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Testing for Indeterminacy:

An Application to U.S. Monetary Policy

Abstract

This paper considers a prototypical monetary business cycle model for the

U.S. economy, in which the equilibrium is undetermined if monetary policy is

‘passive’. In previous multivariate studies it has been common practice to re-

strict parameter estimates to values for which the equilibrium is unique. We

show how the likelihood-based estimation of dynamic stochastic general equilib-

rium models can be extended to allow for indeterminacies and sunspot fluctu-

ations. We construct posterior weights for the determinacy and indeterminacy

region of the parameter space and posterior estimates for the propagation of

fundamental and sunspot shocks. According to the estimated New Keynesian

model the monetary policy post 1982 is consistent with determinacy, whereas

the pre-Volcker policy is not. We find that before 1979 indeterminacy substan-

tially altered the propagation of monetary policy, demand, and supply shocks.
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1 Introduction

Economists are increasingly making use of dynamic stochastic general equilibrium

(DSGE) models for macroeconomic analysis. In order to solve these models and

keep them tractable, linear rational expectations (LRE) models are typically used

as local approximations. However, it is well known that LRE models can have

multiple equilibria, which is often referred to as indeterminacy. Broadly speaking,

indeterminacy has two consequences. First, the propagation of fundamental shocks,

such as technology or monetary policy shocks, through the system is not uniquely

determined. Second, sunspot shocks can influence equilibrium allocations and induce

business cycle fluctuations that would not be present under determinacy.

In the popular prototypical New Keynesian monetary DSGE model (see, for in-

stance, King (2000), and Woodford (2003)) indeterminacy can arise if the monetary

policy authority follows an interest rate rule and does not raise the nominal interest

rate aggressively enough in response to an increase in inflation. While in the pres-

ence of market imperfections some sunspot fluctuations could be welfare improving

(Christiano and Harrison, 1999) others will lead to a substantial deterioration of

welfare. Hence, a central bank that is concerned about the least favorable outcome

has a strong incentive to choose a policy that leads to determinacy.

It has been suggested by Clarida, Gaĺı, and Gertler (2000), henceforth CGG,

that the U.S. monetary policy before 1979 viewed through the lens of a standard

New Keynesian DSGE model was inconsistent with equilibrium determinacy. Self-

fulfilling expectations are potentially one of the explanations for the high inflation

episode in the 1970s. Beginning with Paul Volcker’s tenure as Board Chairman

and, later on, Alan Greenspan’s the Federal Reserve implemented a much more

aggressive rule that suppresses self-fulfilling beliefs. Studying indeterminacy can

therefore contribute to our understanding of the macroeconomic instability during

the 1970s and further the design of beneficial policy rules.

The first contribution of this paper is to provide econometric tools that allow for

a systematic assessment of the quantitative importance of equilibrium indeterminacy
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and the propagation of fundamental and sunspot shocks in the context of a DSGE

model. While it is well known how to construct a likelihood function of a DSGE

model for the determinacy region of the parameter space, we show how the likelihood

function can be extended to the indeterminacy region. Based on results obtained

in Lubik and Schorfheide (2003) we index the multiple solutions that arise under

indeterminacy through additional parameters that characterize the transmission of

fundamental shocks and the distribution of sunspot shocks. We discuss the extent

to which these additional and the original DSGE model parameters are identifiable

and illustrate that even if the structural parameters are only partially identified the

likelihood function provides interesting and useful information about indeterminacy

and the propagation of shocks.

To summarize the information contained in the likelihood function we use a

Bayesian approach. The likelihood function is combined with a prior density for the

model parameters and the resulting function is interpreted as posterior density of the

parameters given the data. In the directions of the parameter space in which there

is no identification, that is, where the likelihood function is flat, the prior density

is not updated. Nevertheless, the posterior density provides a coherent summary of

prior and sample information. The Bayesian approach lets us calculate probability

weights for the determinacy and indeterminacy region of the parameter space and

posterior distributions for the propagation of shocks in the model.

The second contribution of this paper is an application of our econometric tools

to a New Keynesian business cycle model. We revisit the question whether U.S.

monetary policy was stabilizing pre- and post-Volcker. Our estimates confirm the

finding of CGG that U.S. monetary policy before 1979 has contributed to aggregate

instability and that policy has become markedly more stabilizing during the Volcker-

Greenspan period.

Our multivariate analysis has several advantages over the univariate approach

pursued by CGG. First and foremost, we are able to estimate the additional pa-

rameters that characterize the model solution under indeterminacy and can assess

the importance of sunspots and the propagation of structural shocks. We offer two
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interpretations of the pre-Volcker dynamics of output, inflation, and interest rates

in the U.S.. Under the first interpretation the presence of indeterminacy changed

the propagation of the monetary policy, demand, and supply shocks, but sunspot

shocks played no role. Under the second interpretation, the responses to fundamen-

tal shocks resemble the determinacy responses. Additional sunspot shocks caused

substantial inflation and interest rate fluctuations but had only a small effect on

aggregate output. The data slightly favor the first interpretation.

More generally, indeterminacy is a property of a dynamic system and should

therefore studied through multivariate analysis. In most models the indeterminacy

region is a complicated function of several parameters, not just the parameters of a

monetary policy reaction function. In the context of DSGE models full-information

estimators are typically more efficient than instrumental variable estimators based

on single equations. Ruge-Murcia (2002) provides some simulation evidence. How-

ever, the potential presence of sunspot fluctuations may cause identification prob-

lems that are not readily transparent in a univariate analysis. We provide an ex-

ample in which the parameter that marks the determinacy region of the parameter

space is only identifiable under indeterminacy. Nevertheless, it is possible to infer

whether data have been generated from the determinacy region.

A weakness of our approach is that it is potentially sensitive to model misspec-

ification. The endogenous dynamics in the indeterminacy region of the parameter

space are richer than in the determinacy region. Thus, propagation mechanisms

omitted from the specification of the DSGE model tend to bias our posteriors toward

indeterminacy. However, this weakness is shared by all system-based approaches to

evaluation of indeterminacies. To check the robustness of our empirical findings we

compare the pre-Volcker fit of the simple New Keynesian model to a richer model

specification with habit formation and backward-looking price setters which we re-

strict to the determinacy region. We find that the data favor the indeterminacy

interpretation provided by the simple model.

It has also been noted in the literature that the association of passive monetary

policy with indeterminacy is very model specific. For instance, Dupor (2001) shows
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that in a continuous time model with endogenous investment passive monetary pol-

icy can be consistent with determinacy. Hence our empirical finding that prior to

1979 aggregate fluctuations of output, inflation, and interest rates are best described

by indeterminacy is conditional on the model choice. However, since the New Key-

nesian monetary model considered in this paper has become a standard benchmark

in the literature, we regard it as a good starting point for the application of our

techniques.

Other empirical studies of indeterminacy fall broadly into two categories: First,

calibration exercises, such as Farmer and Guo (1994), Perli (1998) or Schmitt-

Grohé (1997, 2000), that attempt to quantify the extent to which sunspot shocks

are helpful in matching model properties to business cycle facts. They face the

common difficulty of specifying the stochastic properties of the sunspot shock. The

typical practice is to choose its variance to match the observed variance of out-

put. While these authors demonstrate the qualitative importance of indeterminacy,

their quantitative conclusions are more tenuous. As we show in this paper, equilib-

rium indeterminacy does not imply that aggregate fluctuations are in fact driven by

sunspots.

An alternative empirical approach is taken by Farmer and Guo (1995) and Salyer

and Sheffrin (1998). They try to identify sunspot shocks from rational expecta-

tions residuals that are left unexplained by exogenous fundamentals. Although

this approach imposes more structure than simple calibration, it cannot distinguish

between omitted fundamentals and actual sunspots. All of the cited papers ask

the question ‘can the observed business cycle fluctuations be explained by sunspot

shocks?’ Our approach treats the determinacy and indeterminacy hypotheses sym-

metrically and quantifies the empirical evidence in favor of one against the other.

The closest theoretical and empirical precursors1 to this paper are Leeper and

Sims (1994), Kim (2000), Ireland (2001), and Rabanal and Rubio-Ramirez (2002)

1In a much earlier contribution Jovanovic (1989) provides a general characterization of the identi-

fication problems inherent in econometric analyses of models with multiple equilibria. Cooper (2001)

surveys different empirical approaches to equilibrium indeterminacy from several fields.
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who estimate monetary models similar to ours with likelihood-based techniques.

Ireland (2001) finds significant evidence of a change in monetary policy behavior

after 1979. However, all of the above authors explicitly rule out indeterminate

equilibria in their estimation strategy. If the data are in fact best described by

parameters from the indeterminacy region, a restriction of the estimates to the

determinacy region will result in biased parameter estimates. This problem vanishes

if the model is estimated over the entire parameter space.

The paper is structured as follows. In Section 2 we present the log-linearized

New Keynesian monetary business cycle model to which our econometric tools are

applied. Section 3 illustrates the econometric tools in the context of a very sim-

ple one-equation model. The representation of the indeterminacy solutions for a

canonical LRE model is presented in Section 4. Section 5 discusses some of the

advantages of our inferential approach. Empirical results for the New Keynesian

model are presented in Section 6. Section 7 concludes and the Appendix provides

computational details.

