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Abstract
Inference techniques play a central role in many cognitive
systems. They transform low-level observations of the en-
vironment into high-level, actionable knowledge which then
gets used by mechanisms that drive action, problem-solving,
and learning. This paper presents an initial effort at com-
bining results from AI and psychology into a pragmatic and
scalable computational reasoning system. Our approach com-
bines a numeric notion of plausibility with first-order logic
to produce an incremental inference engine that is guided by
heuristics derived from the psychological literature. We illus-
trate core ideas with detailed examples and discuss the advan-
tages of the approach with respect to cognitive systems.

Introduction
Reasoning plays a fundamental role in cognition and in-
telligence. It supports decision making, action, problem-
solving, and learning by converting observations of the sur-
rounding environment into a high-level representation of the
current situation. Cognitive systems aimed at large and com-
plex environments therefore require the support of a compu-
tationally efficient and scalable inference system to provide
these interpretations.

The artificial intelligence and psychological communities
have both studied reasoning extensively. Artificial intelli-
gence focuses on developing both powerful logic-based and
uncertainty-based computational mechanisms for reasoning
under a variety of circumstances. However, the resulting
systems typically rely on proving or on carefully estimating
probabilities for large numbers of beliefs at great compu-
tational expense. Resulting systems tend to ignore plausible
but unsound conclusions, to process large batches of data in-
stead of individual observations, and often do not scale well.
Conversely, psychologists focus on describing at a high level
the mechanisms that humans use for reasoning under spe-
cific circumstances. Most mechanisms therefore lack suffi-
cient description for a computational implementation, or are
too specific to apply to a general cognitive systems.

This paper presents initial work on the Plausible Logic
Inference Engine (PLIE), which seeks to combine results
from both artificial intelligence and psychology into an in-
cremental, pragmatic, and scalable computational reasoning
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system. Our approach includes three key elements. First,
it combines first-order logic with uncertainty based on a
notion of plausibility to provide the system with a flexible
knowledge representation. Second, the system includes an
inference mechanism that integrates deductive and abductive
methods to provide a more robust inference capability than
either method can provide alone. Importantly, the inference
mechanism also supports incremental update of individual
beliefs. Finally, PLIE includes a guidance mechanism based
on biases identified in the psychology literature to determine
which inferences the system should pursue.

Our presentation begins by describing the knowledge rep-
resentation and specific inference patterns applied by the in-
ference engine. Next we discuss the inference process along
with the heuristics used it guide it. We illustrate key ideas
throughout using an expanded version of Pearl’s (1988) bur-
glar alarm example. We also discuss the relationship of our
approach to cognitive systems in general throughout the pre-
sentation. Later, we outline the relationship of our proposed
techniques to other inference methods and discuss next steps
toward realizing the stated goals, including possible exten-
sions to analogical reasoning, concept and structure learn-
ing, and metacognitive abilities such as bias learning.

Knowledge Representation
Combining first-order logic with uncertainty has long been
a goal of artificial intelligence. First-order logic provides
a compact representation and efficient inference techniques,
but it does not handle the uncertainties present in the real
world. Probabilistic methods naturally capture and rea-
son about this uncertainty, but they do not represent or ex-
ploit the relational structure of the world. Recent efforts at
combining the two, such as Markov logic (Richardson and
Domingos 2006), have shown success. However, such meth-
ods rely heavily on complex statistical computation which
has not been shown to scale up.

This work uses a combination of logic and uncertainty
based on plausibility as first described by Polya (1954), who
codified the methods used for hypothesizing theorems and
guiding the search for the associated proofs. Polya’s ap-
proach was based on a qualitative notion of accumulating
confidence from evidence, and is largely consistent with
Dempster-Shafer theory (Shafer 1976), a mathematical the-
ory of evidence that allows one to combine many sources of
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evidence into a degree of belief. Our approach replaces the
qualitative account of confidence with a quantitative one, but
retains the important properties highlighted by Polya. The
result is similar to MYCIN (Shortliffe and Buchanan 1975)
and to Friedman’s (1981) work on plausible inference.

Beliefs and Working Memory
PLIE represents knowledge using a combination of predi-
cate logic and uncertainty. A predicate represents a gen-
eralized concept, or equivalently, a class of environmental
situations. Each predicate may include a list of arguments.
For example, Alarm(x) represents the situation in which the
burglar alarm at location x is sounding.

Beliefs represent specific groundings or instances of a
predicate such that each variable in the predicate’s argu-
ment list is bound to some domain constant. For exam-
ple, Alarm(BOB) indicates a belief that the alarm at Bob’s
house has sounded. Observations similarly correspond to
grounded predicates, but come from the perceptual process
rather than the inference process. This work does not spec-
ulate as to the nature of perception; we assume that some
process produces the needed results.

