then throw away the integer
floor. You should check that (O, ®,0) is a divisible abelian group, and that there is a
morphism

Q O

1.5. Some other categories 29

such that
p®q=plp+q

for all p,q € Q. This O is a variant of the circle group and the operation & is addition
mod 1. (Strictly speaking, the circle group uses all reals in [0,1).)

The arrow p is surjective, and hence is EPIC. We show that it is MONIC in Dag,
and hence is a surjective BIMORPHISM in Dag. However, it is not injective, and so can
not be an ISOMORPHISM in Dag. In particular, Dag is not BALANCED.

Consider a parallel pair

f

A Q

9

of Dag-arrows with o f = ppog. Thus fa —ga € Z for all a € A. If fa # ga then,
by symmetry, we may suppose that fa < ga and so obtain 0 # m = ga — fa € N. By
considering any b € A with 2mb = a a simple calculation leads to a contradiction.

Exercises

1.29 Fill in the proofs missing from this subsection.
Does a similar proof show that Abg is not BALANCED?

1.30 Consider the set [0,1) of reals. Convert this into an abelian group with O as a
subgroup. Can you find a simpler, more geometric, description of this group.

1.5.5 Monoid actions

For each field K (thought of as the domain of scalars) the vector spaces over K form
the objects of a category where the arrows are the linear transformations between the
spaces. These examples can be generalized by replacing the field by a ring R, in which
case the analogue of a space is called a module. The distinctive feature of these examples
is that a scalar and a vector can be combined to form another vector. This operation is
called the ‘action’. When the ring is non-commutative there are two kinds of modules,
depending on whether the action is on the left or the right.

These are the concrete examples of ABELIAN CATEGORIES. We won’t even attempt
to explain what these are, for we are not going in that direction. However, an enfee-
bled version of the construction is worth looking at. This gives us categories which
have something in common with abelian categories, and are also TOPOSES which are
categories intimately related with higher order logic (and other things).

We replace the ring by a monoid

R=(R,x1)

and construct two categories
R-Set Set-R

called, respectively, the category of
left right

R-sets.

30 1. Categories

In both cases an object is a set A together with an action

Rx A A AXR A
(r,a) ———ra (a,r) —— ar

where these are subject to certain axioms. Thus we require, respectively,

(sr)a = s(ra) a(rs) = (ar)s
la=a a=al

for all @ € A and r,s € R. Notice that there are two different ‘multiplications’ here;
that in R and the action. You should write out these axioms with explicit operation
symbols.

In both cases an arrow

f

A B

is a function (as shown) which is ‘linear’ in the sense that

f(ra) =r(fa) flar) = (fa)r

for all ¢ € A and r € R. You should check that these do give two categories.

Exercises

These exercises give you some practice in the algebraic manipulations used
with R-sets. Thus we fix a monoid R and look at the category Set-R of
right R-sets (because in the final analysis these are neater then left R-sets).
This category is a TOPOS and as such has a SUBOBJECT CLASSIFIER) and
a process of SUBOBJECT CLASSSIFICATION. These exercises set up some of
these facilities without going into a detailed explanation.

1.31 An ideal (or, more precisely, a right ideal) of R is a subset I such that
sel=srel

holds for all r,s € I.
Given an ideal I and an element s € R we use

rel:s<=srel

(for r € R) to extract a subset I : s of R.
(a) Show that the union and the intersection of a family of ideals are ideals.
(b) Show that I : ¢ is an ideal for each ideal I and ¢ € R.
(c) Show that I :¢ = R precisely when t € I.

1.32 Let Q(R) be the family of all ideals.
Show that
Q(R) x R—— Q(R)
(I,s) ———1:s

furnishes 2(R) with an action to convert it into an R-set.

1.5. Some other categories 31

1.33 For an R-set A a sub-R-set is a subset B C A such that
a€EB—areB

holds for all a € A and 7 € R. Such a B is itself an R-set with the restricted action.
For each such sub-R-set B and element a € A we use

réeB:a<=ar € B

to extract a subset B : a of R.
(a) What are the sub-R-sets of R?
(b) Show that if B is a sub-R-set of A then B : a is an ideal and

acB<—=B:a=R

for each a € A.
(c) Show that if B is a sub-R-set of A then

A Q(R)
a———— B:a

is linear (that is, an arrow in the category). This is called the character of B in A.

1.34 Show that for an R-set A each linear function
B

A Q(R)

is the character of precisely one sub-R-set of A.

1.5.6 Developing sets

Let S be a partially ordered set. We construct the category of ‘sets developing over
S’. At first this looks quite complicated. In fact, it is a simple example of a PRESHEAF
CATEGORY and as such is a TOPOS. When seen in a more general context it structure
becomes quite simple.

An object of this category is a pair

where A is an S-indexed family
A= (A(s) | s€S)

of sets, and A is a certain compatible family of functions between these sets.
More precisely, for each pair of indexes r < s (from S) there is a function

A(r, s)

A(s) A(r)

such that
A(s, s) = id () A(r,s) o A(s,t) = A(r,t)

32 1. Categories

for each s € S and each triple » < s < ¢ from S. Notice that these functions point
down the poset S. If you think the composition requirement looks a little odd, then you
should write out the diagram.
This gives the objects which, as you can see, have quite a lot of internal structure.
An arrow

a) L. 58

in this category is an indexed family of functions

A(s) L B(s) (s€S)
such that the square
A(s) —L+ B(s)
Alr, s) B(r,s)
A(r B(r
(r) 7 (r)
commutes for all 7 < s from S.
Exercises

1.35 The notation for an object A = (A, A) can be simplified, but does take a bit of
getting used to. For indexes r < s let us write
A(s) A(r)
at+——— alr

for the behaviour of the connection function A(r,s). Think of the value a|r as the
‘restriction of s to .

(a) Write down the properties required of these restriction maps.

(b) Write down the properties required of an arrow

.n) L (88

in terms of these restriction maps.
(c) Can you see a similarity between this category and the category of Set-R for a
monoid R?

1.6 Some simple notions

In this final section of this chapter we gather together the definitions of the simple
notions and some observations that occur at the beginning of a development of category
theory. Some of these notions are mentioned earlier in the previous sections where they
are HIGHLIGHTED to indicate that the precise definitions can be found here. Of course,
we could have introduced each notion just before it was required, but in the long run it
is more convenient to have the information in one place.

1.6. Some simple notions 33

1.6.1 Opposites and duality

Each category C' is a collection of objects and a collection of arrows with certain prop-
erties. In particular, each arrow

f

A B

has an assigned source and an assigned target. A formal trick converts C into another
category C°P called the opposite of C. This category C°P has the same objects as C'.
Each arrow f of C, as above, is turned into its formal opposite

for

B A

to produce an arrow of C°P. The formal composition of these formal arrows is defined
by
foP o g% =(go f)P

for each composable pair

A ! - B -C

of arrows from the parent category C.

A routine exercise (which you should go through at least once in your life) shows
that C°P is a category.

The process f ——= f°P we doesn’t actually do anything to the arrow. We merely
decide that the words ‘source’ and ’target’ should mean their exact opposites. Thus the
change is merely formal rather than actual.

(There are some natural language words which have gone through, or seem to be
going through, a similar process, or even simultaneously mean something and the op-
posite. The word ‘wan’ used to mean dark and perhaps leathery, as the skin of a person
who contracted the black death would go. After that plague disappeared the word was
still used to describe someone who looked ill, as in the expression ‘pale and wan’, but
with the exact opposite of meaning. It should be transparent that we could dust down
a few more examples, but let’s draw a curtain over that.)

This trick shows there is a lot of duality in category theory. Notions often come in
dual pairs

dog god

where a dog of a category C is nothing more than a god of its opposite C°P. We will
see many example of this.

Sometimes the opposite category C°P has properties rather different to the parent
C. For instance Set°P is the category of complete, atomic boolean algebra and complete
morphisms. As a simpler version of this the opposite of the category of finite sets is the
category of finite boolean algebras. (Both of these observations are instances of Stone
duality.)

Exercises

1.36 Each poset S is a category. What is the opposite S°P?
Each monoid M is a category. What is the opposite M°P?

34 1. Categories

1.6.2 Initial and final objects
In some categories some objects play special roles. An object
I F
of a category C is, respectively
initial final
if for each object A there is a unique arrow

A A

I

as indicated. Here the uniqueness is important.

Sometimes a final object is said to be terminal.

For instance, in the category Set of sets the empty set () is initial and any singleton
set {x} is final.

In any category of structured sets, if the furnishings do not have a distinguished
element (such as posets, semigroups, topological spaces, and so on) then almost certainly
the object on the empty carrier is initial. A final object in such a category can be more
complicated, and need not exist.

(There is a branch of mathematics, called Universal Algebra, in which structured
sets are investigated in some generality. Almost to a man the people who do this kind
of thing do not understand that a structure can have an empty carrier. This can lead
to a lot of silly messing about. These people are simply wrong.)

When a category has a final object it is essentially unique (as an exercise asks you
to show). It common to let 1 be this object. Because of certain special cases where
they arise quite naturally, an arrow

1 A

to an object A is a global element of A. For instance, in Set these pick out the members
of a set in the usual sense. In more structured categories these can pick out a special
kind of member of an object.

Exercises

1.37 Show that in a category any two initial objects are uniquely isomorphic. That
is, if I, J are two initial objects, then there is a unique arrow I —— J, and this is an
isomorphism.

State and prove the dual result concerning terminal objects.

1.38 Suppose that I is initial in C. Show that each C-arrow of the form

A I

is a RETRACTION, and prove the corresponding result for terminal objects. Hence show
that if C' has both an initial object I and a final object F' and there is an arrow

F I

then I and T are isomorphic. In such a case we have a zero object.

1.6. Some simple notions 35

1.39 Show that the category Pno has an interesting initial object but a boring final
object. What are these objects?

1.40 Show that the category Grp of groups has both an initial and a final object, and
these are the same.

Show that the category Rng of unital rings has both an initial and a final object,
and these are not the same.

What about the categories Idm and Fld of integral domains and fields?

1.41 Show that for each set A there is a bijection between the elements of A and the
Set-arrows 1 —— A.
Show further that for each pair of Set-arrows

f

A B 1 A

where the second represents the element a € A, the composite

f

1 - A - B

represents the element fa € B.

1.42 Let R be a monoid and consider the category of right R-sets.

(a) Show that this category has a final object 1.

(b) Show that for an R-set A the global elements of A (the linear maps 1 —— A)
are in bijective correspondence with certain (set theoretic) elements of A.

(c¢) Can you find a separator for the category? That is a fixed R-set S such that for
each R-set A the linear maps S —— A are in bijective correspondence with the (set
theoretic) elements of A.

1.43 Let S be a poset and consider the category of presheaves over S (as described in
Subsection 1.5.6).

(a) Show that this category has a final object 1.

(b) Show that for a presheat A = (A, A) over S a global element 1 —— A is a kind
of choice function for the family A. It ‘threads’ its way through the component sets
A(s). You should make precise this notion of ‘thread’.

1.6.3 Monic, epic, and the like

In a category some arrows have special properties. An arrow

m (&

B A A B
is, respectively,
monic epic
if for each parallel pair
z x
X B B X

36 1. Categories

the implication
mor=moy=—cT=1y roe=yoe=—= =1y

holds, as appropriate.

Consider a category of structured sets in which each arrow is a function of a certain
kind. Almost certainly you will find that each arrow that is an injective function will
be monic. Similarly, and arrow that is a surjective function will be epic. However, the
converses of these observations do not hold in general. Subsections 1.5.3 and 1.5.4 above
give some counter-examples. There are some quite general conditions which ensure that
one or other of these converses does hold.

A pair of arrows

such that
ros=1pg

are a

section retraction

respectively (as indicated by the initial letter). Almost trivially, each section is monic
and each retraction is epic. As such each such arrow is often referred to has a

split monic split epic

respectively.

Sometimes, in specially circumstances, the couple r, s is called a projection, embed-
ding pair (with r as the projection and s as the embedding). This is not very good
terminology to use in general, because of the connotation that a projection is surjective
and an embedding is injective. (You should be warned that in a certain area of category
theory there is a notion of an ‘embedding’ and of a ‘surjection’. If and when you find
out what these are you will realize that this terminology is utterly ludicrous.)

A couple of arrows

B

such that
gof=14 fog=1p

form an inverse pair of isomorphisms and each component is an isomorphism. Trivially,
each isomorphism is both a retraction and a section.

In other words, being monic or epic is concerned with having a one-sided cancellation
property, being a section or a retraction is concerned with having a one-sided inverse,
and being an isomorphism is concerned with having a two-sided inverse.

A bimorphism is an arrow that is both monic and epic. Each isomorphism is a
bimorphism, but there can be bimorphisms which are not isomorphisms. A category is
balanced if each bimorphism is an isomorphism.

1.6. Some simple notions 37

Exercises

1.44 (a) Show that both of the implications

section => monic retraction = epic
section+epic = iso retraction+monic = iso

hold, that is if an arrow satisfies the hypothesis then it satisfies the conclusion.
(b) Show that if arrows

9

B - A

satisfy
hof=14 fog=1p

then g = h, and each arrow is an isomorphism.

1.45 Can you find a reasonable large category which is balanced but where each iso-
morphism is an identity arrow.

1.46 Consider a monoid viewed as a category.

Which of the elements (when viewed as arrow) are monic, epic, a retraction, a
section, iso?

What is a balanced monoid?

1.47 Consider a composable pair of arrows

f

A - B

in some category.

Show that if both f,g are monic then so is g o f.

Show that if g o f is monic then so is f.

Obtain similar results (where possible) for the other classes of arrows discussed in
this subsection.

Chapter 2
Functors and natural transformations

! ARROWS COMPARE OBJECTS !
! FUNCTORS COMPARE CATEGORIES !

This chapter gives the definitions of the crucial notions of functor and natural trans-
formation, together with a collection of examples of these gadgets. The idea of a natural
transformation (rather than a mere transformation) is one of the original motivations
for inventing categories. Whatever these natural transformations are, they have to pass
between two things. It turns out that these things are functors, are these must pass
between two other things. These other things are categories. In other words, categories
are there to carry functors, which are there to carry natural transformations.

2.1 Functors defined

Given two categories S and T, a functor from S to T

F

S T

is a pair of assignments. It assigns a T-object F'A to each S-object A, and a T-arrow
F(f) to each S-arrow f. These assignments must satisfy certain conditions, but before
we look at those let’s sort out some notation.

Although there are two assignments involved (from objects to objects and from ar-
rows to arrows) the same symbol is used for both. Rarely does this cause any confusion.
Here we will indicate which is which by the use of brackets. Thus we write F'A for
the object assigned to A and F(f) for the arrow assigned to f. This is not a standard
convention, but it can be useful.

Because of the direction, we think of S as the source category and T as the target
category of the functor.

In fact, there are two kinds of functors distinguished by the way they treat arrows.
A functor F (as above) is

covariant contravariant

if for each source arrow

the target arrow has the form

F(f)

FA FB FA

39

40 2. Functors and natural transformations

respectively. In other words, a covariant functor preserves the direction of arrows,
whereas a contravariant functor reverses the direction of arrows.

It doesn’t make sense to have a functor that is partly covariant and partly con-
travariant. This is because of the other conditions that a functor must satisfy. It must
respect composition of arrows.

Let’s look at these composition restrictions in parallel, with the covariant conditions
on the left and the contravariant conditions on the right.

e For each composite

f

A - B

in the source category S, the equality
F(go f)=F(g) o F(f) F(go f)=F(f)o F(g)

must hold in the target category T'. That is, the target triangle

A F(go f) O A F(go f) O
N A BN
F(B) F(B)

must commute.

e For each S-object A the equality
F(la) =1Fa

must hold. That is, each identity arrow must be sent to the identity arrow of the
translated parent object.

It is only with arrow composition that the variance of a functor appears. However,
the behaviour on arrow composition is by far the most important attribute of a functor.

This definition has an immediate consequence concerning commuting diagrams.
Suppose we have a commuting diagram in the source category and we hit each compo-
nent (object and arrow) with the same functor. Then we get a diagram in the target
category, and furthermore this diagram commutes.

In the next few sections will look at various examples of functors. You might want
to move directly to those sections. Before that, in the remainder of this section, the
examples we look at are rather straight forward,

Let’s look at a collection of examples of functors all of which are ‘forgetful’ since
they forget either some structure or some property or a bit of both . (There is a
technical definition of a forgetful functor, and not all of the following examples meet
that condition. We won’t look at that definition, not because of the technicalities but
because the precise notion isn’t much use whereas the informal notion is.)

There are covariant functors

Pos » Pre ~ Set Grp — Mon ~ Sgp » Set

all of which forget something or other.

2.1. Functors defined 41

Each poset A is a preset, so can be thought of as such. Let us write (A to indicate
we are thinking of it in this way. Furthermore, each Pos-arrow

f

A B

is a function of a certain kind, and is still a Pre-arrow

A B

when we change our point of view. This gives a covariant functor

Pos Pre

and there is almost nothing to check. (The symbol ‘i’ we use here isn’t standard. In
fact, a forgetful functor isn’t usually given a symbol. However, sometimes ‘U’ is used
for a forgetful functor from a category to the category Set of sets. This ‘U’ stands for
‘Underlying’, or strictly speaking ‘Unterliegende’.)

In the same way there is a functor

Grp Sgp

which forgets some of the properties of groups (namely, that inverses exist).
The other three functors

Pre Set Mon ~ Sgp ~ Set

all forget structure rather than property.

Pedantically, each preset is a pair (A, <) carried by a set A, or a set furnished with
a relation. If we forget this relation we obtain a set. Let us write ¢(A4, <) to indicate
this process (so i(A4,<) = A). Now, each Pre-arrow

4,<) L (B,<)

is a function of a certain kind

A B

between the carriers. Let us write &(f) for the Pre-arrow viewed in this way as a
function. Thus each Pre-arrow, as above, gives a Set-arrow

o4, <) Y i3, <)

by forgetting the carried structure. This gives a covariant functor

Pre Set

and again there is very little to check.
In the same way there are functors

Mon Set

Sgp

42 2. Functors and natural transformations

which forget the unit in the left hand case and the operation in the right hand case.

As you can see, these functors are almost invisible in everyday mathematics, and
certainly would not be given names, that is denoted by a symbol. However, when we
start to analyse how they interact with other functors, then we have to be a bit more
careful. So here we have given them a generic name (which might be a bit non-pc but
it suits our purpose).

For other examples of this kind think of the categories Fld, Idm, Rng, Grp, and
Mon of fields, integral domains, unital rings, groups, and monoids (where you should
work out what the first three are). There are functors

Grp
Fld ~ Ind - Rng ~ Mon
forgetting either property or structure. The functors
Rng Grp Rng — Mon

forget the multiplicative structure and the additive structure of a ring, respectively.
In particular, the triangle of functors does not commute. (We will make sense of this
later.)

For the final two examples consider the category Pos™ of posets and adjunctions.
Each arrow in this category is a pair of Pos-arrows, one going in the other direction.
Thus we obtain two functors

left right

Pos” —f> Pos Pos™ AR Pos

which select the left component and the right component of an adjunction pair, respec-
tively. One of these is covarant and the other is contravariant.

Exercises

2.1 (a) Let S,T be posets viewed as categories. What is a covariant functor S —— T'7
What is a contravariant functor between these two?

(b) Let R, S, be monoids viewed as categories. What is a covariant functor R — S7
What is a contravariant functor between these two?

2.2 (a) Show that the opposite construction can be viewed as a contravariant endo-
functor on the parent category.

(b) Show that each contravariant functor can be viewed as a covariant functor using
the opposite of one of the categories.

2.3 Counsider the two selection functors Pos® — Pos describe above. Which of
these is covariant and which is contravariant?

2.4 For a group A let 6 A be the derived subgroup (generated by the commutators). In
particular, A/0G is an abelian group. Show that each of the two object assignments

Ar— A Ar— A/6A
is part of a functor.

2.5 Show that categories and functors themselves form category (and don’t worry about
the size of the thing).

2.2. Some power set functors 43

2.2 Some power set functors

For each set A let PA be the power set of A, that is the set of all subsets of A. This
has quite a lot of algebraic structure which we will use to convert P into the object
assignment of several functors on Set (as source and target category).

For a category C, an endofunctor on C (or sometimes of C) is a functor where C
is both the source and target. Such an endofunctor can have either variance. Thus we
are going to look at some endofunctors of Set.

First we need to fix some notation.

For a parent set A and X,Y C A we write

XUY XNy
for the union and intersection of the two sets. We write
Y- X
for the difference (the set of elements of Y which are not in X'). We write
A-X X'

for the complement of X in A. The left hand notation is used only when omitting ‘A’
may cause confusion.
Consider a function

A

from a set A to a set B. For each X C A

fIX]={fz |z € X}

is the direct image of X across f. This converts a subset of A into a subset of B. We
can also go the other way. For each Y C B

fY)={zcAlfzeY}
gives the inverse image of Y across f. Note that
zefT(Y)<= fzeY

for £ € A. This is often easier to use than the previous description.

(You may know already a quite ridiculous notation for inverse image. If so, then
you should forget it at once.)

Consider a function f, as above, and think of this as a Set-arrow. We define three
Set-arrows

(/) P(f) v(f)

PA PB PA PB PA PB

by

ANX)=fIx] PUH=r" VHX)=fIXT
for each X € PA. (Notice the 2-step process. Both 3 and V first convert a function f
into another function which then converts subsets into subsets.)

44 2. Functors and natural transformations

This produces three endofunctors on Set where central one is contravariant but the
other two are covariant. You should check the details of this.

It turns out that the central one, the contravariant one, is usually more important
than the other two, and so is often called the power set functor. However, sometimes
this description is applied to one of the other two.

You might be wondering about the use of ‘3,V’ here. It is not just a fad. When
these constructions are generalized in a suitable way they really do have something to
do with quantification.

There is an obvious way to compose two functors, even those of different variance.
This produces a functor where the variance is determined by the parity of the two
component variances. In particular, we may iterate the contravariant power set functor
to obtain a covariant endofunctor

Set N=PoP ~ Set

on Set.
Thus for each set A we let
ITA = P(PA)

be the set of all collections X whose elements are subsets X of A. Each Set-arrow

B

gives first a Set-arrow

in the opposite direction, and then a Set-arrow

P(P(f) =P()*

P(PA) - P(PB)

in the same direction. This is the arrow assignment

T(f)

ITA I1B

of the composite functor.

This looks quite complicated. It is, but becomes clearer when you write out the
constructions in more detail. There are similar situations in mathematics which are far
more complicated. Category theory helps to organize such situations and to tame some
of these complications.

Exercises
2.6 Let

A B

be an arbitrary function.
(a) Write down a quantificational definition of 3(f) and V(f), and hence explain the
notation.

2.8. Some section functors 45

(b) Show that in general 3(f) and V(f) are different.
(c) Viewing the power sets PA and PB as posets (with inclusion as the comparison),
show that the three functions

3(f)
PA—_f—__PB
v(f)

are monotone with 3(f) 4 f< A V(f).
The results of this exercise are not just superficial observations with no more

than a curiosity value. When generalized to an appropriate setting they have
some deep consequences about the nature of higher order logic.

2.7 Show that the three power set constructions are functorial. That is, show that for
each pair of functions

the three equalities
Ago f)=3(g)o3f) (9o f)" =fTog" Vigof)=V(g)oV(f)
hold together with the appropriate identity conditions.

2.8 (a) Show that for each function

A

the image arrow

1A 1) IIB
X —— TI(f)(X)

of the double power set functor is given by
Y ell(f)(X) <= f(Y)e X

for each X € TIA and each Y € PB.
(b) Check directly that this gives a functor, that is it II commutes with function
composition and preserves identities.

2.3 Some section functors

The material of the previous section can be generalized so that the carrier is a poset
not just a set. (In fact, we could use a preset, but we won’t bother with that.) In a way
this makes the situation more complicated, but to compensate for that we begin to see
more clearly what is going on. We find there are several different generalizations, and
these distinctions are not obvious in the power set case.

We need a bit of terminolgy and notation.

46 2. Functors and natural transformations

Given a poset S, a subset X of S is, respectively,
a lower section an upper section
if for all z,y € S with z < y the implication
yeX=zeX reEX=yeX

holds. In other words, once we are in the section and we move in the appropriate
direction, then we remain in the section. Sometimes a lower section is called an initial
section and an upper section is called a final section.

A subset X of S is a convex section if for all z,y, z € S with z < z < y the implication

z,yeE X —=>2z€ X

holds. Convex sections are also called intervals, especially when the poset is linear.
Every lower section and every upper section is convex. The two extremes () and S
are both upper and lower sections. For each a € S, the singleton {a} is convex but, in
general, is neither a lower nor an upper section (unless a has a special position in S).
We let
LS TS

be the sets of
lower upper

sections of S, respectively. (Once you know that Y is upsilon you will see where this
notation comes from.)

Both LS and TS are posets using inclusion as the comparison. Furthermore, when
S is discrete both are just the power set P.S.

We need to generate some sections.

For each a € §

r€la<—=z<a a<lzx<=x€ta
defines, respectively, the
principal lower section principal upper section
generated by a. For each subset H of S
z € |H <= (Ja € H)[z < q] (Jae H)fa<z]<—=z€tH

gives the
lower section generated by upper section generated by

H, respectively. There is a slight descrepancy in the notation here since

ta = {a} ta = 1{a}

but that hardly matters. Once we accept this we see that

1H=|J{lalacH} tH=|J{ta|a € H}

2.8. Some section functors 47

hold.
The two object assignments

S+——LS S—— TS

on posets S can be filled out to give siz different endofunctors; three for £ and three
for Y. There are two contravariant functors and four covariant functors, split evenly.
Each of the two triples gives an appropriate generalization of the three power set func-
tors.

