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CENTROSYMMETRIC MATRICES:
PROPERTIES AND AN ALTERNATIVE

APPROACH

IYAD T. ABU-JEIB

ABSTRACT. We present a simple approach to deriving

results/algorithms about centrosymmetric matrices. Also, we
reveal new facts about centrosymmetric and skew-centrosym-
metric matrices and we present a new characterization of cen-
trosymmetric matrices and skew-centrosymmetric matrices.

1 Introduction. Centrosymmetric matrices have a rich eigenstruc-
ture that has been studied extensively in the literature (see [26], [22],
[5], [15], [6], [10], [7], [25], [23], [1], [2]). Many results for centrosym-
metric matrices have been generalized to wider classes of matrices that
arise in a number of applications (see [12], [13], [19], [17], [18]). Most
facts/algorithms about centrosymmetric matrices were derived using or-
thogonal similarity transformations. In this paper, we use an alternative
simple approach to derive the most known important facts/algorithms
about centrosymmetric matrices. We also use this approach to solve ef-
ficiently linear systems of equations involving centrosymmetric matrices
and to reveal new properties of centrosymmetric matrices. We note that
our approach is applicable in many cases to skew-centrosymmetric ma-
trices. Chu [8] studied the class M of real orthogonal matrices such that
if T is a real symmetric Toeplitz matrix (which implies it is real sym-
metric centrosymmetric) and K ∈ M, then KTKT is real symmetric
Toeplitz. In this paper, we present a class N of orthogonal matrices such
that if Q ∈ N and H is a centrosymmetric matrix, then QT HQ is block-
diagonal. This is important, because if H is a centrosymmetric matrix
and D =

[
D1 0
0 D2

]
is a block diagonal matrix similar to H via a member

of N , then H and D1 and D2 share many properties. We identify the
class L of orthogonal matrices of even order such that if Q ∈ L and H

AMS subject classification: 65F05, 65F15, 15A18, 15A57.
Keywords: centrosymmetric, skew-centrosymmetric, Toeplitz.

Copyright c©Applied Mathematics Institute, University of Alberta.

429



430 IYAD T. ABU-JEIB

is a centrosymmetric (resp. skew-centrosymmetric) matrix of even or-
der, then QH is skew-centrosymmetric (resp. centrosymmetric). Thus,
members of L are orthogonal transformations between centrosymmetric
matrices of even order and skew-centrosymmetric matrices of even order.
Hence, we can apply results/algorithms about centrosymmetric matri-
ces to skew-centrosymmetric matrices and vice versa. We prove several
theorems about centrosymmetric and skew-centrosymmetric matrices.
But, we will focus on centrosymmetric matrices. In several cases, we
will consider matrices of even order only (the case of odd order is either
similar or it can not be put in a nice useful form).

2 Preliminaries. We employ the following notation. We denote
the transpose of a matrix A by AT , the Hermitian transpose by A∗, and
the determinant of A by det(A). We use the notation �x� for the largest
integer less than or equal to x. As usual, I denotes the identity matrix
and k denotes the complex conjugate of k. Throughout this paper, we
let δ = �n

2 �, where n is a positive integer.
We mean by the time complexity the number of flops. When counting

flops, we treat addition/subtraction the same as multiplication/division.
By the main counterdiagonal (or simply counterdiagonal) of a square
matrix we mean the positions which proceed diagonally from the last
entry in the first row to the first entry in the last row.

Definition 2.1. The counteridentity matrix, denoted J , is the square
matrix whose elements are all equal to zero except those on the coun-
terdiagonal, which are all equal to 1.

We note that multiplying a matrix A by J from the left results in
reversing the rows of A and multiplying A by J from the right results in
reversing the columns of A. Throughout this paper, we will denote the
counteridentity matrix by J .

A vector x is called symmetric if Jx = x and skew-symmetric if Jx =
−x. If x is an n×1 vector, then we let x+ represent the symmetric part of
x; i.e. x+ = 1

2 (x+Jx), where J is the n×n counteridentity matrix, and
we let x− represent the skew-symmetric part of x; i.e. x− = 1

2 (x − Jx).