Each belief, b, also has a plausibility score composed
of the difference in evidence for and against the belief,
Pl(b) = E+(b)−E−(b), where 0≤ E+(b),E−(b)≤ 1. The
methods for calculating these evidence values are described
later. Plausibility scores lie in the interval [−1,1] such that
Pl(b) = 1 indicates a strong belief in b while Pl(b) =−1 in-
dicates a strong belief against b. Importantly, the plausibility
of a belief is tied to the plausibility of its logical negation,
Pl(b) =−Pl(¬b), preventing contradictions. Pl(b) = 0 con-
founds the cases in which there is no evidence in either di-
rection (default state of all beliefs) and in which the evidence
for and against a belief cancel each other. From a decision-
making point of view, these two cases may be reasonably
viewed as equivalent, but for cases in which distinguishing
between no evidence and conflicting evidence is important,
the evidence values can be used directly.

PLIE stores both beliefs and observations in its working
memory as nodes in a directed graph. The edges of the graph
represent derivational information, and stem from the infer-
ence process. Specifically, a directed edge from belief b1 to
b2 indicates that b1 formed part of the evidence used to con-
clude (or explain) b2. Thus, observations have only outward
directed edges, while all inferred beliefs have at least one
edge directed inward.

Rules and Long-Term Memory
Graph edges derive from the rules stored in long-term mem-
ory. Rules represent the relationships among predicates that
can be used to derive new beliefs. From this perspective, the
contents of working memory may be viewed as activated
structures from long-term memory. This is consistent with
Cowan’s (1988) view that working memory is an extension
of long-term memory, and that the number of activated long-
term structures is not limited, although the number of items
in the focus of attention is limited.

Rules in PLIE take the form
p1(·), p2(·), · · · , pm(·) =⇒ q1(·), q2(·), · · · , qn(·) ,

where pi(·) and q j(·) represent predicates, and =⇒ de-
notes threshold-implication (Stracuzzi and Könik 2008).
Threshold-implication defines the consequent to be true if
the linear-threshold function, ∑

m
i=0 vi Pl(pi) > 0, is satis-

fied given that vi represents the weights associated with
each term in the antecedent (wi for the consequent), and
Pl(p0) = Pl(q0) = 1 by definition. Note that pi(·) and qi(·)
represent general predicates while pi and qi denote the spe-
cific groundings used to instantiate a rule, which PLIE iden-
tifies by pattern matching from working memory. In this
work, both sides of the implication represent linear thresh-
old functions, so when the antecedent function is satisfied,
the system updates beliefs in an effort to satisfy the conse-
quent function.

Each implication also has two associated parameters that
represent rule strength. For a rule A=⇒B, the parameter α ≈
Pr(B|A) represents the reliability of the rule when viewed
deductively, meaning that belief in A implies a belief in B.
Similarly, β ≈ Pr(A|B) represents the reliability of the rule
when viewed abductively, meaning that belief in B allows the
assumption of A. Here, 0≤ α,β ≤ 1, though the two are not
complimentary. In practice these parameters will initially
take default values, which the system can later modify based
on experience.

Table 1 shows the rules for the burglar alarm example. For
the sake of clarity, they are expressed using Boolean connec-
tives rather than in threshold logic. For example, PLIE could
represent the antecedent of rule (6) as

1 ·Pl(SecurityCo(y, x))+1 ·Pl(Calls(y, x))−1.5 > 0 .

Threshold logic provides several important advantages.
First, it supports a more powerful representation than Horn
clauses, including conjunctions, disjunctions, and many
other simple functions such as p1 ∧ (p2 ∨ p3). The under-
lying numeric representation (the weights) also provides a

(1) Burglar(x1)
α=0.95
=⇒

β=0.40
Alarm(x1)

(2) Earthquake(x2)
α=0.30
=⇒

β=0.60
Alarm(x2)

(3) Alarm(x3) ∧ Neighbor(y3, x3) ∧ Quiet(y3)
α=0.90
=⇒

β=0.05
Calls(y3, x3)

(4) Alarm(x4) ∧ Neighbor(y4, x4) ∧ ¬Quiet(y4)
α=0.70
=⇒

β=0.5
Calls(y4, x4)

(5) PhoneRings(x5) ∧ Neighbor(y5, x5) ∧ Quiet(y5)
α=0.10
=⇒

β=0.95
Calls(y5, x5)

(6) SecurityCo(y6, x6) ∧ Calls(y6, x6)
α=1.0
=⇒

β=1.0
Burglar(x6)

