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Heteroscedasticity:
Testing and Correcting in SPSS

1) Introduction
2) Causes
3) Consequences
4) Detection: Specific Tests
5) Detection: General Tests
6) Solutions

1) Introduction
Recall that for estimation of coefficients and for regression inference to be correct we have to
assume that:

1. Equation is correctly specified:
2. Error Term has zero mean
3. Error Term has constant variance
4. Error Term is not autocorrelated
5. Explanatory variables are fixed
6. No linear relationship between RHS variables 

When assumption 3 holds, the errors ui in the regression equation have common variance, and
then we have what is called homoscedasticity, or a “scalar error covariance matrix” (assuming also
that there is no autocorrelation), where “scalar” is another word for constant. When assumption 3
breaks down, we have the opposite of homoscedasticity: heteroscedasticity, or a “non-scalar error
covariance matrix” 

a) Scalar Error Covariance Matrix
Assumption 4 of OLS requirements states that the sampling distributions for each of the residuals
are not correlated with any of the others.  So, for any two observations, the residual terms are
uncorrelated: cov(u1, u2) = 0; or more generally: cov(ui, uj) = 0   ∀i, j.

Assumption 3 (the one we are
most concerned with here) states
that the variance of each of the
sampling distributions should be
the same, so a covariance matrix
of residuals from repeated
samples should have a constant
value (“scalar”) down the
diagonal and zero’s off the
diagonal.scalar  a is e      wher
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b) Homoscedastic errors have a scalar error covariance matrix:

To understand what we mean by the variance of the residual, you have to first understand
assumption 5, that the regressors (I.e. explanatory variables) are fixed. This means that, as in an
experiment, the regressors (or control variables) can be repeated.  For each value of the control

variable, the scientist will observe a
particular effect (i.e. a particular value of
the dependent variable). In repeated
experiments, she can keep the values of
the control variables the same, and
observe the effects on the dependent
variable.   There will thus be a range of
values of y for each controlled and
repeatable value of x.  If we plot observed
values of y for given values of x repeated
samples, then the regression line will run
through the  mean of each of these
conditional distributions of y.  

Note, however, that each time a
regression is run, it is run on a particular
sample, for which there may only be one
value of y for a given x (as assumed in the
above diagram) or many values,

depending on the experiment. As such, for each sample, there will be a slightly different line of
best fit and estimates of a and b (the intercept and slope coefficients) will vary from sample to
sample.

The variability of b across samples is measured by the standard error of b, which is an estimate of
the variation of b across regressions run on repeated samples.  Although we don’t know SE(b) for
sure (unless we run all possible repeated samples), we can estimate it from within the current
sample because the variability of the slope parameter estimate will be linked to the variability of
the y-values about the hypothesised line of best fit within the current sample. In particular, it is
likely that the greater the variability of y for each given value of x, the greater the variability of
estimates of a and b in repeated samples and so we can work backwards from the variability of y
for a given value of x in our sample to provide an estimate of the sampling variability of b.

We can apply a similar logic to the variability of the residuals across samples.  Recall that the
value of the Residual for each observation i is the vertical distance between the observed value of
the dependent variable and the predicted value of the dependent variable (i.e. the difference
between the observed value of the dependent variable and the line of best fit value). Assume in the
following figure that this is a plot from a single sample, this time with multiple observations of y
for each given value of x).
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Each one of the residuals has a sampling distribution, each of which should have the same
variance -- “homoscedasticity”. Clearly, this is not the case within in this sample, and so is
unlikely to be true across samples.  Although the sampling distribution of a residual cannot be
estimated precisely from
within one sample (by
definition, one would
need to run the same
regression on repeated
samples) as with SE(b),
one can get an idea of
how it might vary
between samples by
looking at how it varies
within the current
sample.

Another way to look at
the residual is to plot it
against one of the
explanatory variables (it
is particularly useful to use an explanatory variable we feel may be the cause of the
heterowscedasticity).  If we plot the residual against Rooms, we can see that its variance increases
with the number rooms.  Here we have superimposed imaginary sampling distributions of
particular residuals for selected values of x.  

2) Causes
What might cause the variance of
the residuals to change over the
course of the sample? The error
term may be correlated with either
the dependent variable and/or the
explanatory variables in the
model, or some combination
(linear or non-linear) of all
variables in the model or those
that should be in the model. But
why?

a) Non-constant
coefficient
Suppose that the slope coefficient
varies across observations i:

yi = a + bi xi + ui

and suppose that it varies randomly around some fixed value β:
bi = β + εi

then the regression actually estimated by SPSS will be:
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yi = a + (β + εi) xi + ui

   = a + β xi + (εi xi + ui)
where (εi x + ui) is the error term in the SPSS regression.  The error term will thus vary with x.

b) Omitted variables
Suppose the “true” model of y is:

yi = a + b xi + c zi + ui
but the model we estimate fails to include z:

yi = a + b xi + vi
then the error term in the model estimated by SPSS (vi) will be capturing the effect of the omitted
variable, and so it will be correlated with z:

vi = c zi + ui
and so the variance of vi will be non-scalar.

c) Non-linearities
If the true relationship is non-linear:

yi = a + b xi
2 + ui

but the regression we attempt to estimate is linear:
yi = a + b xi + vi

then the residual in this estimated regression will capture the non-linearity and its variance will be
affected accordingly:

vi = f(xi
2, ui)

d) Aggregation
Sometimes we aggregate our data across groups.  For example, we might use quarterly time series
data on income which is calculated as the average income of a group of households in a given
quarter.  If this is so, and the size of groups used to calculate the averages varies, then the variation
of the mean not be constant (larger groups will have a smaller standard error of the mean).  This
means that the measurement errors of each value of our variable will be correlated with the sample
size of the groups used.

Since measurement errors will be captured by the regression residual, the implication is that the
regression residual will vary the sample size of the underlying groups on which the data is based.