Let

¢

T S

be a Pos-arrow. It is easy to check that the inverse image function ¢* transfers lower
section of S into lower sections of T', and similarly transfers upper sections of S into
upper sections of T'. Thus we may set

LX) =¢"(X) T(HU)=4¢"(U)
for each X € LS and U € TS to obtain functions
L(p): LS — LT T(¢p): TS — YT

(in a contravariant direction). It is easy to check that these constructions are functorial
to produce contravariant endofunctors on Pos.
For each Pos-arrow

let 3(¢) and V(¢) be the functions
LS — LT

given by
AP)(X) =1g[X] V($)(X) = (to[X"])
for each X € LS. It is useful to observe that

HolLH]) = {¢[H] 1N¢[TH]) = 1¢[H]

holds for all subsets H of S. Using this it can be checked that the assignments
S+——~ LS ¢r— 3(e) S+—— LS ¢—V(¢)

give two covariant endofunctors on Pos. You should check all the relevant details and
observe that these are almost the same as for the power set functors.
We call these functors

3 v

respectively. You should not confuse these with the similarly named endofunctors on
Set (although they do a similar job).

48 2. Functors and natural transformations

Exercises

2.9 Let S be an arbitrary poset.

(a) Show that for each H C S

JH TH
are, respectively, the least
lower section upper section

which include H.

Show that

0H=|HNtH

is the least convex section which includes H.
(b) Show that for each H C A

(Y (Y
are, respectively, the largest
lower section upper section

included in H.

2.10 For an arbitrary subset H of a poset what are

U{lala e H} U{tala € H}
N{lalae H} N{tala € H}

respectively?

2.11 For an arbitrary poset S let

be the relations on PA given by
X<tY <= (VyeY)3z e X)[z <y

(Vy €Y)(3z € X)[z < 9]
X<y and
(Vz € X)(Fy € Y)[z <y

X<V (VzeX)TyeY)z<y]

for X,Y € PA.

Show that each of these is a preordering on PA.

Can you find a neat description of the associated partial orderings?

[These are called the upper, convex, and lower ordering on PA. They are also have
other, less informative, names. Refined versions of these orderings are used to construct
power domains.]

2.4. Some other functors 49

2.12 (a) Re-do Exercise 1.15.
(a) Show that for each monotone map

T ¢ S
between posets, the inverse imape function
— A
TS J=9¢ 1T

(which is monotone) has both a left and a right adjoint

fAAfAS

and describe what these are.

2.4 Some other functors

In this section we gather together some examples of functors you should know about,
and some other that are interesting (but perhaps not important).

2.4.1 Hom functors

Let C be any category and let K be any object of C. We use this to produce a pair of
functors

where the upper one is covariant and the lower one is contravariant. Here we have used
one of the standard names for the object assignement of either functor. You will see
why shortly.
For each C-object A let
FA= CIK,A]

that is the set of C-arrows from K to A. (The word ‘set’ here may not be strictly

correct. There are some exotic examples of categories where this collection may be very

large. However, for most examples we are likely to come across the collection is a set.)
This is the object assignment of the functor. For each C-arrow

f

A B

let F(f) be the function

C[K, A] F(f) C|K, B]
pr————fop

obtained by arrow composition. It is routine to check this gives a functor C —— Set.
Because of the terminolgy ‘hom-set’ this functor is often referered to as the covariant

50 2. Functors and natural transformations

hom-functor induced by K. This functor is usually indicated by C[K,-] or by [K,]
when C is understood.

A similar construction gives the contravariant hom-functor. For each C-object A
let

FA= CI[A K]
that is the set of C-arrows from A to K. For each C-arrow
A / B
let F'(f) be the function
F
C|[B,K] (4) C[A, K]

p——pof

obtained by arrow composition. It is routine to check this gives a functor C —— Set,
but this time it is contravariant.

These examples may look a bit artificial. However, they are important, especially
the second one. These constructions often underlie a representation result (where an
abstract object is represented in some concrete form). In many situations it is possible
to enrich the set [A, K] so that it becomes an object, perhaps in the same category or
perhaps in another category. In such circumstances the construction produces a functor
from the parent category to the enriching category. A simple example of this is when
K is a field and C is the category of vector spaces over K. Then C[A, K] is the dual
space of the space A.

Exercises

2.13 Show that these two constructions of this subsection do give functors.

2.14 Show that for all posets S, T the arrow set Pos[S,T| becomes a poset under the
pointwise comparison.
Show that both the hom-functors of Pos become endofunctors on Pos.

2.15 Let S be a poset viewed as a category, and let £k € S. What are the two hom
functors induced by k7 Remember to described the behaviour on arrows.

2.4.2 Functors and arrow categories

Let C be any category and let C~ be its arrow category as described in Example 1.7.
There are three associated functors

A S, T

c c~ c” C

with fairly obvious behaviour.

The two right hand ones S, T select the source and target of an object in C ™, that
is an arrow of C. This is the object assignment, and the arrow assignment can be only
one thing.

The diagonal functor A sends the object A to the arrow 14, and sends the C-arrow

f

A B

2.4. Some other functors 51
to the pair of arrows

1a —3 1p
which then form a C~7-arrow.

Exercises

2.16 (a) Describe the arrow assignment of S,T" and show that the two constructions
do give functors.
(b) Check that the construction A does give a functor.

2.17 For an arbitrary category C let C” be the category of wedges in C (as described
in Exercise 1.21.

(a) Show there are three functors C* —— C each of which selects a particular
node of the wedge.

(b) Set up a functor C —— C” which converts each object into a trivial wedge.

243 Comma categories

In Example 1.8 we used an object K of a category C to produce two slice categories
K\C and C/K under and over K. These two constructions have a common general-
ization.

Let
A L C C R B
be a given pair of covariant functors. We produce a category
(L,C,R)
where the objects are the triples
f

(AaL(A) - R(B)’B)

where A is a A-object, B is a B-object, and f is a C-arrow. An arrow of this category

(4,2(4) - Rr(B), B) - (X,L(x) 2 R(Y),B)
is a pair of arrows
A— o x B—_ .y
from A and B, respectively,
L(A) il)» L(X)

commutes. Composition of these arrows is defined in the obvious way.
This (L, C, R) is a comma category, although the devil knows why.

52 2. Functors and natural transformations
Exercises
2.18 Show that this construction does produce a category.

2.19 (a) Let 1 be the category with just one object and just one arrow. Let

L R
C C

1 C

be, respectively, any functor and the identity functor.
What is (L, C,R) ?
(b) Describe C'/K as a comma category.
(c) What is (L, C, R) where both L and R are the identity functor on C ?

2.20 For convenience let Com be the comma category (L, C, R), as above. Construct
three forgetful functors

B

Com A Com c~ Com

using the arrow category in the central one.

2.5 Natural transformations defined

! ARROWS COMPARE OBJECTS !
! FUNCTORS COMPARE CATEGORIES !
! NATURAL TRANSFORMATIONS COMPARE FUNCTORS !

Natural transformations are the reason that category theory was invented. In a
category the objects are compared by the arrows. Categories themselves are compared
by functors. But how do we compare functors? That might seem a silly question (since,
on the face of it, there is no good reason why we want to compare functors). However,
there are some comparisons in mathematics which seems to be between objects but
have a certain uniformity and ‘naturality’ about them. It was an attempt to explain
this that give rise to category theory.

A natural transformation compares a parallel pair

F

S T

G

of functors of the same variance. Thus, by definition, a natural transformation

Ui

F G

from F' to G assigns to each S-object A a T-arrow

FA—T | ga

with a certain property. We think of n as an indexed family

(na | A € Obj(S))

2.5. Natural transformations defined 53

of T-arrows. It could be better, but this is the standard notation.
The extra property required of 1 depends on whether F, G are both covariant or
both contravariant. Thus, for each S-arrow

AT . p
the appropriate T-square
FA A, G4 FA M. ga
F(f){ {G(f) F(f){ ‘G(f)
FB—GB FB——GB
B nB

commutes.

This is a quite short definition, but has some subtleties. Several examples will help,
and these will take up most of the rest of this chapter. Before that let’s give a possible
informal explanation of the idea.

Consider two T-objects which somehow ‘arise from the same parent by two different
constructions’. It’s not clear what this phrase should mean, but here we take it to mean
that the two T-objects are F'A and G A for some S-object A. Thus we assume that the
two functors F, G have been set up and these are the ‘two different constructions’. The
S-object A is ‘the same parent’.

We now ask whether the one T-object F'A can be compared with the other T-object
G A in a way that is uniform and without depending too much on the particular parent.
In other words we ask for a T-arrow

nA

FA GA

which ‘varies smoothly and naturally’ as A varies through S.

We decide to make this precise by the notion of a natural transformation.

We conclude with a definition which will make more sense once you have seen a few
examples.

2.1 DEFINITION. Consider a parallel pair
F

S T

G

of functors of the same variance. An inverse pair of natural isomorphisms between F,G
is a pair

n
F G
A
such that for each S-object A the T-arrows
NA
FA GA

Aa

54 2. Functors and natural transformations

are an inverse pair of isomorphisms in T'.
Two functors are naturally isomorphic or sometimes naturally equivalent if there is an
inverse pair of natural isomorphisms between them. |

Informally, two functors (with concrete constructions) are naturally isomorphic if
they are essentially the same except for the irrelevant inner workings of the two con-
structions.

Exercises

2.21 Show that a natural transformation

F G

is a natural isomorphism if and only if each component 74 is a isomorphism.

2.6 Examples of natural transformations

In this section we look at some examples of natural transformations using some of the
functors set up in the earlier sections of this chapter.

2.6.1 Using the power set and section functors
It will be convenient later if each of the examples is given a number.

2.2 EXAMPLE. Consider the two endofunctors
I

Set Set

fPEI

where the top one is the identity functor and the bottom one is the existential power set
functor (which uses the direct image behaviour on functions). For each set A consider
the singleton function

773
A=TA 4. pa
a ———— > {a}

that is
renia) = z=a

for each z,a € A. To show this is a natural transformation we need to show that each
function

2.6. Ezxamples of natural transformations 55

induces a certain commuting square. Consider the following.

al {a}

AT py
f a(f)
B 7 PB f[{a}]
fai {fa}

We must show that the inner square commutes. To do that we start from an arbitrary
element a € A at the top left corner and track it round the two paths to the bottom
right corner. We must show that the two subsets

{fa} fl{a}]

of B are the same. However, this is a trivial observation. |

You might wonder if anything similar can be done with the power set functor with
the universal behaviour on functions. Certainly something similar can be done with the
double power set functor.

2.3 EXAMPLE. Consider the two endofunctors
I

Set Set

II

where the top one is the identity functor and the bottom one is the composite P o P
of the contravariant power set functor. For each set A consider the ‘dual transform’
function

1A

A=1A ITA

given by
X €enala) <= ae X
for a € A and X € PA. Thus n4 attaches to each a € A all those subsets of A of
which a is a member. In particular, n4(a) is a collection of subsets of A, and hence
na(a) € P(PA) =IIA.
To show that 7 is natural we must show that for each function

f

A B

the square
A 4

1

B ——1IIB
nB

56 2. Functors and natural transformations

commutes. We do this by tracking an arbitrary element ¢ € A round the two paths.
Each produces a family of subsets Y of B, and these must be the same. It is easy to
check this, provided you get the notation under control. |

We will return to this example later on.
Some of this material can be generalized using of section functors on Pos.

2.4 EXAMPLE. Consider the two endofunctors
I

Pos Pos

,CEI
where the top one is the identity functor and the bottom one is the lower section set
functor with the existential behaviour on maps. For each poset S consider the function

3
s | rs

a+— la

which converts an element into the principal lower section generated by that element.
It is routine to check that this is monotone.
To show that 57 is natural consider Pos-arrow

¢

S T
that is a monotone map. This induces a square
af Ja
3
s— 15 . rs
¢ 3(¢)
T LT 4l
T
pa | H¢a}

which we must show commutes. In this case there is just a little more to the proof. W

So far we have considered mainly existential behaviour, but universal behaviour can
be handled as well.

2.5 EXAMPLE. Consider the two endofunctors
I

Pos Pos

LV
where the top one is the identity functor and the bottom one is the lower section set

functor with the universal behaviour on maps. For each poset S consider the function

\Y
s, rg

a ——— (ta)’

2.6. Ezxamples of natural transformations 57

which converts an element into the complement of the principal upper section generated
by that element. This is a Pos-arrow.
Consider Pos-arrow

S ¢ T
that is a monotone map. This induces a square
al (ta)’
v
s s s
¢ v(¢)
B v LT R
T
da | L

where
L=(1(¢a)) R=VY(¢)((ta)) = (t¢[ta]) = (1(ga))’

are the two section resulting from the element o € S. This simplification of R shows
that the square commutes, and hence 7" is a natural transformation. |

As you can probably imagine, there are many variations on these ideas, much more
than we could look at here.

Exercises

2.22 Complete the proofs for Example 2.2. That is, show that the required square does
commute.

2.23 Show there is a natural transformation I —— PY where I is the identity functor
on Set and PY is the power set functor with the universal behaviour on functions.

2.24 Complete the proofs for Example 2.3.

2.25 Complete the proofs for Example 2.4.

2.26 (a) Show there are natural transformations I —— Y7 and I —— YTV (where
I,73,TY are endofunctors on Pos).

(b) Make sure you construction for part (a) is correct.

2.27 (a) Show that taking the opposite of a poset produced an endofunctor O on Pos.
(b) Show there is a natural isomorphism

L0000

and find a concrete description of the left hand endofunctor.

58 2. Functors and natural transformations

2.6.2 Using hom functors

Remember that each object K of a category C gives us two hom functors
C[Ka _] C[_a K]

from C to Set, The left hand one is covariant and the right hand one is contravariant.
These are important tools when ‘representations’ are involved.

2.6 EXAMPLE. Let C be an arbitrary category, let

F

C Set

be an arbitrary functor, and let K be an arbitrary C-object. What can a natural
transformation

[Ka _] F

look like?
For an arbitrary element k € F K consider the family of functions

(K, A —A . 4

p—— F(p)k

indexed by the C-objects A. Notice how each such ex is obtained by ‘evaluation at k’.
This family e is a natural transformation

[Ka _] F

(where, of course, [K,—] is C[K,—]). To see this consider a C-arrow

f

A B

and the square
(K, A] <2 FA

fo-| {F(f)

[K,B] — FB
€B
induced by this arrow. By tracking an arbitrary p € [K, A] along the two paths we see
that the square does commute. The calculation depends on the functorial properties of
F.
This gives us many examples of natural transformations from [K, —] to F. Are there
any more? To answer this consider any natural transformation

€

[K’ _] F

of this kind. From the component

‘K | FK

(K, K]

2.6. Ezxamples of natural transformations 59

we may set
k = GK(]-K)

to obtain a member of FK. Now consider any arbitrary C-object A and arbitrary
p € [K, A]. Since

we have a commuting square

po —l lF(p)
[K,A] — FA
€A

induced by the naturality of e. By tracking round this square we see that e is nothing
more than ‘evaluation at k’.

These two constructions set up a bijection between the natural transformations
[K,—] — F and the elements of FK. [|

When the natural transformation

[K’ _] F

induced by k € FK is a natural isomorphism, we say the pair (K, k) is a pointwise
representation of F. We say F’ is representable when it has at least one pointwise repre-
sentation.

In subsection 1.5.6 we showed how each poset can be used to produce what looks
like a rather intricate category; the category of sets developing over a poset. In fact,
that construction can be generalized to replace the poset by any category. In this
generalization some things become clearer.

2.7 EXAMPLE. Each category C has an associated category C~ of presheaves. A
(Set-valued) presheaf on C is a contravariant functor

F
C Set
and these form the objects of C”. An arrow
F—"' .¢

of C”is a natural transformation between two presheaves.
You should check that these do form a category.
For each C-object A the hom-functor

A"= C[—, 4]
is an object of C”. You should check that this is the object assignment of a functor

F

c c~

(where the arrow behaviour needs to be described). [|

60 2. Functors and natural transformations

This construction (-) " is the Yoneda embedding of the category C. It is a kind of
completing process and has applications in many parts of category theory. Presheaves,
and the more refined subclass of sheaves are important in algebraic geometry and rep-
resentation theory. They lead to the notion of a topos which is a kind of category with
many nice properties.

When used in a certain way with a special kind of object the contravariant hom-
functor can explain many things. To complete this section we look at a simple case
where the base category is Pos. This will also gives us a hint of the idea of enrichment
where the hom-sets themselves carry certain structure.

2.8 DEFINITION. Let 2 be the 2-element poset {0,1} ordered by 0 < 1. For an arbitrary
poset A a monotone map

is a character of A. [

In other words Pos[A,?2] is the set of characters of A. What is going on here? You
already know this idea. Think of the similar construction where the poset A is replaced
by an arbitrary set, and then look at the following observation.

2.9 LEMMA. For each poset A there are bijective correspondences

LA Pos[A,?2] TA
X p U

given by
a€EX <<= pa=0 pa=1<=acU

for each a € A.

We have set up both £ and T as contravariant endofunctors of Pos. By composing
with the forgetful functor we can temporarily view them as functors Pos — Set.

2.10 LEMMA. The three functors
T
Pos —[— 2]— Set
L

are naturally isomorphic via the assignments of Lemma 2.9.

This shows that as Set-valued functors these three gadgets are essentially the same.
However, we know that LA and TA do have more structure. In particular, they are
both posets, and both £ and T are endofunctors of Pos. We find that much of this
structure is controlled by the hom-functor, provided it is suitably enriched.

For each poset A the set Pos[A,2] carries the pointwise comparison given by

qg<p<= (Vz: A)lgz < pz]

for characters p,q. It is routine to check that this furnishes Pos[A,2] as a poset. In
fact, there is much more.

2.6. Ezxamples of natural transformations 61

2.11 THEOREM. When enriched Pos[—, 2| is an endofunctor on Pos, and is naturally
isomorphic to T.

The proof of this is quite a long series of simple calculations. Some of these have
been alluded to already. What else must be done?

We know that Pos[—,?2] is functor to Set and we have seen how to enrich each
Pos[A,?2] as a poset. What we must show is that for each Pos-arrow

¢

B A

the induced function

— O

Pos[A,?2] Pos[B, 2]
is monotone relative to the enrichments. This shows that Pos[—, 2] is an endofunctor
on Pos.

Next we must show that T and Pos|[—, 2] are naturally isomorphic. We have set
up the bijections and we have checked the naturality. It still remains to show that each
bijection

Pos[A,?2] TA
pe——>U

is a poset isomorphism, that is that both assignments are monotone.

There is nothing very difficult here. The only problem is remembering to do every-
thing that has to be done.

To conclude this section let’s look at a simple example of a contravariant adjunction.
We present it using the functor Y, but again it can be explained using 2.

2.12 EXAMPLE. For each pair of posets A, S there is a bijective correspondence

Pos[A,TS] Pos[S, TA]
f<—>¢

given by
S € fa<=ac€ ¢s

fora € A,s € 8S.

Furthermore, when both the hom-sets are enriched this bijection is a poset isomor-
phism.

Finally, the bijection is natural for variations of both A and S. |

Again there are several things to be checked here, and none is very difficult.

We won’t explain exactly what is going on here, for that is better done in a more
general setting, and we aren’t in a position to do that just yet. However, this idea gives
the categorical support for several major results in different parts of mathematics.

62 2. Functors and natural transformations

Exercises

2.28 Complete the details of Example 2.6

2.29 Show that if (K, k) and (L,[) are both pointwise representations of a functor

F

C Set

then there is an arrow

of C with F(p)k = 1.

2.30 (a) Show that the identity functor on Set is representable.
(b) Show that the forgetful functor Mon — Set is representable.

2.31 Fill in all the details of Example 2.7.

2.32 Let S be a poset viewed as a category. Show that a presheaf on S is nothing
more than a developing set as in subsection 1.5.6

2.33 Fill in the missing details for Lemmas 2.9, 2.10 an Theorem 2.11.

2.34 (a) Sort out the details for Example 2.12.
(b) For each pair of posets A, S there are bijections

[4,[S,2]] «— [A4,TS] «—— [S,TA] «— [S,[4,2]]

(where each [—,—] is Pos[—,—]). Write down this composite bijection, and hence
‘explain’ the construction of Example 2.12.
(c) What has this got to do with curry and chips?

2.35 Why was the material around Lemma 2.10 — Example 2.12 done using the functor
T rather than L7

2.36 (a) Explain the endofunctor II of Set and the associated natural transformation
I —— TI using characters (for sets).

(b) For each vector space V over a given field K there is a natural embedding
V —— V** into its second dual. How is this similar to I — II?

2.37 When suitably furnished the set 2 can be an object in several different categories.
In particular, it can be an object in the category Top of topological spaces. The
appropriate topology on 2 is {0, {1},2}, that is the collection of upper section of the
poset 2. When furnished in this way 2 is sierpinski space.

For a space S what do the characters Top[S, 2] characterize?

2.7. Adjunctions 63

2.7 Adjunctions

In subsection 1.4.2 we looked at the notion of an adjunction

f

-~

g

S T

between posets S,T. In fact, a poset is a miniature kind of category, and a poset
adjunction is a miniature example of a larger categorical notion. In this section we
first look at two important examples of the general notion. After that we describe the
general notion itself without going into too many details.

An adjunction between categories is a pair of functors

F

S T

G

together with certain extra structure where all this fits together in a certain way. Often
one or other of these functors is rather trivial, and it is the other one that is important.
We are going to look first at the situation where either F' or G is ‘forgetful’.

Suppose we have a situation

Set C

A

for some category C where . is a functor which we can call forgetful. As a typical
example you may think of C as a category of structured sets (A,---) and ¢ merely
extracts the carrier A (by forgetting the structure carried by A).

Is there any way we can convert an arbitrary set A into a C-object in ‘the best
possible way’?

To illustrate this suppose C is the category of groups. How can we convert a set A
into a group in ‘the free-est possible way’? The answer to this is not merely to impose
some group structure on A (for there are many incompatible such structures). What
we do is think of A as the set of generators of a group, and consider what such a group
can look like if it can not have any special features beyond being a group. What we
do is generate the free group over A. This is formed by first extending A to a set of
‘words’ and then hitting this collection with an equivalence relation. The details of this
can be a bit messy, but the general idea becomes much clearer when set in a categorical
context.

Let’s work with an arbitrary functor &, as above. It does no harm to think of this
as ‘forgetful’ but, in fact, what we do works for any functor from C to Set. Also, we
could replace the target by any category. We will first make precise the notion of a ‘free’
object relative to the functor ¢ (which we think of as forgetful). Later we will dualize
this notion to get what we call a ‘co-free’ object (for want of a better terminology). It
is useful to see the appropriate notions set down in parallel, as in Table 2.1. Later we
will extend this material to the more general notion of an adjunction.

2.7.1 Free constructions

In this subsection we consider the left hand column of Table 2.1.

64

Given a ‘forgetful’ functor

Set C

A

and Set-object A, a C-object FA
and a Set-arrow

AT L LFA

provide a free C-object over A if for
each Set-arrow

f

A &S

where the target arises from a
C-object, there is a unique C-arrow

fﬁ

FA S

such that the Set-triangle

A ! LS
k /(f”)
L(FA)

commutes.

2. Functors and natural transformations

Given a ‘co-forgetful’ functor

A

Set C

and C-object S, a Set-object GS
and a C-arrow

€s

L(GS) S

provide a co-free Set-object over S
if for each C-arrow

iA—9 5

where the source arises from a Set-
object, there is a unique Set-arrow

A—P . qs

such that the C-triangle

LA g S
NP4
Z,(GS)
commutes.

Table 2.1: Free and co-free objects

2.13 DEFINITION. Consider a functor

Set

from some category C to Set. The associated notion of a C-free object over a Set-

object A is set out in Table 2.1. The arrow

A

is called the unit of the construction.

L(FA)

The definition gives ‘a C-free object’ over A. However, it is an easy exercise to show
that any two such objects over A are uniquely isomorphic, and consequently we usually

say ‘the C-free object’ over A.

2.7. Adjunctions 65

In many situations where this idea is used the forgetful functor ¢ is unnamed. We

then find a diagram such as
:;\\ L(f1)

FA

which appears to compare objects living in different categories. If at first you find this is
confusing, then simply give the invisible functor a name. However, the common practice
is to work with an unnamed functor.

Notice that this idea applies to each Set-object separately. It can happen for some
functors & that some Set-object does have a C-free objects but others don’t. Often we
find that every Set-object has a C-free object, and then several other things happen.

2.14 THEOREM. Consider a functor é, as above, and suppose each Set-object has a
selected

AT s (Fa)
C-free object. Then the selecting object assignment F fills out to a functor

F

Set C

and the selected family n of arrows is a natural transformation I — (é o F) (where I
is the identity functor on Set).

Sketch proof. We must attach to each Set-arrow

f

A B

a C-arrow F(f) with appropriate properties. The compound

f B

A - B - i(FB)

compares a Set-object A with a C-object FB. The universal property produces a
unique C-arrow

(ng o f)*

FA FB

which we take as F(f). Thus, by construction, the Set-square

A / B
nAa nB
L(FA) L(FB)

66 2. Functors and natural transformations

commutes. The proof is completed by a series of simple arguments. |

What we have here is a fairly common example of an adjunction

F

Set C

A
where the free-functor F' is the left adjoint to the forgetful functor. Notice how the
functorality, naturality, and universality are intimately entwined. If we have some of

one kind of thing then we get some of another kind of thing. In the general analysis of
adjunctions given in Subsection 2.7.3 we will see much more of this kind of thing.