Table 1: Long-term memory contents for the alarm example.
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Pattern Symbolic Form Evidence Update Equation
Modus Ponens p1(·), · · · , pm(·) =⇒q1(·), · · · ,qn(·) ∆E+(q j) = α

∑i∈S vi Pl(pi)
∑i∈S |v j |

• Deductive ∑
m
i=0 vi Pl(pi)> 0

• Increases evidence for qi ∑
n
j=0 w j Pl(q j)> 0

Modus Tollens p1(·), · · · , pm(·) =⇒q1(·), · · · ,qn(·) ∆E−(pi) =−α
∑ j∈S w j Pl(q j)

∑ j∈S |w j |
• Deductive ∑

n
j=0 w j Pl(q j)< 0

• Increases evidence against pi ∑
m
i=0 vi Pl(pi)< 0

Denying the Antecedent p1(·), · · · , pm(·) =⇒q1(·), · · · ,qn(·) ∆E−(q j) =−α
∑i∈S vi Pl(pi)

∑i∈S |v j |
• Deductive ∑

m
i=0 vi Pl(pi)< 0

• Increases evidence against qi ∑
n
j=0 w j Pl(q j)< 0

Accepting the Consequent p1(·), · · · , pm(·) =⇒q1(·), · · · ,qn(·) ∆E+(pi) = β
∑ j∈S w j Pl(q j)

∑ j∈S |w j |
• Abductive ∑

n
j=0 w j Pl(q j)> 0

• Increases evidence for pi ∑
m
i=0 vi Pl(pi)> 0

Table 2: Inference patterns and associated confidence updates. For the symbolic forms, note that the implication (first line)
represents a rule from long-term memory, the inequality above the horizontal bar represents the evidence required for the
pattern to apply, and the inequality below the bar represents the conclusion drawn given the pattern, the rule, and the evidence.

natural way to handle numeric (as opposed to symbolic) do-
main constants. Finally, with respect to the long-term goals
of this work, Stracuzzi and Könik (2008) demonstrate how
to learn a set of hierarchically structured predicates based on
threshold logic functions from sparse examples.

Inference Patterns and
Confidence Propagation

Researchers in artificial intelligence have considered infer-
ence methods extensively, though often in a piecemeal fash-
ion. As noted, the integration of logical and statistical in-
ference has only recently come to the fore with methods
such as Markov Logic (Richardson and Domingos 2006) and
Bayesian Logic Programs (Kersting and De Raedt 2005).
The integration of multiple inference patterns, such as de-
duction, abduction, and analogy has received even less at-
tention. For example, Kate and Mooney (2009) applied the
deductive inference engine included with the Markov logic
framework abductively. However, the two methods rely on
different rule structures so that the user must decide which
method to apply before encoding the domain rules.

In this paper, we consider the combination of deduc-
tion and abduction. The utility in combining the two fol-
lows from their complementary nature. Deduction produces
sound arguments (in which the conclusion necessarily holds
given the evidence), but can only restate existing knowledge
in different terms. Abduction adds new information to the
system by hypothesizing (unsound) explanations for exist-
ing knowledge, which deductive methods can then further
expand upon. The resulting system should therefore reason
more broadly than one based on either method alone.

Inference Patterns
PLIE relies on four distinct inference patterns for construct-
ing new beliefs. Each pattern, shown in Table 2, applies
to a specific situation depending on the available evidence.
For example, modus ponens deductively concludes the con-
sequents (q j) of a rule given that the antecedents (pi) hold.
In the context of threshold-implication, this means that the
evidence equation, ∑

m
i=0 vi Pl(pi) > 0, must be satisfied by

pattern matching beliefs from working memory to the pred-
icates in the rule antecedent. When successful, PLIE con-
cludes that ∑

n
j=0 w j Pl(q j) > 0 must also hold. In practice,

this means that the system increases the plausibility in each
of the rule’s consequent beliefs, qi. The other inference pat-
terns operate analogously depending on which beliefs get
used as evidence.

The four inference patterns have differing characteristics.
Two of them, modus ponens and modus tollens, are logically
sound, deductive rules. A third, denying the antecedent, is
also deductive in nature though not logically sound because
it ignores the possibility that a conclusion may be drawn in
multiple ways. Nevertheless, logically unsound inference
patterns are still useful for accumulating evidence about be-
liefs (Polya 1954) and for considering beliefs that, while not
provable, may still accurately describe an agent’s environ-
ment. Finally, affirming the consequent serves as the basis
for abduction, which is also not logically sound for simi-
lar reasons. Notice also that two of the patterns deal with
inference from positive evidence (plausibilities sufficiently
greater than zero), while two of them deal with negated evi-
dence (plausibilities less than zero). This lets PLIE handle a
broad array of situations and rule structures.