Definition 2.2. A matrix A is centrosymmetric if JAJ = A, skew-
centrosymmetric if JAJ = −A, and persymmetric if JAJ = AT .

Centrosymmetric and skew-centrosymmetric matrices have applica-
tions in many fields including communication theory, statistics, physics,
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harmonic differential quadrature, differential equations, numerical anal-
ysis, engineering, sinc methods, magic squares, and pattern recognition.
For applications of these matrices, see [24], [14], [11], [20], [15], [7],
[16], [4]. Note that symmetric Toeplitz matrices are symmetric cen-
trosymmetric and skew-symmetric Toeplitz matrices are skew-symmetric
skew-centrosymmetric.

The following lemma can be found in many of the references listed at
the end.

Lemma 2.3. Let H be an n×n centrosymmetric matrix. If n is even,
then H can be written as

H =
[
A JCJ
C JAJ

]
,

where A, J and C are δ× δ matrices. If n is odd, then H can be written
as ⎡

⎣ A x JCJ
yT q yT J
C Jx JAJ

⎤
⎦ ,

where A, J and C are δ × δ matrices, x and y are δ × 1 vectors, and q
is a number.

The following result, which can be found in several publications (see
[6], [10], for example), is probably the most important known fact about
centrosymmetric matrices.

Theorem 2.4. Let H be an n×n centrosymmetric matrix and let H be
decomposed as in the previous lemma. If n is even, then the eigenvalues
of H are the eigenvalues of F1 = A − JC and the eigenvalues of G1 =
A + JC. Moreover, the eigenvectors corresponding to the eigenvalues of
F1 can be chosen to be skew-symmetric of the form (uT ,−uT J)T , where
u is an eigenvector of F1, while the eigenvectors corresponding to the
eigenvalues of G1 can be chosen to be symmetric of the form (uT , uT J)T ,
where u is an eigenvector of G1. Also, det(H) = det(F1) · det(G1),
and H is Hermitian (resp. skew-Hermitian, normal, positive-definite,
positive-semidefinite) if and only if F1 and G1 are Hermitian (resp. skew-
Hermitian, normal, positive-definite, positive-semidefinite).

If n is odd, then the eigenvalues of H are the eigenvalues of F1 and
the eigenvalues of

G2 =
[

q
√

2yT√
2x A + JC

]
.
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Moreover, the eigenvectors corresponding to the eigenvalues of F1 can be
chosen to be skew-symmetric of the form (uT , 0,−uT J)T , where u is an
eigenvector of F1, while the eigenvectors corresponding to the eigenvalues
of G2 can be chosen to be symmetric of the form (uT ,

√
2α, uT J)T , where

(α, uT )T is an eigenvector of G2. Also, det(H) = det(F1) · det(G2),
and H is Hermitian (resp. skew-Hermitian, normal, positive-definite,
positive-semidefinite) if and only if F1 and G2 are Hermitian (resp. skew-
Hermitian, normal, positive-definite, positive-semidefinite).

If, in addition, H is real symmetric, then (this is valid for both even
and odd orders) we may choose δ orthonormal eigenvectors of H to be
skew-symmetric and n− δ orthonormal eigenvectors of H to be symmet-
ric.

Fassbender and Ikramov [9] proposed an algorithm to compute Gx,
where G is a centrosymmetric matrix and x is a vector. Most known re-
sults about centrosymmetric matrices (including Theorem 2.4 and Fass-
bender and Ikramov’s algorithm) were derived using the fact that a
centrosymmetric matrix is orthogonally similar to a block diagonal ma-
trix via the following orthogonal matrices (the first is for even order and
the second is for odd order):

Q1 =
1√
2

[
I −J
I J

]
, Q2 =

1√
2

⎡
⎣ I 0 I

0
√

2 0
−J 0 J

⎤
⎦ ,

where I and J are δ× δ. (Note that the columns of Qi, i = 1, 2, form an
orthonormal basis for the eigenspace of J . We will show that Q1 and Q2

are not unique.) In this paper, we derive Theorem 2.4 and Fassbender
and Ikramov’s algorithm using a different approach.

The following theorem can be found in some of the references listed
at the end.