2.7.2 Co-free constructions

Freeness in the sense of Subsection 2.7.1 occurs quite often in mathematics, and is easy
to recognize. There is also a co-version, which is not so obvious. We can quickly set
down the relevant details.

2.15 DEFINITION. Consider a functor

Set C

from Set to some category C. The associated notion of a Set-co-free object over C-
object S is set out in Table 2.1. The arrow

€3

i(GS) S

is called the co-unit of the construction. [|

You should compare the two Definitions 2.13 and 2.15, and note how one can be
obtained from the other by ‘reversing arrows’. This is made clearer by perusing the two
columns of Table 2.1 in parallel. To test your understanding of this you should work
out a proof of the following.

2.16 THEOREM. Consider a functor

é
Set C
and suppose each C-object has a selected
iGSs) —5 . 5

Set-co-free object. Then the selecting object assignment G fills out to a functor

Set C

G

and the selected indexed family € of arrows is a natural transformation (60 G) — I
(where I is the identity functor on C).

Once you are reasonably happy with this material you should be able to handle at
least a first reading on the following.

2.7. Adjunctions 67

2.7.3 Adjunctions

In both the free- and co-free-constructions we said that one of the categories is Set but
never made any use of the internal properties of Set. Similarly, in the first construction
we thought of the given functor ¢ as ‘forgetful’ but again never needed to know what
this might mean. In fact, there is a more general situation of which the two examples
are instances. To conclude this section we set down some of this information but make
no serious attempt to analyse it. [Perhaps we should]

In an adjoint situation there is a pair of functors

F

S T

G

between two categories. We call F' the left adjoint and G the right adjoint of the pair.

The notation
FAG

is used to indicate that F' is the left adjoint and G is the right adjoint of an adjunction.
By convention we think of S as the source and T as the target of the adjunction and
sometimes write

FHG

S T

to indicate this.
As well as the two functors there is also a pair

Is— 1 + GoF FoG—S Iy

of natural transformations using the two composites of F' and G and the appropriate
identity functors. Finally, for each S-object A and T-object S there is an inverse pair
fr——-—f
S[A,GS] T[FA,S]
G <—g
between the indicated hom-sets, where these are natural for variation of A and S.
This data is subject to various restrictions. The first two should be read in parallel.

For each S-arrow For each T-arrow
A—I _Las FA—Y .g
there is a unique T-arrow there is a unique S-arrow
ra—3 g A—2 . qgs
such that the triangle such that the triangle
A—I gs FA—7 s
k 4,1) F(g,) %
(GoF)A (Fo@)S

commutes. cominutes.

68 2. Functors and natural transformations

These conditions assert the existence arrows f# and g,. In fact, these turn out to be the
arrows mentioned in the pair of inverse bijections.
There are several identities as part of the adjunction. Thus

na = (1ra), es = (1gs)
ff=eso F(f) 9 =G(g) ona
erao F(na) =1ra G(es) ongs = lgs
F(f) = (nBo f)* G(g) = (goea)y

for the gadgets as above.
There is a lot of data and information here. However, it turns out that once we have
some of it the rest follows. Different combinations are useful in different situations.
[Do we want to do more on this?

Exercises

2.38 Show that the forgetful functor Abg —— Grp (from abelian groups to groups)
has a left adjoint F' (in the sense of Theorem 2.14).

2.39 Consider the categories Pre and Set. Show there are two adjunctions

D
Set «—{— Pre
I

where the central functor is forgetful. You should work out what the other functors are.

Chapter 3
Limits and colimits; a universal solution

In this chapter we look at a dual pair of notions which, in a way, test the completeness
properties of a category. Of course, we have to say what we mean by completeness,
and there are many different possibilites. Each variant is defined in the same way. A
category is complete in a certain sense if it has all limits of a certain kind, or all colimits
of a certain kind. (Strictly speaking, having colimits is a cocompleteness property.)

In section 3.4 we set down the general notion of a limit and colimit. In fact, we
could start with that and then specialize to particular cases. However, it is probably
easier if we start with some of these special cases.

Before we look at these particular examples it is worth going through some of the
generalities to get used to the terminology. Some of the phrases used look as though
they are just informal description whereas they are used in a quite precise way (but
without any all purpose definition).

We work entirely within one category C, the parent category. We start with some-
thing described as a problem and we are looking for a solution or more precisely the
universal solution. Such a solution is always a single object in C together with a collec-
tion of arrows which satisfy certain restrictions. There may be several such solutions,
but we look for the ‘best’ one. This universal solution is characterized by the way it
interacts with all other solutions. It generates each other solution via a unique mediating
arrow.

We are going to look at several particular examples where each of these four high-
lighted words has a precise meaning. To get an idea of what will happen let’s go through
the paragraph again and this time put a bit more meat on the bones.

A problem is always posed by a diagram. This, as usual, is a collection of objects
and some arrows between these objects. The diagram need not commute. A particular
case of this is when the diagram is a functor from some other category thought of as an
indexing gadget. In fact, every problem posed by a diagram can be rephrased in this
way (but this doesn’t help in particular cases).

Each diagram poses two problems

the left problem the right problem

and in general these have different solutions. When we deal with this kind of material,
by convention we think of each arrow as moving from left to right, with the flight or
blunt end at the left and the head or sharp end at the right. The terminology above
comes from this way of picturing the situation. However, in many concrete situations
we often draw the arrows pointing all over the place, so perhaps

the blunt problem the sharp problem

would be better terminology.

69

70 2. Functors and natural transformations

Given a problem (diagram) we look for
a left solution a right solution

depending on which one we are interested in. Each such solution is an object X together
with a collection of arrows

going from X going to X

and where the other end is an object in the diagram. There is one arrow for each
diagram object. These arrows must interact with the diagram arrows in a way you can
probably guess.

The universal solution is a special solution in an optimal position, and is called the

limit colimit

of the diagram. At various stages in the development of the subject these gadgets have
been given different names with, perhaps,

left limit right limit

being the most obvious. However, other names have been, and still are being, used.
Qualifiers such as ‘inverse’, ‘direct’, ‘projective’ are applied to ‘limit’ to indicate one
or other of the universal solutions. These terminologies have been around from before
the invention of category theory, and are often used in special situations. You will also
come across more recent qualifiers arising directly from category theory. More often
than not the notions being described have very little use except to a certain strain of
category theorist who likes to ponce about showing off his vivid imagination.

In this chapter we give a small catalogue of the more common limits and colimits.
Most of the diagrams we look at are finite, but we will consider an infinite diagram
towards the end. On the whole we will look at the finite diagrams in a systematic
order, via number of objects and number of arrows. To start with we can point out
that we have already seen one example.

3.1 THEOREM. For the empty diagram in the category C, the
limat colimit

15 the
final initial

object of C.

This is a trivial result which can not be proved just yet, because we don’t have the
formal definition of limit/colimit.

A word of warning before you start reading. The first section is quite long and
deals with that example in great detail. This sets down a general format for each of
the examples. The later sections follow this format, and you might find the repetition
a bit tedious. If you do then it means you have cottoned on to the general idea, and
can perhaps go directly to section 3.4 pausing only to read the main definition of the
section you are in.

3.1. Products and sums 71

3.1 Products and sums

In this section we look at the universal solution to one of the smallest diagrams, the one
with just two objects and no arrows. As we will see, this example (or the left-hand case
to be precise) analyses one of the most common concrete situations in mathematics, to
extract the essence and disregard the inessential. It is the example which showed the
originators of category theory that they were on to something.

Strictly speaking the title of the section is wrong. It should be ‘Products and
coproducts’ but the word ‘sum’ is often used for ‘coproduct’ in concrete situations
where that terminology is traditional (and more or less correct).

As we have seen in the introduction, universal solutions come in two kinds, left and
right. This is not a matter of the good and the evil (such as City and United) but
simply a consequence of the internal duality of category theory. In its more general
form this helps to simplify and organize many apparently distinct situations.

To illustrate this we will do the two developments in parallel, and at a first reading
you can concentrate on one side. (If you do that you may find the left-hand version
easier. This deals with products.) At a couple of places we will make some observations
about a concrete version of one side that don’t readily transfer to the other.

We will go through the material rather slowly and formally. Furthermore, the de-
velopment will seem somewhat pedantic. This is done to help you get used to the ideas,
and so the more complicated examples considered later will be easier to understand.

We work throughout in some arbitrary category C, and develop the material in
three phases: the abstract generalities, the extracted properties, and some concrete
examples.

The general set-up

In this subsection we will look at products and coproduct as instances of a more general
notion.

3.2 DEFINITION. Let D be the diagram

consisting of two objects and no arrows. |

We have drawn the diagram in the ‘standard’ position. However, in practice we
often draw it differently. We see more common versions shortly.

The definition of I says there are two objects. In fact, A and B could be the same
object playing two different roles, like the actor who plays Captain Hook always plays
Mr Darling. (There used to be futile philosophical debate about whether the evening
star and the morning star are the same thing. They are both Venus.)

3.3 DEFINITION. For the diagram I (of Definition 3.2) a

left right

72 3. Limits and colimits; a universal solution

solution is an object X together with a selected pair of arrows
A A
X X
B B
as indicated. |

These two diagrams are often drawn
X B A
A B X

cone cocone

and called a

or sometimes an
under-cone over-cone

respectively. Here we will call both a wedge to avoid a lot of clumsy language.
A
limit colimit
of the diagram D is a universal solution, that is a solution through which every other
solution factors uniquely. This is made precise as follows.

S/A A\S
N, S

left right

3.4 DEFINITION. A solution

on the

for the diagram D (of Definition 3.2) is universal (on that side) if for each solution
A A
X X
B B

there is a unique arrow

X

3.1. Products and sums 73

such that the diagram

commutes. This is the mediating arrow for that solution.]

Read the definition again. If you can’t follow which arrows are supposed to be doing
what then try labelling them so you can track each one through the layers of quantifiers.
Once you get used to the idea you will find that you don’t need the labels.

As you can see, this account is a little pedantic, but this will help when we start to
look at more general situations. Let’s now drop the pedantry and look at the details of
this particular pair of constructions.

Here is the succinct version of the previous definition.

3.5 DEFINITION. For a pair A, B of objects in C a

product coproduct
is a wedge
P A B
A,B A,B
7 & \ /
.A,B "A,B
ta 'B
A B C
which is universal for all such wedges. |

You should note that a product of a pair A, B is not just an object P, but an object
together with a selected pair of arrows. These arrows are called the projections of the
product. In spite of this we often write

AxB

for the product object with a tacit understanding that we know what the projections
are. You can probably guess where the notation comes from, and we will go into this
later. In the definition these projections have rather arcane decorations to indicate
that they depend both on the pair and the particular component. In practice, we drop
most, and sometimes all of these sub- and superscripts. We sometimes speak of the
left projection or the right projections in the product case. Here ‘left’ and ‘right’ refer
to the position of the two components in A X B, not to the handedness of the gadget
involved. There are also other notations and terminologies which are useful at times.
For instance, some form of ‘left’ and ‘right’ is useful, or perhaps indexed by 0,1 or 1,2.
Sometimes 7 is used for a projection with some kind of decoration to indicate which is
which.

74 3. Limits and colimits; a universal solution

You will find that it is impossible to find a usable notation that works in all situa-
tions. For instance, the notation in Definition 3.5 looks reasonable if a little elaborate,
but think of what it becomes when A and B are the same object.

There is some notation commonly used with products. Each wedge

A

AN

B
induces a unique mediating arrow through the product wedge, and this is written
A

p

&

/

in keeping with a common set theoretical notation. Sometimes ‘(f,g)’ is replaced by
‘(f,9)’, but that can be confused with the ordered pair formed from f and g.
Similar remarks apply to the coproduct of a pair A, B. This is often written

A+B or AIIB

and called a sum when the left hand notation is applicable. The two selected arrows
are the insertions of coprojections. There are some quite common notations used with
coproducts, but these are far from standard.

Some consequences of universality

In Definition 3.4 we saw that for a solution to be universal there has to be a unique
connection to every solution. This uniqueness has several consequences. Let’s look at
these for products.

We start with the simplest consequence, which has something of the flavour of a
monic/epic property.

3.6 LEMMA. Let
A

p

e
PN

B

be a product wedge (with indicated projections). For each parallel pair

f

B —

9

X P

3.1. Products and sums 75

of arrows if
pof=pog qof=gqoyg
then, in fact, f = g.

Proof. Using the arrows
l=pof=pog r=qof=gqog

the solution from X

must have a unique mediating arrow. But both f and g have the required mediating
property. |

We will see there is a similar property for each limit or colimit, and this leads to the
essential uniqueness of the object.
In the statement of the next result we quite deliberately vary the notation used.

3.7 LEMMA. Let

p/’

P Q

PN

be a pair of product wedges for the same objects A,B. Then P and @ are uniquely
isomorphic over the wedges. That is, there are unique morphisms

A A
o
B B

f
P Q

g

such that
pa=qaof pp=gqaof ga=pAa©g qB=DpPBOg
and
gof=14 fog=1p

hold.

Proof. Since P is a solution and () is a universal solution there is a mediating arrow
f with the two top left hand properties. Similar, by interchanging the roles of P and
@, we get an arrow g with the top right hand properties.

76 3. Limits and colimits; a universal solution

Next, with X as either A or B, we have
pxogof=gxof=px=pxolp

and hence g o f = 1p by an application of Lemma 3.6. In the same way f og = 1g.
Similar arguments show the uniqueness of this f and this g. |

In any category any pair of objects may have many product wedges. However, by
this result anything we can do with one of them we can do with any other. Thus
it is rare that we need to distinguish between these. Accordingly, we often speak of
the product on the understanding that one particular wedge has been selected (and it
doesn’t matter which).

Of course, in any particular category a particular pair of objects may not have a
product. We will see some concrete examples of this later.

3.8 DEFINITION. A category is cartesian if it has a final object and each pair of objects
has a product wedge. |

There are a couple of points about this notion, one minor and one major.

The minor point is that there are slight variants of the notion. Each variant has
products for all pairs, but sometimes other limits are required as well. In the variant
given above the limit of the empty diagram (the final object) is required. The differences
between these variants are not important, but you should be aware of them.

The major point is concerned with what the definition actually means. Here is what
it should mean. Each pair A, B of objects has a product wedge and, furthermore, one
such wedge has been selected. Thus whenever the product of A and B is mentioned,
it is a reference to this selected wedge. This might seem a bit finicky, and most of
the time it doesn’t matter too much. However, if at some stage we have to compare
products (perhaps in different categories), or we have to transfer products from one
place to another, then it begins to make a difference. Quite a lot of the literature on
products is not entirely clear on this point.

Here we will take the strict view. Thus, although our phraseology might get a
bit sloppy, for us a product of two object is a selected object and a selected pair of
projections.

You might be wondering how these selections are suppose to be made, and whether
the particular selections make any difference. On the whole they don’t. Here is a result
which, when first seen, can be a bit surprising. It shows that no matter how certain
selections are made there will always be some uniformity in the outcome.

3.9 THEOREM. Let C be a cartesian category and let K be some fixed object. For each
object A let

FA=AxK

be the selected product object for the pair A, K. Similarly, let

Y\ qA

FA A FA K

be the selected projections for that product wedge.

3.1. Products and sums 7

Then there is an arrow assignment f —— F(f) such that F becomes an endofunctor
on C. Furthermore

F I

is a natural transformation (where I is the identity functor on C).
Proof. Consider any arrow

A B

for arbitrary object A, B. Using this we produce a diagram

A / B
pa
PB
FA FB
4B
qa
K K
1k

where the various projections have been labelled with the parent object. The composites
fopa 1k ogqa=qa

provide a solution to the problem posed by (B, K), of which ppg, gp give the universal
solution. Thus there is a unique mediating arrow

FU) o

FA

which we name as indicated, such that the two cells

A / B

Y

FA—F(f)— FB

PN

K

K

1k

commute. We need to show that this fills out the object assignment F' to a functor.
Once we have done that the top cell shows that p is natural.
To this end consider an arrow

78 3. Limits and colimits; a universal solution

which can be composed with f. This gives a bigger diagram

4 f . g

7

B
FA—F(f)—> FB —F(g)— F

N, X

- C

Q
v % &

A
K K K
1 K 1K
which should be compared with the diagram
A I . p 7___.¢
Y
pc
FA—F(gof) FC
qc
qA
K - K - K
1k 1k

used to define F'(go f). This is the unique arrow which makes the two cells of the lower
diagram commute. But, from the upper diagram, the composite F'(g) o F(f) does this
job, and hence

F(go f)=F(g)o F(f)

holds.
This, with a simple argument to show that

F(14) =1Fa
completes the proof. |

You should go through this proof again and note that it is the required uniqueness
of the mediating arrow that makes everything work.
The arrow F(f) induced by an arrow

A

is often written

fxK

Ax K Bx K

but this notation has never won any prizes for style.
There is a generalization of this result which shows that each pair of arrows

f g

A B C D

3.1. Products and sums 79

induce an arrow

AxCquD

in a functorial fashion. The details of this are dealt with in the exercises. Once we have
this we find that
fxK=fxl1lg

as a particular case.

Concrete products and sums

In this subsection we see how products and sums can be obtained is several concrete
categories. In general we see that, when they exists, products are easy to construct,
but sums are more complicated.
Consider first the category Set of sets. We know that for each pair A, B of sets
there is a set
AxB
called the cartesian product, and which is just the set of ordered pairs

(a,b)

of elements a € A,b € B. Notice that we have written ‘x’ for this concrete construction.
This is so we can distinguish it from the categorical product x in Set. (At this stage
we have no reason to believe that the two constructs are related.)

Remember how ordered pairs (a,b) are obtained within the universe of sets. We
must construct (a,b) as a set of some kind, so a trick is needed. The usual trick is to
let

(a,6) = {{a},{a,b}}

but there are others. We could equally well let

(a,b) = {{b},{a,b}} or (a,b) = {{a,0},{b,1}}

where 0,1 are two distinct tags. What has such a trick got to do with the required
properties of pairs and products? Nothing at all, and the categorical description gets
rid of these inessential features to expose the heart of the idea.

No matter how we set up ordered pairs we do have two functions

(a,b)
Ax B

RN

a A B b

and these with A x B provide a solution to the product problem for A, B in Set. A
simple exercise shows that this is a universal solution, and hence the cartesian product
provides an implementation of the categorical product in Set.

When we use products of sets all we need to know are the properties given by the
categorical description and not the internal details of how ordered pairs are conceived.

80 3. Limits and colimits; a universal solution

It was this example that gave the originators of category theory an indication that
perhaps the notion of a universal solution was worth investigating (although at the
time they did not use this terminology to describe the situation).

This shows that Set has all binary products. Recall also that in Set the singleton
1 = {e} is the final object, so the category is cartesian.

What about coproducts in Set?

It should come as no surprise that the coproduct in Set of two sets A, B is imple-
mented by the disjoint union

A+B
which is also called the sum (but not the boolean sum). Whenever we use this in a
concrete situation there is always a bit of messing about. We often ‘assume the two sets
are disjoint’ and then take
A+B=AUB

as the construction. But what if A, B are not disjoint? We let
A+ B = (Ax{0}) U(B x{1}) = {(a,0)|a € A} U {(b,1)|b € B}

where 0, 1 are distinct tags. Clearly there is a lot of fiddly stuff here which has nothing
whatsoever to do with the eventual aim of the construction.
We have two functions

B b

(a,0) A+B (b1)

and these with A+ B provide a solution to the coproduct problem for (A, B) in Set.
A simple exercise shows that this is a universal solution, and hence the disjoint sum
provides an implementation of the categorical coproduct in Set.

There are two points worth emphasizing. Firstly, the categorical description gets to
heart of the two notions, and hides the irrelevant details. Secondly, we see that the two
notions are duals, which is something not entirely clear when we look at the concrete
constructions.

Similar constructions sometimes work in more structured situations.

Let C be a category of structured sets, for example groups, abelian groups, unital
rings, posets, topological spaces, and the like. Each object of C is a set furnished with
some attributes, and the arrows are functions which preserve these attributes (in some
sense). This is one of the few occasions when referring to a structure by its carrier is
confusing. So, for the time being, let us write A for an object of C with the set (A as
its carrier. In other words

Set C

i

is the forgetful functor. (For most of the categories where the construction we describe
does work this forgetful functor will have a left adjoint in the sense of Section 2.7. We
don’t make much use of that just yet, but we will when we look at coproducts.)

How might we try to produce the product of two objects A, B of C?

3.1. Products and sums 81

We can certainly pass to the sets (A, {B and construct {A X B as a set of ordered
pairs. In many cases this set carries an obvious ‘pointwise’ structure to become an
object of C. We write A x B for this object. Furthermore, we can usually check that
the two projections from P = (A x (B

are arrows of C'. Thus we have a solution to the product problem for A, B in C. In
fact, if we can get this far then it is usually routine to show that we have a universal
solution. All that is needed is to check that a mediating function is, in fact, an arrow
of C.

This observation shows how many concrete product object constructions are in-
stances of one general idea. We are not saying that the pointwise construction always
works, but we are saying that when it can be done it should be the first thing to look
at.

You may have wondered why the product topology for two topological spaces is
defined in the way it is. It is to ensure that the space constructed is the categorical
product in the category of topological spaces. The topology imposed on the cartesian
product of the two spaces is the smallest topology which makes the two projection
functions continuous.

This cartesian construction doesn’t always work.

3.10 EXAMPLE. Let Rng be the category of unital rings and let Idm be the subcat-
egory of integral domains. Given Idm-objects A, B they are also Rng-objects, and
so have a product A x B in Rng (which can be obtained as a structured cartesian
product). However, in general A X B is not an integral domain, so this can not be the
product in Idm. This observation does not show that A, B do not have a product in
Idm, only that the obvious construction doesn’t work.

We can show that Idm is not cartesian.

Consider the wedge

Lo

/A

L3
in Idm where f, g are the obvious morphisms. We know that Zq X Z3 is not the product
of Zy,Z3 in Idm, but there might be some other object R which is a product. If there
is then we get a commuting digram

Lo

\

Z—h— R

/

82 3. Limits and colimits; a universal solution

for some projection morphisms p, ¢ and mediating morphism h. Remembering that Z
is a principal ideal domain and by fiddling about with divisibility we can show that any
such R must contain zero divisors, and so in not an integral domain.

Thus, although in Rng the pair Zo,Z3 do have a product, this is not the product
in Idm and, in fact, there is no product in Idm.]

Let’s now look at concrete coproducts. These are not so easy to get at. To illustrate
this we use the two categories Grp, Abg of groups and abelian groups. We do these
two cases in unison, so let C' be one or other of these two categories. Each C-object
has a carrier which is a set. We know how to produce coproducts for sets, and we use
this to produce the required gadgets in C. In other words, we are going to flit about
between the two categories C' and Set. Usually this is done without any distinguishing
notation, but here we will do it formally. Of course, in practice this is not the way to
set out the construction without a very good reason for doing so.

We know there is a pair of functors

F

Set C

A

which, in technical terms form an adjoint pair. We haven’t quite formally defined this
notion, but we can say what it means here. The forgetful functor i merely selects the
carrier of a C-object. For each set X the functor F' produces the free C-object F'.X
generated by X, as explained in Section 2.7. This involves adding to X many new
elements and then hitting the larger set with an equivalence relation. We will use the
universal property of this free generation.

Consider a pair A, B of C-objects. We can transfer to Set and form the sum
LA+ LB. In general there is no easy way to furnish this as a group, but we do have the
free group

K =F(LA+iB)

generated by the set. This is still not the required coproduct, but we are getting there.
Let

. . .
IA—wiA+iB iB-JwiA+iB iA+IiB > iK=IF(iA+iB)

be the functions obtained from the sum construction in the case of ¢, j and the associated
unit of the freeness in the case of k. (The notation is already getting a bit hairy, which
is why we usually omit the ‘% .)

Since K is a C-object we can consider quotient morphisms (that is surjective mor-
phisms)

K L

to arbitrary groups. (If we are working in Abg then this L will be automatically
abelian.) There is at least one such morphism [such that both the composite functions

: k ! : k !
iA e LA+ LB K~ iL iB -1+ iA+iB — iK — L

3.1. Products and sums 83

are morphisms (but where the individual components need not be). For instance we can
take the extreme case where L is the trivial group. For the purposes of this construction
let us say a quotient morphisms [of K is special if both the composite functions
lokos lokoj

L L

B——»

A

are morphisms.
The trick is to find the universal solution of a slightly different kind of problem. If
you prefer you can accept the following result on trust.

3.11 LEMMA. For the situation A, B, K, as above, there is a universal special morphism

m

K M

that is a special morphism m, as indicated, such that for each special morphism

l

K L

there is a unique factorization of | through m, that is there is a unique morphism

M

such that

commutes.

Proof. Each special morphism ! has a kernel in K and this is a certain normal
subgroup of K. Let us say a normal subgroup of K is special if it arises in this way.
There is an easy characterization of these special subgroups, and we find that the
intersection of any family of special subgroups is itself special. Using this we see that
there is a unique smallest special normal subgroup, namely the intersection of all special
normal subgroups. Thus we can find an extra special quotient of K. This gives the
required morphism m. ||

We now define AII B to be the target M of the extra special morphism m. Thus
we have a morphism

m

K AU B

with the universal property given by the lemma. In particular, the two function com-
posites

LA

VA+IB—" ik - L(ATI B)

84 3. Limits and colimits; a universal solution

are morphisms.
Let’s now drop any pretence that the notation ‘4’ is useful, and continue in the more
customary style.

3.12 THEOREM. For each pair A, B of C-objects, the two morphisms

A uszkOi~AHB B v=mokoj

- AT B
form the coproduct in C.