2 A Model for the Analysis of Monetary Policy

For the empirical analysis presented in this paper we consider a prototypical New

Keynesian monetary DSGE model. This model can be summarized by the following

three equations:

x̃t = IEt[x̃t+1]− τ(R̃t − IEt[π̃t+1]) + gt, (1)

π̃t = βIEt[π̃t+1] + κ(x̃t − zt), (2)

R̃t = ρR̃t−1 + (1− ρ) (ψ1π̃t + ψ2[x̃t − zt]) + εR,t, (3)

where x is output, π is inflation, and R the nominal interest rate. The tilde denotes

percentage deviations from a steady state or, in the case of output, from a trend

path. Using log-linear approximations these equations can be derived from a micro-

founded dynamic general equilibrium model. Details can be found, for instance, in

King (2000) and Woodford (2003).
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Equation (1) is an intertemporal Euler equation obtained from the households’

optimal choice of consumption and bond holdings. Since the underlying model has

no investment, output is proportional to consumption up to an exogenous process

that can be interpreted as time-varying government spending or, more broadly, as

preference change. The net effects of these exogenous shifts on the Euler equation

are captured in the process gt. The parameter 0 < β < 1 is the households’ discount

factor and τ > 0 can be interpreted as intertemporal substitution elasticity.

The production sector in the underlying model economy is characterized by

a continuum of monopolistically competitive firms, each of which faces a down-

ward sloping demand curve for its differentiated product. Prices are sticky due to

quadratic adjustment costs in nominal prices or a Calvo-style rigidity that allows

only a fraction of firms to adjust their prices. The resulting inflation dynamics

are described by the expectational Phillips curve (2) with slope κ. The process zt

captures exogenous shifts of the marginal costs of production.

The third equation describes the behavior of the monetary authority. The central

bank follows a nominal interest rate rule by adjusting its instrument to deviations of

inflation and output from their respective target levels. The shock εR,t can be inter-

preted as unanticipated deviation from the policy rule or as policy implementation

error. Its standard deviation is denoted by σR.

We assume that both gt and zt evolve according to univariate AR(1) processes

with coefficients ρg and ρz, respectively:

gt = ρggt−1 + εg,t, zt = ρzzt−1 + εz,t. (4)

We allow for non-zero correlation ρgz between the innovations εg,t and εz,t and denote

their standard deviations by σg and σz. The parameters of the log-linearized DSGE

model are collected in the vector

θ = [ψ1, ψ2, ρR, κ, τ, ρg, ρz, ρgz, σR, σg, σz]

with domain Θ. The linear rational expectations model comprised of Equations (1)

to (4) can be rewritten in the canonical form

Γ0(θ)st = Γ1(θ)st−1 +Ψ(θ)εt +Π(θ)ηt, (5)
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where

st = [x̃t, π̃t, R̃t, IEt[x̃t+1], IEt[π̃t+1], gt, zt]
′

εt = [εR,t, εg,t, εz,t]
′

ηt = [(x̃t − IEt−1[x̃t]), (π̃t − IEt−1[π̃t])]
′.

In our model the dimension of st is n = 7. There are l = 3 fundamental shocks

and the vector of rational expectations forecast errors, ηt, has dimension k = 2. We

assume that in addition to the fundamental shock εt the agents observe an exogenous

sunspot shock ζt.

It is well known in the literature that this log-linear model can give rise to self-

fulfilling expectations if the central bank does not raise the nominal interest rate

aggressively enough in response to inflation. In this case not just the fundamental

shocks εt but also the sunspot shock ζt can influence the dynamics of output, infla-

tion, and interest rates. More formally, since the model (5) is linear and the only

sources of uncertainty are the shocks εt and ζt the forecast errors for output and

inflation can be expressed as as

ηt = A1εt +A2ζt (6)

where A1 is k× l and A2 is k× 1. Solution algorithms for LRE systems construct a

mapping from the shocks to the expectation errors either implicitly, e.g., Blanchard

and Kahn (1980), or explicitly, e.g., Sims (2002).

Since the transversality conditions of the underlying optimization problems im-

pose restrictions on the growth rates of st, it is common to consider only solutions

to the LRE system for which st is non-explosive. Three cases can be distinguished:

(i) non-existence of a stable solution, (ii) existence of a unique stable solution (de-

terminacy) in which A1 is determined by the structural parameters θ and A2 = 0,

and (iii) existence of multiple stable solutions (indeterminacy) in which A1 is not

uniquely determined by θ and A2 can be non-zero. Loosely speaking, the mone-

tary DSGE model described by Equations (1) to (3) has a unique stable solution if

the central bank raises the real interest rate in response to inflation (ψ1 > 1) and
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has multiple stable solutions otherwise. The former policy is often called ‘active’,

whereas the latter is regarded as ‘passive’.

In the existing literature system-based econometric inference has been limited

to the subset of the parameter space for which the stable solution is unique. The

novelty of this paper is to extend estimation and inference to the indeterminacy

region of the parameter space. In particular we want to be able to assess the evidence

of determinacy versus indeterminacy and estimate the propagation of fundamental

and sunspot shocks under indeterminacy.

3 Econometric Inference

In order to extend the estimation of LRE models to the indeterminacy region of the

parameter space we have to overcome two challenges. First, we need a convenient

representation for the multiplicity of solutions. Here we build upon results that

we have derived in Lubik and Schorfheide (2003). Second, we have to pay careful

attention to identification issues. Some of the identification problems are trivial. For

instance, under determinacy the variance of the sunspot shock ζt is not identifiable

since A2 = 0 and the sunspot shock has no influence on the endogenous variables.

Other identification problems are less transparent. For example, in some instances

one of the model parameters marks the determinacy region, but is only identifiable

under indeterminacy. Nevertheless, it is typically possible to learn from the data

whether they have been generated under determinacy or indeterminacy. We discuss

these challenges and our solution in the context of the following single equation

model

yt =
1

θ
IEt[yt+1] + εt, (7)

where εt ∼ iid(0, 1) and θ ∈ Θ = [0, 2]. This model can be cast in the canonical

form (5) by introducing the conditional expectation ξt = IEt[yt+1] and the forecast

error ηt = yt − ξt−1. Thus,

ξt = θξt−1 − θεt + θηt. (8)
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We chose this very simple example in order to make the properties of our econometric

approach transparent. Extensions to the monetary DSGE model of Section 2 will

be discussed in Sections 4 and 5.

The stability properties of the difference equation (8) hinge on the value of the

parameter θ. If θ > 1 (determinacy) the only stable solution2 is of the form ξt = 0,

which obtains if ηt = εt and

yt = εt (9)

Thus, for θ > 1 the endogenous variable follows an iid process. Its stochastic

properties do not depend on the value of θ. We denote the determinacy region of

the parameter space by ΘD = (1, 2].

If θ ≤ 1 (indeterminacy) the stability requirement imposes no restrictions on

the rational expectations forecast error ηt:

ηt = M̃εt + ζt (10)

Here M̃ is a parameter, unrelated to θ, that arises because the effect of the fun-

damental shock εt is not determined. Moreover, part of the forecast error may be

due to a sunspot shock ζt that is unrelated to the fundamental disturbance εt. For

simplicity we assume in this section that ζt = 0 for all t. Replacing IEt[yt+1] in (7)

by yt+1− M̃εt+1 leads to an ARMA(1,1) representation for yt that depends on both

θ and M̃ :

yt − θyt−1 = M̃εt + θεt−1. (11)

While yt is generally serially correlated under indeterminacy, it reduces to the iid

process yt = εt that is invariant to θ in the special case of M̃ = 1. If the lagged

variables yt−1 and εt−1 are regarded as ‘states’, then the M̃ = 1 solution can be inter-

preted as minimal-state-variable (MSV) solution in the spirit of McCallum (1983).

For the remainder of this section we will center the indeterminacy solutions around

M̃ = 1 and use the reparameterization M̃ = 1 +M . The indeterminacy region of

the parameter space is labelled ΘI = [0, 1].

2We regard the random walk case of θ = 1 as ‘stable’ in this example.
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The goal of the econometric analysis is to summarize the sample information

about θ and M . More specifically, we are interested in assessing the hypothesis

θ ∈ ΘD versus θ ∈ ΘI , and estimate the propagation of the shock εt, which under

indeterminacy depends on both θ and M . Our inference is, of course, constrained

by the restricted identifiability of the model parameters.

Let us consider the likelihood function for a sample of observations Y T =

[y1, . . . , yT ]
′. The likelihood L(θ,M |Y T ) is the joint probability density function of

Y T given the parameters. We will assume that εt is normally distributed and split

the likelihood function into two parts which correspond to the determinacy and the

indeterminacy region of the parameter space, respectively. Let f(x) = {x < a} be

the indicator function that is one if x < a and zero otherwise. Then

L(θ,M |Y T ) = {θ ∈ ΘI}LI(θ,M |Y
T ) + {Θ ∈ ΘD}LD(Y

T ), (12)

where

LD(Y
T ) = (2π)−T/2 exp

{
−
1

2
Y ′TYT

}

LI(θ,M |Y
T ) = (2π)−T/2|ΓY (θ,M)|−1/2 exp

{
−
1

2
Y ′TΓ

−1
Y (θ,M)YT

}

and ΓY (θ,M) denotes the covariance matrix of the vector Y T under the ARMA

representation (11). In the determinacy region of the parameter space the likelihood

function is invariant to θ and M , that is, LD is constant. In other words: the

parameters θ and M are not identifiable. Moreover, for M = 0 the indeterminacy

likelihood is constant as a function of θ:

LI(θ,M = 0|Y T ) = LD(Y
T ). (13)

To illustrate the shape of the likelihood function we generate two data sets from

the one-equation LRE model, denoted by Y T (D) and Y T (I). The sample size is

T = 30. Y T (D) is generated from the determinacy region of the parameter space

and consists of iidN (0, 1) draws, whereas Y T (I) is generated based on θ = 0.8 and

M = 1. Figure 1 depicts the surface of the log-likelihood functions (standardized by

their respective maxima) for the two samples. Although both likelihood functions
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are flat for θ > 1 they do provide useful information. Since the autocovariances of

the iid sample Y T (D) are near zero the likelihood function is small in the region of

the parameter space where θ ≤ 1 and M is very different from zero. Lack of serial

correlation is interpreted as evidence for determinacy. The indeterminacy sample

Y T (I), on the other hand, exhibits serial correlation. Hence, the likelihood function

is high for parameter values that are consistent with the degree of serial correlation

in the sample. It also appears to be informative with respect to both θ and M .

