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ABSTRACT
Recent advances in encrypted outsourced databases support
the direct processing of queries on encrypted data. Depend-
ing on functionality (i.e. operators) required in the queries
the database has to use different encryption schemes with
different security properties. Next to these functional re-
quirements a security administrator may have to address
security policies that may equally determine the used en-
cryption schemes. We present an algorithm and tool set
that determines an optimal balance between security and
functionality as well as helps to identify and resolve possible
conflicts. We test our solution on a database benchmark and
business-driven security policies.

Categories and Subject Descriptors
H.2.0 [Database Management]: General—Security, In-
tegrity, and Protection; D.4.6 [Operating Systems]: Se-
curity and Protection—Access control

Keywords
Encrypted Database, Policy Configuration, Encryption Al-
gorithm

1. INTRODUCTION
The IT world is facing an architectural shift where stor-

age as well as processing capabilities are offered by cloud
providers. We observe large platforms operated, for exam-
ple, by Amazon, SAP or Microsoft successfully providing
infrastructure, database-as-a-service, and entire cloud ap-
plication offerings to some of the world’s largest companies.
Naturally, data security is a main concern and one general
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answer is to use at-rest encryption technology to protect
outsourced data. This, however, renders any offerings such
as database-as-a-service useless when assuming that cloud
companies may not be fully trusted [26] as encrypted data
cannot be directly processed. A bizarre architectural setup
is the result where customers have to encrypt large data
sets before provisioning them to the cloud, but then retrieve
them back to on-premise and decrypt them if they want to
run any complex queries. How to securely store as well as
process data in a cloud is thus a major question for compa-
nies willing to migrate to and benefit from cloud offerings.

However, encryption schemes have been proposed recently
that allow to execute particular query operators over en-
crypted data and recent work by [24] shows that the general
direct processing of encrypted data is an achievable goal,
something recently confirmed in a larger industrial perspec-
tive [15]. Following the idea of encrypting cleartext in so
called ”onions” allows to balance and match data process-
ing functionality, i.e. each layer of an onion supports some
SQL operations, with security, i.e. an onion structure intro-
duces a total order with respect to the security properties
of the chosen schemes. Yet, it is not practical to encrypt all
columns in a table with the same onion structure. For ex-
ample, columns may not require any encryption as they do
not contain any sensitive material. Other columns may, for
company specific compliance regulations, require to always
be encrypted using a specific scheme when outsourced.

We believe that in order to further promote the wider in-
dustrial adoption of directly processing encrypted data, a
more flexible configuration management is required before
outsourcing the data from on-premise to a database-as-a-
service cloud. In this paper, we first present a policy-based
configuration framework for encrypted data allowing the se-
curity administrator to specify the security policy to be ap-
plied over the outsourced data. Second, we propose an al-
gorithm allowing to detect conflicts between security and
utility requirements. Third, we prove that selecting the op-
timal combination of encryption schemes that fit the defined
policies with respect to the data owner’s functional require-
ments (e.g. SQL that should be executed over the encrypted
data) is NP-hard. Fourth, we therefore propose a heuristic,
polynomial-time algorithm for finding a combination of en-



cryption schemes that satisfies a policy P and provides the
best security level.

The rest of this paper is organized as follows, Section 2 de-
scribes the problem treated in this paper. Section 3 presents
the modeling of the used system and the modeling of the pol-
icy to be applied over the outsourced database. We show, for
a given policy, how to detect the conflict between security
and utility requirements involved in the policy and how to
choose the combination of encryption schemes that enforces
it. Section 4 presents a use case showing the application and
the benefits of our approach in practice. Section 5 discusses
related work. Finally, Section 6 reports our conclusions.

2. PROBLEM DESCRIPTION

2.1 Adjustable Database Encryption
Encrypted databases can execute SQL queries over en-

crypted data. In this case data is never decrypted inside the
database server, but always remains encrypted. The key to
the encryption and decryption functions solely resides at the
client.

The main idea to processing queries in this way is property-
preserving encryption. In property-preserving encryption a
function f(E(x), E(y)) on ciphertexts E(x), E(y) returns
the same result as f(x, y). Hacigümüs et al. have described
this concept for deterministic encryption and equality as
a function [16]. They realized that many database opera-
tors, particularly selection and join, often use equality. Each
data value is separately deterministically encrypted. Those
database operators can then be used unmodified on encrypted
data.

A limitation of the initial approach was that inequality
comparisons (range queries) were insufficiently supported.
Agrawal et al. introduced order-preserving encryption [2].
Order-preserving encryption is property-preserving encryp-
tion for greater-than-or-equal comparisons. Using order-
preserving encryption one can implement a large subset of
SQL queries.

The security of order-preserving encryption and even de-
terministic encryption is still much debated. It is there-
fore better to choose the most secure encryption for a set
of queries. If this set is unknown, then all data needs to
be encrypted order-preservingly. Popa et al. presented a
solution to this: adjustable (onion) encryption. Each data
value is encrypted order-preservingly. This ciphertext is en-
crypted deterministically and the result is finally encrypted
using standard randomized encryption secure against chosen
plaintext attacks. Before a query is executed it is analyzed
for the required encryption levels and the data values are ad-
justed (decrypted) to these levels. Hence, the most secure
encryption can be chosen automatically.

2.2 Functional Requirements
As already mentioned the set of queries executed on the

database pose a set of functional requirements. These re-
quirements are captured as the functions executed on the
ciphertext by the database operators.

In many cases a large subset of the queries to be exe-
cuted is known. For example, when an application uses the
database, one can analyse this application and extract the
queries (maybe except for parameters). In many cases one
can simply resort to the prepared SQL statements.