Theorem 2.5. Let H be an n×n nonsingular centrosymmetric matrix,
where n is even, and let H be decomposed as in Lemma 2.3. Then

H−1 =
1
2

[
V −1 + W−1 (W−1 − V −1)J

J(W−1 − V −1) J(V −1 + W−1)J

]
,

where V = A − JC and W = A + JC.

The following lemma and theorem can be proved easily.
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Lemma 2.6. Let S be an n × n skew-centrosymmetric matrix. If n is
even, then S can be written as

S =
[
A −JCJ
C −JAJ

]
,

where A, J and C are δ × δ. If n is odd, then S can be written as

S =

⎡
⎣ A z −JCJ
yT 0 −yT J
C −Jz −JAJ

⎤
⎦ ,

where A, J , and C are δ × δ, and z and y are δ × 1.

Theorem 2.7. Let S be an n × n nonsingular skew-centrosymmetric
matrix, where n is even, and let S be decomposed as in Lemma 2.6.
Then

S−1 =
1
2

[
V −1 − W−1 (V −1 + W−1)J

−J(V −1 + W−1) J(W−1 − V −1)J

]
,

where V = A + JC and W = −A + JC.

3 An alternative approach. First, we derive Theorem 2.4 using
an alternative approach (this is perhaps the most important application
of this approach because it shortens and simplifies the proof of Theo-
rem 2.4). Then we derive Fassbender and Ikramov’s algorithm using the
same approach. Finally, we use the approach to derive an efficient al-
gorithm to solve Hx = b, where H is centrosymmetric. The alternative
approach is simply to replace a vector x by x+ + x−.

Let H be an n × n centrosymmetric matrix, where n is even, let H
be decomposed as in Lemma 2.3, and let x be an n × 1 vector. Then
(λ, x) is an eigenpair of H if and only if Hx+ + Hx− = λx+ + λx−

and Hx+ − Hx− = λx+ − λx− if and only if Hx+ = λx+ and Hx− =
λx−. (Hence, if H has m linearly independent eigenvectors, then we
can choose m linearly independent eigenvectors of H to be symmetric
or skew-symmetric. Thus, there is no need to use the decomposition of
H in Lemma 2.3 to reach this conclusion.) Now, since x+ is symmetric,
then it can be written as x+ =

[ y
Jy

]
, where y is δ × 1 and J is δ × δ,

and since x− is skew-symmetric, then it can be written as x− =
[

z
−Jz

]
,

where z is δ × 1 and J is δ × δ. Thus, Hx+ = λx+ if and only if
[
A JCJ
C JAJ

] [
y
Jy

]
= λ

[
y
Jy

]



434 IYAD T. ABU-JEIB

if and only if (A + JC)y = λy. Similarly, Hx− = λx− if and only if
[
A JCJ
C JAJ

] [
z

−Jz

]
= λ

[
z

−Jz

]

if and only if (A − JC)z = λz. This proves Theorem 2.4.
Now, we derive Fassbender and Ikramov’s algorithm. Once again

let H be an n × n centrosymmetric matrix, where n is even, let H be
decomposed as in Lemma 2.3, and let x be an n × 1 vector. And as
before, let x+ =

[ y
Jy

]
and x− =

[
z

−Jz

]
, where y and z are δ × 1 and J

is δ × δ. Then Hx+ =
[

v
Jv

]
, where v = (A + JC)y. Thus, if we find v

by the traditional matrix-vector multiplication algorithm, then the time
complexity of finding Hx+ will be 3

4n2 + O(n) (we need n2

4 additions
to find A + JC, and n2

4 multiplications and n2

4 − n
2 additions to find

v). Similarly, Hx− =
[

w
−Jw

]
, where w = (A − JC)z. If we find w

by the traditional matrix-vector multiplication algorithm, then the time
complexity of finding Hx− will be 3

4n2 + O(n). Thus, to find Hx, find
v and w, then v + w and v − w (note that Hx =

[ v+w
J(v−w)

]
). The time

complexity of multiplying H by x using our method is 3
2n2+O(n). (If, in

addition, H is symmetric, then the time complexity will be 5
4n2 +O(n).)

If A+JC and A−JC are stored and if r is an n×1 vector, then finding
Hr or HT r by this method will cost n2 + O(n).