If the goal of the econometric analysis were pure testing of determinacy versus

indeterminacy, this could in principle be achieved with a likelihood ratio test of the

form

LR =
sup0≤θ≤1,M LI(θ,M |Y

T )

LD(Y T )
. (14)

The sampling distribution of LR under the null hypothesis and the resulting critical

values are non-standard because the parameters θ andM are non-identifiable under

the null hypothesis. Andrews and Ploberger (1994) show that an optimal test for

this problem is of the form

LRave =

∫
sup0≤θ≤1,M LI(θ,M |Y

T )

LD(Y T )
w(θ,M) dθ · dM (15)

where w(θ,M) assigns large weight to alternatives against which the test is supposed

to have high power. To construct such a test statistic one has to know the directions

of the parameter space that lack identification. It is trivial in this one-equation

example, but can become prohibitively complicated in large LRE models with many

parameter restrictions.

However, rather than asking the question ‘are the data consistent with equilib-

rium determinacy’ it is more useful to construct probability weights for the determi-

nacy and indeterminacy regions of the parameter space conditional on the observed

data. These probabilities can then be used to weight the parameter estimates and

the predictions that the model delivers conditional on the two regions of the param-

eter space. Hence, we will follow a Bayesian approach by placing a prior distribution

with density p(θ,M) on the parameters θ and M and conducting inference based

on the posterior distribution of the parameters given the data Y T . This posterior



12

distribution can be calculated with Bayes theorem:

p(θ,M |Y T ) =
({θ ∈ ΘI}LI(θ,M |Y

T ) + {θ ∈ ΘD}LD(Y
T ))p(θ,M)∫

L(θ,M |Y T )p(θ,M)dθ · dM
. (16)

Notice that conditional on θ ∈ ΘD (determinacy) the shape of the posterior density

is the same as the prior density in this simple example. More generally, the prior

density is only updated in the directions of the parameter space for which the data

are informative and remains unchanged in directions in which the likelihood is flat

(see, for instance, Poirier (1998)). Nevertheless, the posterior always delivers a

coherent summary of the information contained in both prior and sample. The

posterior probability of indeterminacy is given by3

πT (I) =

∫
{θ ∈ ΘI}p(θ,M |Y T )dθ · dM. (17)

If we assign a prior distribution to the parameters θ and M that is uniform on

the range [0 : 2]⊗ [−1 : 5] then we can interpret the likelihood plots in Figure 1 as

probability densities. The implied prior probability of indeterminacy is

π0(I) =

∫
{θ ∈ ΘI}p(θ,M)dθ · dM = 0.5. (18)

In the second row of Figure 1 we plot standardized (by their respective maxima)

marginal posterior density functions

p(θ|Y T ) ∝
1

12
{θ ∈ ΘI}

∫
LI(θ,M |Y

T )dM +
1

2
{θ ∈ ΘD}LD(Y

T ), (19)

where ∝ denotes proportionality. The ratio of the area underneath the marginal

density to the left and right of θ = 1 corresponds to the posterior odds ratio

πT (I)/πT (D) in favor of indeterminacy.

Consider the determinacy sample Y T (D). The likelihood function is large for

parameter values that imply little serial correlation. This includes θ > 1 and

θ < 1,M ≈ 0. Since the indeterminacy region also contains parameter combi-

nations that imply substantial serial correlation the marginal posterior density of θ

3The posterior probability of determinacy is πT (D) = 1−πT (I). Notice that in this example the

ratio of πT (D)/πT (I) is essentially equivalent to Andrews and Ploberger’s likelihood ratio statistic,

except that the weight function w(θ,M) is replaced by a prior density.
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is substantially lower for θ < 1 than it is for θ > 1. Thus, the posterior odds strongly

favor determinacy. Just as the likelihood ratio test of Andrews and Ploberger has

no power against the θ < 1 andM = 0 indeterminacy alternative, the Bayesian pro-

cedure will interpret a long iid sample as evidence in favor of determinacy as long

as the prior distribution for M is continuous and assigns zero probability to M = 0.

If the data exhibit serial correlation then there are values of θ < 1 and M 6= 0 for

which the likelihood function is substantially larger than in the determinacy region

which is also reflected in the marginal posterior density of θ. Even based on our

short sample the posterior probability of indeterminacy is essentially one.4

The findings of this section can be summarized as follows. In the context of

a one-equation model we have shown that an additional parameter M , which is

unrelated to θ is needed to characterize the dynamics of yt. We have discussed the

resulting identification problems and illustrated how a Bayesian approach can be

used to make inference with respect to determinacy versus indeterminacy and the

parameters that determine the law of motion for yt. In the following section we will

provide a characterization for the solutions of the canonical LRE model (5) under

indeterminacy.

4 Solution of the Canonical LRE Model

In solving the LRE system (5) we closely follow the approach of Sims (2002), ex-

tended in Lubik and Schorfheide (2003).5 To keep the exposition simple we assume

4The posterior probabilities provide a consistent test for indeterminacy. If θ ∈ ΘD then πT (I)

will converge in probability to zero as the sample size T tends to infinity. If θ ∈ ΘI then πT (I)

will converge to one. The latter convergence will fail on a subset of the parameter space, namely

θ < 1 and M = 0, which has probability zero under our prior distribution. A formal proof can

be constructed by deriving a large sample approximation of
∫

LI(θ,M |Y T )p(θ,M)dθ · dM as in

Phillips (1996), Kim (1998), and Fernandez-Villaverde and Rubio-Ramirez (2001) and then applying

the argument in Hannan (1980) to treat the identification problem that arises in ‘determinacy’

samples.
5Sims (2002) solution procedure generalizes the method proposed by Blanchard and Kahn (1980).

In particular, it does not require the researcher to separate the list of endogenous variables into
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that the matrix Γ0 in Eq. (5) is invertible.6 The system can be rewritten as

st = Γ∗1(θ)st−1 +Ψ∗(θ)εt +Π∗(θ)ηt. (20)

Replace Γ∗1 by its Jordan decomposition JΛJ−1 and define the vector of transformed

model variables wt = J−1st. Let the i’th element of wt be wi,t and denote the i’th

row of J−1Π∗ and J−1Ψ∗ by [J−1Π∗]i. and [J−1Ψ∗]i., respectively. The model can

be rewritten as a collection of AR(1) processes

wi,t = λiwi,t−1 + [J−1Π∗]i.εt + [J−1Ψ∗]i.ηt. (21)

We will refer to the wi,t’s as latent ‘states.’ Define the set of stable AR(1) processes

as

Is(θ(1)) =

{
i ∈ {1, . . . n}

∣∣∣∣
∣∣λi(θ(1))

∣∣ ≤ 1

}
(22)

and let Ix(θ(1)) be its complement. Let ΨJ
x and ΠJ

x be the matrices composed of the

row vectors [J−1Ψ∗]i. and [J−1Π∗]i. that correspond to unstable eigenvalues, i.e.,

i ∈ Ix(θ(1)). To ensure stability of st the expectation errors ηt have to satisfy

ΨJ
xεt +ΠJ

xηt = 0 (23)

for all t. Equation (23) has either no solution, one solution (determinacy), or mul-

tiple solutions (indeterminacy). We will assume that the parameter space Θ is

restricted to the set of θ’s for which at least one solution to Equation (23) exists. To

solve the potentially underdetermined system of equations (23) for ηt it is convenient

to proceed with a singular value decomposition of the matrix ΠJ
x :

ΠJ
x =

[
U.1 U.2

]

 D11 0

0 0




 V ′.1

V ′.2


 = U︸︷︷︸

m×m

D︸︷︷︸
m×k

V ′︸︷︷︸
k×k

= U.1︸︷︷︸
m×r

D11︸︷︷︸
r×r

V ′.1︸︷︷︸
r×k

, (24)

where D11 is a diagonal matrix and U and V are orthonormal matrices. Here we

usedm to denote the number of unstable eigenvalues and r is the number of non-zero

‘jump’ and ‘predetermined’ variables. It recognizes that it is the structure of the coefficient matrices

that implicitly pins down the solution. Instead of imposing ex ante which individual variables are

‘predetermined’, Sims’ algorithm determines endogenously the linear combinations of variables that

have to be ‘predetermined’ for a solution to exist.
6If Γ0 is singular, a generalized complex Schur decomposition (QZ) can be used to manipulate

the system, see Sims (2002) and the appendix of this paper.
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singular values of ΠJ
x . Recall that k is the dimension of the vector of forecast errors ηt

and l denotes the number of exogenous shocks. Let p be the dimension of the sunspot

shock ζt. The following proposition is proved in Lubik and Schorfheide (2003):

Proposition 1 If there exists a solution to Eq. (23) that expresses the forecast

errors as function of the fundamental shocks εt and sunspot shocks ζt, it is of the

form

ηt = η1εt + η2ζt (25)

= (−V.1D
−1
11 U

′
.1Ψ

J
x + V.2M̃)εt + V.2Mζζt,

where M̃ is an (k− r)× l matrix, Mζ is a (k− r)× p matrix, and the dimension of

V.2 is k × (k − r). The solution is unique if k = r and V.2 is zero.