If this subset of queries is known in advance, then it would
be unwise to adjust the encryption during run-time. Al-
though the adjustment process is performed only once, it
can be quite costly. Each data value of an entire column
needs to be decrypted which can sum to several MByte or
even GByte of data.

Instead, the database can be encrypted to a “prepared”
state and the adjustment process avoided. This leads to
a significant shortening of the phase from a cold to a hot
database. Real systems can go faster into production.

Our approach is the first to support this analysis. We
choose the appropriate encryption levels depending on the
functional requirements of a set of queries.

2.3 Security Levels
The encryption levels of adjustable encryption correspond

to different security levels. We claim that randomized en-
cryption is at least as secure as deterministic encryption
which is at least as secure as order-preserving encryption.
We argue as follows.

Randomized encryption (RND) is semantically secure, i.e.,
it is secure against chosen plaintext attacks. We use AES in
CBC for this encryption level. Clearly, then chosen plain-
texts attacks are prevented.

Deterministic encryption (DET) allows chosen plaintext
attacks, if the key is known or there is an encryption oracle.
We only need symmetric encryption in encrypted database,
such that it may be difficult to obtain the key or construct
such an oracle. If a plaintext is encrypted and stored more
than once, deterministic encryption also allows frequency
attacks as in [18]. While not necessary, this may often – if
not almost always – be the case in real databases. We there-
fore claim that deterministic encryption is less secure than
randomized encryption. We use Pohlig-Hellman encryption,
a symmetric key RSA variant, for this encryption level, in
order to support proxy re-encryption [20].

Order-preserving encryption (OPE) is also deterministic,
such that all attacks on deterministic encryption also work
for order-preserving encryption. In addition, it preserves
the order, which may enable many more attacks. It was con-
cluded that order-preserving encryption leaks at least half of
the plaintext bits [29]. Clearly, order-preserving encryption
is the least secure choice. We use the scheme by Boldyreva
et al. [5, 6] for this encryption level, which has been proven
to be the optimally secure, immutable, order-preserving en-
cryption scheme.

Next to these encryption levels we use homomorphic en-
cryption (HOM) for aggregation. Specifically, we use Paillier
encryption [22]. Homomorphic encryption is secure against
chosen plaintext attacks as is randomized encryption. Since
for processing queries both ciphertexts need to be offered
in parallel, they can be safely assumed to provide the same
security level. Furthermore, similar to onion encryption, ho-
momorphic encryption can be downgraded to deterministic
encryption. As in the approach by Bellare et al.[4], we can
choose a deterministic randomization parameter. For down-
grading we can simply select one ciphertext among the set
of identical plaintexts. This has the added benefit that dic-
tionary compression is as effective as on plaintext data [19].



2.4 Security Requirements and The Need for
Policy Configuration

Considering the security levels from Section 2.3 The data
owner may realize that certain queries may put his data at
risk. These queries may adapt the encryption level to an
unsafe state, e.g. order-preserving encryption, for a certain
set of data. Even certain security standards, such as PCI-
DSS, may require certain encryption levels.

Therefore the data owner may want to set certain policies
on which encryption levels are allowed. He may want to
prevent specific data from ever reaching a specific encryption
state. For this he needs the approach for specifying policies
we propose in this paper.

2.5 Policy Enforcement
The specified policies need to be enforced in the encrypted

database. There is a crucial insight that enables prevention
of certain encryption levels. If an encryption level is not
present, it cannot be decrypted to. And vice versa, if an
encryption should not be decrypted to, it does not need to be
present. We therefore omit the encryption levels prevented
by our policy. If one should not be able to decrypt to order-
preserving encryption, the data value will not be encrypted
order-preservingly. This has the positive side effect that
ciphertexts may get smaller and encryption is more efficient.

The question remains what to do with queries that func-
tionally require an encryption level that is prohibited by the
security policy. In this case one ships the ciphertexts to the
client, decrypts and executes the query on the client. The
client query analysis algorithm of Kerschbaum et al. based
on relational algebra, allows splitting a query into a local
and a remote part [21]. This way only the minimally neces-
sary part of the query according to the security policy will
be executed on the client.

3. POLICY CONFIGURATION
In this section, we firstly present the modeling of the sys-

tem and the specification of the policy. Afterwards, we
present an algorithm allowing to detect conflicts between
the constraints of the policy. We then propose an efficient
algorithm allowing to enforce the policy while resolving the
detected conflicts.

3.1 System modeling
In our approach, data to be outsourced is stored in a re-

lational database D, which is composed of a collection of
relational tables T = {T1, · · · , Tn}, with each of these rela-
tional tables Ti containing a collection of attributes ATi =
{a1,i, a2,i, · · · }. The system contains a toolbox E composed
of a set of m encryption schemes {E1, · · · , Em} that can be
used to protect outsourced data. Each encryption scheme
Ei ∈ E is characterized by a security level li that provides
and a set of functionalities Fi ⊆ F that satisfies. Let F be
the set of functional requirements that can be required over
the data to be outsourced and L be the set of security levels
provided by E .

3.2 Policy modeling
We model, in a quite simple and powerful way, the require-

ments defined by the data owner. Those requirements are
expressed through security and utility constraints. Security
constraints are composed of confidentiality constraints and
security threshold constraints.

Definition 1. (Confidentiality constraint) Given a relational
table Ti ∈ T containing a list of attributes ATi , a confiden-
tiality constraint defined over Ti is a singleton set CC = {a},
where a ∈ ATi .

Semantically speaking, a confidentiality constraint CC states
that the value assumed by the attribute in CC is considered
sensitive and therefore must be protected.