Remark To multiply a symmetric centrosymmetric matrix H by a
vector x, Melman [21] replaced x by x+ + x−. But, his algorithm is
different than the one we presented.

Now we describe an efficient method to solve the system Hx = b (for
x), where H is an n × n centrosymmetric matrix, x and b are n × 1
vectors, and n is even. Now, let H be decomposed as in Lemma 2.3, and
let

x+ =
[

y
Jy

]
, x− =

[
z

−Jz

]
, b+ =

[
d
Jd

]
, b− =

[
e

−Je

]
,

where y, z, d, and e, are δ × 1. First, note that Hx = b if and only if
Hx+ = b+ and Hx− = b− if and only if (A+JC)y = d and (A−JC)z =
e. Therefore, to solve Hx = b for x, solve instead (A + JC)y = d
for y and (A − JC)z = e for z. Thus, instead of solving an n × n
system, we end up solving two systems half the size. This results in a
significant reduction in the time complexity. For example, if the original
system is solved by Gaussian elimination, then the time complexity will



CENTROSYMMETRIC MATRICES 435

be 2
3n3 + O(n2), while if Gaussian elimination is used to solve the two

systems (A + JC)y = d and (A − JC)z = e, then the time complexity
of our method will be 1

6n3 + O(n2).

4 Block-diagonalization of centrosymmetric matrices. In
this section, we present a class N1 of n × n orthogonal matrices such
that if Q ∈ N1 and H is an n×n centrosymmetric matrix, then QT HQ
is block-diagonal, where n is even. We present a similar class N2 for
odd n. It will be easy to see that N1 (resp. N2) contains more than
one element and it contains the matrix QT

1 (resp. Q2) defined in Sec-
tion 2. Thus, although QT

1 and Q2 (see Section 2), or transformations
of them, are the only orthogonal matrices used by researchers to block-
diagonalize centrosymmetric matrices, they are not unique and they can
be replaced by others. Now, we find N1. So, let n be even, let H be an
n × n centrosymmetric matrix, let H be decomposed as in Lemma 2.3,
let Q be an n× n orthogonal matrix such that QT HQ = D, where D is
block-diagonal, and let

Q =
[
α β
γ ζ

]
,

where α, β, γ, and ζ, are δ × δ matrices. Thus, Q must satisfy

αT Aβ + γT Cβ + αT JCJζ + γT JAJζ = 0,

and
βT Aα + ζT Cα + βT JCJγ + ζT JAJγ = 0.

It is clear that if we choose α = −Jγ and β = Jζ, then the above two
equations will be satisfied. Thus, we have the following lemma.

Lemma 4.1. Let n be even, let H be an n×n centrosymmetric matrix,
let H be decomposed as in Lemma 2.3, and let

Q =
[−Jγ Jζ

γ ζ

]
,

where γ, ζ, and J , are δ × δ matrices. Then

QT HQ = 2
[
γT (JAJ − CJ)γ 0

0 ζT (JAJ + CJ)ζ

]
.
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Now, we need Q to be orthogonal. It is easy to see that if γ and ζ
are invertible, then so is Q, and

Q−1 =
1
2

[−γ−1J γ−1

ζ−1J ζ−1

]
.

Thus, we have the following lemma.

Lemma 4.2. Let n be even and let

Q =
[−Jγ Jζ

γ ζ

]
,

where γ, ζ, and J , are δ × δ matrices. If γ and ζ are invertible, and
γ−1 = 2γT and ζ−1 = 2ζT , then Q is orthogonal.

Now, we are ready to present the class N1.

Theorem 4.3. Let n be even, let γ and ζ be invertible δ × δ matrices
such that γ−1 = 2γT and ζ−1 = 2ζT , let H be an n×n centrosymmetric
matrix, and let H be decomposed as in Lemma 2.3. Then

Q =
[−Jγ Jζ

γ ζ

]

is orthogonal and

QT HQ = 2
[
γT (JAJ − CJ)γ 0

0 ζT (JAJ + CJ)ζ

]
.