The representation for the rational expectations forecast errors leads to the

following law of motion for st:

st = Γ∗1(θ)st−1 + [Ψ∗(θ)−Π∗(θ)V.1(θ)D
−1
11 (θ)U

′
.1(θ)Ψ

J
x(θ)]εt (26)

+Π∗(θ)V.2(θ)(M̃εt +Mζζt).

Under determinacy V.2 = 0 and the terms in the second line of Equation (26) drop

out. In this case the dynamics of xt are purely a function of the parameter vector

θ. Indeterminacy introduces additional parameters and changes the nature of the

solution in two dimensions. First, the propagation of the structural shocks εt is not

uniquely determined as it depends on the matrix M̃ . Second, the dynamics of st

are potentially affected (Mζ 6= 0) by the sunspot shocks ζt. In the monetary DSGE

model of Section 2 the degree of indeterminacy k − r is at most 1. Hence, we set

p = 1 and impose the normalizationMζ = 1. The standard deviation of the sunspot

shock, denoted by σζ , is treated as additional parameter. Since it is not possible

to identify the covariances of the sunspot shock with the fundamental shocks in

addition to M̃ we use the normalization IE[εtζt] = 0.

In Section 3 we reparameterized the indeterminacy solutions by M̃ = 1 +M ,

such thatM = 0 corresponded to yt = εt. While we consider all possible values of M̃
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in our estimation procedure we specify a prior distribution that is centered around

one particular solution. We do this by replacing M̃ withM∗(θ)+M and setting the

prior mean for M equal to zero. We find it desirable to choose M ∗(θ) such that the

impulse responses ∂st/∂ε
′
t are continuous at the boundary between the determinacy

and indeterminacy region. According to our prior mean, small changes of θ do not

lead to drastic changes in the propagation of fundamental shocks.

One candidate for M ∗(θ) is the minimal-state-variable solution considered in

Section 3. Suppose in a model with a one-dimensional indeterminacy it is possible

to identify an eigenvalue function λi∗(θ) such that |λi∗(θ)| is greater than one in

the determinacy region (θ ∈ ΘD) and less than one in the indeterminacy region

(θ ∈ ΘI). In this case a baseline solution could be constructed by solving the

system of equations

[J−1Π∗]iεt + [J−1Ψ∗]iηt = 0 (27)

for i ∈ Ix(θ) and i = i∗. This solution has the feature that it eliminates as many

‘states’ wi,t as the determinacy solution.

While it is possible to define and track eigenvalue functions in the model pre-

sented in Section 2, it is difficult in larger systems. Moreover, there is no guarantee

that this procedure yields economically plausible impulse response for values of θ

that are not in the immediate vicinity of the determinacy region. Hence, we proceed

with an alternative method. For every vector θ ∈ ΘI we construct a vector θ̃ = g(θ)

that lies on the boundary of the determinacy region and chooseM ∗(θ) such that the

response of st to εt conditional on θ mimics the response conditional on θ̃. Thus,

we compare

∂st
∂ε′t

(θ,M) = Ψ∗(θ)−Π∗(θ)V.1(θ)D
−1
11 (θ)U

′
.1(θ)Ψ

J
x(θ) + Π∗(θ)V.2(θ)M̃ (28)

B1(θ) +B2(θ)M̃

to
∂st
∂ε′t

(g(θ), ·) = B1(g(θ)). (29)
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In our application we minimize the discrepancy using a least squares criterion and

choose

M∗(θ) = [B2(θ)
′B2(θ)]

−1B2(θ)
′ ∗ [B1(g(θ))−B1(θ)] (30)

The function g(θ) is obtained by replacing ψ1 in the vector θ with

ψ̃1 = 1−
βψ2

κ

(
1

β
− 1

)
, (31)

which marks the boundary between the determinacy and indeterminacy region for

the model presented in Section 2.7 We will refer to the solution M̃ = M∗(θ) as

baseline indeterminacy solution. The impulse response analysis in Section 6 will

reveal that, by and large, the responses under the baseline indeterminacy solution

are similar to the determinacy responses, expect for the scaling of the interest rate

response which is sensitive to the choice of ψ1.

While our baseline indeterminacy solution provides a plausible benchmark, our

estimation under indeterminacy is not restricted to this specific solution. We only

use it to center our prior distribution for M̃ in Equation (26). Based on the solution

described in this section we construct a likelihood function L(θ,M, σζ |Y
T ) that is

used for Bayesian inference as described in Section 3.

5 Discussion

Before proceeding with the empirical analysis we will discuss some of the virtues

and limitations of our inference approach and compare it to alternatives that have

been proposed in the literature. To focus the discussion we consider a special case

of the model presented in Section 2. Suppose that the monetary authority does

not attempt to smooth the nominal interest rate (ρR = 0) and only targets current

inflation (ψ2 = 0). Moreover, the exogenous processes gt and zt have no serial

correlation, that is, ρg = ρz = 0. Define the conditional expectations ξxt = IEt[x̃t+1],

7The derivation of this formula is relegated to a Technical Appendix that is available from the

authors upon request.
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ξπt = IEt[π̃t+1] and the vector ξt = [ξxt , ξ
π
t ]
′. The vector ξt evolves according to

ξt =


 1 + κτ

β τ(ψ1 −
1
β )

−κ
β

1
β




︸ ︷︷ ︸
Γ∗1

ξt−1 +


 τ −1 0

0 0 κ




︸ ︷︷ ︸
Ψ∗

εt +


 1 + κτ

β τ(ψ1 −
1
β )

−κ
β

1
β




︸ ︷︷ ︸
Π∗

ηt.

(32)

Since the simplified model has a block-triangular structure the vector of expectation

errors ηt can be determined by applying the methods described in Section 4 to the

two-dimensional subsystem (32).

The dynamics of the system depend on the eigenvalues of Γ∗1. It can be shown

that both eigenvalues are unstable if ψ1 > 1 (see, for instance, Bullard and Mitra

(2002) or Lubik and Marzo (2003)). In this case the only stable solution is ξt = 0

which uniquely determines the forecast errors ηt = −Π
∗Ψ∗εt. Tedious but straight-

forward algebraic manipulations lead to the following law of motion for output,

inflation, and interest rates:



x̃t

π̃t

R̃t


 =

1

1 + κτψ1




−τ 1 τκψ1

−κτ κ −κ

1 κψ1 −κψ1







εR,t

εg,t

εz,t


 . (33)

The model exhibits no dynamics because the solution suppresses the two roots of the

autoregressive matrix Γ∗1. An unanticipated monetary contraction leads to a one-

period fall in output and inflation. An Euler-equation shock εg,t increases output,

inflation, and interest rate. A Phillips-curve shock εz,t raises output, but lowers

inflation and interest rates for one period.

If ψ1 < 1 only one of the eigenvalues is unstable and the evolution of the en-

dogenous variables can be described as follows:



x̃t

π̃t

R̃t


 =

1

1 + κτψ1




−τ 1 τκψ1 (λ2 − 1− κτψ1)

−κτ κ −κ κλ2

1 κψ1 −κψ1 ψ1κλ2





 εt

ζt


 (34)

+




(β(λ2 − 1)− τκ)/κ

1

ψ1


w1,t−1,
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where w1,t follows the AR(1) process

w1,t = λ1(θ)w1,t−1 + µ1(θ)(Mεt + ζt)

Here λ1(θ) is the stable eigenvalue of Γ∗1(θ) and µ1 is a function of the parameter

vector θ. We implicitly chose M ∗(θ) in the notation of Section 4 such that for

M = 0 the structural shocks have no persistent effect on the endogenous variables.

If M 6= 0 or σζ > 0 output, inflation, and interest rates will be serially correlated.

The stated goal of our empirical analysis is two-fold. We want to assess the

evidence in favor of determinacy versus indeterminacy and we want to estimate the

model parameters to understand how shocks are being propagated in the system.

There are two pieces of information that can help us distinguish between determi-

nacy and indeterminacy, namely direct information about θ and the autocovariance

pattern of the observations. The simplified New Keynesian model (33, 34) and the

example in Section 3 illustrate that even in the absence of direct information about

θ it is possible to detect indeterminacy through the serial correlation of the data.

This insight translates to larger models. Under indeterminacy the number of sta-

ble eigenvalues is generally larger than under determinacy. In the terminology of

Section 4, fewer ‘states’ wi,t are suppressed. Thus, one can expect a richer autoco-

variance pattern that cannot be reproduced with parameters from the determinacy

region. The cross coefficient restrictions generated by the DSGE model might gen-

erate further evidence on determinacy versus indeterminacy. Equation (33) suggests

that the covariance matrix of output, inflation, and interest rates can provide direct

information about ψ1.

Our likelihood-based approach will exploit both sources of information simulta-

neously when we construct the posterior weights for the two regions of the parame-

ter space. Using the information from the autocovariances has one disadvantage. It

makes the inference sensitive to model misspecification. In the simplified version (33,

34) of the monetary model serial correlation in the data is interpreted as evidence

in favor of indeterminacy. However, an alternative explanation for serial correlation

could be that the supply and demand shocks are serially correlated rather than in-

dependent over time. Under this type of misspecification the posterior weights that
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we are constructing are potentially biased toward indeterminacy. In our empirical

analysis we will verify the robustness of our conclusions by considering a model with

richer dynamics, restricted to determinacy, as an alternative to the model outlined

in Section 2.