Definition 2. (Security threshold constraint) Given a re-
lational table Ti ∈ T and an attribute a ∈ ATi , a security
threshold constraint TCa over the attribute a is a security
level l in L. A security threshold constraint defined over the
attribute a is well defined iff there exists a confidentiality
constraint CC such that a ∈ CC.

Security threshold constraints allow the data owner to spec-
ify a security level threshold for each sensitive attribute. The
semantics of a security threshold constraint TC is that the
security level of the sensitive attribute a must be at least as
much secure as the security level l of TC.

Definition 3. (Utility constraint) Given a relational ta-
ble Ti ∈ T and an attribute a ∈ ATi , an utility constraint
UCa over the attribute a is a set of functionality Fa =
{f1, · · · , fn}, where Fa ⊆ F .

Confidentiality protection is provided at the expense of data
utility. A utility constraint offers the data owner the abil-
ity to require that some functionalities on his data must be
provided, otherwise the data is useless.

3.3 Policy conflict detection
Policy conflicts occur when the objectives of two or more

constraints cannot be simultaneously satisfied. Conflict de-
tection aims at checking whether a set of constraints contains
conflicts. In our case, conflicts may occur between security
constraints and utility constraints, more precisely, between
security threshold constraints and utility constraints. To de-
tect the conflicts, there are two steps. First, we must get for
each security level l ∈ L, the set of functionalities Fl which
are satisfied by encryption schemes providing security levels
that are at least as much secure as l. Then, for each sensitive
attribute having TCa = la as a security threshold constraint
and UCa = Fa as an utility constraint, we check if the set
of functionalities Fla we got from the previous step for the
level la is a superset of Fa, and if not, we deduce that there
is a conflict between TCa and UCa. The set of conflicts in
a defined policy are detected as described in Algorithm 1.

Example 1. Let L = {RND,DET,OPE} be the set of
security level that can be provided from the set of encryp-
tion schemes E = {E1, E2, E3}. Suppose that the E1, E2

and E3 provide respectively RND, DET and OPE, and
satisfy respectively the functionalities ∅, {Equality, Join}
and {Min, Max}. Suppose that we want to enforce a pol-
icy composed of two constraints TCa = DET and UCa =
{Join, Min}. By performing the first step of Algorithm 1,
we deduce that FRND = ∅, FDET = {Equality, Join} and
FOPE = {Equality, Join, Min, Max}. The second step
of Algorithm 1 gives that UCa * FDET , which allows to
deduce that TCa and UCa are conflicting constraints.



input :
As = {a1, · · · , an} /*sensitive attributes*/

Ct = {TCa1 , · · · , TCan} /*security threshold

constraints*/

Cu = {UCa1 , · · · , UCan} /*utility constraints*/

E = {E1, · · · , Em} /*encryption schemes*/

L = {l1, · · · , lp} /*security levels*/

output:
I /*set of conflicts*/

Main
I = ∅
/* First step */
foreach li in L do

Fli = ∅
foreach Ej in E do

if (lj is more secure or equal li) then
Fli = Fli ∪ Fj

end

endfch

endfch
/* Second step */
foreach ak in As do

if ( UCak * FTCak
) then

I = I ∪ {(ak, UCak , TCak )}
end

endfch

Algorithm 1: Conflict detection

3.4 Policy satisfaction
The policy to be enforced over the outsourced database

is composed of security and utility constraints. Those con-
straints can be satisfied through the application of encryp-
tion schemes. Our main challenge is to find for each sensitive
attribute a in the outsourced database, the best combination
of encryption schemes that can satisfy the set of security and
utility constraints defined over a.

Definition 4. (combination of encryption schemes) Let E
be the set of available encryption schemes in the system, a
combination of encryption schemes is a subset C ⊆ E .

Definition 5. Let C = {E1, · · · , Em} be a combination
of encryption schemes applied over the attribute a and li
be the security level provided by the encryption scheme Ei,
1 ≤ i ≤ m. The security level of the attribute a provided by
the application of C is l, iff the following conditions hold:

• l ∈ {l1, · · · , lm}

• ∀lj ∈ {l1, · · · , lm}, lj is at least as secure as l.

Note that the previous definition requires the security level
provided by the combination of schemes in C to be the lowest
security level provided by the application of each encryption
schemes in C. A strategy to find the combination of encryp-
tion schemes that satisfy the chosen policy consists of finding
the best combination of encryption schemes, that is, it pro-
vides the highest level of protection for sensitive data, while
minimizing the number of involved encryption schemes. We
formalize this problem as follows:

Problem 1. (best combination of encryption schemes) Let
P be a policy, C = {C1, · · · , Cn} be a set of combinations of

encryption schemes that satisfy the policy P , and li be the
security level provided by the application of the combination
Ci, with 1 ≤ i ≤ n. Ck is the best combination of encryption
schemes in C that satisfy P iff the following conditions are
satisfied:

• ∀Cj ∈ C, lk is at least as secure as lj .

• ∀Cj ∈ C, |Ck| ≤ |Cj |.

The problem of finding the best combination of encryption
schemes is NP-hard. This is formally stated by the following
theorem.

Theorem 1. The problem of finding the best combination
of encryption schemes is NP-hard.

Proof. We prove the previous theorem by a reduction
from the NP-hard problem of minimum hypergraph color-
ing [13], which is formulated as follows: given a hypergraph
G(V,E), determine a minimum coloring of G, that is, as-
sign to each vertex in V a color such that adjacent vertices
have different colors, and the number of colors is minimized.