3) Consequences
Heteroscedasticity by itself does not cause OLS estimators to be biased or inconsistent (for the
difference between these two concepts see the graphs below) since neither bias nor consistency are
determined by the covariance matrix of the error term.  However, if heteroscedasticity is a
symptom of omitted variables, measurement errors, or non-constant parameters, then OLS
estimators will be biased and inconsistent. Note that in such cases, heteroscedasticity does not
causes the bias: it is merely one of the side effects of a failure of one of the other assumptions that
also causes bias and inconsistency.
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Asymptotic Distribution of OLS Estimate β hat

The Estimate is Unbiased and Consistent since as the sample size increases, the mean of the 
distribution tends towards the population value of the slope coefficient β
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Asymptotic Distribution of OLS Estimate β hat

The Estimate is Biased but Consistent since as the sample size increases, the mean of the 
distribution tends towards the population value of the slope coefficient β
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So testing for heteroscedasticity is closely related to tests for misspecification generally and many
of the tests for heteroscedasticity end up being general mispecification tests.  Unfortunately, there
is no straightforward way to identify the cause of heteroscedasticity.
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Whilst not biasing the slope estimates, heteroscedasticity does, however, bias the OLS estimated
standard errors of those slope estimates, SE(bhat), which means that the t tests will not be reliable
(since t = bhat /SE(bhat)). F-tests are also no longer reliable.  In particular, it has been found that
Chow’s first Test no longer reliable (Thursby).

4) Detection: Specific Tests/Methods

a) Visual Examination of Residuals
A number of residual plots are worth examining and are easily accessible in SPSS.  These are:
• histogram of residuals – you would like normal a normal distribution (note that a non-normal

distribution is not necessarily problematic since only inference is effected, but non-normality
can be a symptom of misspecification).

• normal probability plot of residuals – another way of visually testing for normality
(normally distributed errors will lie in a straight line along the diagonal – non-linearities not
captured by the model and other misppecifications may cause the residuals to deviate from this
line).

• Scatter plot of the standardised residuals on the standardised predicted values (ZRESID as
the Y variable, and ZPRED as the X variable – this plot will allow you to detect outliers and
non-linearities since “well behaved” residuals will be spherical i.e. scattered randomly in an
approximate circular pattern).  If the plot fans out in (or fan in) a funnel shape, this is a sign of
heteroscedasticity.  If the residuals follow a curved pattern, then this is a sign that non-
linearities have not been accounted for in the model.

These can all be included as part of the regression output by clicking on “Plots” in the Linear
Regression Window, check the “Histogram” and “Normal Probability Plot” boxes, and select the
ZRESID on ZPRED scatter plot.  Alternatively, you can add

  /SCATTERPLOT=(*ZRESID ,*ZPRED )
  /RESIDUALS HIST(ZRESID) NORM(ZRESID) .
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to the end of your regression syntax before the full stop.

Example of Visual Plots:

A regression of house price on floor area produces the following plots:

REGRESSION
  /MISSING LISTWISE
  /STATISTICS COEFF OUTS R ANOVA
  /CRITERIA=PIN(.05) POUT(.10)
  /NOORIGIN
  /DEPENDENT purchase
  /METHOD=ENTER floorare
  /SCATTERPLOT=(*ZRESID ,*ZPRED )
  /RESIDUALS HIST(ZRESID) NORM(ZRESID) .

Regression Standardized Residual
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Scatterplot

Dependent Variable: Purchase Price

Regression Standardized Predicted Value
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The residuals are pretty much normally distributed but there is evidence of heteroscedasticity since
the residual plot “fans out”.  If we re-run the regression using the log of purchase price as the
dependent variable, we find that the residuals become spherical again (one should check whether
taking logs has a detrimental effect on other diagnostics such as the Adjusted R2 and t-values – in
this case the impact is negligible):

COMPUTE price_l = ln(purchase).
EXECUTE.

REGRESSION
  /MISSING LISTWISE
  /STATISTICS COEFF OUTS R ANOVA
  /CRITERIA=PIN(.05) POUT(.10)
  /NOORIGIN
  /DEPENDENT price_l
  /METHOD=ENTER floorare
  /SCATTERPLOT=(*ZRESID ,*ZPRED )
  /RESIDUALS HIST(ZRESID) NORM(ZRESID) .

Scatterplot

Dependent Variable: PRICE_L

Regression Standardized Predicted Value
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b) Levene’s Test

We came across the Levene’s test in Module I when we tested for the equality of means between
two populations.  You may recall that there are two t-test statistics, one for the case of
homogenous variances and one for the case of heterogeneous variances.  In order to decide which
t-test statistic to use, we used the Levene’s test for equality of variances.  We can apply this here:

Step 1:  save the residuals from your regression
Step 2: Decide on which variable might be the cause of the heteroscedasticity.
Step 3:  run a Levene’s test across two segments of your sample, using the variable you

believe to be the cause of the heteroscedasticity as the grouping variable.

To do the Levene’s test: 
• go to Analyse, Compare Means, Independent Samples T-Test, select

the residual you have created as the Test Variable.  
• Then select the variable you believe to be the cause of

heteroscedasticity as the grouping variable (e.g. age of dwelling) –
note that you may want to miss out observations in the middle range
of your grouping variable (e.g. those in the middle two quartiles) in
order to capture variation in the residual across the extremes of your
grouping variable.  

• Click on Define Groups and select a cut off point for your grouping
variable (this might be the mean value for example)

• Click Paste and run the syntax (ignore the t-test portion on the right
hand side of the output table – just focus on the Levene’s test results).

Example of using the Levene’s Test:

Use the Levene’s test to test for heteroscedasticity caused by age of dwelling in a regression
of floor area on age of dwelling, rooms, bedrooms.  Also test for heteroscedasticity caused by
floor area (e.g. variance of the residuals increases with floor area).

 
REGRESSION
  /MISSING LISTWISE
  /STATISTICS COEFF OUTS R ANOVA
  /CRITERIA=PIN(.05) POUT(.10)
  /NOORIGIN
  /DEPENDENT floorare
  /METHOD=ENTER age_dwel  bedrooms bathroom
  /save resid(res_1).

T-TEST
  GROUPS=age_dwel(62.5)
  /MISSING=ANALYSIS
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  /VARIABLES=res_1
/CRITERIA=CIN(.95) .

Group Statistics

252 -.8801041 23.65955 1.4904118
304 .7295600 24.46173 1.4029765

Age of the
dwelling in years
>= 62.500000000
< 62.500000000

Unstandardized Residual
N Mean

Std.
Deviation

Std. Error
Mean

Indepe

.110 .740
Equal variances
assumed
Equal variances
not assumed

Unstandardized Residual
F Sig.

Levene's Test for
Equality of Variances

H0: equal variances Age dwelling < 62.5 and age dwelling > 62.5. Since the
significance level is so high, we cannot reject the null of equal variances.  In other
words, the Levene’s test is telling us that the variance of the residual term does not
vary by age of dwelling.  This seems surprising given the residual plots we did
earlier, but the standard deviations of the residual across the two groups reported in
the Group Statistics table seems to confirm this (i.e. the standard deviations are very
similar). 