Consider the following application of the inference pat-
terns to the rules shown in Table 1. For now, we con-
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Calls(JOHN, BOB) E+ = 1.00
E− = 0.00
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(3,5)
?

(3)

Quiet(JOHN) E+ = 1.00
E− = 0.00

Neighbor(JOHN, BOB) E+ = 0.33
E− = 0.00

Alarm(BOB) E+ = 0.02
E− = 0.00 PhoneRings(BOB) E+ = 0.31

E− = 0.00

Figure 1: Contents of working memory generated by apply-
ing the inference patterns and evidence updates from Table 2
to the long-term memory contents in Table 1. Edge labels
indicate the rules used to derive the beliefs.

sider only the symbolic application of patterns, but return in
the next section to describe the plausibility updates. Sup-
pose that working memory initially contains the observa-
tions Quiet(JOHN) and Calls(JOHN, BOB), each with plausi-
bilities of 1.0. The system can then apply rules (3) and
(5) with accepting the consequent to conclude (or assume)
Alarm(BOB) (rule 3), PhoneRings(BOB) (rule 5), and Neigh-
bor(JOHN, BOB) (both rules). Figure 1 shows the coherence
graph that would result if the system applied both rules. No-
tice that Calls(JOHN, BOB) explains Quiet(JOHN). The opposite
is not true in this case because the antecedents to rules (3)
and (5) are not satisfied, which prevents PLIE from applying
the rules with modus ponens.

Similarly, rule (4) does not apply in this case. Although
the consequent matches with the observation Calls(JOHN,
BOB) in working memory, the antecedent term ¬Quiet(JOHN)
contradicts the observation Quiet(JOHN). For now, we as-
sume that PLIE cannot change the plausibility of observa-
tions (it trusts its senses). However, the assumption is not
fundamental, and may be dropped in later versions of the
work. Rule (6) also does not apply because, in the context
of working memory contents, it fits the modus ponens pat-
tern, which requires that the antecedent be satisfied.

Evidence Updates
As discussed earlier, plausibility quantifies the system’s be-
lief in specific aspects of the environment. PLIE represents
and propagates any uncertainty associated with its rules and
observations through the inference process. This is particu-
larly important in the context of abduction, which produces
logically unsound assumptions. Some of these may be re-
liable, while others may not. Quantifying this uncertainty
lets PLIE distinguish between these two cases and focus on
working with more plausible conclusions during subsequent
inference steps. This is an essential aspect of maintaining
tractability in complex domains.

The update equations shown in Table 2 implement this
by first combining the plausibility values used to trigger the
rule, and then dividing it among the conclusions. The sum-
mation factor in the equations determines the amount of ev-
idence that gets propagated by performing a weighted sum
over the plausibility scores associated with the matched be-
liefs. However, recall that threshold logic can represent dis-
junctive (or partially disjunctive (as in p1 ∧ (p2 ∨ p3)) rule

bodies. This means that not all of the terms in the evidence
must be satisfied for the rule to apply.

A belief b satisfies a rule term if sign(wb Pl(b)) is pos-
itive for the inference patterns that increase confidence in
conclusions (b contributes to exceeding the threshold), and
negative for patterns that decrease confidence in conclusions
(b contributes to not exceeding the threshold). We define S
as the set of beliefs used to instantiate the satisfied terms
in the evidence of a rule application. For example, suppose
p1 ∧ (p2 ∨ p3) represents the evidence for an inference step
and that PLIE has p1 and p3 in working memory with posi-
tive confidence, and p2 with negative confidence. Applying
modus ponens would produce S = {p1, p3}, while denying
the antecedent would produce S = {p2} (and fail).

Before PLIE propagates the accumulated update value to
the conclusions, the value first gets scaled by the reliability
of the applied rule (α or β ) as shown in Table 2. This lends
greater confidence to conclusions drawn from reliable rules.
Note also the sign of the evidence update, which is negated
for inference patterns that increase evidence against a belief.
In these cases, the weighted sum of the evidence values will
be negative because the sign of the weighted plausibilities is
negative. Evidence values are always positive however, so
the sign needs to be flipped.

Finally, the evidence score for a belief qi is updated by
Et+1(qi) = (1−λ ŵi)Et(qi)+λ ŵi∆Et(qi) (1)

where ŵi =
|wi|
‖w‖ represents the normalized weight magnitude

associated with qi in the rule, and 0 < λ < 1 represents a re-
cency parameter (discussed below). The equation for updat-
ing pi is analogous. Note that we omitted the positive and
negative superscripts from E; Table 2 shows which evidence
value gets updated by a given inference pattern. However, if
the qi term is negated in the rule (wi < 0), then the update
gets switched from E+ to E− or vice versa. This follows
from the plausibility relationship Pl(b) =−Pl(¬b) between
beliefs and their negations.