We define the correspondence between finding the best
combination of encryption schemes problem and the mini-
mum hypergraph coloring problem as follows. Let a be a
sensitive attribute, TCa = l be a security threshold con-
straint defined over a, UCa = {fa1 , · · · , fan} be a utility
constraint defined over a, and El = {E1, · · · , Em} the set
of encryption schemes that provide a security level which is
at least as secure as l. Any vertex vi ∈ V corresponds to
a functionality fi ∈ F . We denote ea the edge in G which
connects va1 , · · · , van , corresponds to the constraint UCa.
The combination of encryption schemes C = {Ei1 , · · · , Eip},
where C ⊆ E and each Eij ∈ C satisfies the set of function-
alities Fj = {fj,1, · · · , fj,kj}, satisfies the constraint UCa

correspond to a solution S for the corresponding hyper-
graph coloring problem. More precisely, S uses p colors.
Vertices {v1,1, · · · , v1,k1} corresponding to the functional-
ity satisfied by Ei1 are colored using the first color, ver-
tices {vq,1, · · · , vq,kq} corresponding to the functionality sat-
isfied by Eiq are colored using the q-th color, and vertices
{vp,1, · · · , vp,kp} corresponding to the functionality satisfied
by Eip are colored using the p-th color. Therefore, any al-
gorithm finding the combination of encryption schemes that
involved the minimal number of encryption mechanism while
satisfying the constraint UCa can be used to solve the min-
imum hypergraph coloring problem.

Since the problem of finding the best combination of en-
cryption schemes that satisfy a policy P is NP-hard, we
cannot expect to be able to solve an instance of arbitrary
size of this problem to optimality. Thus, heuristic resolution
strategies are widely exploited to solve such a problem with
a reasonable computational effort.

3.5 Heuristic search
We propose a near-optimal heuristic for finding a combi-

nation of encryption schemes that satisfy a policy P . Our
heuristic is based on a constructive method consisting of
building a solution to the problem step by step from scratch.
The used constructive method is based on choosing for each
iteration, the best satisfier of the chosen policy.

Definition 6. (best satisfier) Let P be a policy composed
of two constraints: a security threshold constraint TCa = l



and an utility constraint UCa = {fa1 , · · · , fan}. Both con-
straints are defined over the sensitive attribute a. Let E =
{E1, · · · , Em} be the set of available encryption schemes.
Ei ∈ E is a best satisfier if the following conditions are sat-
isfied:

• The security level lEi is at least as secure as l.

• ∀Ej ∈ E , lEj is at least as secure as l and |FEi∩UCa| ≥
|FEj ∩ UCa|, where FE are the set of functionalities
satisfied by E.

The second condition in the previous definition states that
Ei is the best satisfier if it satisfies the highest number of
functionalities in UCa compared to other encryption schemes
in E that satisfy TCa.

Algorithm 2 shows our heuristic algorithm for comput-
ing for each sensitive attribute, a combination of encryption
schemes that satisfy the constraints defined over it. The al-
gorithm takes as input the set of attributesA in the database
to be outsourced, the policy P to be enforced over the set of
attributes A, the set of available encryption schemes E that
can be used to enforce the policy P, the set of security levels
L, and returns as output the set of combinations of mecha-
nisms S that efficiently enforce the policy P. For conflicting
constraints, the algorithm returns a set of propositions CP
to aid in resolving the conflicts.

The algorithm first initializes S, CP, As to the empty
set and execute the procedure get conflicting constraints
which takes as parameters P, E , L, and return the set of
conflicts in the policy. The get conflicting constraints pro-
cedure is represented by the Algorithm 1. Based on the
confidentiality constraints in P, the algorithm performs the
first foreach loop to get all sensitive attributes As. Then,
for each sensitive attribute ai having an unconflicting con-
straint it tries to get the best combination of schemes in
terms of the provided security level. In order to meet the
previous goal, we use the while loop to run down the set
of security levels in L which are at least as secure as (≥s)
TCi starting from the highest one. For each security level
sec lev, we get from E the set Esec lev of encryption schemes
that provide security levels which are at least as secure as
sec lev and which can satisfy functionalities in UCi. Next,
we copy the set of required functionalities UCi to UCtemp,
and at each iteration of the next while loop, we get the best
satisfier Ebs from Esec lev according to the Definition 6. Ebs

will be next added to the combination Sol, removed from
Esec lev, and the required functionalities satisfied by Ebs will
be removed from UCtemp. This while loop is terminated
if: (1) all required functionalities in UCtemp are satisfied, in
this case the set Sol represents the combination allowing to
satisfy the constraints defined over the attribute ai; or (2)
Esec lev is empty, which means that there is no combination
that satisfies UCi in the security level sec lev.

For each attribute ai having a conflicting constraint, using
the third outermost foreach loop, the algorithm gives ad-
ditional proposition allowing to avoid the conflict. To meet
this goal, we use the first while loop in the third outer-
most foreach loop to run down the set of security levels
in L starting from TCi. We perform the same operation
as in the previous outermost foreach loop, except, for each
sec lev, we will add to the set of propositions CP the en-
try (ai, P rop, sat func, sec lev) stating that in the security
level sec lev, the combination of schemes Prop is able to

input : A = {a1, · · · , an} /*database attributes*/
P = {CC1, · · · , CCl, TC1, · · · , TCl, UC1, · · · , UCl}
E = {E1, · · · , Em} /*encryption schemes*/
L = {l1, · · · , lp} /*security levels*/

output: S /*Solution*/
CP /*Conflict resolution propositions*/

Main
S = ∅
CP = ∅
As = ∅
Conflicts = get conflicting constraints(P, E,L)
foreach CC in P do
As = As ∪ CC

endfch
foreach ai in As do

if (not (ai, TCi, UCi) in Conflicts) then
sec lev = get the highest sec lev(L)
Sol = ∅
while sec lev ≥s TCi do