However, it may be that it is only at the extremes of age that the heteroscedasticity
occurs.  We should try running the Levene’s test on the first and last quartile (i.e.
group age of dwelling as below the 25 percentile and above the 75 percentile).  You
can find out percentiles by going to Analyse, Custom Tables, Basic Tables, enter
Age of dwelling into the Summary, click statistics and select the relevant percentiles
from the list available.  This gives you the following syntax and output:

* Basic Tables.
TABLES
  /FORMAT BLANK MISSING('.')
  /OBSERVATION age_dwel
  /TABLES age_dwel
BY (STATISTICS)
  /STATISTICS
  mean( )
  ptile 25(  'Percentile 25')
  ptile 75(  'Percentile 75')
  median( ).



© Gwilym Pryce March 2002 11

62.4586331 21.000000 99.000000 49.0000000
Age of the
dwelling in years

Mean
Percentile

25
Percentile

75 Median

Now run the Levene’s test again, but this time screen out the middle two quartiles
from the sample using the “TEMPORARY. SELECT IF age_dwel le 21 or
age_dwel ge 99” syntax before the T-TEST syntax.  

“le” means less than or equal to, and “ge” means greater than or equal to.  Note that
you must run the “TEMPORARY. SELECT IF…” and the “T-TEST….” syntax all
in one go (i.e. block off all seven lines and run):

TEMPORARY.
SELECT IF age_dwel  le 21 or age_dwel ge 99.
T-TEST
  GROUPS=age_dwel(62.5)
  /MISSING=ANALYSIS
  /VARIABLES=res_1

  /CRITERIA=CIN(.95) .

Now there is more evidence of heteroscedasticity (compare the standard deviations)
but the difference is still not statistically significant difference according to the
Levene’s test (sig. = 0.375 so if we reject the null of homoscedasticity there is
nearly a 40% chance that we will have done so incorrectly):

Group Statistics

168 .1709786 25.22774 1.9463624
141 1.4224648 28.13163 2.3691107

Age of the
dwelling in years
>= 62.500000000
< 62.500000000

Unstandardized Residual
N Mean

Std.
Deviation

Std. Error
Mean

Independe

.789 .375
Equal variances
assumed
Equal variances
not assumed

Unstandardized Residual
F Sig.

Levene's Test for
Equality of Variances
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c) Goldfeld-Quandt Test: 
Goldfeld and Quandt (1965) suggested the following test procedure for null and alternative
hypotheses of the form:

H0: σi
2 is not correlated with a variable z

H1: σi
2 is correlated with a variable z

(i) order the observations in ascending order of x.
(ii) omit p central observations (as a rough guide take p ≈  n/3  where n is the total sample
size).  This enables us to easily identify the differences in variances.
(iii) Fit the separate regression to both sets of observations. The number of observations in
each sample would be (n - p)/2, so we need (n - p)/2 > k where k is the number of
explanatory variables.

(iv) Calculate the test statistic G where:
G = RSS2/ (1/2(n - p) -k)   
       RSS1/ (1/2(n - p) -k)
Where G has an F distribution:

G ~  F[1/2(n - p) - k, 1/2(n - p) -k]

NB G must be > 1, if not, invert it.

Problems with the G-Q test:
In practice we don’t usually know what z is.  If there are various possible z’s then it may not
matter which one you choose if they are all highly correlated which each other.

Given that the G-Q test is very similar to the Levene’s test considered above, we shall not spend
any time on it here.

5) Detection: General Tests
a) Breusch-Pagan Test : 
Assumes that:
         σI

2 = a1 + a2z1 + a3 z3 + a4z4 … am zm      [1]
where z’s are all independent variables.  Z’s can be some or all of the original regressors or some
other variables or some transformation of the original regressors which you think cause the
heteroscedasticity:

e.g. σI
2 = a1 + a2exp(x1) + a3 x3

2 + a4x4

Procedure for B-P test:
Step 0: Test for non-normality in the errors. If they are normal, procede.  If not, see

Koenker (1981) version below.
Step 1: Obtain OLS residuals uI

hat  from the original regression equation and
construct a new variable g:
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gI = uhat 2 / σI
hat 2

where σI
hat 2 = RSS / n

Step 2: Regress gI on the z’s (include a constant in the regression)

Step3: Calculate B where,
B = ½(REGSS) from the regression of gI on the z’s, 

and where B has a Chi-square distribution with m-1 degrees of freedom
where m is the number of z’s.

Problems with B-P test:
B-P test is not reliable if the errors are not normally distributed and if the sample size is small
Koenker (1981) offers an alternative calculation of the statistic which is less sensitive to non-
normality in small samples:

BKoenker = nR2 ~  χ2
m-1 

where n and R2 are from the regression of uhat 2
 on the z’s, where BKoenker has a Chi-square

distribution with m-1 degrees of freedom.

Example of applying the B-P test:
Use the B-P test to test for heteroscedasticity in a regression of floor area on age of dwelling,
rooms, bedrooms.  

Step 0: Test for non-normality in the errors. If they are normal, proceed.  If not, see
Koenker (1981) version below.

We can test for normality by looking at the histogram and normal
probability plots of the residuals, but we can also use the skew and
kurtosis measures available in descriptive statistics.  
• Go to Analysis, Descriptive Statistics, Descriptives, and select the

appropriate standardised residual variable you are interested in.  
• Then click on options and tick kurtosis and skewness. 
• Alternatively you can add KURTOSIS SKEWNESS to your

Descriptives syntax – see example below.  

Kurtosis is a measure of the extent to which observations cluster
around a central point.  For a normal distribution, the value of the
kurtosis statistic is zero.  Positive kurtosis indicates that the
observations cluster more and have longer tails than those in the
normal distribution.  Negative kurtosis indicates the observations
cluster less and have shorter tails.

Skewness is a measure of the asymmetry of a distribution.  The
normal distribution is symmetric, and has a skewness value of zero.  A
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distribution with a significiant postive skewness has a long right tail.
A distribution with a significant negative skewness has a long left tail.
As a rough guide, a skewness value more than twice its standard error
is taken to indicate a departure from symmetry.