Proof. Consider any pair

f

A G B G

of morphisms. Working in Set, that is by first applying the forgetful functor, we obtain
a unique function

A+ B G

such that both
f=hoi g=hoj

hold. Using the fact the K is the free object on A + B we obtain a diagram

S

K

where h? is a morphism and the central cell commutes. From this diagram we see that
Wokoi=hoi=f Rfokoj=hoj=g

and hence (in the terminology used above) the morphism h! is special. This gives a
factorization
B =nom

for a unique morphism n. Also
nou=mnomokoi=hokoi=f nov=nomokoj=hiokoj=g

so we do have a factorization (in C) of the given morphisms f,g.
This doesn’t quite complete the proof, for we still have to show that there is only
one morphism n which does this job. However, the proof of that is routine. |

The precise details of this proof are not important here. However, there are three
points you should take note of.

3.1. Products and sums 85

Firstly, it is clear from this construction that although products and coproducts are
categorically dual notions, they are not equally simple in the real world. Products of
groups are easy to produce, but coproducts are not. This doesn’t have much to do with
groups, for many algebraic structures display the same kind of disparity.

Secondly, much of this concrete construction can be put in a general categorical
setting. There are appropriate categorical notions that can be used in place of normal
subgroups and the like.

Thirdly, something you have probably missed. The construction above works for
both Grp and Abg. Now suppose A, B are abelian groups. By the construction we
can produce the coproduct AIT B in Abg. This is a certain abelian group. However, it
is not the coproduct of A, B in Grp. There is a coproduct in Grp but, in general, it is
not an abelian group. You should worry about this until you find the precise place in
the construction where it matters what whether the parent category is Grp or Abg.

Exercises

3.1 Each poset is a category.
What is the product of two elements?
What is the sum of two elements?

3.2 Suppose the category C' is cartesian. Thus for objects A, B, C there are objects
AxB BxC (AxB)xC Ax(BxCQC)

with selected projections.

(a) Show that the two triple product objects are isomorphic.

(b) Show that the three objects 1 x A, A, A x 1 are isomorphic (where 1 is the
terminal object).

3.3 [This should be split between the two previous chapters]
Let C and D be categories (which may be the same). We form a new category
C x D. The objects are pairs (C, D) where C is a C-object and D is a D-object. An

arrow
is a pair of arrows

! g

A C B D

from the component categories. The composition and extra structure is imposed in the
obvious way.

(a) Show that this does produce a category.

(b) Show that the two object assignments

(C,D) ———>C (C,D) ——> D

with the obvious arrow assignments form functors.
(c) Show that for each D-object K the object assignment

Cr—> (C,K)

fills out to a functor.

86 3. Limits and colimits; a universal solution

3.4 Suppose the category C is cartesian, and consider the ‘square’ category C? =
C x C of pairs from C (as constructed in Exercise 3.3).
Show that the object assignment

c? c
(A,B)——— Ax B

fills out to a functor, and suggest a notation for the arrow assignment.

3.5 Let C be a category with all products and sums. For objects A, B, C' let
L(A,B,C)=AxC+BxC R(AB,C)=(A+B)xC

to form two more objects.
(a) Show there is an arrow

L

which is natural for variations of A, B, C.
(b) Explain exactly why this arrow is natural in the technical sense.
(c) Find an example to show that there need not be an arrow R — L.

3.6 (a) Show that the category of pointed sets has all binary products and all binary
sums.

(b) Consider the category of sets with a distinguish subset. Show that this has all
binary products. Does it have all binary sums?

3.7 (a) Complete the proofs of Example 3.10. That is, show that Rng is cartesian but
Idm is not.
(b) Show that Rng has all binary coproducts. [Sort this out]

3.8 Complete the proof of Theorem 3.12. That is, show that constructed morphism n
is the only one with the required properties.

3.9 Show that in Abg the cartesian product of two objects implements both the product
and the sum.
Does this work in Grp?

3.2 Equalizers and coequalizers

In this section we look at the second example of the limit and colimit of a certain
diagram. As mentioned earlier these used to be called the left limit and the right limit
(and sometimes still are). This examples illustrates why this terminology was used.

We will follow the same general set-up of section 3.1. This will help with the compar-
ison with products and coproducts, and with the general notions to be done in section
3.4. However, for this case we do not need to make such a meal of it. Nevertheless, you
may find the section a little slow. If you do then you can jump straight to the succint
Definition 3.16.

3.2. Equalizers and coequalizers 87

3.13 DEFINITION. Let D be the diagram
A

4,3

consisting of two objects and a parallel pair of arrows. |

Although these two arrows are parallel, they need not agree. We want to make them
agree by modifying one end or the other.

3.14 DEFINITION. For the diagram D (of Definition 3.13) a
left right
solution is an object X together with a selected arrow
X —A B— X
such that the parallel pair of composites

A

B A

B _ >

X

agree. |
It is sometimes useful to say that this selected arrow (the solution) solve the
equalizing coequalizing

problem of the parallel pair (of the diagram). More succinctly we may say the selected
arrow
equalizes coequalizes

the given parallel pair. However, sometime that can be misleading because of the
terminology used to describe the universal solution (which is the more common usage
of these words).

3.15 DEFINITION. A solution
S— A B— S

on the
left right

for the diagram D (of Definition 3.13) is universal (on that side) if for each solution
X—A B— X

there is a unique arrow

such that the diagram
X

S S

commutes. That is each solution factors uniquely through the universal solutions via a
mediating arrow. |

88 3. Limits and colimits; a universal solution

This is the general idea, but we can give a concise definition. Notice how this official
terminology conflicts with the terminology suggested above.

3.16 DEFINITION. For a parallel pair

A B
of arrows
an equalizer a coequalizer
is an arrow
E— A B—C
such that the parallel pair of composites
E A B A B C
agree, and which is universal for all such arrows. |

As with all universal solutions, equalizers and coequalizers are essentially unique.
In the equalizer case this is made precise as follows.

3.17 LEMMA. Suppose the left hand arrows u and v
E \u‘

A B
7

are equalizers for the parallel pair on the right. Then there are unique arrows f and e

F

such that the two triangles commute. Furthermore, f and e are an inverse pair of
ismorphisms.

Proof. The arrow e exists since v is a solution and u is a universal solution of the
equalizing problem. The arrow f exists for a similar reason. This ensures that the two
triangles commute, that is

uoe=u vo f=u

hold.
For the various other parts it is useful to observe a consequence of the uniqueness
of mediating arrows. Thus, for any parallel pair

h

_—

k

G E

3.2. Equalizers and coequalizers 89

of arrows, if the two parallel composites

h

G E

R — B

k

agree then h = k.
Using this, since
uoeof:fuof:u:uolE

we have
eof=1g foe=1p

where the right hand equality follows be a similar argument.
Finally, mediations uniqueness give the uniqueness of f and g. |

Often when they are first seen the categorical notions of equalizer and coequalizer
are not immediately recognized as something already known. In fact, they are used in
other places but usually described in a different way. Let’s have a look at what they
are in some familiar categories.

In Set, the category of sets, one way to equalize a parallel pair of functions

f

B ——

g

A B

is to extract the subset on which they agree
X ={a€cA|fa=ga}
and then the insertion

Xe—A

solves the equalizing problem. In fact, by a simple argument, we see that this is the
equalizer.

We can try the same idea in a category C of structured sets. Thus A, B are ‘algebras’
of some kind (carried by single sets) and f,g are morphisms. However, the extracted
subset X may not have the right closure properties to be a ‘subalgebra’. In this case
we have to close off to the smallest ‘subalgebra’ generated by X. This can produce a
much larger subset, and can even produce the whole of A even though X is quite small.

Coequalizers in some concrete situations can be produced in a similar kind of way.

Consider a pair f,g of Set-arrows as above. To solve the coequalizing problem we
consider the relation ~ on B given by

z~y <= (Ja € A)[z = fa,y = ga]

for z,y € B. This doesn’t have any special properties, but it can be used to generate
an equivalence relation on B. We can also get at this from above. Consider the family
of all equivalence relations 2 on B such that

xwy:xgy

90 3. Limits and colimits; a universal solution

holds for all z,y € B. There is a least one such equivalence relation, namely the relation
that holds for all z, y. It is easily to check that the intersection of all equivalence relations
with this property itself has this property. Thus there is a unique least equivalence
relation =~ with this property.

Using the blocks (equivalence classes) we obtain a surjective function

B B/=
br—— [b]

which certainly solves the coequalizer problem. In fact, by a simple argument, we see
that this is the coequalizer.

When we deal with structured sets equivalence relations are not good enough. We
need to use congruences, that is equivalence relations which respect the carried struc-
ture. With this modification the same construction works, thus we find the smallest
congruence relation ~ which extends the relation ~, and then the set of blocks carries
a natural structure for which the assignment b —— [b] is a morphism. This produces

the coequalizer in the ambient category.

Exercises
3.10 A quiver in a category is a collection of arrows

A : B

[N

with a common source and a common target. Such a diagram poses a left problem and
a right problem.

(a) Show that if the ambient category has all equalizers then each finite quiver has
a left universal solution.

(b0 Does this result extend to infinite quivers?

3.11 (a) Show that each equalizer is monic.
(b) State and prove the corresponding result for coequalizers.

3.3 Pullbacks and pushouts

In this section we look at the third example of limits and colimits. However, in this
example the limit (the left limit) uses one diagram whereas the colimit (the right limit)
use the mirror image diagram. This example is a kind of generalization of the example
of section 3.2, and at first sight it looks a little odd until we see what it is doing. As with
the previous section, you might find the going a little slow and repetitious, in which
case you can jump straight to the Definition 3.21.

As usual we do the two versions in parallel. However, at a first reading you might
want to do just one version and leave the other for later.

3.83. Pullbacks and pushouts 91

3.18 DEFINITION. Let D be the diagram

Left Right

\/
/\

consisting of three objects and a pair of arrows. |

Although the description of I does say three objects, in fact it could be that A
and B are the same object. For that case the universal solution we produce is just the
equalizer or coequalizer of the parallel pair of arrows. Also, if we let C be the final or
initial object (assuming this exists) then the universal solution we produce is just the
product or the sum of A and B. respectively.

We choose one of the diagrams and look for the corresponding universal solution. If
we choose the left diagram then we look for a left universal solution, which is a limit.
(The left diagram has a trivial colimit, namely the identity arrow on C.) If we choose
the right diagram then we look for a right universal solution, which is a colimit. (The
right diagram has a trivial limit, namely the identity arrow on C.)

At a first reading you should pick one side or the other, left or right, and read only
that case. Later you should read the other case, and then observe how the two cases
could be done in parallel.

3.19 DEFINITION. For the diagram I (of Definition 3.18) a
left right

solution is an object X together with a pair of arrows

X/A A\X
N
VANV AN
NSNS

commutes. [|

92 3. Limits and colimits; a universal solution

By now you should be able to write down the associated notion of a universal
solution. If you find there are too many arrows around and you are not sure which is
which, simply label all the arrows as they occur and keep track of them. This might
help with the formal definition.

3.20 DEFINITION. A solution
A A
S S

on the
left right

for the diagram D (of Definition 3.18) is universal (on that side) if for each solution
A A
X X
B B

there is a unique arrow

such that the diagram

7 N
\\ /

commutes. That is each solution factors uniquely through the universal solutions via a
mediating arrow. u

As with the earlier examples this universal solution is usually defined in a more
succinct way.

3.21 DEFINITION. For a wedge
A A
C C’\
B

3.83. Pullbacks and pushouts 93

of arrows a

pullback pushout
is wedge
A A
S S
B B
(with the opposite parity) such that the square
A A
S C C S
B B
commutes and which is universal for all such wedges. |

As with every universal solution, pullbacks and pushouts are essentially unique. In
the pullback case this is made precise as follows.

3.22 LEMMA. Suppose the two left hand wedges are pullbacks for the wedge on the
right.

E A A A \
/)
B F B B
Then there are unique arrows f and e

FE A
flle \C

such that the four triangles on base e or f commute. Furthermore, f and e are an
inverse pair of isomorphisms.

As pointed out at the beginning of this section, a pullback is a generalized equalizer
(in the sense that each equalizer is a particular kind of pullback). Also, if the category
has a final object then a pullback is a generalized product (in the sense that each
product is a particular kind of pullback). In fact, every pullback can be produced by a
combination of products and equalizers.

Similar remarks hold for pushouts, coequalizers, and sums.

94 3. Limits and colimits; a universal solution

Exercises

3.12 The category Set has all pullbacks and all pushouts. Describe how these are
formed in terms of elements and functions.

3.13 Consider a commuting diagram

[]
[]
in some category.
(a) Show that if each of the two squares is a pullback, then so is the outer rectangle.
(b) Show that if the outer rectangle and the right hand square are pullbacks, then
so is the left hand square.
(c) State the corresponding results for pushouts.

O +— 0

3.14 Show that if a cartesian category has all equalizers then it has all pullbacks.

3.15 Prove Lemma 3.22

3.4 Limits and colimits

We have seen three pairs of examples of the idea of a universal solution to a problem. In
this section we look at the general notion which covers all the examples of this chapter.
In a more ascetic development this is the place to start (and perhaps the only place
ever seen), but that doesn’t help the understanding.

We work in some arbitrary category C.

3.23 DEFINITION. A diagram D (in the ambient category) is a collection of objects
and a collection of arrows between these objects.]

The two collections of this diagram D may be finite or infinite, or one of each. In
the extreme they can both be empty. Of course, in the infinite cases there are some
extra technicalities that have to be handled, but the general idea doesn’t change.

Each arrow of DD has the form

B A

where A, B are objects in . These can be the same object. Also, there may be one
or more objects in I which is neither a source nor a target of an arrow of D. By
convention, we think of the arrows of D as moving from left to right. This explains
some of the terminology. However, in practice we draw the arrows in any direction that
is convenient.

Notice that we do not require the diagram D to commute. We could close off the
diagram by adding in all the composite arrows to obtain a new commuting diagram D*.
It turns out that D and D* have the same limit and the same colimit, so closing off only
helps to obscure the idea. There is a related notion in which the diagram is replaced
by a functor from an indexing category to the ambient category. This deals with the
problem posed by D* rather than that posed by D.

3.4. Limits and colimits 95

3.24 DEFINITION. For the diagram D (of Definition 3.23) a
left right
solution is an object X together with a selected arrow
x-% 4 A% x
to each object A of D where the triangle

B B
B X
X 6 0 X
x /
A A
commutes for each arrow 6 of D. [|

In other words a solution to the problem posed by the diagram is trying to make the
diagram commute from one side or the other. Of course, this does not mean that if the
diagram already commutes then there is a trivial solution, for there may be no left-most
or right-most object. In fact, the three particular diagrams we have looked at so far
(which produce products/coproducts or equalizers/coequalizers or pulbacks/pushouts)
commute vacuously.

3.25 DEFINITION. A solution

on the
left right

for the diagram D (of Definition 3.23) is universal (on that side) if for each solution
x-%a 4% x
there is a unique arrrow

x- " g s M x

such that for each object A of D the triangle

a [0
(6 4
A S— X
m

commutes. This is the mediating arrow for that solution. |

This section is quite short but could be even shorter. The essential content is the
three definitions. Once these two dual notions are understood most of the previous
section can be put to one side.

96 3. Limits and colimits; a universal solution

Exercises

3.16 Show that if a cartesian category has all equalizers then each finite diagram has
a limit.

3.17 State and prove the result saying that the limit of a diagram is essentially unique.

3.5 Inverse and direct limits

In this section we consider a whole family of examples of universal solutions. All of
these have a certain similarity and are not as general as they might be. However, these
particular cases do occur in several concrete situations.

As usual work we work in an arbitrary category C. We also use a partially order
set I as an indexing gadget. We write < and < for the unstrict and strict comparison
carried by I. We let 4, 7, k, ... range over I, and think of these as indexes. We could also
think of I as an indexing category, but in the end that doesn’t help much and in any
case we cover a more general situation here.

3.26 DEFINITION. A diagram I (over I in C') consists of
e an object A(i) for each i € I
e an arrow
. A,
A(i) ——— A(j)
for a selection of pairs ¢ < j for [

with no hidden conditions. [|

Notice that there can be many diagrams with the same selection
A= (A@)]i €l

of objects, for the selection of arrows can vary. There are some extreme examples. For
instance where there are no arrows, or where there is an arrow A(j,i) for all i < j.
Some of these might be silly and never used in practice, but that doesn’t matter for
there will be many sensible examples.

It can happen that for indexes ¢ < j < k there are selected arrows

A(3) Ak, 1) A(k)
A(kA(|)%um
J

but this triangle need not commute.

There are several variants of this idea which are useful at times, but there is little
point in attempting to produce here the most general notion possible.

We assume we have some diagram D of the kind described.

3.5. Inverse and direct limits 97

3.27 DEFINITION. For the diagram D a

left right
solution is an object X together with a selected arrow
x O a0 4w 29 x

for each index 7 € I where the triangle

AG) A6
A(g,1)

X \ A, i) X
A()

A7)
commutes for each pair 7 < j in I with a selected arrow. In other words
A(jyi) e a(i) = af) a(j) o A(j,i) = a(i)
for all such pairs 7 < j. ||

A solution to the problem posed by the diagram is trying to make the diagram
commute as far as possible from one side or the other.

3.28 DEFINITION. A solution

s 20, A) AG) o), g

on the
left right
for the diagram I is universal (on that side) if for each solution
x o) AG) A(D) o)
there is a unique arrow
xts s tox

such that the triangle

commutes for each index 7 € I. In other words

o(i) o p = i) a(i) = pool(i)

for each 7 € I. This p is the mediating arrow for that solution. |

98 3. Limits and colimits; a universal solution

These limits and colimits go by various names. Projective limit, direct limit, and
inverse limit are notions used in several particular disciplines, often with the restriction
that the indexing poset is directed in one sense or the other. You should be aware that
sometimes a gadget which is called a limit is technically a colimit. This terminology
originated before the categorical notions were sorted out.

The construction of a limit (that is left limit) is worth looking at even in the simplest
case where the ambient category C is Set.

The diagram gives us an indexed family

A= (A(@)]: €l
of sets. Recall that a choice function for this family is a function
a:l— U A
such that
a(i) € A(7)

for each index i € I. Of course, for such a choice function to exists we need each A(%)
to be non-empty. We look at special choice functions.
A thread for the diagram D is a choice function a (as above) such that

A(7,i)a(i) = a(j)

for each pair ¢ < j in I with a selected arrow. In other words a thread is a choice
function which passes through the diagram in a respectful manner. Of course, there
may be no such threads.

Let S be the set of all such threads, and for each index i let

570, a0
a — a(i)

be the evaluation-at-i function, as indicated. Thus

for each index ¢ and thread a.
An almost trivial calculation shows that the family of all these evaluation functions

s 70, A

is a solution to the problem. We show that it is a universal solution.
To this end suppose that

x 29D 4

is any solution. For each z € X let the function
z():T— A

be given by
z(1) = a(i)z

3.5. Inverse and direct limits 99

for each ¢ € I. By construction, this z(-) is a choice function, and a simple calculation
shows that it is a thread. Thus we have a function

x—#* .g

and, by another simple calculation, this satisfies
o(i) o p = a(i)

for each 7 € I. Finally, a third simple calculation shows that z —— z(-) is the only
function satisfying these equalities.

Exercises

3.18 Consider a diagram (in the sense of this section) of groups and group morphisms or
of monoids and monoid morphisms (whicheverr you prefer). Show that the construction
given for Set carries over to produce the limit in Grp or Mon.

Chapter 4
Cartesian closed categories

We have seen, in Chapter 3 that many categories have gadgets which capture the more
familar idea of ‘cartesian product’ of structures. Thus, for two objects A, B of a category,
a product (with selected projections) is an object, usually written A x B, together with
a pair of arrows

N,

with a certain universal property, that is this wedge is the universal solution for all
such wedges. Remember also that sometimes a wedge of this kind is called a cone.
The two arrows are the projections selected for the product. In the more common cases
where objects are structured sets, such products can be implemented using the cartesian
product of the two carriers.

Accordingly we say a category is cartesian if each finite family of objects has a
product, or equivalently if it has a terminal object and each pair of objects has a
product. (This terminolgy is almost standard but can mean something slightly different,
namely that the category has products and certain other limits.) We know that in a
cartesian category the product construction gives two endofunctors and the projections
are natural.

In this chapter we will work in an arbitrary cartesian category and ask when it
has more facilities of a certain kind. There are two ways of motivating these extra
properties.

For each pair of objects K, T of a category we have a set [K,T] of arrows. In general,
this is nothing more than a set. However, sometimes it can be viewed as an object of
the category. In the more concrete cases the set can be furnished to become an object.
We want to investigate the general consequences of such a situation.

The second motivation may seem a little odd, as a motivation, but in time you will
see that it has a deeper significance.

Consider some logical system set up in judgemental form, such as the propositional
calculus or the A-calculus. This system manipulates judgements

T+ ¢

(where there may be extra information around). We know there is a strong resemblance
between conjunction in such a system and products in a category. Let us write x for
the conjunction operation (rather than the more common A). Now consider judgements

LoOxd ¢ L0+ (p —¢)

where the arrow on the right indicates some kind of implication. In most natural
systems [joke intended] these two judgements are inter-derivable, that is if we have one

101

102 4. Cartesian closed categories

then we can get the other. (The passage from left to right is a version of the Deduction
Theorem.)

Now remember the analogy between conjunction and product. Is there a categorical
anologue of implication for which a version of the above equivalence holds? There is,
and this takes place in a cartesian closed category.

4.1 Cartesian closedness

In this section we set up the definition of a cartesian closed category and look at one or
two generalities. In later sections we look at some particular examples in more detail.

Let C be some fixed cartesian category. Let K be a fixed object and consider the
induced functor

F=-xK
C a Set
to Set. Thus for each C-object A we have
FA=AXK

the selected product with the controlling object K, and for each C-arrow

A ! B
the diagram
1
K LN ¢
Ax K —-F(f)» BxK
A B

produces F(f) as the unique mediating arrow. The unamed arrows are the selected
projections. The common notation for the arrow F(f) is

fxK
(which is very common).

4.1 DEFINITION. An object K of a cartesian category C is exponentiable if the product
functor — x K has a right adjoint. |

This is the succinct definition, but we are going to expand on its meaning. However,
there are two points to remember. In Section 2.7 (Subsection 2.7.3) we set down the
basic properties of adjunctions but did not look at any of the details. This doesn’t
matter for even when the notion of an adjunction is understood, Definition 4.1 is not
the best way to approach exponentiabilty.

We know that in an adjoint situation between functors there is lots of data and
properties. Furthermore, various bits of these determine the rest. Remembering this
we obtain the following (or rather, we would do if we filled in the missing details).

4.1. Cartesian closedness 103

4.2 PROPOSITION. An object K of a cartesian category C is exponentiable if (and
only if) for each object A there is an object *A and an arrow

AxK —2 .4

with the following universal property.
For each arrow

BxK—9 .4

there is a unique arrow
B 9 A
such that the C-triangle
BxK g A
9 k A(
*Ax K

commutes.

Remember that on the left hand side of this triangle g, X K is the standard, and
not very helpful, notation for g, x 1g.

We know that this selected family e of arrows is natural for variation of A. Each
component €4 is called the evaluation arrow for A. Let’s try to see why.

We know that, on general grounds, there is an inverse pair of bijections

fr—— >t
C[B,*A] C[B x K, A]
G <— g

between the indicated hom sets. Furthermore, these are natural and the transform
(+), is the same as that used in the universal property given in Proposition 4.2. (This
information is one way of characterizing an adjunction.) Now consider the case where
B =1, the final object of C. Since 1 x K = K we see that the two families

CI1,°4] CIK,A]
are essentially the same. In other words the arrows
K— A
are essentially the same as the global elements
1——"°4

of A. This suggests a better notation for *A. We write it as (K = A).

104 4. Cartesian closed categories

Now go back to the general bijection. We have

fr— s
CIB,(K=4)] C[BxK,A4]
9 g

which is nothing more than an abstract version of currying. (Remember that currying
is the idea which underlies much of A-calculus, and is the trick by which we can hide
parameters in functions.)

Finally consider a concrete version of the commuting triangle. Think of a category
where the objects are structured sets, so we may talk about elements of objects. Suppose
the arrows are functions of some kind, and suppose that products in this category can
be obtained via cartesian products of sets.

Given

Bx K A

and a pair (b,z) € B x K, how can we calculate g(b,z)? The curried version of g is the
functions

g:B— (K=A)

where
g,bz = g(b,)

and so the value we want is the function g,b evaluated a z. We may write this as
g(b7 J") = eva‘l(gbba ‘T)

where

eval

A

(K=A)x K

is the evaluation function. This is precisely what the selected arrow €4 is doing.

We call (K = A) the internal arrow object of K to A.

At this point there are several general abstract properties we could look at, but
we won’t. It is much more instructive to look at several examples. In the next three
sections we look at four such examples. We know already that the categories Set of sets
and Pos of posets are cartesian (with the obvious way of obtaining product objects).
We will show that both of these are cartesian closed, and again for both of these there
is an obvious way of obtaining internal arrow objects. These examples show that in the
‘nice’ cases things are what you expect them to be.

After that we will look at two more complicated examples. In these categories
products are, more or less, what you expect them to be. However, the arrow objects
are not at all obvious.

Exercises

4.1 Each poset is a category.
(a) When is this category cartesian?
(b) When is this category cartesian closed?

4.2. Some simple examples 105

4.2 Some simple examples

In this section we will look at a simple examples of a cartesian closed category, and also
indicate some cartesian categories which are not cartesian closed.

The simplest example, of course, is the category Set of sets. However, this is so
simple it is hardly a useful illustration of the notion. At some time you should go
through the relevant details, but to begin it is better to look at an example with slighly
more content.