Sol = ∅
Esec lev = ∅
foreach E in E do

if (lE ≥s sec lev and FE ∩ UCi 6= ∅) then
Esec lev = Esec lev ∪ E

end

endfch
UCtemp = UCi

while (UCtemp 6= ∅ and Esec lev 6= ∅) do
Ebs = get first elem(Esec lev)
foreach E in Esec lev do

if (|FE ∩ UCi| ≥ |FEbs
∩ UCi|) then

Ebs = E
end

endfch
Sol = Sol ∪ Ebs

Esec lev = Esec lev \ {Ebs}
UCtemp = UCtemp \ (FEbs

∩ UCtemp)

end
if (UCtemp = ∅) then

break
end
if (Esec lev = ∅) then

sec lev = get next best level(sec lev,L)
end

end
S = S ∪ {(ai, Sol, sec lev)}

end

endfch
foreach (ai, TCi, UCi) in Conflicts do

Prop = ∅
sec lev = TCi

while sec lev 6= NULL do
Prop = ∅
Esec lev = ∅
foreach E in E do

if (lE ≥s sec lev and FE ∩ UCi 6= ∅) then
Esec lev = Esec lev ∪ E

end

endfch
UCtemp = UCi

while (UCtemp 6= ∅ and Esec lev 6= ∅) do
Ebs = get first elem(Esec lev)
foreach E in Esec lev do

if (|FE ∩ UCi| ≥ |FEbs
∩ UCi|) then

Ebs = E
end

endfch
Prop = Prop ∪ Ebs

Esec lev = Esec lev \ {Ebs}
UCtemp = UCtemp \ (FEbs

∩ UCtemp)

end
sat func = UCi\UCtemp

CP = CP ∪ {(ai, Prop, sat func, sec lev)}
if (UCtemp = ∅) then

break
end
if (Esec lev = ∅) then

sec lev = get next best level(sec lev,L)
end

end

endfch

Algorithm 2: Policy satisfaction



satisfy the set of functionalities sat func required for the
attribute ai. These propositions may help the security ad-
ministrator (data owner) to choose, from his point of view,
the best trade off between security and utility.

Theorem 2. (Complexity) Given a set of p attributes A,
a policy P composed of n confidentiality constraints, n se-
curity threshold constraints, n utility constraints, a set of
m encryption schemes E , and a set of r security levels, the
complexity of the policy satisfaction algorithm (Algorithm
2) is O(m2 · n · r + r ·m + 2n).

Proof. (sketch) We suppose that we have p attributes
having unconflicting constraints and q attributes having con-
flicting constraints, with p+ q = n. According to Algorithm
1, the execution of the function get conflicting constraints
costs O(r · m + n). In Algorithm 2, the first foreach loop
costs O(n), the second foreach loop costs in the worst case
O(p · r ·m2), and the third foreach loop costs in the worst
case O(q · r ·m2). Finally, the overall time complexity of the
Algorithm 2 is O(m2 · n · r + r ·m + 2n).

4. USE CASE
In this section, we present the use case. For our case

study, we use a scenario based on the TPC-H [1] benchmark
database. We first give an overview of the TPC-H bench-
mark database structure. Afterwards, we present the set
of encryption schemes that can be used in our scenario, a
set of functionalities required for processing the data, and
policies to be applied over the TPC-H database. Finally, we
illustrate the use of our previously presented policy satisfac-
tion algorithm to enforce the chosen policy over the TPC-H
database.

4.1 TPC-H database
The TPC-H database is composed of 8 tables. Each at-

tribute in TPC-H tables represents data for industrial re-
source management. TPC-H provides 22 queries consisting
of different kind of SQL operations such as select, join, or-
der by, etc. Figure 1 represents the conceptual model of the
TPC-H database which includes foreign key relationships.

4.2 System design
As described in 3.1, the used system is composed of a re-

lational database D, a set of security layers L, a set of func-
tional requirements F , and a toolbox E . In our case study,
D represents the TPC-H benchmark database, L will be
composed of three security layers as explained in 2.3: RND
(random layer), DET (deterministic layer) and OPE (order
preserving layer). As we work with relational databases, the
set of utility requirements are composed of some SQL oper-
ators that can be used to query the database. In addition,
we define the functionalities computation representing the
numeric computation over the attributes (e.g., SET ATTR
= ATTR + 30), and order search represeting the SQL oper-
ators (>,≥, <,≤, between,min/max, order by). Thus F =
{equality, join, group by, average, sum, computation, like,
order search}. The toolbox E is composed of the following
encryption schemes. For each encryption scheme, we ex-
tract and specify the provided security level and the set of
satisfied functionalities as presented in 3.1.

AES-CBC. When used in CBC chaining mode, AES pro-
vides a probabilistic encryption which is semantically

Figure 1: TPCH database

secure. Thus, it provides the security level RND. De-
spite that this encryption scheme does not leak any in-
formation about the plaintext values, it does not allow
any efficient computation over encrypted data. There-
fore, lAES = RND and FAES = ∅.

Paillier [22]. It is based on secure probabilistic encryption
which enables to perform computation aver encrypted
data. A Paillier cryptosystem provides indistinguisha-
bility under an adaptive chosen-plaintext attack (IND-
CPA). It provides the security level RND and allows to
perform sum, avg operations over the encrypted data.
Thus, lPlr = RND and Fplr = {sum, avg, computation}.

SSE [28]. SSE is a symmetric searchable encryption which
is semantically secure (as long as there is no search
token). It allows to perform search over encrypted
data which gives the ability to perform MySQL’s like
operator. Based on these properties, the SSE can be
specified by lSSE = RND and FSSE = {like}.