Equation 1 supports a form of the primacy-recency bias
(Ebbinghaus 1913) by scaling the existing and updated ev-
idence scores. PLIE implements primacy by setting λ = 1
on the first evidence update for each belief. This causes the
initial evidence for a belief to have an outsized effect com-
pared to subsequent evidence (typically λ < 1, which scales
down the impact of new evidence). New evidence will even-
tually dominate the older evidence (a recency effect), but
this may require a sequence of several updates. Setting λ

near 1 accelerates this process by increasing the impact of
new evidence, while λ near 0 extends the primacy effect.
Psychologists view these as memory biases, but this work
assumes that biases in how beliefs and their supporting evi-
dence get stored impact the reasoning process. Along simi-
lar lines, rule terms with relatively large weight magnitudes
receive higher impact from new evidence than those with
low weight magnitude, as these contribute the most to satis-
fying the rule.

Returning now to Figure 1, notice that the plausibility as-
sociated with Alarm(BOB) is very low at 0.04 (assuming that
λ = 1 and the weight on each rule term is 1). This fol-
lows from the low β value associated with rule (3), implying



Presented at the 2011 AAAI Fall Symposium: Advances in Cognitive Systems 5

that John has a high false-positive rate. The plausibility of
PhoneRings(BOB) is much higher, indicating that John’s call
is a much better indicator of Bob’s phone ringing than of his
burglar alarm’s sounding. Rules (3) and (5) both contribute
to the plausibility of Neighbor(JOHN, BOB) (assume that the
rules were applied in the order listed in Figure 1).

Upon initial review, the inference patterns and evidence
updates may appear complex. However, closer inspection
reveals that all of the patterns and equations represent minor
variations on a general mechanism depending on whether
the inference flows with or against the rule’s implication
sign, and whether the evidence increases the evidence for or
against a belief. This closely resembles Friedman’s (1981)
work, except that in switching from Boolean to threshold
logic, we have collapsed several highly specialized cases
into one general case.

Inference Engine and Heuristics
The inference patterns described above govern the details of
how PLIE combines beliefs with rules to derive new beliefs.
Given these patterns, the inference engine first selects be-
liefs and rules from memory, and then applies the patterns to
construct new beliefs and update plausibility scores. Impor-
tantly, the incremental application of the inference patterns
from Table 2 provides a seamless integration of forward and
backward reasoning methods, allowing PLIE to exploit op-
portunities in reasoning as they become available. A simi-
lar idea appears in the planning community as opportunis-
tic planning, or metaplanning (see work by Hayes-Roth and
Hayes-Roth, 1979, for an early example). In this section,
we describe the details of the inference engine, including
the methods used to select beliefs and rules for inference.

Heuristics and Biases
This work aims to produce a scalable inference engine that,
while neither complete nor sound, performs well in practice
and provides a foundation for other cognitive abilities. At
present, PLIE does not have access to an agent’s goals, so
our approach focuses on properties of beliefs based on three
cognitive biases that specifically impact reasoning and for
which substantial evidence has been amassed. We do not
claim to reproduce the exact conditions that lead to these
biases as identified in the literature. Instead, we focus on
incorporating a generalized view of each bias into our com-
putational reasoning system. Incorporating other biases and
heuristics remains a key area of future work.

One such property, explanatory coherence (Thagard
1989), implies a preference for beliefs that “hang together”
in the context of explaining observations. Although often as-
sociated with abduction, we also apply coherence to deduc-
tion, as PLIE may also make unsound deductive inferences.

PLIE implements coherence as a measure of linkage with
emphasis on the plausibility of the linked beliefs and their
proximity to observations. Let adj(b) represent the set of
beliefs adjacent to b in working memory regardless of edge
direction. For a belief b′ ∈ adj(b), let rel(b′,b) represent the
rule reliability (α or β ) that applies when the system views
the rule that links b with b′ as though it were used to derive

b from b′ (see Table 2). Also let δ (b′) represent the shortest
distance from b′ to any observation in working memory (0 if
b′ is an observation).

Given these definitions, we define coherence as

coh(b) = ∑
b′∈adj(b)

ŵb′ rel(b′,b)
δ (b′)+1

Pl(b′) .