The category Pos is cartesian closed.

Consider the category Pos of posets. Thus an object (A, <) is a set A furnished with a
partial ordering. We will follow the usual convention and write ‘A’ for the object (that
is, we will hide the furnishings). We also write ‘<’ for any partial ordering that occurs,
even when there is more than one around. Here this will never cause confusion. An
arrow

B A

is a function f in the indicated direction which is monotone, that is
y<z= fy<fz

holds for all z,y € B.
We know that Pos is cartesian. For objects A, K the product object A x K is
carried by the set of all ordered pairs

(a,)
for a € A and z € K. This is furnished with the pointwise comparison, that is
(b,y) <(a,z) <= b<aandy<z

for all a,b € A and z,y € K. The two projection arrrows

Ax K
A K
are given by
Ax K A AxK —K
(a,2) ——a (@, 2) —— x

respectively. Of course, we need to check that these projection functions are monotone,
but the ordering of A x K is chosen precisely with this in mind.

On general grounds we know that for a fixed K this construction extends to give an
endofunctor — x K of Pos. In particular, each Pos-arrow

f

A B

106 4. Cartesian closed categories

gives a a Pos-arrow

Axk 2K pyk
(a,w) e (fa,:z:)

with the indicated behaviour (for a € 4,z € K).

To show that Pos is cartesian closed we must produce an internal arrow object
(K = A) together with suitable furnishings for each pair K, A of objects. For partially
ordered sets this is easy.

4.3 DEFINITION. Let K, A be a pair of posets. The pointwise comparison on the set
Pos[K, A] of monotone maps from K to A is given by

qg<p<= (Vz € K)[gz < pz]
for p,q € Pos[K, A]. |

It is routine to check that this furnishes Pos[K, A] with a partial ordering, and so
we can view this set as an object of Pos.

4.4 DEFINITION. For each pair K, A of Pos-objects, let (K = A) be the set Pos[K, A]
with the pointwise comparison. |

Just producing this object isn’t enough to show that Pos is cartesian closed, we
need various other gadgets. We are looking for a right adjoint of the functor (— x K),
and we know this can be done in various ways. In particular, once we have done this we
know that (K = —) will become an endofunctor of Pos. However, here we illustrating
the general notion, so it is instructive to verify this functorality directly.

45 LEMMA. For each monotone map

B

between posets, the function

(K=B) (K=A)
p——— fop

18 monotone.
This arrow assignment converts the object assigment into an endofunctor of Pos.

Proof. Consider any comparison
q<p

in (K= B). We must show that

fog<fop
holds in (K = A), that is

f(gz) < f(pz)
holds A for each z € K. But, for each x € K we have gz < px (since ¢ < p) and so the
monotonicity of f gives the required result.

4.2. Some simple examples 107

To show that we have an endofunctor (K = —) consider a composable pair

g f

C - B - A

of Pos-arrows. We must show that the composite of the arrows

(K=0) (K= B) (K=B) (K= A)
g——— fogq p——>gop

is that induced by the composite fog. But this is immediate since function composition
is associative.
The required preservation of identity arrows is trivial. |

For the most direct proof of the result we are after we don’t use Lemma 4.5. We
use some other associated gadets. In particular, we use an evaluation arrow.

4.6 LEMMA. For each pair K, A of Pos-objects, the function

(KA x K —A .4

p , z)——pz

18 monotone

Proof. Consider any comparison

(¢,9) < (p,x)
which holds in (K = A) x K. We must show that
qy < pz
holds in A. From the given comparison we have
g<p Y=<z

where
(Vz € K)[gz < pz]

is the unravelled meaning of the first of these. Using these together with the given
monotonicity of either p or ¢ we have one of

qy <py < pz qy < qr < px
to give the required result. |

As indicated by the notation, we use this arrow €4 as the evaluation arrow for A.
The crucial result is the factorization property of Proposition 4.2.

4.7 THEOREM. For each Pos-arrow

Bx K A

108 4. Cartesian closed categories

there is precisely one Pos-arrow

B

(K=A)

such that the Pos-triangle

Bx K g - A

R

(K=A)x K

commutes.

Proof. We do the two parts, existence and uniqueness, separately.

Since the given function g is monotone, for each by < b; in B and y < z in K we
have

g(b2,y) < g(by,x)

in B. In particular
g9(b,y) < g(b,z)
for each b € B and y < z from K. This shows that for each b € B the function

g(ba') K — A

is monotone, and hence is a Pos-arrow. Thus we have an assignment

B—% (k=4
b— g(b,-)

that is with
9,0z = g(b, z)
for each b € B,z € K. We check that g, is monotone, and hence is a Pos-arrow.
Consider a comparison by < by in B. We require
b2 < g,b1
in (K= A), that is
Gbor < g1z

for each z € K. But this is
g(an 'T) < g(bla 'T)

which is part of the given property of g.
To complete the proof of existence we must show that the composite of the two
arrows

€A

K
BxK 220 (ks A)xK (K=A)xK A
(b’ x) e (gbbam) (pa .’E) el 2

4.2. Some simple examples 109

is just the given arrow g. But this composite is
(ba LE) ——— gybz = g(b7 iE)

to give the required result.
For the uniqueness consider any arrow h which makes the indicated triangle com-
mute. Then for each b € B,z € K we see that

hbx = es(ha,z) = (€40 (h x K))(b,xz) = g(b,x) = g,bz
holds. Since both z and b are arbitrary, this gives h = g,, as required. |
This result ensures that Pos is cartesian closed. In a more economical account this
is more or less the only result that needs to be proved. However, it is always useful to

verify or at least describe the details of the various associated results. In particuilar,
we know there must be a bijective correspondence

fi f*
Pos[B, (K= A)] Pos[B x K, A]
» g

which is natural for variations of A and B. We have seen above that the lower assignment
g — g, is just the currying of g. In a similar fashion we find that

fi(b,z) = fbz

for b € A,z € K. In other words this is the uncurrrying of f. Trivially, these two
assigments form a bijective correspondence.

Other examples

Simple and instructive examples of cartesian closed categories are rather thin on the
ground.

There are several examples which are refinements of Pos. Thus we may give the
objects extra properties such as having certain completeness properties, or we can give
the objects extra structure such as certain infima. Not all such refinements are cartesian
closed, but when one is the proof is straight forward, and we use the obvious pointwise
structure.

Consider the category Abg of abelian groups. This is certainly cartesian, since
the cartesian product of two such groups is an abelian group. Furthermore, the set of
morphisms from one such group to another is itself an abelian group under the pointwise
operation. However, this does not give an internal arrow object. In fact, Abg is not
cartesian closed.

The category Top of topological spaces and continuous maps is cartesian but not
cartesian closed. Imposing a suitable topology on the set of continuous maps from one
space to another is one of the perenial problems of topology. It turns out that for a
space to be exponentiable it must satisfy rather severe conditions.

Exercises

4.2 Verify directly (by calculation) that for Pos the evaluation arrows e are natural.

4.3 By observing that the final object of Abg is also initial, show that Abg is not
cartesian closed.

110 4. Cartesian closed categories

4.3 Monoid actions

In this section we look at a family of ‘non-trivial’ examples of cartesian closed categories.
In fact, each of these categories has much stronger properties. Each is a topos. (We won’t
even attempt to explain what that word means, except to say it is an important notion
that connects category theory with both higher order logic and algebraic geometry).
We will look only at the cartesian closedness. We will go through a typical example
quite slowly. This means there will be quite a lot to check. Much of this is routine (and
some of it you have seen before). We will leave some of the checking as exercises, and
use & to indicate where these occur. Once you have done all these you can join the
club. (Some of these jokes do take the biscuit.)

If at first you find some of these details a bit complicated then you might try Exercise
4.5 or 4.6.

Let R be a monoid. We use the category of right R-sets as explained in subsection
1.5.5. Thus each object is a set A with an action

AR A
a, 7T ———— ar

satisfying
a(rs) = (ar)s al =a

for each a € A and r,s € R. An arrow

f

A B

between two R-sets is a function f: A — B satisfying

flar) = (fa)r

for each a € A,r € R. We sometimes call this an R-linear map. It is routine to check
that these form a category R. & (There is also a category of left R-sets, but we don’t
use that here.) R

Before we begin to analyse the properties of R it is instructive to obtain a different
description of the category which puts it in a wider context. We show that it is a
presheaf category.

The monoid R is itself a category. It has exactly one object, which we may write as
* for the time being. The arrows are just the elements of R, and these must have the
form

¥ ——— > %

(since there is just the one object). Composition is given by the carried operation of R.
Thus r o s = rs, that is the triangle

rs
* > Xk
\ /
*

commutes. The neutral element of R is the identity arrow.

4.3. Monoid actions 111

A presheaf on R is a contravariant functor from R (as a category) to Set, the category
of sets. Such a functor attaches a set A to the sole object and a function

A(r)

A A

to each arrow (element) of R. This assignment is contravariant which means that the
commuting diagram above induces a commuting diagram

4. Als)
m %)
A
with a reversal of the direction of the arrows. In other words we have
A(s) o A(r) = A(rs)
for all r,s € A. At this point we use a notational trick, and write
A(r)

A A
a6 +——ar

for the behaviour of the function A(r). Using this we find that a presheaf over R is
nothing more than an R-set. Furthermore, the morphisms between R-sets are precisely
the natural transformations between the corresponding presheaves. &

This description makes everything we are going to do a particular instance of a
much more general construction. However, this does not mean the particular case is
uninteresting.

The monoid R is itself an R-set, with the obvious action. It can be checked that,
for an arbitrary R-set A, the arrows

R A

are in bijective correspondence with the elements of the set A. & (This object R of R
is an example of a separator or a generator of the category.)

The singleton set 1 (with just one element) is an R set with the only possible action
it can have. This is the terminal object of R. For an arbitrary R-set A the arrows

1 A

are in bijective correspondence with certain elements of of A. Perhaps you can sort out
which ones. & These are called the global elements of A. (This terminology comes from
category theory, not from the study of R-sets.)

We know that R is cartesian, with ‘obvious’ products. Thus given two R-sets A and
B we take the cartesian product A x B of the two sets and impose the pointwise action

AxB,R— AXxB
(a,b),r —— (ar,br)

to obtain an R-set. It is easy to check that this, together with the obvious projections,
implements the categorical product in R. &
To show that R is cartesian closed we do four things.

112 4. Cartesian closed categories

e We construct an R-set (K = A) for each pair of R-sets K, A.

e We show that the construction (K = —) is an endofunctor of R. (The properties
for variation of K is not important.)

e We set up an inverse pair

fr——
R[B,(K=A)] R[BXK,A]
g <— g

of bijections.
e We verify the naturality of these bijections for variation of A and B.

Of course, this is not the only approach, but it is the most convenient one here.
The construction of (K = A) is not quite what you first expect.
As a set let R
(K= A) =R|R x K, A
that is the set of all functions
¢:RxK——A
which satisfy
B(s,5)r = (sr, o)
for all r,s € R and z € K. (Notice that we do not take the obvious carrying set
R[K, A].)
We impose an action

(K=A),R (K=A)
¢ ¢’

by
(d)r)(s,.’l,‘) = ¢(T$,$)
for g € (K=A),and r,s € R,z € K. Of course we need to check that

grs)=(¢")s o' =9¢
(for r, s € R) but this is straight forward. (We have written the action as
¢, r— ¢

rather than ¢r to avoid confusion with ‘evaluation of ¢ at r’. In this setting that
evaluation doesn’t make sense.) &

This constructs (K = A) as an R-set. However, we want (K = —) to be a functor.
Surely this is easy for we have a hom-functor! This observation is not quite good enough.
A hom-functor passes from R to Set, whereas we need an endofunctor of R. We need
to show that the induced action (in a different sense) on an R-linear map produces an
R-linear map. The rest of the required properties do follow since we have a hom-functor.

Thus let

AI

4.3. Monoid actions 113

be an R-linear map and consider the induced behaviour
(K=>A) — (K=A4")
¢ —— ko
as a function. We need to check that this is R-linear. For this verification let us write
K (I) for the induced function. (We are thinking of (K = —) as a functor K.) We must
show that
K(k)(¢r) = (K(k)¢)r
for each ¢ € (K = A) and r € R. Remembering how K (k) is defined we see that we
require
kod = (ko)
for each ¢ € (K = A) and r € R. This may be checked by evaluating at an arbitrary
(s,z) € R x K. As you do this you should note how the properties of ¢ are used. .
This gives us the functor. We now set up the inverse pair of bijections.
Consider next an R-linear map

g

(K=A)
from an arbitrary R-set B. By a simple calculation we see that the assignment
i
Bx K ! A
is R-linear. & To go the other way consider a R-linear map

9

BxK A
again for an arbitrary R-set B. The assignment
B (k=4

given by
(gbb)(T‘,J?) = g(br,x)

for b € B,r € R,z € K is R-linear. & Furthermore the two assignments (-)! and (-),
are an inverse pair. &

There are several claims here and all require some justification, but none of these is
difficult.

This doesn’t quite show that R is cartesian closed. We still need to show that the
two assignments (-)* and (-), are natural.

To this end consider a pair

l k
B’ B A Al
of R-linear maps, as indicated. These induce a diagram
. ()" -
f R[B,(K=A)] _ R[B x K, A] g

()

(-)f
kofol R[B,(K=A)] " R[B'x K,A'] kogo(lxid)
()

114 4. Cartesian closed categories

where the two hom-actions are indicated. We must show that two separate squares
commute. One square goes from top left to bottom right and uses the two (:)! as
horizontal arrows. The other square goes from top right to bottom left and uses the
two (+), as horizontal arrows. Thus we require

(kofol)ﬁ:kofﬁo(lxid) kogyol=(kogo(l xid)),

where f and g are R-linear maps of the indicated type. (Actually one of these will
suffices, since it implies the other, and you shoud find out why. &)

To verify the left hand equality we evaluate both composites at an arbitrary pair
(¥, z) € B' x K, use the definition of (-)¥, and some of the properties of the given , f, .
&. To verify the right hand equality we consider arbitrary ¥’ € B',r € R,z € K and
evaluate both sides at b’ and then evaluate both resulting functions at (r,z). &

This is enough to show that R is cartesian closed.

Exercises

4.4 Fill in all the missing details indicated by &.
Describe the evaluation map e and verify (by calculation) the required factorization

property.

Although it is not immediately obvious, the following two exercises are par-
ticular cases of R for two different but quite simple monoids R. You can
check the details directly.

4.5 An involution algebra is a structure
(4, ())
where A is a set and (-)*) is an involution on A, that is an assignment

A A
a—+a*

such that

for each a € A.
In the usual way we identify an algebra with its carrier.
A morphism

of such algebras is a function f : B —— A such that

(fb)" = f(b")

for each b € B.
Given a pair K, A of algebras let (K = A) be the set of all functions ¢ : K — A,
not just morphisms.

(a) Show that idempotent algebras and morphisms form a category.

4.3. Monoid actions 115

(b) Show that this category is cartesian (using products obtained pointwise).
(c) Show that for a pair K, A of algebras the assignment

(K=A) — (K= A)
g9

given by
9" (z) = ¢(z")"
(for x € K) converts (K = A) into an algebra.
(d) Show that for each morphism

A

the assignment

(K= A) — (K=A4")
¢pr— koo

is a morphism.
(e) Show that each morphism

B (K=A)

induces a morphism
i

Bx K ! A

given by
fi(b,) = fb
for each b € B.
(f) Show that each morphism
BxK—9 .4

induces a morphism

B (k=4
given by
gbb = g(ba)

for each b € B.
(g) Show the category is cartesian closed.
(h) Show the category is R for a particular monoid R.

4.6 An idempotent algebra is a structure

(4,()*)

116 4. Cartesian closed categories

where A is a set and (+)*) is an idempotent operation on A, that is an assignment

A A
ar———a’

such that

for each a € A.
In the usual way we identify an algebra with its carrier.
A morphism

of such algebras is a function f : B —— A such that

(f0)* = f(b°)

for each b € B.
Given a pair K, A of algebras let (K = A) be the set of all pairs (¢g, ¢1) of functions
K —— A where ¢q is a morphism and

(ox)® = (¢17)*
for all z € K.

(a) Show that idempotent algebras and morphisms form a category.
(b) Show that this category is cartesian (using products obtained pointwise).
(c) Show that for a pair K, A of algebras setting

(do, $1)* = (o, ¢o)

converts (K = A) into an algebra.
(d) Show that for each morphism

A A

the assignment

(K=A) —— (K= 4
(¢o; ¢1) = (ko ¢o, ko ¢1)

is a morphism.
(e) Show that each morphism

induces a morphism

given by

4.4. Developing sets 117

for each b € B.
(f) Show that each morphism

Bx K A
induces a morphism
B2 . (k=4

given by
(gb)o = g(b%,-) (gsb)1 = g(b,")
for each b € B.

(g) Show the category is cartesian closed.
(h) Show the category is R for a particular monoid R.

4.4 Developing sets

In this section we will describe, in some detail, the most complicated example of a
cartesian closed category that we will look at. In fact, we will describe a typical member
of a whole family of examples. As with R-sets (described in section 4.3) each category
has several other properties, and is a topos. However, we will not go into these extra
details.

The inner workings of the example are rather complicated, as we will see when we
start to verify its properties. This illustrates one of the main attributes of category
theory. For many purposes the inner details of objects and arrows are a distraction. By
making use of categorical notions and gadgets these can be hidden. Of course, there
will be times when these innards have to be uncovered, but that should not be done
routinely.

We will go through a typical example in this family quite slowly, but we will not set
down all the routine details. Many of these will be left as an exercise, and we use & to
indicate the occurrence of one of these.

Let S be an arbitrary poset with < as the carried comparison. We first construct a
category S and then analyse some of its properties. In fact, we have seen S before, but
let’s approach it from a different direction.

The poset S is a rather simple category. The objects are the elements r,s,t,... of
S. Give a pair of objects r, s € S there is at most one arrow

S T

and there is such an arrow precisely when s < r. Thus the arrows of the category are
merely a way of indicating which comparisons hold. Since the comparison is reflexive
and transitive it is routine to check that we do have a category. & (We do not need
the antisymmetry of the comparison, and everything we do here also works with a
pre-ordered set. However, that extra generality illustrates nothing useful.)

We think of S as a category. A presheaf on S is a contravariant functor from S to
Set, the category of sets. We need the details of these gadgets.

Thus a presheaf A is an S-indexed family of sets

(A(s)|s € 5)

118 4. Cartesian closed categories

together with a family of functions indexed by the arrows of S. Thus for each pair ¢t < s
from S there is a function

A(t, s)

A(s) A(t)

where the contravariance causes a reversal of direction. These two families must form
a functor, so the functions must fit together in a certain way. For each r € A the
function A(r,r) must be the identity function on A(r). More importantly, for each
triple t < s < r in S, the triangle

Afr) — AT g
A(skA()Ku s)

must commute, that is

A(t,s) o A(s,r) = A(t,r)

holds.

In other words, a presheaf over S is nothing more than a developing set in the
sense of subsection 1.5.6. These are the objects of S. The arrows are just the natural
transformations between the functors. We will deal with them shortly after we have
condensed the notation.

I suggest you now read the previous but one paragraph again and observe how the
gadgets have been indexed. The seemingly perverse notation has been chosen to make
various manipulations a bit smoother. This is part of a trick for handling contravariance,
and we are going to take it a bit further.

Consider the function A(¢,s) for a pair ¢ < s from S. The function sends each
element a € A(s) to some element A(t,s)a € A(t). This notation will become a bit
cumbersome, so we write

A(s) A(t)
a+——alt

for the behaviour of A(¢,s). We think of ‘a|t’ as a generalized restriction of a € A(s) to
A(t) (via the connecting function). In particular, for each t < s < r and a € A(r) we
have

alr =a (als)|t = alt

by the functorial properties. You should check this. &

Of course, this condensed notation has to be used with some care, especially when
there is more than one presheaf around (which there soon will be). But in the end it
does make some calculations less cluttered. (An even neater notation is to write ‘ar’
for ‘a|r’ and think of this behaviour as an action. You should try that sometime.)

The objects of S are just the presheaves over S. The arrows of S are the natural
transformation between these presheaves. Thus given two objects A, B an arrow

f

B A

is an S-indexed family of functions

fs

B(s) ——— A(s)

4.4. Developing sets 119

where for each pair ¢t < s the square

commutes. We need to express this in terms of the condensed notation. We do this by
tracking an arbitrary b € B(s) around the two paths to A(t). Doing this we get

bi fsb

B(t) 5 A(t) (fsb)[t
t

bt —— f;(b|t)

from which we see that
fi(blt) = (fsb)[t

is the required condition (for all ¢t < s and b € B(s)). & This equality must be read
with some care for there are two different restrictions here, one for A and one for B.
This sets up the basic mechanics of S. We are going to first describe the internal
product objects (which will be routine) and then the internal arrow objects (which look
a bit weird at first).
The product of two objects A and B is obtained pointwise using cartesian products.

Thus we set
(A x B)(s) = A(s) x B(s)

for each s € S. Here the ‘X’ of the left is the defined construction and the one on the
right is taken from the category Set. Thus (A x B)(s) is the set of all pairs (a, b) where
a € A(s) ad b € B(s). For t < s two restrictions in parallel

A(s) x B(s) A(t) x B(t)
(a,b) —— (alt, blt)

gives the required connecting functions. Thus
(a,b)[t = (alt, b]t)

gives the interaction between these three restrictions. It is routine to check that this
furnishes S with products. &

Our main job is to set up the internal arrow objects and verify the required proper-
ties. We will do this slowly, so this may take some time.

Let K and A be an arbitrary pair of objects.

For each s € S let (K= A)(s) be the family

a=(a;|i < s)

120 4. Cartesian closed categories

of functions

a;

K(4) B(i)

indexed by the principal lower section |s of S, and which is natural ‘as far as it goes’,
that is for each j <4 < s the square

a;

K@) 2 A@)

j oj(zlf) = (a2l
K(j) — AG)

Q;

commutes. By tracking z € K (i) around the square we see that the equality holds.
For t < s we require a connection function

(K= A)(s) (K= A)(t)

al - alt

which we can write as a restriction. But in this case it is a restriction. We take
a= (|1 <s) —— a|t = (|1 < 1)

by merely restricting to those ¢ <t < s.

Notice that there is two kinds of naturality in this construction. There is the natu-
rality required by the connection maps of (K = —), that is for moving between ‘outer’
indexes t < s. There is also the inner naturality required of each family a € (K = A)(s)
for moving between ‘inner’ indexes j < ¢ < s. The use of different symbols will help to
keep these apart.

Remembering this it is straight forward to check that this produces (K = A) as a
presheaf over S. & R

Why does this construction ensure that S is cartesian closed? We could show that
the construction (K = —) is functorial and set up an inverse pair

I el i
S[B,(K=A)] S[BxK,A
g < g

of bijections with the required naturality; but we won’t. We will take the co-free ap-
proach. Thus we will set up an ‘evaluation’ arrow

€A

(K=A) x K A

with the appropriate factorization property. The beauty of this approach is that we
don’t need to verify any functorality or naturality. These properties are consequences
of the universal factorization.

Since we are thinking of K as fixed throughout, the evaluation arrow depends on B,
as indicated. However, the subscript A will become a distraction, so we will drop this
and write

(K=>A)xK—+ 4

4.4. Developing sets 121
for the arrow. This, of course, is a family of functions

(K = A)(s) x K(s) — A(s)

indexed by S. (You can see how an extra subscript could get under the feet.)
The function € requires an input (a,z) where o € (K= A)(s) and z € K(s). This
« is an indexed family of functions which has a principal component

K(s) —2 v A(s)
so we may take
(K= A)(s) x K(s) —+ A(s)
(¢ , z)+— asz

as the behaviour of e¢;. Of course, we need to check that e is natural for variation of s.

There is a point here that is worth expanding on. The arrow € = €4 must be a
natural transformation between two functors. This naturality is for variation of the
index s € S, and it is this we must check. However, the whole construction must
be natural for variation of A, and it is this naturality which will be an automatic
consequence of the other properties.

To show the naturality of e for variation of the index consider two indexes ¢ < s in
S. We must show that the inner square commutes.

a,T) | QT
(a, 7)

(K = A)(t) x K(t)

A(t) (asz)|t

(alt, z|t) | a(z|t)

To do that we take arbitrary a € (K = A)(s) and x € K(s) and track the pair (a,x)
around the two paths. Doing that we see that

a(z|t) = (asz)|t

is required. But this is a consequence of the naturality of « ‘as far as it goes’. &
The next step is to verify the factorization property (of Definition 2.15. Thus starting
from an arbitrary arrow

Bx K A

we must produce an arrow

9b

B——~ (K=A)

122 4. Cartesian closed categories

such that the §-triangle

Bx K

gy X K €A
(K=A4)x A
commutes. Furthermore, we must check that we produce the only possible arrow g,
which makes the triangle commute.

The arrow ¢ is an S-indexed family of functions which is natural for variation of the
index. We need a consequence of that. For indexes j < ¢ the square

A(i) x B() —2+ B(3)

| |

A(j) x B(j) o B(j)

commutes where the two vertical arrows are restriction maps to j. Thus, for each
a € A(i),x € K(i) the equality

g;(alj,z|7) = gi(a,z)|j

holds. We will need a slight generalization of this. Thus, for each 7 < 7 < s and
a € A(s),r € K(i) the equality

gj(alg, zlj) = gi(ali, z)|j

holds. You should make sure you understand this. &
For each index s € S let gy, be the function

B(s) — 2+ (K= A)(s)

bi -

where « is the |s-indexed family of functions given by

a;z = g;(bli,)
for each i < s and = € K (7). Let’s spell this out again. By construction g, is a certain
S-indexed family h. For each index s and b € B(s) the component hs; produces is an
Js-indexed family hgb of functions. For each i < s the component (hsb); is given by

(hsb)iz = gi(bli,)

for z € K(i). This double indexing is perfect for causing confusion.
We need to check a couple of things.