Pohlig-Hellman. This is a deterministic encryption scheme
allowing logarithmic time equality checks over cipher-
texts. Pohlig-Hellman encryption cannot achieve the
classical notions of security of probabilistic encryption
because it leaks which encrypted values correspond to
the same plaintext value. It provides the security level
DET and allows to perform equality, join, and group
by over the encrypted data. Thus, lPH = DET and
FPH = {equality, join, group by}.

Boldyreva [5, 6]. Boldyreva propose an order-preserving,
deterministic encryption which allows performing or-
der operations over encrypted data. As mentioned in
2.3, in addition to the information leaked by having
the deterministic property, it reveals the order between
encrypted values. The encryption scheme provides the
security level OPE and allows to perform equality, join,



group by, and order search operations. Thus, lBdv =
OPE and FBdv = {equality, join, group by, order search}.

4.3 The policy
In our scenario a security administrator (data owner) of

the TPC-H benchmark database requires that the following
security rules must be enforced:

1. The given discount for any Order should always remain
top secret.

2. The account balance for a customer as well as our sup-
pliers should always remain top secret.

3. The Name and Address of our suppliers should be con-
fidential.

4. The supply cost of individual suppliers must be confi-
dential.

5. Any pricing information must in general remain secret.

6. All other information in the database should be un-
classified.

The security administrator used four levels to classify the
data. The top secret classification levels means that any
leaked information about the data will cause grave dam-
age. The secret level means that some information about
the data values can be leaked if they do not lead to reveal
its values. The confidential level means that additional in-
formation about the data values can be leaked if they do
not lead to reveal the values itselves. A Unclassified level
implies that the data are not sensitive.

According to the properties of the security levels in L de-
scribed in 2.3, we associate the top secret classification levels
to the RND security level, the secret classification level to
the DET security level, and the confidential classification
level to the OPE security level. The previous rules are spec-
ified as follows:

Rule 1. It involves the attribute L DISCOUNT of the table
LINEITEM. This rule is specified using the folowing confi-
dentiality and security threshold constraints:

• CC1 = {L DISCOUNT}, TC1 = RND.

Rule 2. This rule involves the attributes C ACCTBAL
and S ACCTBAL from the tables CUSTOMER and SUP-
PLIER. It is specified using the following constraints:

• CC2 = {C ACCTBAL}, TC2 = RND.

• CC3 = {S ACCTBAL}, TC3 = RND.

Rule 3. It involves the attributes S NAME, S ADDRESS,
and S NATIONKEY from the table SUPPLIER. It is spec-
ified using the following constraints:

• CC4 = {S NAME}, TC4 = OPE.

• CC5 = {S ADDRESS}, TC5 = OPE.

• CC6 = {S NATIONKEY }, TC6 = OPE.

Rule 4. It involves the attribute PS SUPPLYCOST from
the table SUPPLYCOST. This rule is specified using the
following constraints:

Sensitive attributes Functionalities

L DISCOUNT computation(Q1,Q3,Q4)
sum(Q1,Q3,Q4)
order search(Q3)

C ACCTBAL group by(Q5)
sum(Q8)

S ACCTBAL order search(Q2)
S NAME order search(Q2,Q7)

group by(Q7)
S ADDRESS like(Q4)
S NATIONKEY join(Q2,Q4)
PS SUPPLYCOST equality(Q2)
P RETAILPRICE
L EXTENDEDPRICE sum(Q1,Q3)

computation(Q3,Q4)
O TOTALPRICE group by(Q6)

order search(Q6)

Table 1: Required functionalities for sensitive at-
tributes

• CC7 = {PS SUPPLY COST}, TC7 = OPE.

Rule 5. This rule involves the attributes P RETAILPRICE,
L EXTENDEDPRICE and O TOTALPRICE from tables
PART, LINEITEM and ORDERS. It is specified using the
following constraints:

• CC8 = {P RETAILPRICE}, TC8 = DET

• CC9 = {L EXTENDEDPRICE}, TC9 = DET

• CC10 = {O TOTALPRICE}, TC10 = DET

The security administrator gives examples of queries which
should be executes efficiently over the TPC-H database.
From these set of queries, we extract only the queries in-
volving sensitive attributes described in the policy, which are
illustrated in Figure 2. These queries enable us to extract
the set of functionalities required for each sensitive attribute
in the TPC-H database. Table 1 shows, for each sensitive
attribute, the queries on which the attribute is involved and
the set of required functionalities. These functional require-
ments are specified using the following utility constraints:

• UC1 = {computation, sum, order search}
• UC2 = {group by, sum}
• UC3 = {order search}
• UC4 = {order search, group by}
• UC5 = {like}
• UC6 = {join}
• UC7 = {equality}
• UC8 = ∅
• UC9 = {sum, computation}
• UC10 = {group by, order search}

4.4 Policy enforcement results
Using the Algorithm 2, we get from the toolbox, for each

sensitive attribute, the encryption scheme or the combina-
tion of encryption schemes that satisfies the policy. The
results of the application of Algorithm 2 over our use case
are the followings:



Q1:
SELECT L RETURNFLAG, L LINESTATUS,

SUM(L QUANTITY) AS SUM QTY,
SUM(L EXTENDEDPRICE) AS SUM BASE PRICE,
SUM(1-L DISCOUNT) AS SUM DISC PRICE,
AVG(L QUANTITY) AS AVG QTY,