CGG assess the indeterminacy hypothesis by estimating a univariate monetary

policy reaction function and examining the magnitude of the estimated coefficient

ψ1. While this procedure is more robust against model misspecification, it has sev-

eral drawbacks. First, single equation instrumental variable estimates are typically

much less efficient than full information system estimates, in particular in models

with many cross-parameter restrictions.8 Second, CGG’s analysis evolves around

point estimates, downplaying the role of associated standard errors. It does not

provide a statistical measure for the likelihood that the pre-1979 observations were

generated from a sunspot equilibrium.

Third, the quality of the available instruments can in principle be closely linked

to the determinacy hypothesis. In the simplified version of the DSGE model con-

sidered in this section the single-equation estimation of ψ1 fails under determinacy.

Since π̃t is correlated with the monetary policy shock εR,t an instrument is needed.

However, current output is also correlated with the monetary policy shock. The

only remaining possibility is to use lagged values of inflation, output, or interest

rates as instruments. This instrumental variable approach can only be successful if

ψ1 < 1 and M 6= 0 or σζ > 0 such that there is serial correlation in the endogenous

variables. To be fair, the absence of serial correlation in demand and supply shocks

is an unrealistic assumption. Nevertheless, the argument suggests that the equilib-

rium properties of a model should be examined carefully to find an informative set

of instruments. The most efficient, albeit sensitive to model misspecification, set of

instruments is embodied in the likelihood function.

To study the propagation of shocks under indeterminacy we need parameter

estimates of the entire vector θ and the matrix M . While estimates of θ could in

8See Ruge-Murcia (2002) for some simulation evidence in the context of DSGE models.
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principle be obtained based on generalized method of moments estimates of Equa-

tions (1) to (3) subject to the availability of appropriate instruments, the estimation

of M requires a full-information approach such as the one proposed in this paper.

6 Empirical Results

The log-linearized monetary DSGE model described in Section 2 is fitted to quarterly

post-war U.S. data on output, inflation, and nominal interest rates.9 Both inflation

and interest rates are annualized. To make our empirical analysis comparable to

other studies, such as CGG, we use the HP filter to remove a smooth trend from

the output series. Results based on linear trend extraction are briefly discussed at

the end of this section. In line with the monetary policy literature we consider the

following sample periods: a pre-Volcker sample from 1960:I to 1979:II, a Volcker-

Greenspan sample from 1979:III to 1997:IV, and a post-1982 sample from 1982:IV

to 1997:IV that excludes the Volcker-disinflation period.

Inflation in the pre-Volcker years is marked by a substantial upward shift and

increase in volatility for which a variety of explanations have been offered. Or-

phanides (2002) suggests that the Federal Reserve misjudged trend productivity

growth in the 1970s and overestimated potential output. Since actual output ap-

peared relatively low the Fed loosened its monetary policy which led to high inflation.

Sargent (1999) argues that a perceived inflation-output trade-off could have led cen-

tral bankers to raise inflation targets. In the absence of an actual trade-off this

policy caused mainly high inflation rates. Other authors blame oil price shocks for

the rise in inflation. A fourth explanation for the experience in the pre-Volcker years,

set forth for instance by CGG, is that passive monetary policy failed to suppress

self-fulfilling inflation expectations. In the early 1980s the Fed switched to an active

9The time series are extracted from the DRI·WEFA database. Output is log real per capita

GDP (GDPQ), HP detrended over the period 1955:I to 1998:IV. We multiply deviations from

trend by 100 to convert them into percentages. Inflation is annualized percentage change of CPI-U

(PUNEW). Nominal interest rate is average Federal Funds Rate (FYFF) in percent.
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monetary policy, raising the real interest rate in response to inflation deviations

from target, thus eliminating fluctuations due to self-fulfilling expectations.

Our simple monetary model is not detailed enough to completely disentangle

the four competing hypotheses. For instance, the central bank does not have to

solve a signal extraction problem that could capture the notion of mis-measured

potential output. Nevertheless, we can gain some interesting insights. Our analysis

is based on the assumption that the target inflation rate, which equals the steady

state inflation rate, stayed constant in the pre-Volcker years but possibly shifted in

the early 1980s as steady state inflation is estimated for each subsample separately.

Although the New Keynesian model does not distinguish energy and goods prices,

it has the ability to capture oil price shocks as drops in zt which, broadly speaking,

shift marginal costs of production. By estimating the DSGE model over both the

determinacy and indeterminacy region of the parameter space we can assess the

hypothesis of passive-monetary policy and self-fulfilling expectations and study the

propagation of fundamental and sunspot shocks under indeterminacy for the pre-

Volcker as well as the Volcker-Greenspan years.

Observed output deviations from trend, inflation, and interest rates are stacked

in the vector yt. The measurement equation that relates yt to the vector of model

variables st is of the form:

yt =




0

π∗

r∗ + π∗


+




1 0 0 0 0 0 0

0 4 0 0 0 0 0

0 0 4 0 0 0 0


 st, (35)

where π∗ and r∗ are annualized steady state inflation and real interest rates (per-

centages). Abstracting from the small effect of long-run output growth on the

relationship between the discount factor β that appears in Equation (1) and r∗ we

replace the discount factor by β = (1+r∗/100)−1/4. The measurement equation (35)

together with the law of motion (26) for st provide a state-space model for the ob-

servables yt. The Kalman filter (see, for instance, Hamilton (1994)) can be used

to evaluate the likelihood function L(θ,M, σ|Y T ). This likelihood function is com-

bined with a prior distribution for the parameters θ, M , and σζ and computational
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methods described in the Appendix are used to conduct posterior inference.

The empirical analysis is structured as follows. We first review the prior dis-

tribution, then present posterior probabilities for determinacy versus indeterminacy

together with estimates of all the model parameters. To gain insights into the prop-

agation of shocks we study impulse response functions and variance decompositions

under indeterminacy. Finally, we assess the robustness of our analysis to model

specification and detrending method.

6.1 Prior Distribution

The specification of the prior distribution is summarized in Table 1, which reports

prior densities, means, standard deviations, and 90% probability intervals for the

elements of θ, M , and σζ .
10 It is assumed that the parameters are a priori indepen-

dent. In choosing priors for the policy parameters we adopted an agnostic approach.

The prior for the inflation coefficient ψ1 is centered at 1.1 and implies a probability

interval from 0.35 to 1.85. The interval for the output gap coefficient ψ2 ranges from

0.5 to 0.45. The degree of interest rate smoothing lies between 17% and 83%.

Our prior for the annual real interest rate is centered at 2% with a standard

deviation of 1. Steady state inflation ranges from 1% to 7%. The slope coefficient

in the Phillips-curve is chosen to be consistent with the range of values typically

found in the New-Keynesian Phillips-curve literature (see, for instance, Rotemberg

and Woodford (1997), Gaĺı and Gertler (1999), and Sbordone (2002)). Its mean is

set at 0.5, but we allow the slope to vary widely in the unit interval. The prior for

1/τ is centered at 2, which makes the representative agents in the underlying model

more risk averse than agents with log-utility. The intervals for the autocorrelation

parameters ρg and ρz imply a fairly high degree of persistence of the exogenous

processes.

10Subsequent interval statements about parameters have the following interpretation: we report

the shortest (connected) intervals that have – according to our prior/posterior – a 90% coverage

probability.
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The coefficients of the matrixM that appear in the indeterminacy solution have

standard normal distributions. Thus, our prior is centered at the baseline solution

described in Section 4. The prior for M , and the parameters that characterize

the distribution of the exogenous shocks are best assessed indirectly through their

implications for the volatility of output, inflation, and interest rates. Our prior

implies that the contribution of the monetary policy shock to output fluctuations

lies between 0 and 18%. Supply and demand shocks εa,t and εz,t may explain as

little as 1% or as much as 80% of the output variation. The sunspot shock εζ,t plays

hardly any role for output fluctuations but may cause up to 10% of the variation in

inflation and nominal interest rates. According to our prior the standard deviation

of inflation lies between 1% and 16%, which indicates that the prior for M assigns

some mass in regions of the parameter space that imply a large effect of fundamental

shocks on price movements.

We refer to the prior distribution described in Table 1 as Prior 1. Prior 2 is

obtained by imposing M = 0 and restricting the likelihood function in the indeter-

minacy region to the baseline solution described in Section 4. A third prior imposes

σζ = 0, which means that there are no sunspot shocks under indeterminacy so that

only the propagation of structural shocks is affected.

6.2 Estimation Results

The DSGE models is estimated under Priors 1 to 3 for the three samples. We will

first examine the probability mass assigned to the determinacy and indeterminacy

region. According to the priors the probability of determinacy is 0.527. One advan-

tage of our framework is that it lets us take into account the possible dependence

of the determinacy region on all elements of the parameter vector θ. To obtain the

posterior probabilities for the two regions of the parameter space it is convenient to

define the following (marginal) data densities

ps(Y T ) =

∫
{θ ∈ Θs}L(θ,M, σζ |Y

T )p(θ,M, σζ)dθ · dM · dσζ s ∈ {D, I} (36)
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by integrating the likelihood function over region s with respect to the parameters

θ, M , and σζ .
11 It can be seen from Equations (16) and (17) that the posterior

probability of indeterminacy is given by

πT (I) =
pI(Y T )

pI(Y T ) + pD(Y T )
. (37)

Table 2 reports ln ps(Y T ) and the resulting posterior probabilities by prior and

subsample.

The posterior probabilities reveal striking differences between the three subsam-

ples. The pre-Volcker posterior concentrates (almost) all of its probability mass

in the indeterminacy region. The evidence from the Volcker-Greenspan sample is

mixed. Depending on the choice of prior the probability of determinacy ranges from

0.38 to 0.7. These estimates could be strongly influenced by the Volcker disinflation

period which is better characterized by nonborrowed-reserve targeting than by an

interest rate rule. The inflation rate drops from 15% in 1980:I to about 6% in 1982.