4.4. Developing sets 123

The family «, which depends on b € B(s), must be natural ‘as far as it goes’. Thus,
for indexes j < 7 < s we require that the inner square

T gi(bli, x)
K(i) . AG)
K(j) ———— AG) gilbli, o)l
J
olj 9, (blg, =15)

commutes. To show this we track an arbitrary z € K (i) around the square, and hence

is required. But this is nothing more than the given naturality of g. &
Next we must check that the family g, is natural for variation of the ‘outer’ index.
Let h = g, (to hide the b). For each pair ¢t < s from S we require that the inner square

bi hsb
B(s) — 2+ (K= A)(s)
B(t) (K=A)(t) (hob)|t
9ht
bt | h(b]t)

commutes. To show this we track an arbitrary b € B(s) around the square.
Both
he(blt) — (hsb)[t

are Jt-indexed families of functions
K(j) — A(9)
for j <t. Thus we require
(he(b]1))j2 = ((hsD)[2) 2

for each j < t and z € K(j). Using the definition of these families and various other
properties we have

(he(0]2))j2 = g ((b]t) |7, 2) = g;(bl7, x) = (hsb)jz = ((hsb)[t) ;2

as required. You should work out why each of these steps holds. &

This shows that g, is an arrow.

We now come to the factorization property. Thus, for s € S, we must show that the
triangle

B(s) x K(s) gs ~ A(s)

(K = A)(s) x K(s)

124 4. Cartesian closed categories

commutes. To do this we start from arbitrary b € B(s) and z € K(s). Going across
the top produces a value g;(b, z). Going down the left hand side we obtain a pair («, x)
where « is a |s-indexed family with
oy = gi(bli, y)
for each i < s and y € K (7). Taking this up the right hand side produces
es(a,) = asz = gs(bls, z) = gs(b,)

to give the required result. &

To complete the proof that S is cartesian closed we must show that the constructed
arrow g, is the only one that makes the triangle commute.

Suppose, for the given arrow g as above, we have an arrow

h

B (K=A)
such that the §—triangle
BxK g - A
hx K €A
(K=A)x A

commutes. We must show that h = g,. In other words we must show
(hsb)iz = gi(bli,)

for each i < s and b € B(s),z € K(i). To do this we use two properties of h, one of
which is easily forgotten.
Remember that h is an S-arrow, and hence

B(s) s (K= 4)(5)

| |

B(i) —— (K=4)()

commutes for each ¢ < s. Thus for each b € B(s),z € K (i) the equalities
hi(bli) = (hsa)le (hi(bl2))iz = (hsb)ix

hold. Here the first comes from chasing round the square, and the second by evaluation
at z and remembering how the ‘actual’ restriction works. &

Next, for i < s, we use the i-component of the factorization triangle. For b € B(s)
and z € K (i) we have (bli,z) € B(i) x K(i) and we traipse this the long way round to
see that

gi(bli,) = i(hi(bli), z) = (hi(bli))z

holds. &

4.4. Developing sets 125

Putting these together completes the proof. &

There seems to be a lot going on here, and at first sight the example seems to be
quite complicated. Well, there is some good news and some bad news.

To show that S is cartesian closed we have go through a lot of calculations. However,
each one of these are straight forward. It’s just that there is a lot of them.

In fact, what we have done here is a rather simple case of a much more general result
(which also covers the result of section 4.3 on ﬁ) Given any category C whatsoever
(such as R or S or the most complicated category you have ever seen), a presheaf on
C is a contravariant functor from C to Set. These form the objects of a category C
where the arrows are the natural transformations between the functors. It is fairly easy
to see that this is cartesian (with the obvious products). Furthermore, it is cartesian
closed. The proof of this is a generalization of the proof given in this section.

Parts of the more general proof are more complicated, but we also get a better
picture of what is going on. An important tool in the general proof is the Yoneda
embedding (which embeds C into C). This helps us to separate two aspects of the
proof.

The yoneda aspects of the proof of this section are hidden. Roughly speaking it is
concerned with the stuff about being natural ‘as far as it goes’, and the places where
a double indexing occurred. The ‘inner’ naturality can be separated from the ‘outer’
naturality, so the two don’t interfere with each other. In the more general situation this
makes the proof cleaner, if not shorter.

Each presheaf category Cisan example of a topos. More generally, given some extra
data, we can determine whether or not a presheaf is a sheaf (relative to the data). These
sheaves form a category which again is a topos. These toposes (not topoi as some ex-
colonials seem to think) form a connection between several parts of mathematics. They
first arose in algebraic geometry where they are used to organize some of the complicated
machinery needed. They seem to be the appropriate sites for analysing the semantics
of higher order languages. As we have not quite seen here they provide many examples
of cartesian closed categories. More generally, via the Yoneda embedding, they enable
categories to be ‘rounded out’ or ‘completed’ in a certain sense.

Exercises

4.7 Fill in all the missing details indicated by &.
4.8 Is it worth asking them to sort out (-)f and (\),.

49 Do Set™

Part |l

Solutions

These are the soloutions that are available at the moment. Others
we be included the next time the course is taught (in 2004).

A
The solutions

A.1 For chapter 1
A.1.1 For section 1.1

Are solutions necessary?

A.1.2 For section 1.2

1.2 (a) Think of the diagram as a hat which opens along the two parallel arrrows at
the bottom. Open the hat and look at the two sides (front and back or left and right
depending on what rank you are). Label the two bottom adges as shown.

B-9.¢ B-9.¢
A » D A » D
l T

These four triangles must commute. The two diagonals are

gof hog
so that
l=ho(gof) r=(hog)of

are the two bottom edges.
(b) This really is trivial.
(c) The pyramid isn’t very well drawn. Here is a better version

with all except one edge labelled. Because the left hand face commutes, the unlabelled
edge is
go f
and hence
g=rogof

129

130

since the right hand face commutes. But the base commutes, so that
p=rogq

and hence
g=pof

to show that the back face commutes. |
1.3 (m) Using the faces Back, Left, Top, Front, Right in that order we have

moloe=jofoe=jogob=kocob=kodoa=mohoa

that is
moloe=mohoa
and hence
loe=hoa
by the the cancellation property on the monic m. |

1.4 Let us label the edges as follows

o\@ a Q/.
N,
. h\ {g b
/Q/T'\%\'

L] > @
d
so that
goa= foe
poc=hoe b=mogogq
mokop=d

are the four given conditions.
When the inner square commutes we have

gof=koh
and hence
boa=mogogqoa=mogofoe=mokohoe=mokopoc=doc

to show that the outer square commutes.
When the outer square commutes we have

mogo foe=mogogqoa=mogogoa=boa=doc=mokopoc=mokohoe

131

that is
mogo foe=mokohoe

holds. Thus if m is monic and e is epic, then we may cancel to get
gof=koh

to show that the inner square commutes. |

A.1.3 For section 1.3
For subsection 1.3.1

1.5 Recall that the notions of monic and epic are defioned in subsection 1.6.3.
(m) Trivially, each injective function is a monic arrow.
Conversely, suppose

B A

is a monic arrow and consider by, by € B with mb; = mby. Let 1 be the 1-element set,
say 1 = {x}. Consider the two arrows

g1

92
given by g;x = b; for + = 1,2. Then

grom=ggom
so that g1 = go (since m is monic) and hence
b1 = g1x = gox = b

to show that m is injective.

(e) Trivially, each surjective function is a monic arrow.
Conversely, suppose

B A

is an epic arrow and consider the range e[B] of values of e. Let 2 = {0,1} be the
2-element set, and consider the two arrows

g

—_—

h

A 2

given by
gr =1 <=z € ¢[B] gr=1
for z € A. Thus g is the characteristic functions of e[B] and h is a constant function.

Then
eog=eoh

132

so that g = h (since e is epic) and hence

gr=hzx =1
for each z € A. This shows that e[B] = a, and hence e is surjective. [
1.6 Consider a compatible pair
At g9 ¢

of functions. Then
cl'(g)b<=c=gb bl'(g)a <= b= fa cI'(gofla<=c=(go f)a
for a € A,b € B,c € C. Using these, for a € A,c € C, we have

c(T(g) e T'(f))a < (3b € B)[cI'(g)bI'(f)a]
<= (3b € B)[c = gb and b = fa]
< c=g(fa) <~ cl'(go fla

to give the required result. ||

For subsection 1.3.2

1.7 (b) Consider any pair A, B of monoids where B is commutative and contains an
element b with b> = b # 1. It is easy to check that the assignment

A / B
at—ba

is a semigroup morphism. It is not a monoid morphism since f1 =b # 1. |
1.9 (i) For each set A we let F/(A) be the monoid of words
T,=aiaz---an

on A under concatenation. The unit of the monoid is the empty word L. For each
a € A, n(a) is the word of length 1 whose only letter is a. (In some areas it is a common
notation to write ‘¢’ for the empty word. However, here this will cause confusion with
an arrow in part (iii).)

For each function

A

and word z € FA (as above) we set

F(f)z = f(a1)f(a2)--- f(an)

to obtain a word over B.
Clearly F(f) is a Mon-arrow

FA FB

133

that is we have F/(f)L = 1 and

for words z,y € FA.
The Set-square

AT, Fa

N

B——FB
1B

commutes, since both paths send the element a € A to the sigleton word fa € F'B.
(ii) For each function

where S is a monoid let

f
FA ! S

be given by
ffe = (far)(faz) - (fan)

for each word = as above. Note that the monoid operation of S is used on the right
hand side of this definition. It is routine to check that f! is a Mon-arrow and that
f=fton

To show that f* is the unique fill in for the triangle we check that 7 is ‘ Mon-epic’
in the sense that if

¢

(2

is a parallel pair of Mon-arrows with ¢ on =1 on, then ¢ = 9.
(iii) For each monoid S consider the function

FA

€

FS S

given by
6(8152“‘5n) = 3182”'377.

for each word in F'S. Here on the left concatenation is used to form a word over S, but
on the right the monoid operation is used to obtain a new element of S. Then, for each
f and word z € F A (as above) we have

e(F(f)z) = e(far)(faz) -+~ (fan) = (fa1)(fa) - (fan) = [Pz

as required. |

134

For subsection 1.3.3

1.10 (b) Consider the function

fr=ad"a

which sends each r € N to the r*! iterate of « applied to a. A rountine calculation show
that this is a Pno-arrow. A simple proof by induction shows that it is the only possible
arrow. (The result can be rephrased to give a categorical characterization of iteration
and induction.) [|

A.1.4 For section 1.4
For subsection 1.4.1

1.11 (a) The definition of C on A/~ has a hidden problem (of well definedness). Letting
a,B3,7,... range over A/~ (i.e. the equivalence classes) the definition of C is

aCf<= (JacabeP)a<b.
To show this is transitive suppose
aEBLy.
Then there are

aca b,bbef cexy
with
a<b~b<c
and hence a < ¢, which witnesses a < 7.

For anti-symmetry suppose
aCp,BCn.

Then there are
ai, a2 € o b17b2618

with
a1 < b1 , b2 < a9
But then a; = bj, so that o = §. |
1.12 Consider a Pre-arrow
A / B

where B is a poset. Observe that for z,y € A

zry = f(z)=f(y)
and so we may define

#
FA !

135

by
fH@) = f(a)
for a € a € FA. You should check that you understand that this is well-defined. The
verification that f = f¥ o7 is now straight forward.
To show that this fill in is unique observe that A —— F'A is surjective and hence
epic (in Set).
(b) For a Pre-arrow

A B

the definition of F(f) is
F(f)(a) = (f(a))

for any a € o. This is well defined since
z=y= f(z) = f(y)
for all z,y € A. |

For subsection 1.4.2
1.13 (a) Everything follows from the relationship
fr<y=az<gy

(for x € A,y € B) and the mononicity of f ands g.

Thus, since f(z) < f(z), we have z < g(f(z)), to show that g o f is inflationary. A
similar argument shows that g o f is deflationary.

Both go f and f o g are monotone since they are composites of monotone maps.

Since z < (gof)(z), an application of f gives f(z) < (fogof)(z). Also, (fog)(y) <y,
so setting y = f(z) gives (f ogo f)(z) < f(z). This shows that fogo f = f, and a
similar argument shows that go fog =g.

Using these we have

(gof))=gofogof=gof (fog)®=fogofog=fog

so that both g o f and f o g are idempotent, and hence are a closure operation and an
interior operation, respectively.

(b) Suppose f and g are monotone maps (as given) with g o f inflationary and fog
deflationary. Then, for z € A,y € B

fle) <y=z<(g90of)(z) =9g(y) z<gy) = f(z) <(fog)ly) =y
and hence f - g. [|

1.14 Consider
A=1T-] p=1-

the ceiling and floor function, respectively. For each m € Z and z € R we have

z<i(m)=m <= [z] <m

136

to show that A 4. A similar argument shows 7 - p. |

1.15 For each each X € LS we set

FHX) = Ug1X] F(X) = 1¢1X"]
so that, for each Y € LT both
FAX)CY <= ¢X]CY <<= XC4é (V) = X Cf(Y)
HEXYCY' = ¢X1CY <= X' Co=(Y)=¢"(Y) <= X' Cf(Y)
hold. Thus
P

as required.
Some simple experiments with monotone maps between small posets shows that, in
general, f! and f, are not related in any other way. |

1.16 (a) We show that
f=¢ fi=g
and hence obtain a triple adjunction

fiAf
LS f4g LT

919
as indicated. It suffices to show that f = g* (for then f, = g follows by general properties

of adjunctions).
Recall that

ls<¢og ¢oyp<lIr
(using the pointwise comparison). Then, for each Y € LT and z € S, we have
z€ f(Y) = ¢(z) €Y = z < (h(x)) € ¢[Y] = z € Yp[V] = ¢ ()
so that f(Y) C ¢*(Y). Similarly

regh(Y) = z¢ely[Y]
= (FyeY)z <y(y)]
= (A eY)o(z) <o(¥(y) <yl
= ¢(z) €Y = z€¢“(Y)=f(Y)

and hence ¢*(Y) C f(Y). This gives f = g*, as required.
(b) From Exercise 1.15 we can find a double adjunction

oY,
-0

137

with ¢ # 0. From part (a) each adjunction generates a triple adjunction

b g*

LS fd4g LT gdn LS

9 h,,
where
f=¢" g=9— h=07
and
ff4f4g4g, ¢ 4g-dh-h,
hold. Also

f=¢ fi=g=h g=h
so we obtain a quadruple stack
ffAfdg4h-n,

as required.]

A.1.5 For section 1.5
For subsection 1.5.1

1.19 The only real problem is to show that the defined composition is associative. To
do this consider three arrows

f

A - B

for which both compounds

ho(gof) (hog)of

may be formed. Consider a € A,d € D. We show that for the input (a,d) both
compounds produce

> {f(a,9)g(y, 2)h(z,d) |y € B,z € C}

as the output. The secret is to remember that both the sets B, C are finite, so that the
manipulation of the double summation is unproblematic. |

1.20 This is almost trivial, and becomes even easier one a decent notation is sorted out.
Let us write
Ap By Co Dy
| | | |
@ J5} y 0
\ \ \ \
Ay By Ci Dy

138

and so on (!) for the object of C”. Similarly, let us write

Ay By Co Dy
| | | h |
s fo y g) o}
v fl v g1 \ h1 v

Ay By Cy D,

for the arrows of C'”. Thus each one of these expands to a pair of arrows in C

h
Ay fo B9 . ° . p,
| | | |
« J5] y 0
¥ ¥ ¥ ¥
A » B > - D
' fi ' 91 ! h1 '

where each of the small rectangles commutes. We must do (at least) two things. We
must define the composition of C -arrows, and show that this composition is associative.
We define the composite

A() BO CO
L Jo | g0 |
o > B v
v h vooq Y

Ay By C1

to be the pair of composites
A, 00 fo Co
| |
« Y
v Y
A C
Ygion

that is, the composites of the correspondeing components. Thus we find that either way
of forming the triple composite in C' ™ unravels to

A, ho © go © fo . Dy
o 5
\ \
haogiofi =
to give the required associativity. |

1.21 This can be done in the rather tedious manner of Solution 1.20, that is by first
sorting out a decent notation and the looking at various commuting diagrams.

There is a neater way of doing this, but for that we need the notion of a functor.
This will be explained in [Make sure this is donel. [

1.22 As usual, the main problem is to show that the arrow composition in the con-
structed category is associative. For these constructions this is immediate (since the
appropriate composites of commuting diagrams produce commuting diagrams.)

139

A function 1 —L+ A is essentially a set A with a distinguished element a = f(e).
Thus 1\ Set is essentially the category of pointed sets.
A function A —— 2 is essentially a set A with a distinguished subset

X ={acAlf@)=1)

(the set characterized by f). These are the objects of Set/2, and the arrows preserve
this structure. [|

For subsection 1.5.2

1.24 This is linear algebra. Consider the category of finite dimensional vector spaces
over R. Consider such a vector space V of diminsion m, say, and suppose we select a
base. This sets up a bijection
R™ \%4
TH——z

where here we have written ‘z’ for an arbitrary (concrete) vector in R™ and ‘z’ for the
corresponding (abstract) vector in V. Consider two such coordinatization assignments
R™ 1% R" w
T2z y—y

form arbitrary spaces V,W of dimensions m,n, respectively. There is an associated
representation

Rm)(n -, [W, V]
Arb— A

giving a bijection from the m X n matrices A over R to the linear transformation from
W to V. We find that
Az = A(z)

that is evaluation on the abstract category is tracked by multiplication in the concrete
category.
Finally, consider a pair of linear transformations with their tracking matrices.

B " A
R™ > R > R™
w - U -V
B A
We find that
AoB=A

that is arrow composition is tracked by matrix multiplication.
(This is the basis of an example of a functor and a natural transformation.) [

140

For subsection 1.5.3

1.25 This is the same as Exercise 1.5. [|

1.26 (a) This is essentially the same as part (m) of Exercise 1.5.
(b) consider an epic arrow

A B

and, by way of contradiction, suppose that e is not surjective. Consider the pair of
arrows

f

>

9

B C

as suggested. These arrows agree on the range e[A] of e but one sends b to b and the
other sends b to ¢. By construcrtion, the two composites f o e and g o e agree which,
since e is epic, gives f = g, the contradiction. |

1.27 (a) Let A be an arbitrary monoid and consider any a € A. It is routine to check
that

N A
r———a"

is a monoid morphism, and hence the elements of A are in bijective correspondence with
the arrows N —— A. With this the usual separating argument shows that monics are
injective.

(b) Suppose

f

_—

g

z A

is a parallel pair of Mon-arrows which agree on N, that is fm = gm for all m € N.
Consider any n € Z— N and let m = —n. Then (since f(0) — g(0) is the neutral element
of A, and fm = gm we have

fn = (fn)(g0)

= (fn)(g(m +n))
= (fn)(gm)(gn) = (fn)(fm)(gn)
= (f(n+m))(gn)
= (f0)(gn) = gn
as required. [

1.28 Tt is more convenient to write abelian groups addditively.
(m) Let Z be the groups of integers under addition. A routine argument shows that
for each abelian group A the morphims

Z A

141

are in bijective correspondence with the elements of A. Thus Z is a separator for Abg,
and the usual argument shows that each monic is injective.
(e) Suppose

A B

is epic in Abg and consider the range e[A] of e in B. This is a subgroup, and so may
be factored out. Consider the parallel pair

B B/e[A]

B —

g

of arrows, where f is the canonically associated morphism and g sends everything to 0
(the neutral element of the quotient). The two composites f o f and g o e agree (since
each sends each elelemnt of A to 0). But e is epic, and hence f = g, so that B/e[A4] is
trivial, to show that e[A] = B. [|

For subsection 1.5.4

[Are solutions necesssary?|

For subsection 1.5.5
1.31 (b) Given and ideal I, for each r,s,t € R we have

sel:t=tsel
= (ts)r el
= tsr)el = srel:t

to show that I : ¢ is an ideal.
(c) Suppose that I :t = R. Then 1 € I : ¢ so that ¢ = 1¢ € I. Conversely, suppose
that ¢ € I. Then for each s € R we have ts € sothat s€ [:ttoshow I :t=R. N

1.32 We have to check that
(I:r):s=1:rs I:1=1
for each ideal I and r,s € R. These are straight forward. |

1.33 (a) The ideals.
(b) For each a € A and r,s € R we have

seB:a=as€B
= (as)r € B
= a(sr)€B = sr€B:a

to show that B : a is an ideal.
The second part is similar to Solution 1.31(c).

142

(c) Let 8 be the given assignment. We must show that
Blar) = (Ba) :r
for each a € Aa nd r € R. This is
B:ar=(B:a):r

and unravelling
s€B:ar s€(B:a):r

almost gets to the bottom of the matter. |

1.34 We are given that
Blar) = (Ba) :r

for each a € Aa nd r € R. We must show that there is a unique sub-R-set B of A such
that
Ba=DB:a

for each a € A. Note that if there is scu a B then
a€EB<=1€B:a<=1€fa

so it suffices to take this as the definition of a subset of A, show it is a sub-R-set, and
show that g is its character.
For this subset we have

a€EB=1€pfa=1€ (fa):r=p(ar) = ar € B

for each a € A and r € R, to show that B is a sub-R-set.
Similarly, for each a € A and r € R we have

refBa<=1€(fa):r=p(ar) < areB<=reB:a

to show that
Ba=DB:a

as required. |

For subsection 1.5.6
1.35 (a) For indexes r < s < t we require
(als)|r = alr alt =a

for each a € A(t).
(b) For indexes r < s we require

fslalr) = (fsa)lr
for each a € A(s). [|

143

A.1.6 For section 1.6
For subsection 1.6.1

1.36 The opposite of a poset is the poset turned upside down.
Let (M,-,1) be a monoid. We can form a new monoid (M, x,1) by setting

axb=b-a

for each a,b € M. When we view the original monoid as a category this gives its
opposite. ||

For subsection 1.6.2

1.37 Suppose [is an initial object. Thus for each object A there is a unique arrow

I A

and, in particular, there is a unique arrow
I—— 171

from I to itself. But we know one such arrow, namely id;, and hence any arrow from I
to I must be this one.
Now suppose that I and J are initial objects. Then there are unique arrows

— .y g—9 .1
and these combine to give composites
gof gof

I 1 J J

between the separate objects. By the observation above these must be
idy idy

respectively. Thus f and g are an inverse pair of isomorphisms.
A continuation of this argument shows that these are the only arrows between I, J.
Any two final object F' and G are uniquely isomorphic. |

1.38 We are given an arrow

and there is a unique arrow

which combine to give an arrow

144

which we know must be idy. Thus r is a retraction and s is a section.
The remaining arguments are similar. u

1.39 The final object of Pno is (1, ¢, e), the singleton set 1 = {#} with the only possible
furnishings.

The initial object is (N, S, 0) where S is the successor function. The initiality of N
is the essence of recursion (induction). u

1.40 In the category of groups the 1-element group is both initial and final.

In the category of unital rings the integers (Z,+,0, x,1) is initial. The 1-element
ring (in which 1=0) is final.

Certainly, in the category of integral domains the integers Z are initial. The existence
of a final object depends on whether or not ‘1 # 0’ is part of the axioms. If it is then
there is no final object. If it isn’t then the trivial ring is final.

Usually for a field we insist that 1 # 0. This means that all morphisms are embed-
dings, and there is neither an initial nor a final object. However, for the category of
fields of a specified characteristic, then there is an initial object. |

1.41 Each element a € A gives a function

~

a

1 A
where a(®) = a. Conversely, for each
1—2 .4

we have p = a” where a = “p = p(e). This sets up the inverse pair of bijections

a——a~
A [1, 4]
p—ip

as required.
Now consider the composite
a” f

1 - A - B

for an arbitrary function f, as indicated. By the above correspondence (applied to B)
this is b~ where

b="foa") =(foa)e=f(a™s)=fa

as required.]

1.42 (a) The singleton set 1 = {®} with the only possible action is the final element.
(b) Consider any global element

B

1 A

of the R-set A. Thus, with b = e, we have

br = (Be)r = B(or) = () = b

145

for each r € R. In other words, 8 picks out a special kind of element b, namely one that
satisfies br = b for each r € R.
(c) We may view the monoid R as an R-set. Consider any linear map

(07

1 A

to an R-set A. Thus
a(sr) = (as)r

for each r, s € R. In particular, with a = a1l € A we have
ar = a(lr) = ar

for each » € R. This shows that « picks out an element of A and is determined by that
element.
Conversely, for each a € A, setting

ar = ar

(for r € R) produces a linear map which picks out a.
Thus R is the required separator. |

1.43 (a) For each s € S let
1(s) = {e}

(the 1-element set). For each 7 < s taken from S let

1(r, s)

1(s) 1(r)

be the identity function.

It is easy to check that these form a presheaf 1 over S and, in fact, this is the final
element.

