

Agriculture et Agroalimentaire Canada

Agronomy Update 2014

Understanding the nature and role of fungicides

T.K. Turkington, K. Xi, H.R. Kutcher, and G. Peng

Acknowledgements

- AAFC and AARD colleagues and technical staff
- ABC, AAFC MII, WGRF, AAFC Barley DIAP, Winter Wheat DIAP, DU, Bayer, BASF, Rahr Malting, CWB
- Agronomy Update 2014 Organizers

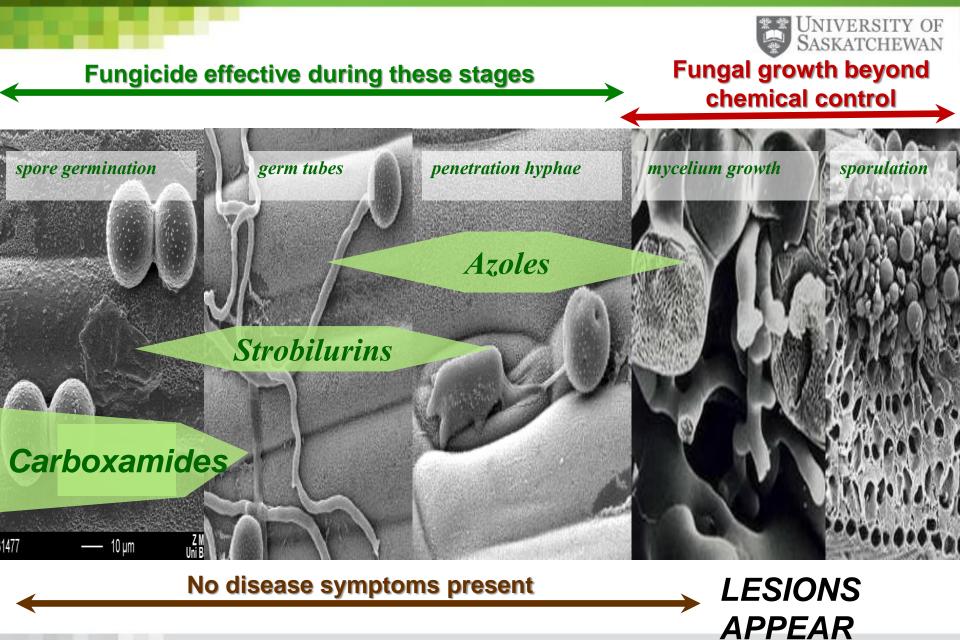
Canada

- Neil Whatley
- Nick Poole, FAR, New Zealand

Agriculture and Agriculture et Agri-Food Canada Agroalimentaire Canada

Classifying fungicides: Mobility

- Contact or protectant fungicides
 - Remain on the outside of the plant
 - Target spores and germination
 - Repeated applications
 - Need to maintain level of activity


- Systemic or penetrating fungicides
 - Move into plant tissue that has been treated
 - Translaminar, limited movement (locally systemic)
 - Xylem-mobile
 - Move throughout the plant via xylem (stem or root application)
 - Movement within treated leaf, but not between leaves
 - Targets spore germination and/or hyphae
 - Protectant and curative activity

Classifying fungicides: Role

- Preventative role
 - Provide a fungicidal barrier
 - Prevent infection of treated plant tissue
 - Mainly contact/protectant fungicides, but also systemic fungicides
- Curative role
 - Systemic

- Penetrate plant to limit further pathogen development (early infections, kick-back action)
- May limit pathogen sporulation
- Limited eradicant activity
 - Especially with well-established infections

Courtesy R. Trischuk, BASF

www.usask.ca

With info from the wheat disease management guide, Spring 2013, HGCA (www.hgca.com)

Classifying fungicides: Breadth of activity

- Single-site fungicides
 - Active against specific targets in the pathogen
 - Very targeted toxicity and thus limited negative impact on the plant
 - Mainly systemic fungicides
 - Greater risk of pathogen developing resistance