Hence, the a sample which excludes the disinflation period is considered as an al-

ternative. Under all three priors the posterior probability of determinacy is around

0.98 for the post-1982 sample.

The log-data densities of Table 2 can also be used to compare the different

specifications of the DSGE model under indeterminacy. Under Prior 2 the model

is restricted to the baseline indeterminacy solution. The odds of the unrestricted

version (Prior 1) versus the M = 0 version (Prior 2) are 2 to 1 for the pre-Volcker

sample and 1.5 to 1 for the post-1982 sample. This finding suggests that the fit of

the model can be improved by deviating from the baseline solution and altering the

propagation of the structural shocks. Under Prior 3 the variance of the sunspot shock

is restricted to zero. Thus, agents do not react to an additional source of uncertainty.

The only effect of indeterminacy is to change the transmission of structural shocks.

For all three samples the ‘indeterminacy without sunspots’ version of the model

(Prior 3) is weakly preferred to the unrestricted specification.

11The data density intrinsically penalizes the likelihood function under indeterminacy for the

presence of the additional parameters M and σζ . The Schwarz (1978) approximation of a Bayesian

data density makes the penalty explicit.
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Table 3 contains posterior estimates of the structural parameters for the pre-

Volcker sample (Prior 1, Prior 2) conditional on indeterminacy and for the post-

1982 sample conditional on determinacy. The post-1982 posterior indicates that

the monetary policy followed the Taylor principle. According to the posterior mean

the central bank raises the nominal rate by 2.2% in response to a 1% discrepancy

between actual and desired inflation. Active inflation targeting is supported by a

substantial degree of output gap targeting (ψ̂2 = 0.3) and interest rate smoothing

(ρ̂R = 0.84).

Depending on the choice of prior the pre-Volcker sample leads to estimates of

ψ1 around 0.8 to 0.9. The Bayesian confidence sets for ψ2 range from 0.05 to 0.3.

The estimated steady state inflation rate appears slightly larger for the pre-Volcker

than for the post-1982 samples. However, there is substantial uncertainty about π∗.

The real rate was markedly lower before 1980, between 0.6% and 1.6%, than post

1982 when it was between 2.2% and 3.8% according to our posterior. The posterior

mean estimate of the slope κ of the Phillips curve is 0.77 with a confidence interval

ranging from 0.4 to 1.1 which is on the high side, but not unreasonably so.

Under Prior 2 (pre-Volcker) the estimated correlation between the shocks εg,t

and εz,t appears unreasonably large as it implies almost perfect correlation. Other

estimates of the covariance parameters as well as the vector M that determines

the relationship between fundamental shocks and forecast errors are best discussed

in the context of impulse response functions (IRF) and variance decompositions.

Recall that conditional on determinacy the likelihood function is invariant to M

and σζ . Hence the posterior distribution for these parameters is identical to the

prior distribution and the corresponding entries for Table 3 are left blank.

6.3 Propagation of Shocks

The system-based estimation approach pursued in this paper allows us to study the

propagation of fundamental and sunspot shocks in the model. Figure 2 graphs the

posterior mean responses (and pointwise 90% confidence bands) of output, inflation
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and interest rates to a (negative) one-standard-deviation sunspot shock. The re-

sponses are based on the pre-Volcker posterior obtained under Prior 1. Under an

inflationary sunspot belief the expected real rate declines and the expected output

growth is negative. The fall in the real rate stimulates current consumption and

therefore output. According to the Phillips curve, this is consistent with positive

current inflation which validates the initial assumption of sunspot-driven positive

inflation expectations. As inflation falls toward its steady state in subsequent peri-

ods, the positive interest rate policy keeps the real rate low and output returns to

its steady state.. According to our estimates the sunspot shock has a much bigger

effect on inflation and interest rates than it has on output. Since both output and

inflation rise the sunspot shock cannot be interpreted as stagflation shock during

the 1970s in itself.

Figure 3 depicts the propagation of a monetary policy shock. Impulse responses

are computed based on three different parameter estimates, all based on the pre-

Volcker sample: (i) conditional on indeterminacy under Prior 1, (ii) conditional

on indeterminacy under Prior 2, and (iii) conditional on determinacy. The esti-

mated indeterminacy responses under Prior 2 are hardly distinguishable from the re-

sponses under indeterminacy. This suggests that the baseline solution around which

our prior is centered extends the determinacy solution to the indeterminacy region

without substantially altering the propagation of the fundamental shocks. In the

absence of the M = 0 restriction the estimated indeterminacy responses differ from

the baseline responses and reflect the non-zero estimates of M = [MRζ ,Mgζ ,Mzζ ]

reported in Table 3. Since M̂Rζ is negative the propagation of εR,t is given by a

linear combination of the baseline IRFs and an inflationary sunspot shock as shown

in Figure 2.

Overall, in response to an unanticipated tightening of monetary policy output

drops initially by 0.15%, the interest rate rises by 70 basis points and inflation

falls 0.5% below steady state. Subsequently, inflation rises to about 0.2% whereas

output and inflation return to their steady states. Thus, according to our pre-

Volcker estimates under Prior 1, an increase in the nominal rate can have a slightly



28

inflationary effect. Figure 3 highlights that indeterminacy can alter the propagation

of fundamental shocks. Since the estimate of Mrζ is fairly imprecise the confidence

bands for the inflation and interest rate responses are wide. Given the the odds of

unrestricted M versus M = 0 are roughly 2 to 1 there is a substantial degree of

uncertainty about the effects of a monetary policy shock, even conditional on our

tightly parameterized DSGE model.

The shock εg,t shifts the consumption Euler equation and can broadly be inter-

preted as demand shock. Under determinacy a positive shock εg,t raises both output

and inflation. The positive estimate of Mgζ indicates that in the unrestricted inde-

terminacy version of the model the demand shock is less inflationary than under the

M = 0 indeterminacy solution. A positive supply shock εz,t reduces the marginal

costs of production, increases output and lowers inflation. The presence of inde-

terminacy creates an inflationary effect of εz,t since M̂zζ is negative. The impulse

response functions for the Euler-equation and Phillips-curve shocks are depicted in

Figures 4 and 5.

Variance decompositions for output (deviations from trend), inflation, and inter-

est rates are summarized in Table 4. For the pre-Volcker sample we report posteriors

conditional on indeterminacy under Priors 1 and 2. The posterior for the post-1982

sample is conditional on determinacy. Since we allow εg,t and εz,t to have non-zero

correlation we need to orthogonalize the two shocks before computing variance de-

compositions. We assume that the orthogonalized supply shock only affects εz,t,

whereas the orthogonalized demand shock shifts both the Euler equation as well as

the price-setting equation. The rationale for this assumption is that shocks to the

marginal utility of consumption affect the labor supply decision and, in equilibrium,

the wage rate which is a component of marginal costs.

According to our posterior estimates neither monetary policy shocks nor sunspot

shocks have a notable impact on output fluctuations. Since the estimated correlation

between εg,t and εz,t under Prior 2 conditional on indeterminacy is near one, the

M = 0 version of the model attributes almost all of the output fluctuations to the

orthogonalized demand shock. The unrestricted pre-Volcker estimates as well as the
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post-1982 estimates imply that most of the output fluctuations are due to shocks

that only affect the marginal costs of production. If M is restricted to zero then

the sunspot shock ζt explains between 50% and 90% of the variation in inflation

and nominal interest rates in the pre-Volcker period. Without this restriction the

contribution drops to 0 to 15%.

In summary, our empirical results shows that post 1982 monetary policy is

sufficiently anti-inflationary to rule out any indeterminacy. The pre-Volcker years,

however, were characterized by a monetary policy that violated the Taylor-principle.

According to the New Keynesian DSGE model this policy led to indeterminacy of

aggregate business cycle dynamics. Indeterminacy has two effects: the propagation

of fundamental shocks is not uniquely determined and sunspot shocks that are unre-

lated to the fundamental shocks may affect business cycle fluctuations. We consider

priors that assign different weights to the two effects. Someone who believes that

the propagation of the fundamental shocks is similar under determinacy and inde-

terminacy (Prior 2) will conclude that sunspot shocks explain a sizeable fraction

of inflation and interest rate variation. Someone who believes that indeterminacy

may fundamentally alter the propagation of structural shocks via the expectation

formation mechanism (Prior 1) will conclude that sunspots have played only a small

(or no) role as a source of business cycle fluctuations.

6.4 Robustness Analysis

We argued in Sections 4 and 5 that LRE models generate richer dynamics under

indeterminacy than determinacy because fewer autoregressive roots are suppressed.

The posterior weight on the determinacy region is based on the one hand on the

autocorrelation pattern in the observed data and on the other hand on the infor-

mation contained in the cross-coefficient restrictions implied by the DSGE model.

If the DSGE model lacks important propagation mechanisms that can generate suf-

ficiently rich dynamics than the posterior distribution of its parameters might be

unduly biased toward the indeterminacy region. Hence, as a robustness check we will
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estimate a model with less restrictive dynamics than the standard New Keynesian

model presented in Section 2.

A more elaborate consumption Euler equation can be obtained by introducing

habit formation. Equation (1) can be derived from a period utility function in which

consumption Ct enters as

uC,t =
C

1−1/τ
t

1− 1/τ
. (38)

Previous research has found evidence that consumption relative to a habit stock

rather than the level of consumption itself should enter the period utility function.

Hence, we follow Fuhrer (2000) and introduce multiplicative habit formation. We

consider a period utility function of the form

uC,t =
[Ct/C

γ
t−1]

1−1/τ

1− 1/τ
, (39)

which for γ = 0 reduces to (38). The term Cγ
t−1 can be interpreted as habit stock.