(b) Let A = (A, A) be an arbitrary presheaf and consider a global element

1 A
of A. For each index s € S the function
1(s) A(s)

selects some element a(s) € A(s). Thus the global element is a choice function for the
family A of sets.
However, the selected family

(a(s)[s €8)

must have some compatibility, since for the global element certain squares must com-
mute. In this case we must have

for all r < s from S. This is

is the notation of Solution 1.35. [|

146

For subsection 1.6.3

1.44 (a) Consider a retraction, section pair, that is arrows

r

A B

-—

S

with r o s = idp.
To show that r is epic consider a parallel pair

f

_

9

B C

of arrows with f or = gos. Then
f:foidB:foros:goros:gOidB:g

to give the required result.
Suppose the retraction r is also monic. For the parallel pair

A A—" .B
ida
we have
ro(sor)=(ros)or=tddgpor=r=roidy
and hence

sor =1idy
since r is monic. But now we see that r, s are an inverse pair of isomorphisms.
(b)Using the given identities we have
g=tidyog=hofog=hoidg=nh
so that now f and ¢ = h and an inverse pair of isomorphisms. |

1.46 An element is monic or epic if it is cancellable on the appropriate side.

An element is a retraction or a section if it has a one sided inverse on the appropriate
side.

An element is an isomorphism if it has a two sided inverse

A monoid is balanced precisely when it is embeddable in a group. |

1.47 Consider a pair of arrows

to A.
Assuming both f, g are monic we have

gofok=gofol= fok=fol=k=I

147

which more or less shows that g o f is monic.
Assuming both g o f is monic we have

fok=fol=gofok=gofol=Fk=I1

which more or less shows that f is monic. |

A.2 For chapter 2
A.2.1 For section 2.1

2.1 (a) A covariant functor

S

between posets is a monotone map
f:8S—T
that is a function that satisfies
r<y= fr<fy

for z,y € S. In other words a covariant functor between posets viewed as categories is
an arrow on Pos.

The opposites of a poset is the poset turned upside down. Thus a contravariant
functor

I

between posets is an antitone map
f:8§—T
that is a function that satisfies
r<y=fy<fz

for z,y € S.

(b) A covariant functor between monoids viewed as categories is a monoid morphism
between the monoids, that is an arrrow in Mon.

The opposite of a monoid (A, *,a) is the monoid (A4, e,a) where

TOY=Yxx

for z,y € A. A contravariant functor between monoids is a morphism betweeen the two
where one of them is viewed as its opposite. |

2.2 (a) This is not true. For a category C a contravariant endofunctor F' on C would
have to send each arrow

f

A B

148

to an arrow

FA

between the selected objects. Remember that the object assignment A —— F'A does
not depend on the arrow. For the opposite construction we would have to have FA = A,

and there may not be an arrow

that can be assigned to f.
(b) A covariant functor

S r

T

F

S TP

consists of an object assignment and an arrow assignment

A——FA

f—F(f)

with certain source and target compatibility. Look what happens in the two cases.

Each source arrow

f

A B

of §°P, which in fact is an arrow

f

B A

of S, is sent to a target arrow

Each source arrow

f

A B

of S is sent to a target arrow

F) o

of T° which in fact is an arrow

F
FB Ff) FA FB i» FA
in T inT
It doesn’t matter if we flip before or after. ||
2.3 Left selection is covariant and right selection is contravariant. |

2.4 [If you don’t know any group theory then this won’t mean much to you.]
Recall that a comutator of a group A is an element

[z,y] =2 'y lzy

for some z,y € A. Since
-1
[z,y]" = [y, «]
we see that the inverse of a comutator is a comutator. In particular, the set of all
products of commutators is a subgroup dA (not just a subsemigroup).

To show that A —— JA is the object part of a functor, we must check that for each
morphism

149

we have

fI6A] C 6B

(where f[-] indicates direct image). This is immediate since

flz,yl = [fz, fy]

for each z,y € A.
To form A/§A we must first show that JA is a normal subgroup of A. This follows
since
alz,y] = [aza™ !, aya

for each a,z,y € A.
To show that A —— A/dA is the object part of a functor, we must check that each
morphism

A ! B
induces a morphism
A f B
A/SA B/éB

between the factor groups. Remembering how kernels work this boils down to
f[0A] CéB
which, as we have seen, it true.

2.5 Contravariant functors are closed under composition.

A.2.2 For section 2.2
2.6 (a) We have

be (3f)(X) <= (Fa€ A)b= faNa€ X]
be (VA)(X) < b¢ (3f)(X)
< —(Ja€ A)b= faNae X']
< (Va € A)b# faVa¢ X'] < (Va € A)b= fa=a € X]

for b € B.
(b) Suppose f is not surjective and consider b € B — f[A]. Then

b¢3(NX) beV()X)

for each X C A.
(c) The monotone properties are straight forward.

150

For the adjunction properties we require
ANHX)CY <= X C f(Y)
fEY) S X =Y CV(f)(X)
for X CAand Y C B.
For the first of these we have
A IX)CY <= (Va€ A)fae X = faeY]
— Ma€cAaeX=a€e f(Y) <= XCfo())

as required.
For the second we have

Y CV()(X) <Y C fIXT]
— fIX'|CY’
< Va€cA)ja¢ X = fa¢Y]
< (Va€ A)[fa €Y = a € X]
< Ma€AaefTY)=aeX] = fY)CX

as required.]

2.7 The inverse image part is immediate.
For the existential part observe that

(g0 /IX] = glf1X]]

for each X C A.
The universal part follows in the same way and various complements cancel out.

2.8 (a) We have

so that
Yell(f)(X) =Y ePf) (X)) =PHY) e X = f(YV)eXx

as required.

(b) In general, the composite of two contravariant functors is a covariant functor.
As an instance of this IT = P o P is a covariant functor. However, it is probably more
instructive to do the particular calculation.

Using part (a) we have

Y ell(go f)(X) <= (go /)T (V) € X
= (fTogT)Y)eX
= fTg(Y) ex
— g (Y) e I(f)(X)
=Y ell(g)(II(f)(X)) =Y € (Il(g) o II(f))(X)
to give
II(g o f) = (g) o (TI(f)

as required. The identity requirement is immediate.]

151

A.2.3 For section 2.3

2.9 (a) The first part, concerning upper and lower sections is straight forward.
For the second part we show first that {H is convex. To this end consider z < z < y
with z,y € {H. Then

z<ye(H C|H z>zxe€(HCTH
so that
z€|H z€tH

and hence
z€ |lHNtH = (H

as required.
Next consider any convex part K with H C K. We required (H C K. Consider any

z€(H=|HNTH
so that
z<yeH z>zx€H

for some z,y. But then z < z <y and
z,y€c HCK

to give z € K (since K is convex), as required.
(b) It is routine to check that the complement of a lower section is an upper section
and the complement of an upper section is a lower section. In particular

GHY (H)

is a
lower section upper section
respectively.
Since H' C TH' we have (tH')' C H" = H, to show one of the required inclusions.

The other is similar.
Finally, suppose L is a lower section L C H. Then H' C L' with L' upper to give

tH' C L', and hence L C (tH')', to gives the required maximality. [|
2.10 The top two sets are
TH H
respectively.
The bottom two are the sets of
lower upper

bounds of H, that is the sets given by

le L= (NVac H)[l <d] u €U <= (Va € H)[a < u]

152

respectively. |
2.11 Tt is easier if we do the second part first. We find that
X <Y < 1Y CtX

1Y C1X
X<Y and
IXClYy

X<V« |XClY

for X,Y € PA. With these the preordering properties are immediate. For instance

1Z C1Y C1X tZ CtX
X<ly<tz— and — and — X<z
IXClY C1Z X C1Z

to show that <! is transitive.
Each preordered set can be converted into a partially ordered set by factoring out
an approriate equivalence relation. If we do that here we get the

b b f

lower convex upper

sections under the appropriate comparison. |

2.12 (a) Your experiance with Exercise 2.6 should help here.

[I think some of the motation in Solution 1.15 has gone missing
or got screwed up.]

Given a monotone map

S ¢ T
between posets the inverse image function
— «—
LS f=¢ LT

is monotone between the posets of lower sections. For X € LS set

A(P)(X) = Lo[X] V(9)(X) = (1¢[X])
to produce two lower section in £T. In more detail we have

t€3IP)(X) <= (s S)[t < psNs € X]
teV(P)(X) <= (Vs € S)[ps <t = s € X]

for t € T'. We can now show

3(¢) 4 4V(4)

as in Solution 2.6. For instance
Y CV()(X) ==Y C (1o[XT])
= XY’
—= ¢X'|CY’

153

s (Vs E S)[s € P (V) > s € X] = ¢~ (V) C X

as required. Here the third equivalence holds since Y is a lower section and hence Y” is

an upper section.

(b) This is more or less the same as part (a) with certain comparisons reversed. W

A.2.4 For section 2.4

For subsection 2.4.1

2.13 The main problem is to show that both constructions pass across composition in
the required manner. It is instructive to do these two proofs in parallel.

F = C[, K]

Thus let
F= C[K ’]
and consider a composite
A f
of arrows.
We require

F(go f)=F(g) o F(f)

for the covariant case. Consider how these
three constructions behave. We have

cix, 4] LY o 5 £, ek o

pr—— fop
qr———>gogq

Pt ~gofop
C[K, A] o) -~ C[K,C)]
and hence
(F(g) o F(f))(p) = F(9)(F(f)(p))
=F(g)(fop)

as required.

We require

F(go f)=F(f)oF(g)

for the contravariant case. Consider how
these three constructions behave. We have

cia k] £Y9 e k) E9 oo k]

rog+———ir
qof ~—ig¢

rogof = 7
Ol A CIK,C]
and hence
(F(f) o F(9))(r) = F(£)(F(9)(p))
= F(f)(reg)

as required.

154

Observe the similarites and differences here. |
2.14 The pointwise comparison between to monotone maps

q

—_—

p

S T

on posets S, T is given by
p < q<= (Vs € S)[ps < gs]

and it is straight forward to show that this turns Pos[S,T] into a poset.
Consider the covariant hom-functor

F = Pos[K, -]

Pos Set

for some fixed poset K. We have just seen that for each poset A the set F'S] = Pos[K, 5]
is a poset. To show that F' becomes a functor

. F = Pos[K, "]

Po Pos

we must show that for each monotone map (Pos-arrow)

f

S T

the result
Pos[K, S| — Pos[K,T]
p———fop

is monotone (not just a function). But, for p,q € Pos[K, S| we have

p < qg= (Vs € S)[ps < gs]
= (Vs € 9)[f(ps) < f(gs)]
= (Vs € S)[(fop)s < (foq)s] = (fop)<(fogq)

to give the required result.
The contravariant case is similar. |

2.15 Let k be an arbitrary element of the poset S and consider the two hom-functors
given by
fs= 5[k, s fs=15[s, k|

(for s € S). Technically each value fs is either the empty set or a singleton, We may
represent these by 0 and 1, respectivley. Let

2={0,1}
thought of as a poset. Then the two hom functors are the maps

f

S 2

given by

foo [1iE<s
ST0ifk ¢ s

respectively. It is show that
s<t= fs < ft

and hence f is
monotone

respectively, for the two cases.

For subsection 2.4.2

155

oo [Lifs <k
ST0ifs £k

s<t= ft< fs

antitone

2.16 (a) We use the more sensible notation of Solution 1.20. Consider a composable

pair of arrows

A() BO CO
I fo) |
e > 3 ¥
vh ¢ v
A1 B1 Cl
of C7. These unravel to
A fo By 9 . ¢
| | |
« B gl
\ \ \
A - By - C
fi g1
where each square commutes. Then
S(f)=r Sg) =90 Slgef)=(goflo=go°fo
T(f)=hH T@=g9 T(gof)=(g9ofli=go0f
which gives the required result.
(b) We have
A
AA = lA{
A

A
A(A—— B) = 1A{
A

A
A(A—»B—»C):lA{
A

-

tU<H—m
s

[)

-]

lm

= Ago A(f)

W~y — W

°]

156

to give the required results. |

2.17 As with other cases it makes life easier if we choose a decent notation. Thus an
object of C" is pair of arrows of C

A,
A= / \
A, A,

and an arrow of C"
A, B,
SN == N\
A, A, B, B,

is a triple of arrows of C

o g

A,
/ A, - B,
Ay 7 - B

Ve

l

for which the two squares commute.
(a) In the above notation, setting

LA =A CA =A. RA =A,
Lify=fi C(f)=f. R(f) = fr

produces three functors C" —— C.
(b) Setting

A
VA= I,V \1f
A A

- B

A f
via L. p)= ////\\\A \\\
/
A - B
f

- B
f

for each object A and arrow f of C produces a functor C —— C”. |

157

For subsection 2.4.3

2.19 (a) The comma category

L Id
1=%cCc,Cc,C+0)

is the slice K\ C' where L selects the object K.
(b) The slice C/K is the comma category

Id R
(c=c,c,Cc~0C)

where R selects the object K.
(c) The comma category

Id Id
(C—C,C,C+——20C)
is the arrow category C . [|
2.20 When applied to

(4,(4) L+ r(B), B)

the three object assignments pick out the three components

A ray L

R(B) B

which are objects of
A c B

respectively. The arrow assignments then do the obvious thing. |

A.2.5 For section 2.5
2.21 By definition, a natural transformation

Ui

F G

is a natural isomorphism if there is a natural transformation

F G

in the opposite direction such that for each source object A the two composites

1A

Ca

are the identities of F'A and GA. In particular, each 74 is an isomorphism in the target
category.

FA GA

158

Conversely, suppose that 7 is a natural transformation such that each component 74
is an isomorphism. Then each component 774 has a unique inverse arrow (4, as above.
We must show that this family ¢ is natural. To this end consider an arrow

A ! B
in the source category. We must show that
aA A, Fa
G(f){ {F (f)
GB —— FB
(B
commutes. Consider the diagram
Ga -S4 pa 1AL Ga
G(f){ {F(f) {G(f)
GB - F'B ~» GB
(B nB

where we know that the right hand square does commute (since 7 is natural). But now

no F(f)oCa=G(f)onaca=G(f)

and hnce
(BoG(f)=(ponpoF(f)oCa=F(f)ola

as required. [

A.2.6 For section 2.6
For subsection 2.6.1

2.23 For each set A consider the function

Py
a ———— {a}/

which send an element to the complement of its singleton. We show this is natural, that
is for each function

f

A B

the square
AT, poa

f{ lpv(f)

B —— PyB
1B

159

commutes. Remembering that

Po(H)(X) = FIXT
for each X C A we see that each a € A is sent to {fa}’ by both routes. [

2.24 Remembering that
Yell(f)(X) <= f(Y)e X
(for Y C B and X C PA) for each a € A we have
Y € (II(f) o na)a <=Y € II(f)(cnaa)
< f(Y) € naa
<= a€ f(Y)
<~ fa€Y
=Y €np(fa) <~ Yempofa
to give II(f) ona = np o f, as required. |

[Has the notation for the next solution been set up)
2.26 For each poset S the poset TS is the family of all upper section of S under
inclusion. Each monotone map

.7

gives a monotone map

(_
TS ¢ T

by taking inverse images. This map ¢¢ has a left and a right adjoint

A(¢) 47 AV(9)
given by
3(GU) =14lU] V($)(U) = (U]
for each U € TS. These are the endofuntors called Y7 and YV in the question.
It is routine to check that for each poset S the two assignments

3 v

s—15 g s—15 g

sF——1s s —— ({s)’
are monotone. We show they are natural.

We must check that for each monotone map
S ¢ T
the two squares
3 v
s 5, rg s, vg
¢{ {3(45) ¢t {V(@

Uy Uiy

160

commute. This is done by tracking and element s € S from the top left to bottom right
via both routes. We get

T(fs) =1(8[1s]) (gs)' = (Lo[ls])
in the two cases. n

2.27 (a) This is a case where a more detailed notation helps. Thus we write (5, <) for
as poset, that is a set S furnished with a comparison < which is a partial ordering.
The opposite is given by
0($,<) = (5,5)

where
sCtest<t

for s,t € S. In other words the opposite is the same set furnished with the reverse of
the given comparison.

This is the object assignment of the functor.

For the arrow assignment consider a monotone map

¢

(S, <) (T,<)
between two posets. Notice that ¢ is still monotone relative to the opposite comparisons
of <. Thus we set

¢ ¢

o((8,<)

(T,<)) = ((S,5)

(T,5))

that is we take the same function but view it differently.

We need to check that this gives a functor. However, this is almost immediate since
under both views arrow composition is just function composition.

(b) Consider a poset (S, <). Then O(S, <) is the poset (S,C) using the opposite
comparsion. From this

(L0 0)(8,<)

is the set of lower sections of (S, C) under inclusion. This is just the set of upper sections
of (S, <) under inclusion.
Similarly £7(S, <) takes the set of lower section of (S, <) under inclusion. But now

(00 L)(8,<)

takes the same lower section and compares them by reverse inclusion. This is equivalent
to comparing the lower sections by inclusion of their complements.
In this way we find that

(£700)(S,<) — (00 LY)(S,<)
Ui U’

is an isomorphism of posets (where U € Y (S, <)).

With a little more effort we find that this isomorphism is natural for variation of
(5,<).

Finally, we can show that £7 0 O is just YT=. |

161

For subsection 2.6.2

2.28 The first main problem is to show the naturality of the constructed e. To this end
consider a C-arrow

A / B
and the associated square in Set
KA — A . FA
fo— F(f)
(K. B] ————FB F(f)(F@o)¥)
fopi F(fop)k

as on the inside of the diagram. To show this square commutes we track and abitrary
arrow

K—P .4

via both routes to the opposite corner, as on the oputside of the diagram. But now,
since F' is a functor, we have

F(f op)k = (F(f) o F(p))k = F(f)(F(p)k)

to give the required result.
The second main problem is to show that an arbitrary natural transformation

€

[K’ _] F

is just evaluation at k = ex(1x). For this we use an aribtrary arrrow

K—L .4
to produce a diagram
1 Kt k
K, K] — & . FK
po-— F(p)
K, A FA F(p)k
€A

polg =pi €AD

162

together with a tracking of 1x. The naturality ensures that the inner square commutes,
and hence

eap = F(p)k
as required. [

2.29 For each object A we have a pair of bijections

AL FAM LA

(K, 4]

where these are natural for variation of A. Furthermore, these are given by evaluation
at

k=ex(lk) Il =er(1r)
respectively.

Since €4 is surjective we have

(Vm € FA)Y3K —F—~ A)[F(p)k = ealp) = m]
and hence
VL —L A)3K —Z A)[F(p)k = 1aq]

as a particular case. Specializing to A = L with ¢ = 1;, we get some

K-2.r1

with
F(p)k =nalp =1
as required.]

[Relate the next solution to the use of separators]
2.30 (a) This is similar but easier than part (b) using a 1-element set {e} in place of N.
(b) Let

Mon Set

be the forgetful functor. Thus for each monoid A the set F'A is the carrier of A. (Usually
we do not distinguish between A and F A, but here we need to.) Let N be the additive
monoid of natural numbers. For each monoid consider the function

€A

N, A] FA
p——pl

that is each monoid morphism

163

is sent to its value at 1. First observe that this is a bijection of sets. Then show that
the family e is natural for variation of A. Thus the pair (N, 1) provide a representation
of F. ||

2.33 Lemma 2.9 is essentially about the use of characteristic functions to locate subsets.
For each set A there are bijective correspondences

PA Set[A, 2] PA
X p U

given by
a€X <<= pa=0 pa=1<=aclU
for each a € A. In other words we can either use ‘value is 0’ or ‘value is 1’ to locate the

subset. Once we have this Lemma 2.9 needs just a little bit more work.
Suppose A is a poset and consider corresponding

X P U
as above. Here X, U are subsets and p is a function. We now check that
X € LA <= pis monotone <— U € TA

to prove the Lemma.

For instance, suppose X € LA and consider arbitrary a < b in A. If pb = 1 then
certainly pa < pb. If pb = 0 then a < b € X so that a € X and hence pa = 0 < pb.
Thus in all cases pa < pb, to show that p is monotone.

The other five required implications follow by variants of this idea.

To prove Lemma 2.10 we must show that for an arbitrary monoid morphism

¢

B A

we must show that the induced squares

-
TA ¢ - TB

A

Pos[A,2] —(— o ¢)— Pos[:B,Q]

LA = - LB

all commute. For instance, suppose U € T corresponds to the character p : A —— 2.
By a simple calculation we find that ¢ (U) corresponds to the character po¢ : B — 2.

Much of the proof of Theorem 2.11 has alrteady been done. What remains is to
show that several functions are, in fact, monoid morphism.
For instance, we must show that for each monoid morphism

¢

B A

164

the induced function

— O

Pos[A,2] Pos[B, 2]

is monotone, that is
g<p=qop<pog
for Pos-characters p,q on A. But if
q<p

then (by definition)
(Vz : A)[gz < pz]

so that (by specialization)
(Vy : B)lg(¢y) < p(¢y)]

to give the required result.
The other requirements are just as easy. |

2.34 (a) There are many things to be checked here, but none of them is very difficult.
The main problem is making sure that nothing is overlooked. Let’s list what has to be
done, and look at the proofs of a few of these.

(i) Fix a monotone map f: A —— TS. For a given s € S define ¢s C A by
a € ¢ps< s € fa

(for a € A). We must check that ¢s € TA. To this end consider a < b in A.
Then, since f is monotone, we have

a€Eps=—=s€ faC fo=s€ fo=">¢€ ¢s
to give the required result.

(ii) This converts the given f into a function ¢ : S —— T A. We must check that ¢
is monotone, that is
s<t= ¢s C ¢t

for s,t € S. This follows since each value of f is an upper section of S.

(iii) This produces an assignment

Pos[A,TS] — Pos[S, TA]
fr———9

which we must show is monotone. To this end suppose
f—¢ g—=>

and suppose f < g. Consider any s € S, so we require ¢s C 9s. But for each
a € A we have

a€EYPs—=—s€ faCga— s € ga—=—>a€Ys

to give the required result.

165

(iv) This produces a monotone map

Pos[A,TS] — Pos[S, TA]
f———9¢
and in the same way we obtain a monotone map
Pos[A,YS] «— Pos[S,TA]
f<—¢

in the opposite direction. Almost trivially these form an inverse pair of assign-
ments, and hence an inverse pair of monoid isomorphisms.

(v) Finally, we must show this bijection is natural for varaition of A and S. In fact,
this can be checked for separate variation of A and S.

Let

B A T S

be arbitraray monotone maps, and consider the induced squares

[A, 7S] [S, TA] [A4, 7S] [S, TA]
—oh lh‘_O— 0 o — 1—09
[B,TS] [S, TB] [A, YT [T, TA]

where the left hand one is concerende with variation across h and the right hand one is

concerened with variation across §. We must show that both squares commute. (Strictly

speaking there are four squares here, but we need deal only with two of them.)
Consider any monotone map

f

A TS

which lives in the top right hand corner of each square. Tracking this produces

N N

foht P 0 o fr—m—>x

- —
- _ o0

hSo¢

where ¢ is obtained from f, as above, with 1 obtained from f o h and x obtained from
0¢ o f in an analogous way. We must show that both

Qp:h‘_ogﬁ X:¢00
hold. For each a € A,b € B,s € §,t € T we have

beyps<=se(fohb <= hbec ps<=be (h o¢)s
a€Ext<=te (0 of)a=0t€ fa<=a€ (pob)t

166

to give the required results.
(b) Let us write write

F f

A 1S,2] A

d
TS S ¢ T S [4,2]
for the arrows in the various places. The outer correspondences

[4,[S,2]] [A4,TS5] [S, TA] [S,[4,2]]
Fe— > f ¢ o

are given by
Fas=1<4+=s€ fa a € ¢ps <= Psa=1

for a € A,s € S. The inner correspondence is described above. Thus
Fas=14<=s€ fa<=a€ ¢ps <= Psa=1

to give
Fas = ®sa

that is we pass from one side to the other by merely inerting the order of the inputs.

(c) What we have here is a simple example of a contravariant adjunction, or more
precisely, a schizophrenically induced contravariant adjunction. There are many exam-
ples of this in mathematics, and often the details can be a bit hard to verify.

There are several kinds of structures around and the secret is to encode in terms
of ‘characters’, arrows to some special object S. This is combined with the currying of
2-placed functions, and the chipping, interchanging, of the order of two inputs. See the
next solution for a simple example of this. |

2.35 Do not read this solution until you are quite sure you understand the
previous solution

The obvious thing to try is to use the ‘lower’ part Lemma 2.10 to produce a modi-
fication of Example 2.12

Pos[A, LS] Pos[S, LA]
f<——9¢

which deals with the lower sections £(-) of a poset. We can try the same assignments
S € fa<=a € ¢s

(for a € A, s € S) to produce the correspondence. After all, many of the requirements

have been verified in Solution 2.34. Try that before you read the next sentence.

Are you sure you managed that. If you are sure then you are wrong. You can
certainly set up a bijection of sorts at the set level, but not between monotone maps.
For the assignments top produce lower section we need f and ¢ to be antitone, not
monotone. In other words these assignments set up a bijective correspondence

Pos[AP, LS] Pos[SP, LA]
f<—>9

using the opposites of the posets.

167

Try this.
If you want to set up a correspondence

Pos[A, LS] Pos|S, LA]
f<——9¢

then you must use the assignments
SE fa<=a¢ ¢s
(for a € A, s € S). This negation seems strange, but it works. Try it. |

[For the next solution it would be covenient to have some
earlier stuff on composition of natural transformations.
Is it worth doing the horizontal and vertical stuff.]