Though related to plausibility in its use of belief weights
and rule reliabilities, coherence is a measure of the total evi-
dence in working memory for b, with each piece of evidence
weighted by its proximity to an observation. In practice, a
unit increment in the coherence measure represents direct
evidence from or explanation of one (high plausibility) ob-
servation through a reliable rule. The measure attenuates
as evidence gets divided over multiple rule terms, rules be-
come unreliable, observations grow more distant, and evi-
dence terms become less plausible. As a result, coherence is
unbounded in magnitude and cannot be computed incremen-
tally. Nevertheless, the coherence measure is computation-
ally simple and calculated locally, so the approach should
remain tractable as the size of working memory grows large.
Our coherence measure is similar in spirit to that of Ng and
Mooney (1990), but operates over individual beliefs rather
than proof trees.

The second bias implements a preference for working
with highly plausible beliefs. We view this as a generaliza-
tion of several specific biases identified in the literature, such
as the confirmation and disconfirmation biases (Lord, Ross,
and Lepper 1979). The former states that people tend to
favor information that confirms their preconceptions, while
the latter states that people tend to be very critical of infor-
mation that contradicts them.

PLIE implements these in two ways. First, it ignores
beliefs that have low plausibility. In the alarm example,
an agent may ignore the contingency in which the alarm
has sounded if John’s unreliability causes a sufficiently low
plausibility score and no other evidence is available to in-
crease it. Second, PLIE prefers rule applications with
stronger evidence over those with weaker evidence. The ex-
tent to which a rule application exceeds its threshold indi-
cates how strongly the evidence supports the rule applica-
tion. This favors rule instances with more matched evidence
terms, and whose evidence terms have high plausibility.

The preference for working with highly plausible beliefs
comes with two caveats. First, the approach may ignore a
plausible inference if evidence is spread thinly across many
rule applications. In cases for which no one rule application
provides sufficient evidence to maintain a belief, and the in-
ference procedure does not apply multiple rules for the belief
in a single cycle, the belief will be ignored repeatedly. The
extent to which this is acceptable behavior requires empiri-
cal evaluation. The second caveat is that the inference proce-
dure could revisit plausible beliefs repeatedly, causing them
to become more plausible without any new evidence. To
control this, the inference procedure is explicitly prevented
from revisiting previously made inferences as indicated by
the coherence graph.

Finally, primacy and recency biases have already been im-
plemented by the plausibility update equations. However,
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we apply a second form of recency in the inference engine
by preferring to expand upon beliefs and observations that
have been recently updated or added to working memory.
This gets implemented by having the inference engine se-
lect only a small number of beliefs for expansion during any
given inference cycle based largely on their the recency.

This combination of biases should cause PLIE to reason
along a small number of plausible trajectories. Nothing ex-
plicitly prevents the system from exploring other lines of in-
ference opened by new observations or substantial changes
to the plausibility of established beliefs. However, it should
not explore broadly through highly implausible regions of
the belief-space.

Inference Procedures
PLIE operates in cycles, with each cycle consisting of three
steps. First, the system selects a small subset of beliefs from
working memory for expansion and identifies the relevant
rules from long-term memory. Next, it applies the inference
patterns from Table 2 to derive new and update existing be-
liefs. Finally, it filters the resulting beliefs to remove those
with low plausibility or coherence. The remainder of this
section details each step in turn.

Each cycle begins with PLIE selecting a small subset of
beliefs, Wsel, from working memory for expansion, where
|Wsel| is an adjustable parameter. It selects beliefs with a
preference for those most recently updated, breaking ties in
favor of beliefs with higher coherence scores. PLIE then
identifies the applicable rules from long-term memory given
the beliefs in Wsel. A rule is applicable if three conditions
are met: (1) a belief from Wsel matches a term in the rule
evidence, (2) the remaining evidence terms can be matched
by beliefs in working memory, and (3) the intended infer-
ence has not been previously made using the same rule and
evidence. After identifying the set of applicable rules, PLIE
then chooses the subset that exceeds their thresholds by the
highest amounts such that each belief in Wsel gets paired with
one applicable rule.

Given the selected beliefs and applicable rules, PLIE next
applies the inference patterns from Table 2 to generate con-
clusions and update plausibility scores. This may entail
multiple rule applications and may generate many conclu-
sions, or multiple updates to a single conclusion. Though
the search remains focused on recent, coherent beliefs, this
provides a broader search through belief space than if the
system used only the single “best” belief in each cycle.

Also note that conclusions drawn abductively by PLIE
may contain unbound variables, such as Neighbor(y3, BOB).
Here, the system creates a Skolem constant as a place holder.
During subsequent inference cycles, it can unify Skolem
constants with other constants. For example, this would ef-
fectively replace the belief “Bob has some specific, unnamed
neighbor” with “Bob’s neighbor is John.” All instances of
a Skolem constant must be replaced with the same domain
constant and all unifications must be consistent (must not
create a belief that contradicts any existing belief).