REGRESSION
  /MISSING LISTWISE
  /STATISTICS COEFF OUTS R ANOVA
  /CRITERIA=PIN(.05) POUT(.10)
  /NOORIGIN
  /DEPENDENT floorare
  /METHOD=ENTER age_dwel  bedrooms bathroom
  /RESIDUALS HIST(ZRESID) NORM(ZRESID) 
  /save resid(res_4).

DESCRIPTIVES
  VARIABLES=res_4
 /STATISTICS=MEAN KURTOSIS SKEWNESS .

Regression Standardized Residual
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Descriptive Statistics

556 1.61E-15 .621 .104 1.823 .207
556

RES_4
Valid N (listwise)

Statistic Statistic Statistic Std. Error Statistic Std. Error

N Mean Skewness Kurtosis

The histogram and normal probability plot suggest that the errors are fairly
normal.  The positive value of the skewness statistic suggests that it is
skewed to the left (long right tail) and since this is more than twice its
standard error this suggests a degree of non-normality.  The positive Kurtosis
suggests that the distribution is more clustered than the normal distribution.  I
would say this was a borderline case so I shall present both the B-P statistic
and the Koenker version.  It is worth noting that the Koenker version is
probably more reliable anyway so there is a case for dropping the B-P
version entirely (the only reason to continue with it is because more people
are familiar with it).

Step 1: Square the residuals, and calculate RSS/n.  Then calculate: 
g = (res_4sq)/(RSS/n):

COMPUTE res_4sq = res_4 * res_4.
VARIABLE LABELS res_4sq "Square of saved residuals res_4".  
EXECUTE.

DESCRIPTIVES
  VARIABLES=res_4sq
 /STATISTICS= sum  .

Descriptive Statistics

556 322168.4
556

RES_4SQ
Valid N (listwise)

N Sum

Note that the sum of squared residuals = RSS = the figure reported in the
ANOVA table, so you might want to check it against your ANOVA table to
make sure you’ve calculated the squared residuals correctly.

COMPUTE g = (res_4sq)/(322168.419920 / 556).
EXECUTE.

Step 2: Regress gI on the z’s (include a constant in the regression):



© Gwilym Pryce March 2002 16

First you need to decide on what the “z’s”  are going to be.  Lets say we used
the original variables raised to the power of 1, 2, 3, and 4:

COMPUTE agedw_sq = age_dw * age_dw.
EXECUTE.
COMPUTE  agedw_cu = age_dw * age_dw * age_dw.
EXECUTE.
COMPUTE agedw_4 = agedw_cu * age_dw.
EXECUTE.

COMPUTE bedrm_sq = bedrooms * bedrooms.
EXECUTE.
COMPUTE  bedrm_cu = bedrooms * bedrooms * bedrooms.
EXECUTE.
COMPUTE bedrm_4 = bedrm_cu * bedrooms.
EXECUTE.

COMPUTE bath_sq = bathroom * bathroom.
EXECUTE.
COMPUTE  bath_cu = bathroom * bathroom * bathroom.
EXECUTE.
COMPUTE bath_4 = bath_cu * bathroom.
EXECUTE.

REGRESSION
  /MISSING LISTWISE
  /STATISTICS COEFF OUTS R ANOVA
  /CRITERIA=PIN(.05) POUT(.10)
  /NOORIGIN
  /DEPENDENT g
  /METHOD=ENTER age_dwel  bedrooms bathroom
agedw_sq agedw_cu agedw_4  
bedrm_sq bedrm_cu  bedrm_4  
bath_sq bath_cu bath_4.

The ANOVA table from this regression will give you the explained (or
“regression”) of squares REGSS = 218.293:



© Gwilym Pryce March 2002 17

ANOVAb

218.293 9
1892.280 546
2110.573 555

Regression
Residual
Total

Model
1

Sum of
Squares df M

Predictors: (Constant), BATH_4, AGEDW_SQ
BATHROOM, AGE_DWEL, BEDRM_SQ, AGE

a. 

Dependent Variable: Gb. 

Step3: Calculate B = ½(REGSS) ~ χ2
m-1 from the regression of gI on the z’s, 

B = ½(REGSS) = 0.5(218.293) = 109.1465  ~ χ2
m-1

Since 3 of the z’s were automatically dropped out of the regression
because they were perfectly correlated, the actual number entered was
9 = m (see first row of df in the ANOVA table from the regression on
the z’s).  So the degrees of freedom for the Chi square test = m – 1 =
8.  

You could use Chi-square tables which will give you the Chi square
value for a particular significance level and df.  In this case, for df = 8,
and a sig. level of 0.05, χ2 =2.73. Since our test statistic value of
109.1465 for χ2 is way beyond this we can confidently reject the null
of homoscedasticity (i.e. we have a problem with heteroscedasticity). 

Alternatively you could calculate the significance level using SPSS
syntax: CDF.CHISQ(quant, df) which returns the probability that Chi-
square < quant:

COMPUTE B_PChisq = 1 - CDF.CHISQ(109.1465, 8) .
EXECUTE .

So our test statistic = χ2
8 = 109.1465 (sig. = 0.0000)

Calculate BKoenker = nR2 ~  χ2
m-1 

Turning now to the Koenker version, we simply multiply the sample
size by the R2 (NB not the adjusted R2) from the regression of g on z:

BKoenker = nR2
  = 0.103 * 556 = 57.268.

COMPUTE BPKChisq = 1 - CDF.CHISQ(57.268, 8) .
EXECUTE .
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This has a sig. value of 1.6E-9 ≈ 0.  So both tests reject the null
hypothesis of homoscedasticity.

b) White Test

The most general test of heteroscedasticity
no specification of the form of hetero required
Procedure for White’s test:

Step 1:  run an OLS regression – use the OLS regression to calculate uhat 2 (i.e.
square of residual).

Step 2: use uhat 2 as the dependent variable in another regression, in which the
regressors are: (a) all “k” original independent variables, and (b) the square
of each independent variable, (excluding dummy variables), and all 2-way
interactions (or crossproducts) between the independent variables.  

The square of a dummy variable is excluded because it will be perfectly
correlated with the dummy variable. 
Call the total number of regressors (not including the constant term) in this
second equation, P.

Step 3: From results of equation 2, calculate the test statistic:
nR2       ~  χ2

P
where n = sample size, and R2 = unadjusted coefficient of determination. 

The statistic is asymptotically (I.e. in large samples) distributed as chi-squared with P degrees of
freedom, where P is the number of regressors in the regression, not including the constant.