2.36 (a) We use the bijection

PA Set[A, 2]
X< >y

given by
a€EX <= pa=1

(for a € A). We find that for each function

A / B
the square

PB I~ PA

B,2] —— [A,2

8,2 — [4.)

commutes. In other words, the two contravariant functors

P

2]

Set Set

are naturally isomorphic.
The functor II is just P o P (and hence is covariant). In the same way we can form
the composite

Set[Set]-, 2], 2]

to obtain a covariant functor which is naturally isomorphism to II.
Remember that the natural transformation

A" a4

is given by
Xena<—aecX

168

for a € A and X C A. We viewed in terms of characters this is quite neat.
For each a € A let
a*:[A,2] — 2
be the function given by
a*p = pa
for each p € [A,2]. You should check that this assignment (-)* is natural for variation
of A. In other words, it produces a a natural transformation

I —— Set[Set[,2],2]

form the identity functor.
Finally, you should check that if
PA Set[A,?2]
X<—>p
then
X enpa<=a'p=1
for each a € A.
(b) Let Veck be the category of vector spaces over the field K. Remember that the

arrows of Vecg are the linear transformations between the spaces.
The first dual V* of a vector space (over a field K) is the set

Veck[V, K]

of all linear transformations from V to K. In other words, it is the set of K-characters
on V. It is a standard result that if V has finite dimension then so does V* and the
two spaces have the same dimension. Thus if V is finite dimensional then V' and V*
are isomorphic. However, there appears to be no ‘canonical’ or ‘natural’ isomorphism
between the two.

The second dual V** is the set of all K-characters of V*, the set of all linear trans-
formations

v K
to K. For each a € V and a € V* let
a*o = aa
to attach a function
a: V' —K

to each a € V. It can be checked that a* is a linear transformation, and so is a member
of V*. This gives an assignment
V’**

G/*

|4
a

which we may check is linear (an arrow in Vecg), and is natural for variation of V.
When V is finite dimensional this assignment is an isomorphism. Thus in this case V
and V* are isomorphic in some fashion or other, but ¥V and V** are naturally isomorphic.
This is one of the examples which prompted an investigation of what ‘natural’ ought to
mean and eventually lead to category theory. |

2.37 These characters pick out precisely the open sets on the carrying space S. |

169

A.2.7 For section 2.7

2.38 For each group G let
LG =G/éG

the quotient of G by its normalizer subgroup, and let

Ui

G LG

be the associated quotient morphism which sends a € G to the coset of all elements

alz1,y1] - [Tm, Ym]

for z1,91,-..,Tm,ym € G. It is a standard result that LG is abelian and has the
following universal property.

For each morphism

G A

to an abelain group there is a unique morphism

1
LG ! A
such that the triangle
G ! A
N A
LG
commutes.
This says that L is left adjoint to the forgetful functor. |

2.39 The functors D and I convert a set S into the discrete poset and the indiscrete
preset on S, respectively. [|

A.3 For chapter 3
A.3.1 For section 3.1

3.1 For elements a,b of a poset the product and the sum are the meet a A b and the
join a V b, respectively. |

3.2 (a) Let
L=(AxB)xC R=Ax(BxC(C)

170

and consider the projections

L R
N N
AxB C A BxC

N 7N
A B B C
attached to these various products. Using these we build up various commuting triangles
L
AR
A <

»BxC

B 0
Qr r
/g ot
!
AxB L
dr

- C

M
where
,u‘:<a7“a187‘057"> v = </8l05la7l>
and 7, (are the corresponding mediating arrows. We show that
Con=idy, no{=idr

using the uniqueness of these various mediators. Notice that

Qo= ay Brov=PFod
/Bloﬂzﬁroér Yr OV =7

hold (by certain mediating properties).
Consider now the diagram

where the bottom part is a product wedge. Because of this the only arrow

L Ax B

with
ool =qapod; Brob=Pod

171

is the given §;. We use this to get at the composite o 7.
Using various commuting triangles and equalities from above we have

qodofon=aqopon=oaron=0o0d

and
ProdioCon=pFopon=prodon=pFrov=p004
so that
dpoCon =74
by the above remark.
A similar calculation gives
yogon=m

and then the same trick with the diagram

gives
(on=idg
which is one of the required equalities.
A repeat of this argument starting from a different diagram give the other required

equality.
1

(b) We show that
is a product wedge, and the use the fact that different selected products of the same
pair are isomorphic.
[Has that been proved anywhere]
Here ! 4 is the unique arrow from A to the terminal object.

Consider any wedge
1

from an arbitrary object X. Here f must be the unique arrow !x. Furthermore, there
is precisely one arrow

A

A

X A

172

such that
X
1+ A—— A
'a ida
commutes, namely g, and so we do have a product wedge, as required. |

3.5 (a) For the time being fix A, B,C and let
L=AxC+BxC R=(A+B)xC

be the two compounds. There are various product or sum wedges we can look at.
We have

AxC Bx(C
A C B C
N)

A+B A+B

where «a, 3,74, are projections from a product, and ¢ 4,tp are insertions to a sum.
Since R is a product this gives us arrows

AN

A+ B C

where 4,7y are projections from the product, and A, p are unique mediating arrows such
that
dod=t1g40a YyoA=r4 dop=1gofl ~yop=rg

hold. Finally, since L is a sum we have a unique mediator such that

AxC—% <" BxcC
R

commutes. Here ¢, 1, are the associated sum insertions.

This gives us the existence of the required arrow y. To verify naturality we have to
see how y changes as A, B,C vary along arrows. This is a bit tedious, but because of
all the uniqueness we generate many commutinh squares.

173

(b) We may view the compounds L, R as functors

c? C

and then we find that p is a natural transformation in the technical sense.

(c) A counter example can be found in a suitable poset. Consider the lantern poset

/TN
N/

T

a c b

L

as shown. Then
aNec=1L=0bAc avVb=T

to give
l=(aNc)V(bAc)=1 r=(aVbAc=c

and hence r £ I. [|

3.6 (a) A pointed set (A,a) is a set with a distinguished element. The associated
morphisms are functions that preserve the distinguished element.
Binary products can be obtained using the obvious cartesian product construction.
Binary sums are a bit more interesting, and tedious. Consider

(4,a) (B,b)

to pointed sets. Consider two disjoint sets L, R together with bijections

oA @ B-{p-

L R

where in each case the distinguished element has been removed. (Such sets L, R can be
obtained from A — {a}, B — {b} by the usual kind of tagging trick. However, the details
of this are not important and, in fact, a distraction.)
Let
S=LURU{x}

where x is a new element. This gives a pointed set (S, *) and a pair of morphisms

l T

A —{a} B —{b}

S R

where [,r are the extensions of [~,7~ which send the distinguished element to *. A
tedious argument now shows that this is a sum wedge.

(b) An object in this category is a pair (A4, X) where A, X are sets with X C A. A
morphism

4x) LBy

174

in this category is a function f : A —— B with f[X] C Y, that is f must send each
element of the distinguished subset X to an element of the distinguished subset Y.
It is routine to check that the cartesian product

(AxB,X xY)

with the obvious projections gives the categorical product.
To produce the sum first obtain isomorphisms

(4, %) 2o (4, X" (B,Y) P, (B, Y")

where A'N B = (). (This can be done using the standard tagging trick.) We now show
that

(4, X)

.

(AI,XI
(A'UB, X"UY")

(B',Y")
d
(B,Y)
is a sum wedge in the category. To this end consider a diagram

(4, X)

.

A, X'

/i

(A'uB' , X'UY’) (C,7)

\

BI , YI
(B,Y) -
4
(B,Y)
which requires a unique arrow

(A'UB', X'uY’) LN (C,2Z)

175

to mediate between the given f and g. Because of the disjointness this arrow can only
be given by
faif s = aa
hs = .
gb if s = b
(for s € AU B'). Tt is routine to check that this does, in fact, give a morphism. []

3.8 Consider any morphism

Al B G

such that
nou=f nov=g

holds. We know the morphism A? is special, so it suffices to show
nom = A

and then apply Lemma 3.11 to obtain the required uniqueness of n.
Expanding v and v we have

nomokoi=f=~hoi nomokoj=g=hoj

and hence
nomok=h="hlok

since ¢ and j are insertions into a sum in Set.
Now both
nom R

are morphisms from a freely generated group K which agree on the generators (via k).
Hence the freeness gives the required equality. |

3.9 Let A,B be a pair of abelain groups (written multiplicatively). We define the
cartesian product A X B in the usual way, and then check that this is the categorical
product.

The proof that A x B is the categorical sum in Abg is less routine.

First of all we observe that the functions

A A x B B B Ax B
a — (a,1) b— (1,b)

are morphisms. We show that these provide the sum insertions.
Consider any pair of morphisms

176

to an abelian group G. We require a commuting diagram

for some unique morphism A.
Suppose first that there is such a morphism h. For each a € A,b € B we have

(a,b) = (a,1) - (1,b) = (o) - (Bb)
in A x B. Hence
h(a,b) = h((aa) - (Bb)) = h(ca) - h(Bb)
to give
(?) h(a,b) = (fa)-(gb)

in G. This shows there can be at most one mediating morphism A, and it must be given
by this rule. Thus it suffices to show that (?) does give a morphism.
Consider aq,as € A,by,by € B. Then
(a1,b1) - (a2, b2) = (a1a2,b1b2)

so that

h((a1,b1) - (a2,b2)) = h(araz, b1, b2)
= fla1a2)g(b1, b2)
= (fa1)(faz)(gb1)(gb2)
= (fa1)(gb1)(faz)(gb2) = h(a,b1)h(az,bs)

as required. Here the crucial step is the fourth equality, for this uses the comutativity
of G.

This proof does not work if G is not abelian. In fact, by a slight reworking we can
show that for abelian groups A, B the product A X B is not the sum in Grp (unless
one of A or B is trivial).

To see this observe that the set

W (A, B)
of ‘collapsed’ words gives a group in the obvious way, with embeddings

A w B w

via the singleton words. (A word is ‘collapsed’ if not two consecutive letters come from
the same component group.) However, there is no mediating morphism

177

which gives these embeddings. For suppose there is some h.
For a € A,b € B we have

(a,b) = (aa) - (Bb)

so that
h(a,b) = h(aa)h(Bb) = ab

in W. In particular
h(a,1) =a h(1,b) = b

for arbitrary a,b. But
(a,1) - (1,0) = (a,b) = (1,b) - (a,1)
and hence
ab= h’(aa 1) ' h‘(la b) = h((a', 1) : (Lb)) = h((la b) ' (aa 1)) = h(lab) : h(aa 1) = ba

which is false (unless either a or b is 1). [|

A.3.2 For section 3.2
3.10 (a) If the quiver is just one arrow

A B

then the limit (left limit) is the identity arrow on A.
If the quiver has precisely two arrows

A B

_ >

then the limit is the equalizer of this pair.
For more arrows we move through the quiver taking equaklizers as we go. Suppose
we have a quiver

which consists of a bunch of arrows f and another arrow g. We first find the limit of
the bunch f

L A f B
to give a common arrow
(f o l’
L B

(with a suggestive notation). Now consider the parallel pair (small quiver)

Cfol’

L B

—_—

gol

178

using a genuine compsite for the other component. Let
Ef o l’

_— >

gol

m

E L B

be the equalizer of this pair. A simple argument show that the composite [o m
At B

9

lom

is the limit of the original quiver.

(b) This proof doesn’t generalize to infinite quivers. In fact, the result isn’t true. W

3.11 (a) Consider an equalizer

E—" .4 B
of a pair of arrows. Consider also a parallel pair
f
S E
g

such that

mof=moyg
holds. We require f = g. But this composite makes equal the origianl two arrows,
and so must factor uniquely through the mediating arrow m. In other words f = g, as
erquired.

(b) The dual result says that each coequalizer is epic. The proof is the same with
the arrows turned around. u

A.3.3 For section 3.3

3.12 The pullback of
B

B

A—C
o

is easy. we first take the product A x B and then take the subset ¥ C A x B of all pairs
(a,b) for which fa = gb.

This can be generalized, as in Exercise 3.14.

[sort out pushouts] [|

3.13 We need to label the arrows (but not the objects). Consider a commuting diagram

q p

O <—O— 0

179

(a) Suppose the two squares are pulbacks and consider arrows f, g

X
f
INT @ |
c b a
' ' '
.m.l.

for which
lomog=aof

holds. From the right hand pullback there is a unique arrow h

X
.y
.\:. > @
INT e P
c b a
I i |
.m‘.l‘.

such that
mog=>boh f=poh

hold. But now, from the left hand pullback there is a unique arrow k

such that
g=cok h=gqok
hold. Since
f=poh=poqok
this gives a required common factorization of f and g.

We must show that this factorization is unique. To this end suppose we have arrow
k1, ko such that

g=cok; f=poqok;
for 1 = 1,2. With
hi =qok;

180

we have
mog=mocok;=boqgok;=boh; f=poqok;=poh;

and hence
gqoki =hy =hy =qok

by the mediating property of the right hand pullback. With

h=hy =hs
we have
g=cok; h=qok;
and hence
kg = ko
by the mediating property of the left hand pullback. |

3.14 Starting from a wedge The pullback of
B

B
A——C
!

we first form the product A x B to obtain a square

B-L.

A x B
pl {5
A C
a

where the new arrows are the projections. This need not commute so we form the
equalizer

Bog
E AXx B C
aop
of the two compsite arrows. We show that
g 21°". B
po 7’{ {ﬂ
A C
e

is a pullback.

181

To this end consider arrows f, g

FE B
f Tor
por |
A C
«o
such that
aof=Pfog

holds. From the product property we obtain an arrow h

Ny’
.
A

— B
! q

bl

A——C
o

X

Sy

such that
f=peh g=qoh
hold. But now
aopoh=aof=Fog=Pogoh

to show that h makes equal the two parallel arrows a o p,8 o q. From the equalizer
property we obtain an arrow k

X - F » AxX B

such that
h=rok

holds. With this we have
f=poh=porok g=qoh=gqorok

which is the required factorization of f and g.

Of course, we must show that k is the only possible arrow through which f and g
factorize in this way.

To this end consider any arrow k such that

f=porok g=gorok
hold. We show first that the composite

h=rok

182

is uniquely determined and independent of k. For this we observe that
poh=porok=f goh=gqgorok=gyg
and hence h is uniqely determined by thwe product property. Finally we check that
aopof=fFogoh

and hence, by the equalizer property, this unique A factorizes uniquely through r. Since
h = r o k, this shows that k is uniquely determined. |

3.15 We need to label the arrows.

p

E A A A

B F B B

S

We will use the uniqueness of mediating arrows several times. Here is the basic trick.
Suppose we have a parallel pair of arrows

l

_—
m

X E

such that both
pol=pom gol=gqgom

hold. Then, since both | and m mediate for the commuting square

X_»pol:pom A
X
C
gol=gom ////////)
B B
we have
l=m

(by the uniqueness of mediators).
As a particular case of this, the only arrow

h

E E

for which
poh=p gqoh=gq

ish=1d E-
There are similar properties of F.

183

(In fact, every limit object has similar properties.)
Now, since
aor=/fos

and F is the limit corner of a pullback square, we have
r=poe s=gqoe

for some unique arrow e in the position shown. Similarly, swithching the roles of £ and
F', we have

p=rof g=sof

for some unique arrow f in the position shown. Using these equalities we have

poeof=rof=p qoeof=sof=q

and hence
eo f =1idg
by the remarks above. Similar
foe=1idp
by a dual argument. ||

A.3.4 For section 3.4

3.16 The idea of the proof is simple. A (finite) digram D is a (finite) collections
of objects and a (finite) collection of arrows between these objects to form a certain
configuration. To obtain the limit we first take the product P of all the family of
objects. This produces an apex object P and a projection arrow to each object of .
However, these projections may not ‘solve’ I), that is they may not combine with the
arrows of D to produce commuting triangles. To cure this SD start to refine P by taking
equalizer, one for each triangle that does not commute.

That is the idea of one proof (and one that can be used in practise for particular
cases). However, the general details can be a bit messy. Here is another proof that
works for arbitrary diagrams (provided the category allows arbitrary products).

We need to set up the notation for a diagram in more detail.

[Perhaps this should be put into the section.]

The diagram D consists of two indexed families.

Objects D(0Ob) = (A(v) |v € V)

d(e)

Arrows D(Ar) = (S(e) T(e)|e € E)

Think of V' as the set of vertexes and E as the set of edges of a graph. This graph
gives a template for the diagram in the category. Thus D assigns an object A(v) to each
vertex v and an arrow d(e) to each edge e. (This is like a functor except there are no
required commuting conditions.)

For each edge index e € E the arrow

o(e)

S(e) T(e)

184

passes between two object of D. Thus for each e € E there are associated vertex indexes
s(e) eV tle) eV

such that
S(e) = A(s(e)) T(e) = A(t(e))

are the source and target objects of §(e).
How can we obtain the limit of D?
We start by forming the products

P= H v)|vEeV) Q= H e)|e€E)

indexes by V' and FE, respectively. This gives us two families

p(v) q(e)

p

A(v) Q T(e)

again indexed by V and E.
Next we set up a parallel pair

P Q

T

for P to Q. To do this we use the universal product property of () in two ways.
For each e € E we have a composite arrow

CC) RPN O

T(e)
and this whole family must factor through some unique arrow

P a

Q

by the product property of (). Thus we have

(s) d(e)op(s(e)) =qle)oo

for each e € E.
For each e € E we have an arrow

and again this whole family must factor through some unique arrow

by the product property of (). Thus we have

for each e € E.

185

Next we let

o
r—"? .p 0
n
be the equalizer of the parallel pair. In particular
(5) cop=roo
hold.
Finally we take the composite
e =p)op | A(v)

for each v € V. We show that the family
a=(av)|veV)

structure L as the limit of ID. This is done in a series of steps.
First we show that o solves D, that is

commutes for each e € E. But

d(e) o a(s(e)) = d(e) o p(s(e)) o p = ge) oo 0 p=g(e) om0 p=p(t(e)) o p = aft(e))

are required. Here the central equalities follow by (s),(=),(t), respectively.
Secondly we show that a provides a mediator for an arbitrary solution to D. To
this end let

(XM»A(UHUEV)

by any solution. Thus
(sol) d(e) o&(s(e)) = &(t(e))

for each e € E. We require some arrow

such that

186

for each v € V.
The product property of P gives an arrow

™

X P

with
(proj) &(v) =p(v)om
for each v € V. We show that m makes equal ¢ and 7.
Consider the family of arrows

g

7r q(e)

X P

T(e)

indexed by e € E. We have
q(e) oo om=d(e) o p(s(e)) om = d(e) 0 £(s(e)) = &(t(e)) = p(t(e)) om =gle)oTom
using (s), (proj), (sol), (proj), (¢) in that order. The product property of () now gives
OO0OmM=TOT

and hence 7 does make equal o, 7, as claimed.
The equalizer property of p now gives an arrow

3

X L

such that
T=pot
holds.
With this, for each v € V we have

a(v) 0§ =p(v)opol=p(v)or=4E{(v)

to show that ¢ mediates between the special solution on L and the arbitrary solution
on X.

This almost completes the proof. It remains to show that & is the only possible
mediator for this arbitrary solution on X. To this end suppose

a(v) ox = ¢(v)

for each v € V. Then, since a(v) = p(v) o p, the parallel composites

x——5_? .p LOET
£
agree for each v € V. Thus th e product property of P gives
pox=pof
and hence
x=¢
by the uniqueness of mediators for the equalizer. |

3.17 This is a generalization of Lemma 3.22 which was dealt with in Exercise 3.15.

187

Suppose
D(0b) = (A(v)|v € V)

is the indexed family of objects of a diagram D, and suppose the two families

of arrows
l
l:(Lﬂ»A('D)"UEV) m:(MMA(U)\UEV)
are limits for D. Then there are unique arrows
l
L—" M M L

such that
l(v) =m(v)om m(v) =1(v) ol

for all v € V. Furthermore, | and m are an inverse pair of ismorphisms.

The existence of [and m are immediate consequences of the limiting properties of I and
m. So is the isomorphism properties, but that need a preliminary remark.
Suppose we have a parallel pair

X L

-—

g
such that
l(v)of=Il(v)og
for all v € V. Then, because mediators are unique, we have f = g. In particular, if an
arrow

satisfies
I(v) o h =1(v)

for all v € V, then h = idy, (since idy does satifies this family of equalities). A similar
remark holds for M.
Now consider the mediators [and m. For each v € V' we have

l(v)olom =m(v) om =I(v)

and hence
lom =1idy,

by the observation for L. Similarly
mol =idy

by the observation for M. [|

A.3.5 For section 3.5

[to be done]

188

A.4 For chapter 4

[Some of these solutions may have ’A’ and ’B’ the wrong way Tound.]

A.4.1 For section 4.1

4.1 (a) A poset S is cartesian exactly when it is a A-semilattice. That is it has a top
element T and carries a binary operation

ASxS—S

such that
r<aAb<=zAaandz<b

for all a,b,z € S.
(b) A poset S is cartesian closed exactly when it is cartesian and carries an impli-
cation, that is a binary operation

2:85x 8§ — S

such that
z<(aDdb)<=zANa<bd

for all a,b,z € S.

A.4.2 For section 4.2

4.2 Consider any monotone map

B c

between posets B, C. We must show that the induced Set-square

(p,z) (K=>B)xK —2.B

[

(hop,z) (K=C)xK ——C
€c
commutes. The left hand arrow has not been named but its behaviour has been given.
The proof is not trivial. We track (p,z) round both paths to the opposite corner. N

4.3 By way of contradiction suppose Abg is cartesian closed. Thus for each abelian
groups K, A, B the three sets of arrows

Abg[A,(K=B)] Abg|A x K, B]

are in bijective correspondence, and hence have the same size. Now consider the 1-
element group 1. This is both the initial and the final object of Abg. Setting A =1 we
see that

Abg[l, (K= B)] Abg[l x K, B|

189

have the same size. The left hand set has just one member (since 1 is initial). Also
I1xK=K

(since 1 is final). Thus, if Abg is cartesian closed, then for each pair K, B of abelian
groups there is precisely one arrow

K B

which is nonsense. [|

A.4.3 For section 4.3

4.5 (a,b) These are routine.
(c) By direct calculation, for each ¢ € (K= B) and z € K we have

¢ () = ¢7(a)" = $(«™)™ = é(x)

to show ¢** = ¢, as required.

(d) We are given
(Ib)" = 1(b*)

for all b € B, and we require
L(¢)* = L(¢7)
for ¢ € (K= B). For each z € K we have
L(¢)" = (L(¢)(z"))" = (L0 ¢)(z7))" = () (z)))" = Up(z")") = U(¢*(x)) = L(¢")z

to give the required result. Here the fourth equality follows by the morphism property
of [.

(e) Since in A x K we have
(a,2)" = (a,”,27)
for each a € A and z € K, we must show
fHa,z)" = f¥(a",¥)

for such a, x.
Since the given f is a morphism we have

(fa)" = f(a”)

and hence
fastz = (fa)*z = (faz™)%st

using the construction of the involution on (K = B). In particilar
fax = fa®¥x = (fa’stz*)*

so that
(fazx)* = fa’stz*

190

for each a € A and z € K. With this we have
f(a,2)* = (faz)* = fa*z" fH(a*,2"st)

as required.
(f) We must show
(9,a)" = gya”st

for a € A. but, remembering the construction of the involution on (K = B), for each
z € K we have

(gpa)"z = (gpaa™)" = g(a,27)" = g(a”, z) = g,a”st

to give the required result. here the third equality follows since g is a morphism.
(g) This is almost trivial.
(h) The monoid R = {—1,1} under multiplication gives these algebras. [|

4.6 (a,b) These are routine.
(c) Observe that for (¢, ¢1) € (K= B) we have

(¢0,#1)* = (¢o, ¢1) € (K= B)

since ¢y is a morphism and for for each z € K we have (¢9z)® = (doz)® (trivially). Also

(d0, ¢1)°* = (0, %0)* = (0, o) = (¢0, $1)*

to show that the constructed operation (-)® is idempotent.

(d) We are given
(ib)* = 1(6°)

for all b € B. For given ¢g, ¢1) € (K = B) we must show

(0) 1o ¢g is a morphism

(o) ((Logo)z)® = (Lo ¢1)z)®

for each z € K. Property (0) is immediate since both | and ¢y are morphisms. For (e)
we have

(o ¢o)z)* = (l¢ox))* = (I(do7)*) = (U¢12)*) = (I($17))* = ((I o ho)x)°*

as required. Here the second and fourth equality follows from the morphism property
of [, and the third equality uses the condition on the pair (¢g, ¢1).

(e) Since in A x K we have
(a,2)* = (a," , %)
for each a € A and z € K, we must show
fHa,2)* = fH(a®, %)

for such a,z. To prove that we make an observation.

191

Since the given f is a morphism we have

(fa)* = f(a®)

for each a € A. But
fa=((fa)o,(fa)1)
where each (fa); is a certain function K —— B. In particular
(fa)* = ((fa)o, (fa)o) f(a®) = ((f(a®))o, (f(a®))1)
and hence
(f(@*))o = (fa)o = (f(a®)1

for each a € A. We also remember that

fa € (K= B)

and (fa)o is a morphism so that

((fa)or)* = ((fa)1z)* ((fa)oz)® = (fa)o(z®)
for each = € K.
With these we have

fHa,2)" = ((fahe)® = ((fa)oz)* = (fa)o(z®) = (f(a*)(2*) = f*(a®, ")

as required. [Check this]

(f) We must show

(0) g(a®,-) is a morphism
() g(a* z)* =g(a,z)*
for each a € A,z € K. But g is a morphism so
g(a,)* = g(a®,z°)
and hence
gla®,z)* = g(a®,2*) = g(a®,z°)
to give (0). Using this we have
g9(a®,z)* = g(a*,2°) = g(a,z)"

to give (e).

(g) We must show

fH=1 af=g
for f and g as above. But for a € A we have
(ffa)o = f¥(a®,-) = (fa*)1 = (fa)o
by the property of f used in part (e). Also
(ffa)1 = f¥(a,") = (fah

to give the left hand requirement. The right hand requirement is almost trivial.

(h) The monoid R = {0, 1} under multiplication gives these algebras. [|

A.4.4 For section 4.4

[to be done]