Note that the columns of Q form δ linearly independent skew-sym-
metric vectors and δ linearly independent symmetric vectors, i.e., they
form n linearly independent eigenvectors of J . Note also that QT

1 ∈ N1

(γ = − 1√
2
J and ζ = 1√

2
J).

Lemma 4.4. Let n be even, let R be an n × n matrix, and let

Q =
[−Jγ Jζ

γ ζ

]
,

where γ and ζ are invertible δ × δ matrices and J is δ × δ. If QT RQ =[
D1 0
0 D2

]
, where D1 and D2 are δ×δ matrices, then R is centrosymmetric.
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Proof. Write R =
[

R1 R2
R3 R4

]
, where Ri, i = 1, . . . , 4, are δ × δ. Then

QT RQ =
[

D1 0
0 D2

]
if and only if

R3J − JR1J + R4 − JR2 = 0,

−R3J − JR1J + R4 + JR2 = 0.

Thus, R4 = JR1J and R2 = JR3J .

Theorem 4.5. Let n be even, let R be an n×n matrix, and let Q ∈ N1.
Then R is centrosymmetric if and only if QT RQ =

[
D1 0
0 D2

]
, where D1

and D2 are δ × δ.

We have similar results for skew-centrosymmetric matrices.

Theorem 4.6. Let n be even, let γ and ζ be invertible δ × δ matri-
ces such that γ−1 = 2γT and ζ−1 = 2ζT , let S be an n × n skew-
centrosymmetric matrix, and let S be decomposed as in Lemma 2.6.
Then

Q =
[−Jγ Jζ

γ ζ

]

is orthogonal and

QT SQ = 2
[

0 γT (CJ − JAJ)ζ
−ζT (JAJ + CJ)γ 0

]
.

Lemma 4.7. Let n be even, let R be an n × n matrix, and let

Q =
[−Jγ Jζ

γ ζ

]
,

where γ and ζ are invertible δ × δ matrices and J is δ × δ. Then if
QT RQ =

[
0 D1

D2 0

]
, where D1 and D2 are δ × δ matrices, then R is

skew-centrosymmetric.

Theorem 4.8. Let n be even, let R be an n×n matrix, and let Q ∈ N1.
Then R is skew-centrosymmetric if and only if QT RQ =

[
0 D1

D2 0

]
, where

D1 and D2 are δ × δ.

Similarly, we can present the class N2.
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Theorem 4.9. Let n be odd, let γ and ζ be invertible δ × δ matrices
such that γ−1 = 2γT and ζ−1 = 2ζT , let k = ±1, let H be an n × n
centrosymmetric matrix, and let H be decomposed as in Lemma 2.3.
Then

Q =

⎡
⎣−Jγ 0 Jζ

0 k 0
γ 0 ζ

⎤
⎦

is orthogonal and

QT HQ = 2

⎡
⎣γT (JA − C)Jγ 0 0

0 1
2k2q kyT Jζ

0 kζT Jx ζT (JA + C)Jζ

⎤
⎦ .

Note that the columns of Q form δ linearly independent skew-symmet-
ric vectors and n − δ linearly independent symmetric vectors, i.e., they
form n linearly independent eigenvectors of J . Note also that Q2 ∈ N2

(γ = − 1√
2
J , k = 1, and ζ = 1√

2
J).

Lemma 4.10. Let n be odd, let ω = n − δ, let R be an n × n matrix,
and let

Q =

⎡
⎣−Jγ 0 Jζ

0 k 0
γ 0 ζ

⎤
⎦

where γ and ζ are invertible δ × δ matrices, k is a nonzero number, and
J is δ × δ. If QT RQ =

[
D1 0
0 D2

]
, where D1 is δ × δ and D2 is ω × ω,

then R is centrosymmetric.

Proof. Write R =
[

R1 x1 R2

xT
2 q xT

3
R3 x4 R4

]
, where Ri, i = 1, . . . , 4, are δ × δ, and

xi, i = 1, . . . , 4, are δ × 1. Then QT RQ =
[

D1 0
0 D2

]
if and only if

−γT JR1Jζ + γT R3Jζ − γT JR2ζ + γT R4ζ = 0,

−kγT Jx1 + γT x4 = 0,

−kxT
2 Jγ + kxT

3 γ = 0,

−ζT JR1Jγ − ζT R3Jγ + ζT JR2γ + ζT R4γ = 0.