Notes on White’s test:
• The White test does not make any assumptions about the particular form of heteroskedasticity,

and so is quite general in application.
• It does not require that the error terms be normally distributed.
• However, rejecting the null may be an indication of model specification error, as well as or

instead of heteroskedasticity.
• Generality is both a virtue and a shortcoming.  It might reveal heteroscedasticity, but it might

also simply be rejected as a result of missing variables.  
• It is “nonconstructive” in the sense that its rejection does not provide any clear indication of

how to proceed.
• However, if you use White’s standard errors, eradicating the heteroscedasticity is less

important.

Problems:
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• Note that although t-tests become reliable when you use White’s standard errors, F-tests are
still not reliable (in particular, Chow’s first test is still not reliable).

• White’s SEs have been found to be unreliable in small samples but revised methods for small
samples have been developed to allow robust SEs to be calculated for small n.

Example:
Run a regression of the log of floor area on terrace semidet garage1 age_dwel  bathroom
bedrooms and use the White Test to investigate the existence of heteroscedasticity.

One could calculate this test manually.The only problem is that it can be quite time
consuming constructing all the cross products.  

* 1st step: Open up your data file.
* 2nd step: Run you OLS regression and save UNSTANDARDISED residuals as
RES_1:.

REGRESSION
  /MISSING LISTWISE
  /STATISTICS COEFF OUTS R ANOVA
  /CRITERIA=PIN(.05) POUT(.10)
  /NOORIGIN
  /DEPENDENT flarea_l
  /METHOD=ENTER terrace semidet garage1 age_dwel  bathroom
bedrooms  
  /SAVE RESID(RES_1) .

* 3rd step: create a variable called ESQ = square of those residuals:. 

COMPUTE ESQ = RES_1 * RES_1.
EXECUTE.

* 4th step: create cross products. 
* First use the “KEEP” command to save a file with only the relevant variables in it.

SAVE OUTFILE= 'C:\TEMP\WHI_TEST.SAV'
/KEEP= ESQ  terrace semidet garage1 age_dwel  bathroom bedrooms .
GET FILE = 'C:\TEMP\WHI_TEST.SAV'.

* given n variables, there are (n-1)*n/2 crossproducts.
* When n=6, there are (6-1)*6/2 = 15 cross products, hence we
need cp1 to cp15 to hold 

the cross products. 
* The only things to alter below are the cp(?F8.0) figure in
the first line (? = total number of cross products), 
and the numbers following "TO" in lines three (=? -1) and
four (=?):.
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VECTOR v=terrace TO bedrooms /cp(15F8.0). 
COMPUTE #idx=1.
LOOP #cnt1=1 TO 14.
LOOP #cnt2=#cnt1 +1 TO 15.
COMPUTE cp(#idx)=v(#cnt1)*v(#cnt2).
COMPUTE #idx=#idx+1.
END LOOP.
END LOOP.
EXECUTE.

*This step is based on part of a routine written by Raynald
Levesque (2002) to calculate all combinations of
crossproducts, http://pages.infinit.net/rlevesqu/.

* 5th step: run a regression on the original explanatory variables plus all cross
products. 
*Note that SPSS will automatically drop out variables if that are perfectly correlated
with variables already in the regression. 

REGRESSION
  /MISSING LISTWISE
  /STATISTICS COEFF OUTS R ANOVA
  /NOORIGIN
  /DEPENDENT esq
  /METHOD=ENTER age_dwel bathroom bedrooms cp1 cp2 cp3 
/ SAVE RESID(RES_2) .

* 6th Step: calculate the test statistic as nRsquare ~ Chi-square with degrees of
freedom equal to P = the total number of regressors actually run in this last
regression (i.e. not screened out because of perfect colinearity), not including the
constant term.  You can do this by hand or run the following syntax which will also
calculate the significance
level of Chi-square test statistic (the only thing you will need to do is enter the
value for P in the first line of MATRIX syntax).

MATRIX.
COMPUTE P = 6.
GET ESQ / VARIABLES = ESQ.
GET RES_2 / VARIABLES = RES_2.
COMPUTE RES2_SQ = RES_2 &**2.
COMPUTE N = NROW(ESQ).
COMPUTE RSS = MSUM(RES2_SQ).
COMPUTE ii_1 = MAKE(N, N, 1).
COMPUTE I = IDENT(N).
COMPUTE M0 = I - ((1/N) * ii_1).
COMPUTE TSS = TRANSPOS(ESQ)*M0*ESQ .
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PRINT RSS
  / FORMAT = "E13".
PRINT TSS
  / FORMAT = "E13".
COMPUTE R_SQ = 1-(RSS / TSS).
PRINT R_SQ 
  / FORMAT = "E13".
PRINT N
  / FORMAT = "E13".
PRINT P
  / FORMAT = "E13".
COMPUTE WH_TEST = N * (1-(RSS / TSS)).
PRINT WH_TEST 
  / FORMAT = "E13"
  / TITLE = "White's General Test for Heterosced (CHI-SQUARE df = P)".
COMPUTE SIG = 1 - CHICDF(WH_TEST,P).
PRINT SIG 
  / FORMAT = "E13"
  / TITLE = "SIGNIFICANCE LEVEL OF CHI-SQUARE df = P (H0 =
homoscedasticity)".
END MATRIX.

The output from this syntax is as follows:

RSS  2.385128E+00
TSS  2.487222E+00
R_SQ  4.104736E-02
N  5.560000E+02
White's General Test for Heterosced (CHI-SQUARE df = P)
  2.282233E+01
SIGNIFICANCE LEVEL OF CHI-SQUARE df = P (H0 = homoscedasticity)
  8.582205E-04
So we reject the null (i.e. we have a problem with heteroscedasticity)

3. Solutions
a) Weighted Least Squares
If the differences in variability of the error term can be predicted from another variable within the
model, the Weight Estimation procedure (available in SPSS) can be used. The procedure
computes the coefficients of a linear regression model using weighted least squares (WLS), such
that the more precise observations (that is, those with less variability) are given greater weight in
determining the regression coefficients. The Weight Estimation procedure tests a range of weight
transformations and indicates which will give the best fit to the data.



© Gwilym Pryce March 2002 22

Problems:
• Wrong choice of weights can produce biased estimates of the standard errors.
• We can never know for sure whether we have chosen the correct weights, this is a real

problem.
• If the weights are correlated with the disturbance term, then the WLS slope estimates will be

inconsistent.
• Other problems have been highlighted with WLS (e.g. Dickens (1990) found that errors in

grouped data may be correlated within groups so that weighting by the square root of the
group size may be inappropriate. See Binkley (1992) for an assessment of tests of grouped
heteroscedasticity).