It can be shown that the introduction of habit leads to the following modified Euler

equation:12

[
τ +

1 + βγ2 + γ

1− βγ
(1− τ)

]
x̃t

=
γ(1− τ)

1− βγ
x̃t−1 +

[
τ +

1 + βγ(1 + γ)

1− βγ
(1− τ)

]
IEt[x̃t+1] (40)

−
βγ

1− βγ
(τ − 1)IEt+2[x̃t+2]− τ(R̃t − IEt[π̃t+1]) + gt,

which for γ = 0 reduces to Equation (1).

The price setting equation (2) can be derived from the assumption that only

a fraction of monopolistically competitive firms is able to reoptimize their price in

response to shocks in any given period while the remaining firms adjust their prices

according to the steady state inflation rate. It is well known that (2) is unable to

endogenously generate the observed persistence in inflation. Gali and Gertler (1999)

propose a hybrid Phillips curve that involves lagged inflation on the right-hand side:

π̃t =
β

1 + βω
IEt[π̃t+1] +

ω

1 + βω
π̃t−1 +

κ

1 + βω
(x̃t − zt). (41)

12The derivation is relegated to a Technical Appendix that is available upon request.
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Such an equation can be justified by assuming that a fraction ω of the firms that are

unable to reoptimize their price in a given period adjust their price charged in the

previous period by the lagged inflation rate rather than the steady state inflation

rate.

We estimated a LRE model based on Equations (40), (41), (3), and (4). Our

prior for ω is uniform on the interval [0, 1] whereas γ is distributed according to a

Gamma-distribution with mean 1 and standard deviation 0.4. Preliminary estimates

indicated that the simple price setting equation (ω = 0) is preferred to the hybrid

Phillips curve. In the estimates for the pre-Volcker sample reported in Table 5 we

impose the restriction ω = 0. According to the posterior distribution the habit

persistence parameter γ lies between 0.35 and 0.8. The estimates of the remaining

parameters are by and large in line with the estimates reported for the standard

New Keynesian model in Table 3.

Most interesting is whether the enriched model overturns our findings with re-

spect to the indeterminacy hypothesis. Log-data densities for the habit specification

conditional on determinacy are reported in Table 6. We revisit the pre-Volcker and

the Volcker-Greenspan sample. For both samples the habit model fits better than

the no-habit specification restricted to determinacy. The last column of Table 6

contains posterior probabilities for a comparison of the habit model restricted to

the determinacy region and the no-habit version estimated over both the determi-

nacy and the indeterminacy region. For the pre-Volcker sample the standard model

under indeterminacy provides a better description of the data than the richer model

restricted to the determinacy region. Thus, the conclusion of Section 2 with respect

to indeterminacy is not overturned.

For the Volcker-Greenspan sample the posterior of the no-habit model assigned

roughly equal weight to the determinacy and indeterminacy region of the parameter

space. The log-data density for the habit specification suggests that the evidence

for indeterminacy is not robust and can be overturned by the inclusion of additional

dynamics into the DSGE model.

As a second robustness check we estimate the standard version of the monetary
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DSGE model based on output data that are linearly detrended instead of HP de-

trended. While the output deviations around this less flexible trend are larger and

more persistent our overall conclusion does not change. Post 1982 monetary policy

is sufficiently anti-inflationary to rule out indeterminacy. The pre-Volcker years,

however, monetary policy was passive which led according to the New Keynesian

DSGE model to indeterminacy.

7 Conclusion

We estimate a monetary business cycle model of the U.S. economy where monetary

policy is characterized by an interest rate rule that attempts to stabilize output and

inflation deviations around their target levels. It is well known that the applica-

tion of such a rule may lead to (local) indeterminacy, thus opening the possibility

of sunspot-driven aggregate fluctuations. Although previous research has acknowl-

edged this problem and made some attempts to deal empirically with indeterminacy,

our paper is, to the best of our knowledge, the first theoretically and empirically

consistent attempt to estimate a DSGE model without restricting the parameters

to the determinacy region.

Using a Bayesian approach we construct posterior weights for the determinacy

and indeterminacy regions of the parameter space. Our procedure takes into account

the dependence of the regions on all structural parameters and not just the policy

parameters. Moreover, our approach allows us to study the effect of indeterminacy

on the propagation of fundamental shocks and the importance of sunspot shocks for

aggregate fluctuations.

Empirical results confirm earlier studies that the behavior of the monetary au-

thority has changed beginning with the tenure of Paul Volcker as Federal Reserve

Chairman in 1979. During the Volcker-Greenspan years policy reacts very aggres-

sively towards inflation which puts the U.S. economy into the determinacy region.

On the other hand, monetary policy was much less active in the pre-Volcker period,

and through the lens of a standard New Keynesian DSGE model we cannot reject
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the possibility of equilibrium indeterminacy. The DSGE model in this paper, albeit

widely employed in the recent monetary policy literature, is highly stylized. Its

overall time series fit is worse than that of a vector autoregression. Nevertheless, we

believe that some interesting lessons have been learned from our empirical analysis.

A fruitful avenue for future research is to apply our methods to models in which

determinacy is not as closely tied to the degree of activism as in the standard New

Keynesian DSGE model.
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A Practical Implementation

1. The matrices Γ0(θ), Γ1(θ), Ψ(θ), and Π(θ) of the canonical LRE model (5)

can be derived from Equations (1) to (4). Instead of inverting Γ0(θ) and using

a Jordan decomposition of Γ−1
0 Γ1 as described in Section 4, we proceed as in

Sims (2002) with a generalized complex Schur decomposition (QZ) of Γ0 and

Γ1. There exist matrices Q, Z, Λ, and Ω such that Q′ΛZ ′ = Γ0, Q
′ΩZ ′ = Γ1,

QQ′ = Q′Q = ZZ ′ = Z ′Z = In×n and Λ and Ω are upper triangular. Let

wt = Z ′yt and premultiply (5) by Q to obtain


 Λ11 Λ12

0 Λ22




 w1,t

w2,t


 =


 Ω11 Ω12

0 Ω22




 w1,t−1

w2,t−1


+


 Q1.

Q2.


 (Ψεt +Πηt).

(42)

The second set of equations can be rewritten as:

w2,t = Λ−1
22 Ω22w2,t−1 + Λ−1

22 Q2.(Ψεt +Πηt) (43)

Without loss of generality, we assume that the system is ordered and parti-

tioned such that the m× 1 vector w2,t is purely explosive, where 0 ≤ m ≤ n.

We apply the singular value decomposition (24) to Q2.Π instead of ΠJ
x and

obtain ηt according to Proposition 1, where ΨJ
x is replaced by Q2.Ψ. To find

M∗(θ) use (30), which leads to a vector autoregression law of motion for st.

2. Combine (26) with the measurement equation (35) to form a state space model

for the observables yt. The likelihood function L(θ,M, σζ |Y
T ) can be evaluated

with the Kalman Filter.

3. Let p(θ,M, σζ) and p(θ,M, σζ |Y
T ) denote prior and posterior densities of θ,

respectively. Since the likelihood function L(θ,M, σζ)|Y
T ) is discontinuous at

the boundary of the determinacy region we conduct the computations for the

two regions of the parameter space separately.

4. A numerical-optimization procedure is used to maximize

ps(θ,M, σζ |Y
T ) ∝ Ls(θ,M, σζ |Y

T )p(θ,M, σζ){θ ∈ Θs}, s ∈ {D, I}
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and find the posterior mode in the two regions of the parameter space. The

inverse Hessian is calculated at the posterior mode.

5. For each region, 1,000,000 draws from p(θ,M, σζ |Y
T ) are generated with a

random-walk Metropolis Algorithm. The scaled inverse Hessian serves as a co-

variance matrix for the Gaussian proposal distribution used in the Metropolis-

Hastings algorithm. If for a particular sample a region of the parameter space

does not have a (local) mode, we use the inverse Hessian obtained from one

of the other samples for that region. The first 100,000 draws are discarded.

The parameter draws θ are converted into impulse response functions and

variance decompositions to generate the results reported in Section 6. Pos-

terior moments are obtained by Monte-Carlo averaging. The marginal data

densities for the two regions are approximated with Geweke’s (1999) modified

harmonic-mean estimator. Further details of these computations are discussed

in Schorfheide (2000).
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Table 1: Prior Distributions for DSGE Model Parameters

Name Range Density Mean Stdd 90% Interval

ψ1 IR+ Gamma 1.10 0.50 [ 0.33, 1.85]

ψ2 IR+ Gamma 0.25 0.15 [ 0.06, 0.43]

ρR [0,1) Beta 0.50 0.20 [ 0.18, 0.83]

π∗ IR+ Gamma 4.00 2.00 [ 0.90, 6.91]

r∗ IR+ Gamma 2.00 1.00 [ 0.49, 3.47]

κ IR+ Gamma 0.50 0.20 [ 0.18, 0.81]

τ−1 IR+ Gamma 2.00 0.50 [ 1.16, 2.77]

ρg [0.1) Beta 0.70 0.10 [ 0.54, 0.86]

ρz [0.1) Beta 0.70 0.10 [ 0.54, 0.86]

ρgz [-1,1] Normal 0.00 0.40 [-0.65, 0.65]

MRζ IR Normal 0.00 1.00 [-1.64, 1.64]

Mgζ IR Normal 0.00 1.00 [-1.64, 1.64]

Mzζ IR Normal 0.00 1.00 [-1.64, 1.64]

σR R+ Inv. Gamma 0.31 0.16 [ 0.13, 0.50]

σg R+ Inv. Gamma 0.38 0.20 [ 0.16, 0.60]

σz R+ Inv. Gamma 1.00 0.52 [ 0.42, 1.57]

σζ R+ Inv. Gamma 0.25 0.13 [ 0.11, 0.40]

Notes: The Inverse Gamma priors are of the form p(σ|ν, s) ∝ σ−ν−1e−νs2/2σ2
, where

ν = 4 and s equals 0.25, 0.3, 0.6, and 0.2, respectively. The prior for ρgz is truncated

to ensure that the correlation lies between -1 and 1. We refer to the prior distribution

in this Table as Prior 1. Prior 2 is obtained by imposing MRζ = Mgζ = Mzζ = 0,

whereas Prior 3 imposes σζ = 0.
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Table 2: Determinacy versus Indeterminacy (I)

Sample Prior Log Data Density Probability

Determ. Indeterm. Determ. Indeterm.