Thus, x4 = Jx1, x3 = Jx2, R4 = JR1J and R2 = JR3J .

Theorem 4.11. Let n be odd, let ω = n−δ, let R be an n×n matrix, and
let Q ∈ N2. Then R is centrosymmetric if and only if QT RQ =

[
D1 0
0 D2

]
,

where D1 is δ × δ and D2 is ω × ω.
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5 Properties of centrosymmetric and skew-centrosymmetric
matrices. In this section, we reveal new properties of centrosymmet-
ric and skew-centrosymmetric matrices. Here, Q1 and Q2 refer to the
orthogonal matrices defined in Section 2.

First, it is easy to prove that if H is an n×n centrosymmetric matrix,
c is an n×1 symmetric vector, and s is an n×1 skew-symmetric vector,
then c∗Hs = 0 and s∗Hc = 0. (If S is an n × n skew-centrosymmetric
matrix, then s∗Ss = 0 and c∗Sc = 0. Hence, if (λ, x) is an eigenpair of
S and λ �= 0, then x cannot be symmetric or skew-symmetric.) Thus,
if x is an n × 1 vector and H is an n × n centrosymmetric matrix, then
x∗Hx = x+∗

Hx+ + x−∗
Hx−.

Now, let M be an n × n matrix and let Mc = 1
2 (M + JMJ) be

the centrosymmetric part of M and Msc = 1
2 (M − JMJ) be the skew-

centrosymmetric part of M . Then Mx = λx if and only if

Mcx
+ + Mcx

− + Mscx
+ + Mscx

− = λx+ + λx−

and
Mcx

+ − Mcx
− − Mscx

+ + Mscx
− = λx+ − λx−.

Thus, we have the following theorem:

Theorem 5.1. Let M be an n×n matrix, let Mc and Msc be as above,
and let (λ, x) be an eigenpair of M . Then

(1) (λ, x+ − x−) is an eigenpair of Mc − Msc.
(2) If x is symmetric, then (λ, x+) is an eigenpair of Mc and (0, x+) is

an eigenpair of Msc.
(3) If x is skew-centrosymmetric, then (λ, x−) is an eigenpair of Mc

and (0, x−) is an eigenpair of Msc.
(4) If M is skew-centrosymmetric and x is not symmetric, then (λ2, x−)

is an eigenpair of M2
sc.

Note that the case when M is centrosymmetric was handled in Sec-
tion 3. Now, one of the most known properties of centrosymmetric ma-
trices is that their eigenvectors can be chosen to be symmetric or skew-
symmetric. Such a property does not hold for skew-centrosymmetric
matrices. In fact, if S is an n × n skew-centrosymmetric matrix and
(λ �= 0, z) is an eigenpair of S, then z can not be symmetric or skew-
symmetric. But if, in addition, S is skew-symmetric, then we have the
following proposition.
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Proposition 5.2. Let S be an n × n real skew-symmetric skew-centro-
sym-metric matrix and let (λ �= 0 , x + iy) be an eigenpair of S, where x
and y are real. Then x is symmetric (resp. skew-symmetric) if and only
if y is skew-symmetric (resp. symmetric).

Theorem 5.3. Let S be an n×n skew-centrosymmetric matrix, where
n is even, let S be decomposed as in Lemma 2.6, and let L = A − JC
and M = A + JC. Then

(1) S is unitary (resp. orthogonal) if and only if L and M are unitary
(resp. orthogonal).

(2) S is idempotent if and only if S = 0.
(3) S is symmetric if and only if MT = L.
(4) S is skew-symmetric if and only if MT = −L.
(5) S is normal if and only if LL∗ = M∗M and L∗L = MM∗.
(6) S is involutory if and only if M−1 = L.
(7) ‖S‖2 = max{‖L‖2, ‖M‖2},

‖S‖∞ =
∥∥[

A JCJ
]∥∥

∞, and ‖S‖1 =
∥∥∥
[
A
C

]∥∥∥
1
.

Proof. It suffices to prove the first three parts.

(1)

QT
1 SQ1 =

[
0 L
M 0

]
.