• In small sample sizes, tests for heteroscedasticity can fail to detect its presence (i.e. the tests
tent to increase in power as sample size increases – see Long and Ervin 1999) and so it has
been argued that in small samples corrected standard errors (see below) should be used.

b) ML Estimation (not covered)
The heteroscedasticity can actually be incorporated into the framework of the model if we use a
more general estimation technique.  However, this is an advanced topic and beyond the scope of
the course.  Those interested can consult Greene (1990) and the further references cited there.

c) Whites Standard Errors
White (op cit) developed an algorithm for correcting the standard errors in OLS when
heteroscedasticity is present.  The correction procedure does not assume any particular form of
heteroscedasticity and so in some ways White has “solved” the heteroscedasticity problem.  The
argument is summarised by Long and Ervin (1999):

 “When the form and magnitude of heteroscedasticity are known, using weights to correct for
heteroscedasticity is very simply using generalized least squares. If the form of heteroscedasticity involves a
small number of unknown parameters, the variance of each residual can be estimated first and these estimates
can be used as weights in a second step.In many cases, however, the form of heteroscedasticity is unknown,
which makes the weighting approach impractical. When heteroscedasticity is caused by an incorrect
functional form, it can be corrected by making variance-stabilizing transformations of the dependent variable
(see, for example, Weisberg 1980:123-124) or by transforming both sides (Carroll and Ruppert 1988:115-
173). While this approach can provide an efficient and elegant solution to the problems caused by
heteroscedasticity, when the results need to be interpreted in the original scale of the variables, nonparametric
methods may be necessary (Duan 1983; Carroll and Ruppert 1988:136-139). As noted by Emerson and Stoto
(1983: 124), “...re-expression moves us into a scale that is often less familiar.” Further, if there are theoretical
reasons to believe that errors are heteroscedastistic around the correct functional form, transforming the
dependent variable is inappropriate. An alternative approach, which is the focus of our paper, is to use tests
based on a heteroscedasticity consistent covariance matrix, hereafter HCCM. The HCCM provides a
consistent estimator of the covariance matrix of the regression coe�cients in the presence of
heteroscedasticity of an unknown form. This is particularly useful when the interpretation of nonlinear
models that reduce heteroscedasticity is di�cult, a suitable variance-stabilizing transformation cannot be
found, or weights cannot be estimated for use in GLS. Theoretically, the use of HCCM allows a researcher to
easily avoid the adverse e�ects of heteroscedasticity even when nothing is known about the form of
heteroscedasticity.” (Long and Ervin 1999 p. 1)

i) HC0: Matrix Procedure for White’s Standard Errors in SPSS when the sample is > 500:
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* SPSS PROCEDURE FOR CALCULATING White's Standard Errors: Full OLS
and White's SE output.

* 1st step: Open up your data file and save it under a new name since the
following procedure will alter it.
* 2nd step: Run you OLS regression and save UNSTANDARDISED residuals
as RES_1:.

REGRESSION
  /MISSING LISTWISE
  /STATISTICS COEFF OUTS R ANOVA
  /CRITERIA=PIN(.05) POUT(.10)
  /NOORIGIN
  /DEPENDENT mp_pc
  /METHOD=ENTER xp_pc   gdp_pc
  /SAVE RESID(RES_1) .

* 3rd step: create a variable called ESQ = square of those residuals:. 

COMPUTE ESQ = RES_1 * RES_1.
EXECUTE.

* 4th step: create a variable called CONSTANT = constant of value 1 for all
observations in the sample.

FILTER OFF.
USE ALL.
EXECUTE .
COMPUTE CONSTANT = 1.
EXECUTE.

* 5th step: Filter out missing values and Enter Matrix syntax mode .

FILTER OFF.
USE ALL.
SELECT IF(MISSING(ESQ) = 0).
EXECUTE .

* 6th step: Tell the matrix routine to get your variables.
     * you need to enter the names of the Y and X variables from your regression
here.

and  Use matrix syntax to calculate White's standard errors for
large samples:.
*******Note that the only thing you need to do here is alter the variable names in lines

2 and 3 below so that they match those of your regression.
MATRIX.
GET Y / VARIABLES = mp_pc.   
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GET X / VARIABLES = CONSTANT, xp_pc, gdp_pc  
/ NAMES = XTITLES.
GET RESIDUAL / VARIABLES = RES_1.
GET ESQ / VARIABLES = ESQ.
COMPUTE XRTITLES = TRANSPOS(XTITLES).
COMPUTE N = NROW(ESQ).
COMPUTE K = NCOL(X).
COMPUTE O = MDIAG(ESQ).
COMPUTE WHITEV = (INV(TRANSPOS(X) * X)) *TRANSPOS(X)* O *
X*INV(TRANSPOS(X) * X).
COMPUTE WDIAG = DIAG(WHITEV).
COMPUTE WHITE_SE = SQRT(WDIAG).
PRINT WHITE_SE 
  / FORMAT = "E13"
  / TITLE = "White's (Large Sample) Corrected Standard Errors"
  / RNAMES = XRTITLES.
COMPUTE B = (INV(TRANSPOS(X) * X)) * (TRANSPOS(X) * Y).
PRINT B
/ FORMAT = "E13"
/TITLE = "OLS Coefficients"
/  RNAMES = XRTITLES.
COMPUTE WT_VAL = B / WHITE_SE.
PRINT WT_VAL
/ FORMAT = "E13"
/ TITLE = "t-values based on Whites (large sample) corrected SEs"
/  RNAMES = XRTITLES.
COMPUTE SIG_WT = 2*(1- TCDF(ABS(WT_VAL), N)) .
PRINT SIG_WT
/ FORMAT = "E13"
/ TITLE = "Prob(t < tc) based on Whites (large n) SEs"
/  RNAMES = XRTITLES.
COMPUTE SIGMASQ = (TRANSPOS(RESIDUAL)*RESIDUAL)/(N-K).
COMPUTE SE_SQ = SIGMASQ*INV(TRANSPOS(X)*X).
COMPUTE SESQ_ABS = ABS(SE_SQ).
COMPUTE SE = SQRT(DIAG(SESQ_ABS)).
PRINT SE
  / FORMAT = "E13"
  / TITLE = "OLS Standard Errors"
  / RNAMES = XRTITLES.
COMPUTE OLST_VAL = B / SE.
PRINT OLST_VAL
/ FORMAT = "E13"
/ TITLE = "OLS t-values"
/  RNAMES = XRTITLES.
COMPUTE SIG_OLST = 2*(1- TCDF(ABS(OLST_VAL), N)) .
PRINT SIG_OLST



© Gwilym Pryce March 2002 25

/ FORMAT = "E13"
/ TITLE = "Prob(t < tc) based on OLS SEs"
/  RNAMES = XRTITLES.
COMPUTE WESTIM = {B, SE, WHITE_SE, WT_VAL, SIG_WT}.
PRINT WESTIM 
/ FORMAT = "E13"
/ RNAMES = XRTITLES
/ CLABELS = B, SE, WHITE_SE, WT_VAL, SIG_WT.
END MATRIX. 