FROM LINEITEM
WHERE

L SHIPDATE <= ’2010-01-15’
GROUP BY L RETURNFLAG, L LINESTATUS
ORDER BY L RETURNFLAG,L LINESTATUS

Q2:
SELECT S ACCTBAL, S NAME, N NAME, P PARTKEY,

P MFGR, S ADDRESS, S PHONE, S COMMENT
FROM PART, SUPPLIER, PARTSUPP, NATION, REGION
WHERE

P PARTKEY = PS PARTKEY AND
S NATIONKEY = N NATIONKEY
PS SUPPLYCOST = 1000

ORDER BY S ACCTBAL DESC, N NAME, S NAME

Q3:
SELECT SUM(L DISCOUNT) AS REVENUE
FROM LINEITEM
WHERE L SHIPDATE >= ’2010-01-01’ AND

L SHIPDATE < ’2010-01-01’
AND L DISCOUNT BETWEEN .06 - 0.01 AND .06 + 0.01
AND L QUANTITY < 24

Q4:
SELECT N NAME AS NATION,

L EXTENDEDPRICE*(1-L DISCOUNT) AS AMOUNT
FROM PART, SUPPLIER, LINEITEM, NATION
WHERE S SUPPKEY = L SUPPKEY

AND S NATIONKEY = N NATIONKEY
AND S ADDRESS LIKE ’%%RENNES%%’

Group By N NAME.

Q5:
SELECT TOP 20 C NAME, C ACCTBAL,

N NAME, C ADDRESS, C PHONE, C COMMENT
FROM CUSTOMER, ORDERS, LINEITEM, NATION
WHERE C CUSTKEY = O CUSTKEY AND

L ORDERKEY = O ORDERKEY AND
L RETURNFLAG = ’R’

GROUP BY C CUSTKEY, C NAME, C ACCTBAL, C PHONE
ORDER BY C NAME.

Q6:
SELECT C NAME, O ORDERDATE,

O TOTALPRICE, SUM(L QUANTITY)
FROM CUSTOMER, ORDERS, LINEITEM
WHERE C CUSTKEY = O CUSTKEY AND

O ORDERKEY = L ORDERKEY
GROUP BY C NAME, C CUSTKEY, O TOTALPRICE
ORDER BY O TOTALPRICE DESC.

Q7:
SELECT TOP 100 S NAME, COUNT(*) AS NUMWAIT
FROM SUPPLIER, LINEITEM L1, ORDERS, NATION
WHERE S SUPPKEY = L1.L SUPPKEY AND

O ORDERKEY = L1.L ORDERKEY AND
L1.L RECEIPTDATE> L1.L COMMITDATE

GROUP BY S NAME
ORDER BY NUMWAIT DESC, S NAME.

Q8:
SELECT CNTRYCODE, COUNT(*) AS NUMCUST,

SUM(C ACCTBAL) AS TOTACCTBAL
FROM

(SELECT SUBSTRING(C PHONE,1,2) AS
CNTRYCODE, C ACCTBAL
FROM CUSTOMER
WHERE
SUBSTRING(C PHONE,1,2) IN (’13’, ’31’, ’23’, ’29’))

GROUP BY CNTRYCODE

Figure 2: Queries involving sensitive attributes

1. C ACCTBAL: conflict detected (TC2 and UC2)
Conflicts resolution propositions:

• [Paillier] (RND), satisfied utility requirements:
{sum} (Q8)

• [Paillier, Pohlig−Hellman] (DET), satisfied util-
ity requirements: {group by, sum} (Q8, Q5)

2. L EXTENDEDPRICE: [Paillier] (RND), satisfied util-
ity requirements: {sum, computation} (Q1,Q3,Q4).

3. PS SUPPLYCOST: [Pohlig − Hellman] (DET), sat-
isfied utility requirements: {equality} (Q2).

4. L DISCOUNT: conflict detected (TC1 and UC1)
Conflicts resolution propositions:

• [Paillier] (RND), satisfied utility requirements:
{sum, computation} (Q1,Q4).

• [Paillier, Boldyreva] (OPE), satisfied utility re-
quirements: {sum, order search, computation}
(Q1,Q3,Q4).

5. S ADDRESS: [SSE] (RND), satisfied utility require-
ments: {like} (Q4).

6. S NAME: [Boldyreva] (OPE), satisfied utility require-
ments: {order search, group by} (Q2,Q7).

7. S NATIONKEY: [Pohlig−Hellman] (DET), satisfied
utility requirements: {join} (Q2,Q4).

8. S ACCTBAL: conflict detected (TC3 and UC3)
Conflicts resolution propositions:

• [AES − CBC] (RND), satisfied utility require-
ments: ∅.
• [Boldyreva] (OPE), satisfied utility requirements:
{order search} (Q2).

9. P RETAILPRICE: [AES − CBC] (RND).

10. O TOTALPRICE: conflict detected (TC10 and UC10)
Conflicts resolution propositions:

• [Pohlig − Hellman] (DET), satisfied utility re-
quirements: {group by}.
• [Boldyreva] (OPE), satisfied utility requirements:
{group by, order search} (Q6).

Result 1 shows the satisfaction of the constraints defined
over the attribute C ACCTBAL. A conflict between the con-
straints TC2 and UC2 has been detected. Thus, our al-
gorithm gives the data owner two propositions in order to
resolve the conflict. The first proposition states that the
data owner can preserve the RND security level through
the application of the Paillier encryption scheme, however
only the sum functionality will be provided and therefore
the query Q5 cannot be executed efficiently over the en-
crypted data. The second proposition gives the data owner
the ability to decrease the required threshold security level
to DET in order to allows the application of the combi-
nation [Paillier, Pohlig − Hellman] which satisfies the re-
quired utility constraints. Result 2 states that the encryp-
tion scheme Paillier can be applied to enforce the set of
security and utility requirements defined over the attribute
L EXTENDEDPRICE. Result 3, shows that security and