After generating conclusions and updating plausibility
scores, PLIE filters its results to remove beliefs with very
low magnitude plausibility. Specifically, any belief b with
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Figure 2: Coherence graph after three inference cycles given
the observations Neighbor(JOHN,BOB), Quiet(JOHN), Securi-
tyCo(XYZ,BOB), and Calls(XYZ,BOB). Dashed arrows indicate
available inferences not made by PLIE.

|Pl(b)| < τ does not get added to (or replaced in) working
memory, where τ is an adjustable parameter. This prevents
it from creating and storing a large number of beliefs with
scores very near to zero. Although PLIE is unlikely to se-
lect such beliefs for Wsel, they may still get matched as part
of the inference process, thereby deriving a potentially large
number of new beliefs with low plausibility.

An important side effect of this is that some beliefs may
lose their support over time. The plausibility of such a be-
lief does not change in working memory, but the coherence
declines, which biases PLIE against selecting the belief for
expansion. Plausibility changes only when the system draws
a direct conclusion about a belief.

An Example
Consider now a larger example based on the rules in Table 1.
To begin, suppose that PLIE receives four observations, each
with plausibility 1.0: Neighbor(JOHN,BOB), Quiet(JOHN), Se-
curityCo(XYZ,BOB), and Calls(XYZ,BOB). Initially, the only
possible inference applies rule (6) with modus ponens to
conclude that there is a burglar at Bob’s house, Burglar(BOB),
as shown in the coherence graph in Figure 2. The high plau-
sibility of the conclusion follows from the use of both highly
plausible observations as evidence, and a highly reliable in-
ference rule (α = 1.0).

In the second cycle, PLIE chains forward from Burglar us-
ing rule (1) with modus ponens to conclude that the alarm
has sounded at Bob’s house, Alarm(BOB). This conclusion
is also highly plausible for reasons similar to those above.
Note however that the coherence of Burglar (1.13) is sub-
stantially higher than that of Alarm (0.48) because Burglar
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links directly to observations.
PLIE has available two applicable rule instances in the

third cycle given that Wsel contains Alarm(BOB). Rule (2) ap-
plies abductively and rule (3) applies with modus ponens.
Assuming similar thresholds for the two rules, PLIE would
prefer rule (3) over rule (2) based on the slightly larger plau-
sibility contributions from Neighbor and Quiet (1.0 versus
0.95 from Alarm). PLIE therefore infers Calls(JOHN,BOB)
with coherence 1.16 based on its links to two observations.
The inference also raises the coherence of Alarm slightly to
0.50. The small increment in this case follows from the low
reliability of rule (3) when viewed abductively (β = 0.05).

To summarize the inference process so far, PLIE has de-
termined that a burglar has very likely struck Bob’s house
given that the XYZ security company has called him. His
alarm system has also plausibly sounded, which implies that
John may also call soon. PLIE avoided the inference that an
earthquake triggered the alarm, though, even if made, the in-
ference would be both less plausible and less coherent than
the burglar explanation. Nevertheless, this does raise a ques-
tion about whether preferences and coherence are sufficient
to avoid or distinguish between multiple, conflicting expla-
nations for a single set of observations. PLIE does not ex-
plicitly represent the notion that, while not technically mu-
tually exclusive, rules (1) and (2) should not typically occur
together. For now we reserve this as a point for future work.

A second open question relates to a stopping criterion. For
cases in which the stream of incoming observations stag-
nates for a period of time, PLIE would ideally determine
a point at which continuing inference is no longer produc-
tive. In the current example, PLIE could continue reasoning
by applying rule (5) abductively to generate the assumption
PhoneRings(BOB). As with Earthquake, this represents an al-
ternate, and less plausible explanation for John calling Bob.
If other rules related to events or beliefs stemming from the
alarm’s sounding or John’s call to Bob were present in long-
term memory, then the system would tend to follow those
paths. In this case, no other inference paths are available,
so PLIE returns to considering the low-plausibility and low-
coherence lines of reasoning ignored earlier.

Discussion
The plausibility-based approach to computational reasoning
outlined above represents a distinct departure from tradi-
tional proof-based logic. It provides mechanisms for draw-
ing unsound conclusions, and relies on incomplete heuristic
search. Although this admits the possibility that the sys-
tem may draw incorrect conclusions or ignore many correct
conclusions, it also represents an attempt at avoiding the in-
tractability associated with many logical inference systems
by identifying potentially useful conclusions. This is an im-
portant point in the context of cognitive agents whose goal
is to perform tasks in complex environments.

From this perspective, adding information about agent
goals to PLIE would be a fruitful direction for future work.
For example, PLIE could use the relationship of a belief’s
predicate to goal predicates as an additional guidance heuris-
tic. This respects the approach of exploring from observa-
tions (as well as goals) while further sharpening the system’s

focus on working with beliefs that are relevant to the task or
domain at hand.