Notes:
 Don’t save your data file under the same name since the above procedure has

removed from the data all observations with missing values.
 If you already have a variable called res_1, you will need to delete or rename it before you run

the syntax.   This means that if you run the procedure on several regressions, you will need to
delete the newly created res_1 and ESQ variables after each run.

 Note that the output will use scientific notation, so 20.7 will be written as 2.07E+01, and
0.00043 will be written as 4.3E-04.

 Note that the last table just collects together the results of five of the other tables.  
 WT_VAL” is an abbreviation for “White’s t-values” and “SIG_WT” is the significance

level of these t values.

Example of White’s Standard Errors:
If we run the matrix syntax on our earlier regression of floor area on age of dwelling,
bedrooms and bathrooms, we get:

Run MATRIX procedure:

White's (Large Sample) Corrected Standard Errors
CONSTANT  4.043030E-02
AGE_DWEL  1.715285E-04
BATHROOM  2.735781E-02
BEDROOMS  1.284207E-02

OLS Coefficients
CONSTANT  3.536550E+00
AGE_DWEL  1.584464E-03
BATHROOM  2.258710E-01
BEDROOMS  2.721069E-01

t-values based on Whites (large sample) corrected SEs
CONSTANT  8.747276E+01
AGE_DWEL  9.237322E+00
BATHROOM  8.256180E+00
BEDROOMS  2.118870E+01

Prob(t < tc) based on Whites (large n) SEs
CONSTANT  0.000000E+00
AGE_DWEL  0.000000E+00
BATHROOM  2.220446E-16
BEDROOMS  0.000000E+00
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OLS Standard Errors
CONSTANT  3.514394E-02
AGE_DWEL  1.640008E-04
BATHROOM  2.500197E-02
BEDROOMS  1.155493E-02

OLS t-values
CONSTANT  1.006304E+02
AGE_DWEL  9.661319E+00
BATHROOM  9.034130E+00
BEDROOMS  2.354899E+01

Prob(t < tc) based on OLS SEs
CONSTANT  0.000000E+00
AGE_DWEL  0.000000E+00
BATHROOM  0.000000E+00
BEDROOMS  0.000000E+00

WESTIM
                     B            SE      WHITE_SE        WT_VAL        SIG_WT
CONSTANT  3.536550E+00  3.514394E-02  4.043030E-02  8.747276E+01  0.000000E+00
AGE_DWEL  1.584464E-03  1.640008E-04  1.715285E-04  9.237322E+00  0.000000E+00
BATHROOM  2.258710E-01  2.500197E-02  2.735781E-02  8.256180E+00  2.220446E-16
BEDROOMS  2.721069E-01  1.155493E-02  1.284207E-02  2.118870E+01  0.000000E+00

If we compare the adjusted t-values with those from OLS, then we will see that they are
marginally lower but all still highly significant in this case.  The greater the
heteroscedasticity, the larger the difference between the OLS t values and WT_VAL.
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ii) HC2 and HC3: Matrix Procedure for Corrected SEs when the sample is < 500:

When the sample size is small, it has been found that White’s stand ard errors are not reliable
MacKinnon and White (1985) proposed three tests to be used when the sample size is small.  Long
and Ervin (1999) found that the third of these tests, what they call HC3, is the most reliable, but
unless one has a great deal of RAM on your computer, you may run into difficulties if your
sample size is greater than 250.  As a result, I would recommend the following:

n < 250 use HC3 irrespective of whether your tests for heteroscedasticity
prove positive (Long and Ervin found that the tests are not very
powerful in small samples).

250 < n < 500 use HC2 since this is more reliable than HC0 (HC0 = White’s original
SE as computed above).

n > 500 use either HC2 or HC0.

Syntax for computing HC2 is presented below.  Follow the first 5 steps as before, and then run the
following:

*HC2.
MATRIX.
GET Y / VARIABLES = flarea_l.   
GET X / VARIABLES = CONSTANT, age_dwel, bathroom, bedrooms
/ NAMES = XTITLES.
GET RESIDUAL / VARIABLES = RES_1.
GET ESQ / VARIABLES = ESQ.
COMPUTE XRTITLES = TRANSPOS(XTITLES).
COMPUTE N = NROW(ESQ).
COMPUTE K = NCOL(X).
COMPUTE O = MDIAG(ESQ).
/*Computing HC2*/.
COMPUTE XX = TRANSPOS(X) * X.
COMPUTE XX_1 = INV(XX).
COMPUTE X_1 = TRANSPOS(X).
COMPUTE H = X*XX_1*X_1.
COMPUTE H_MONE =  h * -1.
COMPUTE ONE_H = H_MONE + 1.
COMPUTE O_HC2 = O &/ ONE_H.
COMPUTE HC2_a = XX_1 * X_1 *O_HC2.
COMPUTE HC2 = HC2_a * X*XX_1.
COMPUTE HC2DIAG = DIAG(HC2).
COMPUTE HC2_SE = SQRT(HC2DIAG).
PRINT HC2_SE 
  / FORMAT = "E13"
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  / TITLE = "HC2 Small Sample Corrected Standard Errors"
  / RNAMES = XRTITLES.
COMPUTE B = XX_1 * X_1 * Y.
PRINT B
/ FORMAT = "E13"
/TITLE = "OLS Coefficients"
/  RNAMES = XRTITLES.
COMPUTE HC2_TVAL = B / HC2_SE.
PRINT HC2_TVAL
/ FORMAT = "E13"
/ TITLE = "t-values based on HC2 corrected SEs"
/  RNAMES = XRTITLES.
COMPUTE SIG_HC2T = 2*(1- TCDF(ABS(HC2_TVAL), N)) .
PRINT SIG_HC2T
/ FORMAT = "E13"
/ TITLE = "Prob(t < tc) based on HC2 SEs"
/  RNAMES = XRTITLES.
END MATRIX.