Classifying fungicides: Breadth of activity

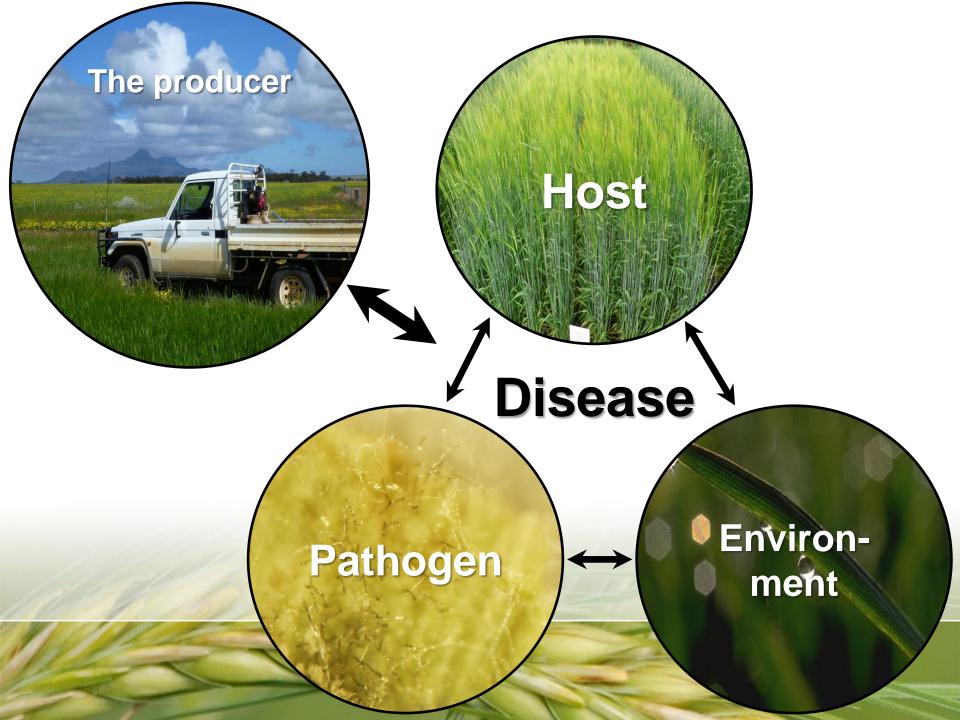

- Multi-site fungicides
 - Active against multiple targets in the pathogen
 - May affect several different classes of fungi
 - Mainly contact fungicides
 - Lower risk of pathogen developing resistance
 - Tend to be the older products

Table 5. Mode of action of major fungicides classes, their FRAC code and resistance risk. For additional information, see the FRAC Code List.

FRAC Code	Chemical Class	Mode of action / inhibition	Resistance risk
1	Benzimidazoles	Beta-tubulin biosynthesis	high
2	Dicarboximides	NADH cytochrome c reductase in lipids	high
3	Azoles, Pyrimidines	C-14 demethylation in sterol biosynthesis	medium
4	Phenylamides	RNA polymerase	high
5	Morpholines	^8 and ^7 isomerase and ^14 reductase in sterol biosynthesis	low-mediun
7	Carboxamides	Succinic acid oxidation	medium
9	Anilinopyrimidine	Methionine biosynthesis	medium
11	Strobilurins	Mitochondrial synthesis in cytochrome bc1	high
16	Various chemistry	Melanin biosynthesis (two sites)	medium
40	Carboxylic acid amides	Cell wall formation in Oomycetes	low-mediun
M1	Inorganics	Multisite contact	low
M3	Dithiocarbamates	Multisite contact	low
M5	Phthalimides	Multisite contact	low

Morton, V. and Staub, T. 2008 A Short History of Fungicides. Online, APSnet Features. doi: 10.1094/APSnetFeature-2008-0308.

Making the most of a fungicide application: the host

- Host resistance or susceptibility
 - Influences fungicide need/rate/timing
 - Influences key disease issues
 - Can influence fungicide choice and timing
- Is there a key host growth stage where disease has the biggest impact on yield

FOSt

- Influences timing and application technology
- What is the crop yield potential

Influences the economics of spraying

Making the most of a fungicide application: the pathogen

- Source of inoculum
 - Influences fungicide efficacy
- Monocyclic or polycyclic disease

 Influences timing
- Are symptoms due to a pathogen

 Influences the need for fungicide
- Nature of the pathogen and development

 Influences the ability of the pathogen to
 - adapt to the fungicides being used
 - Influences fungicide efficacy

Making the most of a fungicide application based on the environment

- Are weather conditions conducive or restrictive to disease development
 - Influences inoculum production, infection potential, and disease development
- Weather conditions prior to, during, and after the fungicide is applied
 - Influences ability to spray the field or type of application used
 - Influences fungicide application success, persistence and period of activity