In the context of symbolic inference, Bridewell and Lan-
gley’s (2011) AbRA is most similar to PLIE. Although
their discussion focuses on abduction, AbRA can also apply
rules deductively. Both systems can therefore combine both
forward chaining from observations and backward chain-
ing from goals. Their approach does not support inference
from negated evidence (modus tollens and denying the an-
tecedent) and does not handle uncertainty in beliefs or rules,
however. Friedman’s (1981) work does support all four in-
ference patterns identified in Table 2 and uses a numeric con-
fidence measure that is somewhat similar to PLIE’s plausi-
bility scores, but relies on brute force computation to derive
all possible beliefs.

Production systems such as Soar (Laird, Newell, and
Rosenbloom 1987) also perform a kind of symbolic infer-
ence. Unlike many other inference systems, production sys-
tems do not commit to any one reasoning formalism, al-
though the rules can be structured to implement a variety of
formalisms. Instead, they take a purely syntactic approach,
firing rules that match the current belief state and using other
productions to implement preferences while typically ignor-
ing the structural properties of the generated beliefs. In con-
trast, PLIE commits to a fixed reasoning formalism based on
deduction and abduction while its guidance heuristics take
the relationships among beliefs into consideration.

PLIE also represents a departure from traditional statisti-
cal optimization-based inference techniques. These meth-
ods, including Bayesian networks (Pearl 1985) and more
recent efforts like Markov logic (Richardson and Domin-
gos 2006), attempt to estimate probability distributions as-
sociated with one or more query variables. Statistical infer-
ence algorithms can require substantial computation, often
drawing on information from large portions of the underly-
ing belief network in response to a single query, or evaluat-
ing every possible belief simultaneously. Conversely, PLIE
updates selected plausibilities incrementally in response to
changes in observations. Though clearly less precise than
statistical inference methods, PLIE entails a much lighter
computational burden. This makes sense in the context of
agents acting in worlds where responsiveness often takes
precedence over precision.

Immediate points of future work on PLIE concern im-
plementation and performance comparison to other infer-
ence systems. The examples above suggest that PLIE may
demonstrate a number of interesting and useful properties,
but a much more extensive evaluation is required. Of spe-
cific concern are the system parameters and the inference
heuristics. With additional experimentation, the parameters
should be set to fixed, domain independent values. Likewise,
the impact of the inference heuristics requires further study.
We selected plausibility, coherence, and primacy/recency
because they are well-known and easy to implement. How-
ever, other implementations are possible and many other
cognitive biases have been studied. The impact of these and
other biases on system performance needs further study.

As noted earlier, analogical and inductive reasoning pro-
cesses will play major roles in producing a system that scales
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and performs well on real world problems. Briefly, the role
of analogy is to expand the applicability of the rules in long-
term memory. By mapping known rules into novel domains,
PLIE can leverage a greater proportion of its knowledge
when it encounters new situations. Likewise, an inductive
process will expand and add nuance to the system’s exist-
ing knowledge. This includes tuning rule strengths (α and
β ), modifying rule antecedents and consequents, and adding
new rules based on experience. Together, these should re-
duce PLIE’s reliance on manual knowledge engineering and
increase the breadth of its reasoning capability.

A third area of future work is metacognitive in nature.
Currently, PLIE contains a set of four inference patterns,
which may expand as analogical and inductive processes get
added. These patterns are fixed, but could be adapted or
expanded based on experience. For example, if the abduc-
tive pattern regularly produces conclusions that later get re-
moved or refuted, then the system could modify the pattern
require evidence with higher plausibility scores. This would
increase it’s efficiency by finding and exploiting general pat-
terns in the reasoning process.

Concluding Remarks
The goal of this work is to combine ideas and results from a
broad array of work from both the artificial intelligence and
psychological research communities into a pragmatic and
computationally tractable inference system. Our approach
draws on experiences in both logical and statistical infer-
ence while dropping obsessions with formal proof and sta-
tistical precision. Likewise, even though our approach takes
inspiration from research on human cognition, our objec-
tive is simply to identify reasoning heuristics that lead the
inference engine to construct and maintain beliefs that are
relevant to an agent acting in the environment.

The work reported here summarizes only an inital effort
at designing a knowledge representation and inference algo-
rithms to achieve the stated goals. The provided examples
demonstrate the intended function of the system, but further
testing is required to establish that the intended performance
holds up across a variety of domains. Nevertheless, combi-
nation of logic, plausibility, and heuristics presented above
provide strong foundation on which to experiment with, re-
vise, and expand the core ideas of this work.
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