The output from this syntax is as follows:

HC2 Small Sample Corrected Standard Errors
CONSTANT  4.077517E-02
AGE_DWEL  1.726199E-04
BATHROOM  2.761153E-02
BEDROOMS  1.293651E-02

OLS Coefficients
CONSTANT  3.536550E+00
AGE_DWEL  1.584464E-03
BATHROOM  2.258710E-01
BEDROOMS  2.721069E-01

t-values based on HC2 corrected SEs
CONSTANT  8.673291E+01
AGE_DWEL  9.178915E+00
BATHROOM  8.180314E+00
BEDROOMS  2.103402E+01

Prob(t < tc) based on HC2 SEs
CONSTANT  0.000000E+00
AGE_DWEL  0.000000E+00
BATHROOM  1.998401E-15
BEDROOMS  0.000000E+00

For HC3, you need to make sure that your sample is not too large otherwise the computer may
crash.  You can temporarily draw a random sub-sample by using the TEMPORARY. SAMPLE
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p. where p is the proportion of the sample (e.g. if p = 0.5, you have selected 40% of your
sample for the following operations).

*HC3.
/*when Computing HC3 make sure n is < 250 (e.g. use TEMPORARY.
SAMPLE 0.4.) */.
TEMPORARY.
SAMPLE 0.4.
MATRIX.
GET Y / VARIABLES = flarea_l.   
GET X / VARIABLES = CONSTANT, age_dwel, bathroom, bedrooms
/ NAMES = XTITLES.
GET RESIDUAL / VARIABLES = RES_1.
GET ESQ / VARIABLES = ESQ.
COMPUTE XRTITLES = TRANSPOS(XTITLES).
COMPUTE N = NROW(ESQ).
COMPUTE K = NCOL(X).
COMPUTE O = MDIAG(ESQ).
COMPUTE XX = TRANSPOS(X) * X.
COMPUTE XX_1 = INV(XX).
COMPUTE X_1 = TRANSPOS(X).
COMPUTE H = X*XX_1*X_1.
COMPUTE H_MONE =  h * -1.
COMPUTE ONE_H = H_MONE + 1.
/*Computing HC3*/.
COMPUTE  ONE_H_SQ = ONE_H &** 2.
COMPUTE O_HC3 = O &/ ONE_H_SQ.
COMPUTE HC3_a = XX_1 * X_1 *O_HC3.
COMPUTE HC3 = HC3_a * X*XX_1.
COMPUTE HC3DIAG = DIAG(HC3).
COMPUTE HC3_SE = SQRT(HC3DIAG).
COMPUTE B = XX_1 * X_1 * Y.
PRINT B
/ FORMAT = "E13"
/TITLE = "OLS Coefficients".
PRINT HC3_SE  
  / FORMAT = "E13"
  / TITLE = "HC3 Small Sample Corrected Standard Errors"
  / RNAMES = XRTITLES.
COMPUTE HC3_TVAL = B / HC3_SE.
PRINT HC3_TVAL
/ FORMAT = "E13"
/ TITLE = "t-values based on HC3 corrected SEs"
/  RNAMES = XRTITLES.
COMPUTE SIG_HC3T = 2*(1- TCDF(ABS(HC3_TVAL), N)) .
PRINT SIG_HC3T
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/ FORMAT = "E13"
/ TITLE = "Prob(t < tc) based on HC3 SEs"
/  RNAMES = XRTITLES.
END MATRIX.

The output from the above syntax is as follows:

OLS Coefficients
  3.530325E+00
  1.546620E-03
  2.213146E-01
  2.745376E-01

HC3 Small Sample Corrected Standard Errors
CONSTANT  4.518059E-02
AGE_DWEL  1.884062E-04
BATHROOM  3.106637E-02
BEDROOMS  1.489705E-02

t-values based on HC3 corrected SEs
CONSTANT  7.813809E+01
AGE_DWEL  8.208966E+00
BATHROOM  7.123928E+00
BEDROOMS  1.842899E+01

Prob(t < tc) based on HC3 SEs
CONSTANT  0.000000E+00
AGE_DWEL  2.220446E-15
BATHROOM  4.005019E-12
BEDROOMS  0.000000E+00

4. Conclusions 
In conclusion, it is worth quoting Greene (1990),

“It is rarely possible to be certain about the nature of the heteroscedasticity in a egression model.
In one respect, this is only a minor problem.  The weighted least squares estimator, …, is
consistent regardless of the weights used, as long as the weights are uncorrelated with the
disturbances… But using the wrong set of weights has two other consequences which may be
less benign. First, the improperly weighted least squares estimator is inefficient.  This might be a
moot point if the correct weights are unknown, but the GLS standard errors will also be incorrect.
The asymptotic covariance matrix of the estimator … may not resemble the usual estimator.  This
underscores the usefulness of the White estimator…  Finally, if the form of the heteroscedasticity
is known but involves unknown parameters, it remains uncertain whether FGLS corrections are
better than OLS.  Asymptotically, the comparison is clear, but in small or moderate-sized
samples, the additional variation incorporated by the estimated variance parameters may offset
the gains to GLS.” (W. H. Green, 1990, p. 407)
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The corollary is that one should remove any heteroscedasticity caused by misspecification by
removing (where possible) the source of that misspecificaiton (e.g. correct omitted variables by
including the appropriate variable).  Any heteroscedasticity that remains is unlikely to be
particularly harmful and one should try solutions that do not distort the regression or confuse the
interpretation of coefficients (taking logs of the dependent and/or independent variables is often
quite effective at reducing heteroscedasticity and usually does not have adverse affects on
interpretation or specification, though you should check this).  Finally, one should report White’s
corrected standard errors (or t-values based on them).  Even if your tests for heteroscedasticity
suggest that it is not present, it is probably worth presenting White’s standard errors anyway,
rather than the usual OLS standard errors, since the tests for heteroscedasticity are not infallible
(particularly in small samples) and they may have missed an important source of of systematic
variation in the error term.  In small samples (n < 250) White’s standard errors are not reliable so
you should use Mackinnon and White’s HC3 (this should be used even if the tests for
heteroscedasticity are clear because of the reduced power of these tests in small samples).
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Useful Link for SPSS syntax and macros:
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