Environ-

ment

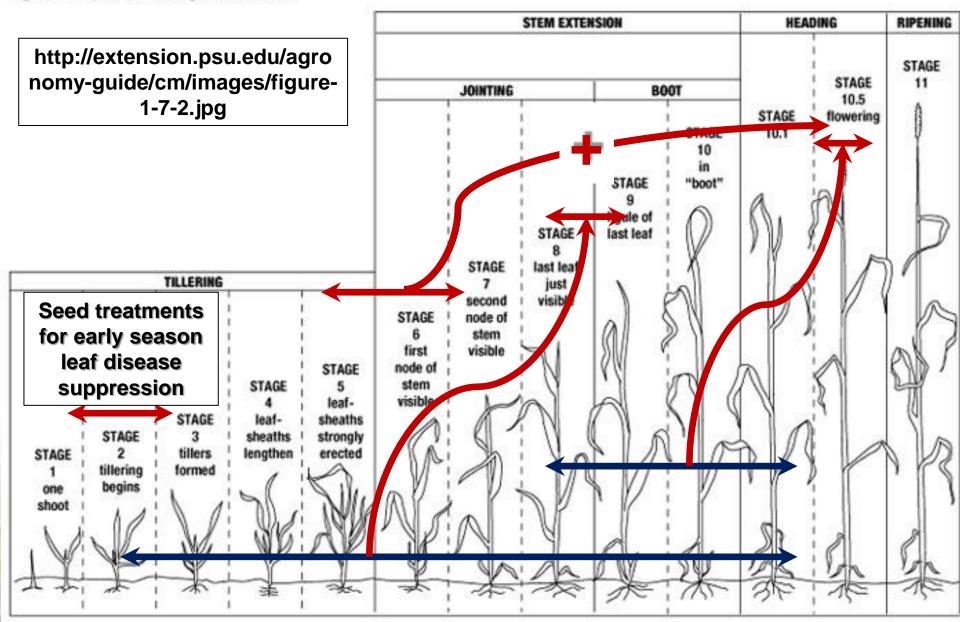
Making the most of a fungicide application: the fungicide

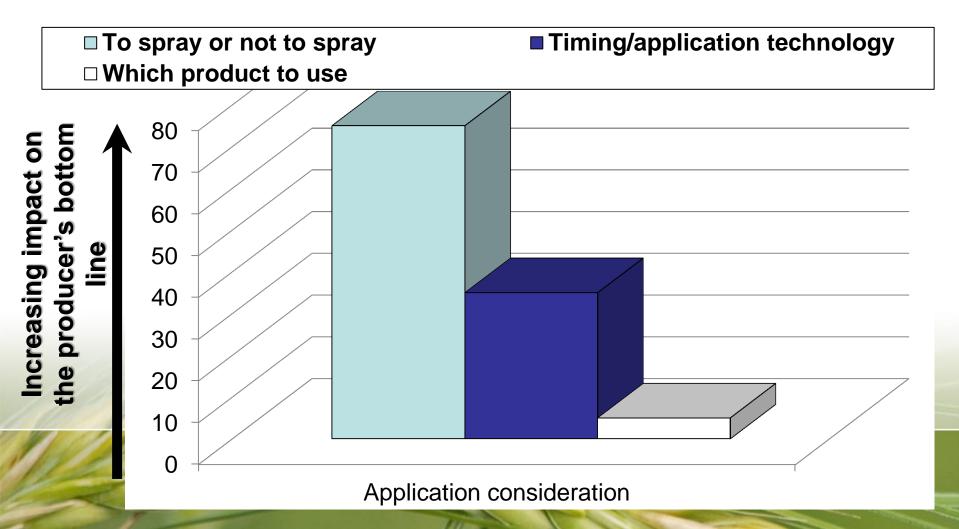
- What is the nature of the fungicide and multiple versus single modes of action
 - Influences efficacy and range of activity
 - Influences risk of fungicide resistance
- How mobile is the fungicide in the plant
 - Influences fungicide efficacy, persistence, and period of activity

producer

- Influences application technology
- Influences the extent to which target plant tissues are protected

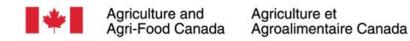
Disease severity, herbicide/fungicide timing trial, AC Metcalfe barley, penultimate leaf, Lacombe late July 2010


Check no fungicide


Half rate Tilt at 2-3 leaf stage

Integrating knowledge regarding fungicide action, yield contributors, plant growth stage, disease levels, and weather

Figure 1.7-2. Growth stages of cereals.


Factors influencing the economics and potential return from spraying fungicides (G. Hollaway, DPI Victoria, Australia)

Realistic expectations from foliar fungicide application

- Effective tool for some diseases
- Timing can have a huge impact
 - Too late and disease established on key tissues
 - Too early and fungicide activity/concentration may become limited or key plant tissues not protected
- Is your target actually a fungal disease
 - Foliar fertilizer injury or abiotic/biotic issue?
 - E.g. foliar copper mixed with fungicide
- Environmental impacts/nature of fungicide
- Fungicide application does not mean a completely disease free crop

Thank you!

For more information, please contact: kelly.turkington@agr.gc.ca 403-782-8138