Pre-Volcker 1 -372.4 -359.1 0.000 1.000

2 -372.4 -359.8 0.000 1.000

3 -372.4 -358.7 0.000 1.000

Volcker-Greenspan 1 -368.6 -368.6 0.502 0.498

2 -368.6 -369.4 0.692 0.308

3 -368.6 -368.1 0.379 0.621

Post 1982 1 -237.4 -241.9 0.989 0.011

2 -237.4 -241.5 0.984 0.016

3 -237.4 -241.3 0.980 0.020

Notes: According to the prior distribution in Table 1 the probability of determinacy

is 0.527. The posterior probabilities are calculated based on the output of the

Metropolis algorithm. Log Marginal data densities are approximated by Geweke’s

(1999) harmonic mean estimator.
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Table 3: Parameter Estimation Results (I)

Pre-Volcker (Prior 1) Pre-Volcker (Prior 2) Post 1982

Mean Conf. Interval Mean Conf Interval Mean Conf Interval

ψ1 0.77 [ 0.64, 0.91] 0.89 [ 0.81, 0.99] 2.19 [ 1.38, 2.99]

ψ2 0.17 [ 0.04, 0.30] 0.15 [ 0.03, 0.27] 0.30 [ 0.07, 0.51]

ρR 0.60 [ 0.42, 0.78] 0.53 [ 0.43, 0.65] 0.84 [ 0.79, 0.89]

π∗ 4.28 [ 2.21, 6.21] 3.98 [ 2.12, 5.84] 3.43 [ 2.84, 3.99]

r∗ 1.13 [ 0.63, 1.62] 1.11 [ 0.73, 1.49] 3.01 [ 2.21, 3.80]

κ 0.77 [ 0.39, 1.12] 0.75 [ 0.38, 1.07] 0.58 [ 0.27, 0.89]

τ−1 1.45 [ 0.85, 2.05] 2.08 [ 1.27, 2.84] 1.86 [ 1.04, 2.64]

ρg 0.68 [ 0.54, 0.81] 0.80 [ 0.75, 0.85] 0.83 [ 0.77, 0.89]

ρz 0.82 [ 0.72, 0.92] 0.69 [ 0.62, 0.76] 0.85 [ 0.77, 0.93]

ρgz 0.14 [-0.40, 0.71] 0.98 [ 0.96, 1.00] 0.36 [ 0.06, 0.67]

MRζ -0.68 [-1.58, 0.23]

Mgζ 1.74 [ 0.90, 2.56]

Mzζ -0.69 [-0.99, -0.39]

σR 0.23 [ 0.19, 0.27] 0.24 [ 0.20, 0.28] 0.18 [ 0.14, 0.21]

σg 0.27 [ 0.17, 0.36] 0.21 [ 0.16, 0.26] 0.18 [ 0.14, 0.23]

σz 1.13 [ 0.95, 1.30] 1.16 [ 0.97, 1.34] 0.64 [ 0.52, 0.76]

σζ 0.20 [ 0.12, 0.27] 0.23 [ 0.15, 0.31]

Notes: The table reports posterior means and 90 percent confidence intervals (in

brackets). Pre-Volcker posteriors are conditional on indeterminacy, Post-1982 pos-

teriors are conditional on determinacy. Under Prior 2 MRζ = Mgζ = Mzζ = 0.

Conditional on determinacy posterior and prior means and confidence intervals for

MRζ , Mgζ , Mzζ , and σζ are identical. The posterior summary statistics are calcu-

lated from the output of the Metropolis algorithm.
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Table 4: Variance Decompositions

Pre-Volcker (Prior 1) Pre-Volcker (Prior 2) Post 1982

Mean Conf. Interval Mean Conf Interval Mean Conf Interval

Output Deviations from Trend

Policy 0.01 [ 0.00, 0.02] 0.01 [ 0.00, 0.02] 0.04 [ 0.01, 0.06]

Demand(*) 0.19 [ 0.00, 0.51] 0.97 [ 0.95, 0.99] 0.36 [ 0.09, 0.63]

Supply(*) 0.80 [ 0.47, 0.99] 0.01 [ 0.00, 0.03] 0.60 [ 0.33, 0.88]

Sunspot 0.00 [ 0.00, 0.01] 0.00 [ 0.00, 0.01] 0.00 [ 0.00, 0.00]

Inflation

Policy 0.08 [ 0.00, 0.18] 0.07 [ 0.02, 0.11] 0.29 [ 0.14, 0.43]

Demand(*) 0.23 [ 0.01, 0.46] 0.17 [ 0.03, 0.30] 0.47 [ 0.32, 0.63]

Supply(*) 0.59 [ 0.32, 0.87] 0.07 [ 0.00, 0.14] 0.24 [ 0.07, 0.40]

Sunspot 0.10 [ 0.01, 0.18] 0.70 [ 0.50, 0.92] 0.00 [ 0.00, 0.00]

Interest Rates

Policy 0.17 [ 0.00, 0.41] 0.08 [ 0.01, 0.15] 0.08 [ 0.03, 0.12]

Demand(*) 0.20 [ 0.00, 0.42] 0.16 [ 0.01, 0.29] 0.61 [ 0.38, 0.84]

Supply(*) 0.54 [ 0.25, 0.87] 0.05 [ 0.00, 0.10] 0.32 [ 0.12, 0.51]

Sunspot 0.08 [ 0.01, 0.15] 0.71 [ 0.51, 0.92] 0.00 [ 0.00, 0.00]

Notes: The table reports posterior means and 90 percent confidence intervals (in

brackets). The posterior summary statistics are calculated from the output of the

Metropolis algorithm. Since the estimated correlation between εg,t and εz,t is non-

zero we orthogonalize the demand and supply shock for this variance decomposition

using a triangular decomposition. We assume that the supply(*) shock only affects

εz,t.



43

Table 5: Parameter Estimation Results (II)

Pre-Volcker (Habit)

Mean Conf. Interval

ψ1 1.07 [ 1.00, 1.15]

ψ2 0.10 [ 0.02, 0.19]

ρR 0.59 [ 0.48, 0.72]

π∗ 4.53 [ 3.48, 5.57]

r∗ 1.14 [ 0.71, 1.57]

κ 0.66 [ 0.30, 1.01]

τ−1 1.58 [ 1.05, 2.15]

ω 0.00 [ 0.00, 0.00]

γ 0.57 [ 0.35, 0.79]

ρg 0.87 [ 0.83, 0.91]

ρz 0.79 [ 0.74, 0.85]

ρgz 0.93 [ 0.88, 0.97]

σR 0.26 [ 0.21, 0.30]

σg 0.18 [ 0.13, 0.23]

σz 1.29 [ 1.06, 1.53]

Notes: The table reports posterior means and 90 percent confidence intervals (in

brackets). Estimates of habit-specification are based on Pre-Volcker sample, condi-

tional on determinacy.
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Table 6: Determinacy versus Indeterminacy (II)

Sample Spec Log Data Density Probability

Determ. Indeterm.

Pre-Volcker Prior 3 -372.4 -358.7 1.000

Habit -370.0 0.000

Volcker-Greenspan Prior 3 -368.6 -368.1 0.038

Habit -364.4 0.962

Notes: The posterior probabilities are calculated based on the output of the

Metropolis algorithm. Log Marginal data densities are approximated by Geweke’s

(1999) harmonic mean estimator.
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Figure 1: Likelihood / Posterior Density for Single Equation Model

Notes: First row can be interpreted as joint log posterior density of θ andM (under a

uniform prior distribution) standardized by the posterior mode. Second row depicts

the marginal posterior of density of θ, standardized by its mode.
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Figure 2: Impulse Responses to Sunspot Shock

Notes: Pre-Volcker sample, indeterminacy region (Prior 1). Figure depicts posterior

means (solid lines) and pointwise 90% posterior confidence intervals (dashed lines)

for impulse responses of output, inflation, and the nominal interest rate to a one-

standard deviation shock εζ,t.
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Figure 3: Impulse Responses to Monetary Policy Shock

Notes: Pre-Volcker sample. Figure depicts posterior means (solid lines) and point-

wise 90% posterior confidence intervals (dashed lines) for impulse responses of out-

put, inflation, and the nominal interest rate to a one-standard deviation shock εR,t.
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Figure 4: Impulse Responses to Demand Shock

Notes: Pre-Volcker sample. Figure depicts posterior means (solid lines) and point-

wise 90% posterior confidence intervals (dashed lines) for impulse responses of out-

put, inflation, and the nominal interest rate to a one-standard deviation shock εg,t.
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Figure 5: Impulse Responses to Supply Shock

Notes: Pre-Volcker sample. Figure depicts posterior means (solid lines) and point-

wise 90% posterior confidence intervals (dashed lines) for impulse responses of out-

put, inflation, and the nominal interest rate to a one-standard deviation shock εz,t.