utility constraints defined over the attribute PS SUPPLYCOST
can be enforced through the application of Pohlig−Hellman
encryption scheme. Result 4 shows that there is a con-
flict between the constraints TC1 and UC1 and proposes
two solution to reconcile the conflict. Result 5 states that
the encryption scheme SSE can be applied to enforce the
set of security and utility requirements defined over the at-
tribute S ADDRESS. Result 6 shows that the set of security
and utility constraints defined over the attribute S NAME
can be enforced via the application of Boldyreva encryp-
tion scheme. Result 7 states that the encryption scheme
Pohlig − Hellman, when applied, can enforce the of se-
curity and utility requirements defined over the attribute
S NATIONKEY. For this result, we remark that our algo-
rithm has chosen the best encryption scheme in terms of pro-
vided security level, as the Boldyreva encryption scheme can
also be used to enforce security and utility requirements de-
fined over the attribute S NATIONKEY. Result 8 shows the
conflict detected between TC3 and UC3 and proposes two
solutions two overcome the conflict. Result 9 confirms that
the application of AES − CBC can enforce the constraints
defined over the attribute P RETAILPRICE. Finally, result
10 shows that there is a conflict between TC10 and UC10
and proposes two solution allowing to reconcile the conflict.

It is important to note that sequentially applying a com-
bination of encryption schemes (e.g. [Paillier and Pohlig-
Hellman] in one “onion”) over an attribute may not pro-
vide the functionalities provided by each encryption scheme.
This problem can be resolved by duplicating the values of
the attribute over which the two mechanisms are to be ap-
plied and apply each mechanism separately.

5. RELATED WORK

5.1 Encrypted Databases
Hacigümüs et al. first introduced the concept of executing

queries over encrypted data [16]. They used deterministic
encryption for equality queries and binning for range queries.
The binning concept was superseded by order-preserving en-
cryption by Agrawal et al. [2]. Order-preserving encryp-
tion allows the processing of range queries also on encrypted
data. Damiani et al. have presented an algorithm for opti-
mizing the trade-off between security and performance of
post-processing in encrypted databases [10]. Their algo-
rithm combines deterministic ciphertexts if the security ben-
efit outweighs the performance penalty. Popa et al. have re-
cently presented CryptDB which introduces adjustable en-
cryption as we use it [24]. This removes the need for ana-
lyzing all queries in advance, but also poses the policy con-
figuration we solve in this paper.

The cryptographic community has further developed the
encryption schemes used for processing queries. Bellare et
al. introduce a concept for deterministic, public-key encryp-
tion [4]. They also note that only deterministic encryp-
tion can achieve sub-linear search. Boldyreva et al. pro-
pose a new order-preserving encryption scheme [5, 6]. Their
scheme is as secure as any immutable, order-preserving en-
cryption scheme can be. Popa et al. introduced an ideal-
secure order-preserving encryption scheme [23]. Neverthe-
less, this scheme and adjustable “onion” encryption are not
efficiently combinable. Recently, Gentry [14] presented fully
homomorphic encryption. Implementing search in fully ho-
momorphic encryption is difficult, since the result of the

match is still encrypted. Therefore in a perfectly seman-
tically secure search the database has to return all records
completely annihilating the advantage of searching on the
database. Instead, searchable encryption offers an almost as
secure alternative. Song et al. introduced searchable encryp-
tion [28]. For equality searches indices achieve sub-linear
time in the average case [7]. Still, they require an index for
each searchable attribute which is currently still too inef-
ficient in practice. The scheme of Shi et al. [27] performs
range searches using logarithmically sized ciphertexts. Se-
mantically secure range searches still always require a linear
scan, i.e. linear time.

5.2 Policy Configuration
There are a couple of approaches to enforce and manage

access control policies in encrypted databases. De Capitani
di Vimercati et al. proposed over-encryption [12]: the lay-
ering of encryption to enforce policies by the user and the
database. Again, De Capitani et al. presented an approach
to selectively update the access control policies with minimal
effort [11]. Damiani et al. have proposed selective encryption
in order to also outsource the access control [9]. They pre-
sented the key management for this approach in [8]. Atallah
et al. presented an efficient key management scheme for hi-
erarchies [3]. Ion et al. use proxy re-encryptable, searchable
encryption in order to enforce multi-user access policies [17].
An approach recently implemented for web applications is
using a different scheme by Popa et al. [25].

All of these approaches implement access control for dif-
ferent users via encryption. Our approach and use of policies
is different, albeit we also enforce confidentiality constraints.
We configure the use of encryption in order to prevent unin-
tended disclosure against the database provider (not other
users of the database).

6. CONCLUSIONS AND FUTURE WORK
Searchable, yet encrypted databases appear to be one

promising building block of a secure cloud offering. In or-
der to help companies migrate data from on-premise to the
cloud, tools are needed to help decide about the best accept-
able trade-off between functionality and security require-
ments. In this paper we presented a set of algorithms which
help to analyze functionality and security requirements when
configuring an encrypted database following an onion-based
approach. We reasoned about their formal characteristics as
well as discussed their application in an enterprise use case
on basis of the TPC-H benchmark. The assumption that
data may be labelled as we proposed may appear oversim-
plified, but industrial experience shows that even in com-
plex applications this is sufficient to cover the evaluation
results of a typical 3x3 risk matrix. This work complements
some earlier work of ours where we could show that in the
context of some representative industrial customer datasets
in the best case only 8 percent of all data ever had to be
encrypted using an order-preserving scheme while still sup-
porting all the required queries [15]. Future work will now
concentrate on further tool support for building the optimal
encrypted structures when outsourcing encrypeted search-
able data. Even with our proposed optimizations, the ini-
tial, onion-based encryption of the plaintext data is compu-
tationally expensive and we are thus investigating on how
to parallelize this. Thirdly, we are implementing support for
splitting queries in local and remote parts [21].
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