Thus,

S−1 = Q1

[
0 M−1

L−1 0

]
QT

1

and

S∗ = Q1

[
0 M∗

L∗ 0

]
QT

1 .

(2) Note that S is skew-centrosymmetric while S2 is centrosymmet-
ric and note also that if a matrix P is centrosymmetric and skew-
centrosymmetric, then P = 0.

(3) ST = S if and only if Q1

[
0 MT

LT 0

]
QT

1 = Q1

[
0 L
M 0

]
QT

1 .

With the same notation as the previous theorem, note that if n is
even, then MT = L if and only if A is symmetric and JCJ = −CT , and
MT = −L if and only if A is skew-symmetric and C is persymmetric.
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Theorem 5.4. Let S be an n×n skew-centrosymmetric matrix, where
n is odd, let S be decomposed as in Lemma 2.6, and let L = A−JC and
M = A + JC. Then

(1) S is idempotent if and only if S = 0.
(2) S is symmetric if and only if MT = L and z = y.
(3) S is skew-symmetric if and only if MT = −L and z = −y.
(4) S is normal if and only if 2zz∗ + LL∗ = M∗M + 2yyT , yT y = z∗z,

My = L∗z, and L∗L = MM∗.
(5)

‖S‖∞ = max
{∥∥[

A z JCJ
]∥∥

∞, 2‖y‖1

}
, and

‖S‖1 = max
{∥∥∥∥

⎡
⎣ A

yT

C

⎤
⎦

∥∥∥∥
1

, 2‖z‖1

}
.

With the same notation as the previous theorem, note that if n is
odd, then MT = L if and only if A is symmetric and JCJ = −CT , and
MT = −L if and only if A is skew-symmetric and C is persymmetric.

Theorem 5.5. Let H be an n × n centrosymmetric matrix, let H be
decomposed as in Lemma 2.3, let L = A − JC, and let M = A + JC if

n is even and M =
[

q
√

2yT√
2x A + JC

]
if n is odd. Then

(1) H is unitary (resp. orthogonal) if and only if L and M are unitary
(resp. orthogonal).

(2) H is idempotent (resp. nilpotent, involutory) if and only if L and
M are idempotent (resp. nilpotent, involutory).

(3) ‖H‖2 = max{‖L‖2, ‖M‖2}.
(4) If n is even, then ‖H‖∞ =

∥∥[
A JCJ

]∥∥
∞, and ‖H‖1 =

∥∥[
A
C

]∥∥
1
.

(5) If n is odd, then ‖H‖∞ = max
{∥∥[

A x JCJ
]∥∥

∞, 2‖y‖1 + |q|},

and ‖H‖1 = max
{∥∥∥

[
A
yT

C

]∥∥∥
1
, 2‖x‖1 + |q|

}
.

Proof. It suffices to prove the first part. Let P = Q1 if n is even and
P = Q2 if n is odd. Then

PT HP =
[
L 0
0 M

]
.
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Thus,

H−1 = P

[
L−1 0
0 M−1

]
PT

and

H∗ = P

[
L∗ 0
0 M∗

]
PT .

With the same notation as the previous theorem, note that if n is
even, then H is symmetric if and only if L and M are symmetric if and
only if A is symmetric and C is persymmetric, and H is skew-symmetric
if and only if L and M are skew-symmetric if and only if A is skew-
symmetric and JCJ = −CT . If n is odd, then H is symmetric if and
only if L and M are symmetric if and only if A is symmetric, y = x, and
C is persymmetric, and H is skew-symmetric if and only if L and M are
skew-symmetric if and only if A is skew-symmetric, q = 0, y = −x, and
JCJ = −CT .

Remarks (1) The previous theorems can be proved using any member
of class N1 (see the previous section) instead of Q1 and any member of
class N2 instead of Q2.

(2) Using the previous theorems to check if a centrosymmetric or a
skew-centrosymmetric matrix is unitary, orthogonal, idempotent, etc.,
results in a significant reduction in the time complexity.

Proposition 5.6. Let H1 and H2 be two n × n matrices. If n is even,
let

Hi =
[
Ai JCiJ
Ci JAiJ

]
, i = 1, 2,

where Ai, Ci, i = 1, 2, and J , are δ × δ, and if n is odd, let

Hi =

⎡
⎣Ai xi JCiJ

yT
i qi yT

i J
Ci Jxi JAiJ

⎤
⎦ , i = 1, 2,

where: Ai, Ci, i = 1, 2, and J , are δ × δ; xi and yi, i = 1, 2, are
δ × 1; and qi, i = 1, 2, are numbers. Let Li = Ai − JCi, i = 1, 2, and
Mi = Ai + JCi, i = 1, 2, if n is even, and Mi =

[ qi

√
2yT

i√
2xi Ai+JCi

]
, if n

is odd. Then H1 and H2 commute if and only if L1L2 = L2L1 and
M1M2 = M2M1.
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More properties (such as singular values) of centrosymmetric and
skew-centrosymmetric matrices and regular magic squares are mentioned
in [3].

6 Orthogonal transformations between centrosymmetric and
skew-centrosymmetric matrices. In this section, we present the
class L of even order orthogonal matrices such that if Q ∈ L and H is
centrosymmetric (resp. skew-centrosymmetric) of even order, then QH
is skew-centrosymmetric (resp. centrosymmetric).

Theorem 6.1. Let n be even and let L be the class of n×n orthogonal
matrices such that if Q ∈ L and H is an n × n centrosymmetric (resp.
skew-centrosymmetric) matrix, then QH is skew-centrosymmetric (resp.
centrosymmetric). Then Q ∈ L if and only if Q is an n × n orthogonal
skew-centrosymmetric matrix.

Proof. Let n be even. It is clear that if Q is an n × n orthogonal
skew-centrosymmetric matrix and H is an n×n centrosymmetric (resp.
skew-centrosymmetric) matrix, then QH is skew-centrosymmetric (resp.
centrosymmetric). Conversely, if H is an n × n centrosymmetric (resp.
skew-centrosymmetric) matrix and Q is an n × n orthogonal matrix
such that QH is skew-centrosymmetric (resp. centrosymmetric), then
(JQJ + Q)H = 0. This must hold for every n × n centrosymmetric
(resp. skew-centrosymmetric) H. Now, choose H to be nonsingular to
get JQJ + Q = 0. Thus, Q must be skew-centrosymmetric.

Corollary 6.2. With the same notation as the previous theorem,
Q ∈ L if and only if

Q =
[
α −JγJ
γ −JαJ

]
,

where α and γ are δ × δ matrices such that α − Jγ and α + Jγ are
orthogonal.

Now let n be a positive integer. It is clear that E =
[−I 0

0 I

]
, where I

is δ × δ, is a member of L (note that E−1 = ET = E). Similarly, it is
easy to see that the following matrices are in L

[
0 −I
I 0

]
,

[
0 −J
J 0

]
,

[−J 0
0 J

]
,

where I and J are δ × δ.
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The above transformations (e.g., E) are very useful. For example, we
can use E with Theorem 2.5 to prove Theorem 2.7 and vice versa. Also,
we can transform every skew-centrosymmetric singular value/determi-
nant problem of even order to a centrosymmetric singular value/deter-
minant problem of even order and vice versa. Moreover, we can trans-
form every linear system in which the matrix of coefficients is centrosym-
metric of even order to a linear system in which the matrix of coefficients
is skew-centrosymmetric of even order, and vice versa.

Now, note that skew-centrosymmetric matrices of odd order are sin-
gular, while centrosymmetric matrices of odd order can be nonsingular.
Thus, if H is an n × n nonsingular centrosymmetric matrix, where n
is odd, and Q is an n × n orthogonal matrix such that QH is skew-
centrosymmetric, then

0 = det(QH) = det(Q) · det(H) �= 0,

which is a contradiction. Thus, no such Q exists. Moreover, if Q and H
are n×n matrices, where H is centrosymmetric, such that QH is skew-
centrosymmetric, then (JQJ+Q)H = 0. Thus, if H is nonsingular, then
Q must be skew-centrosymmetric, and so if n is odd, then Q is singular,
and hence, it can not be orthogonal. Therefore, there is no similar class
(to L) for centrosymmetric matrices of odd order.
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