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Chapter 4

Lie Groups and Lie
Algebras

Frank Porter Ph 129b March 4, 2009

In this note we’ll investigate two additional notions:

1. The addition of a continuity structure on the group;

2. The addition of an algebraic structure on the group.

The former is the subject of Lie groups, and the latter is the subject of Lie
algebras. These are quite different concepts. However, we put them together
here because in physics we are heavily concerned with the conjunction of the
two ideas.1

4.1 Lie Groups

Formally, we have

Def: A Lie group is a group, G, whose elements form an analytic manifold such
that the composition ab = c (a, b, c ∈ G) is an analytic mapping of G×G
into G and the inverse a→ a−1 is an analytic mapping of G into G.

That is, a Lie group is a group with a continuity structure: derivatives may
be taken. Typically, we describe Lie groups by elements that are determined
differentiably by some set of continuously varying real parameters. If there are
r such parameters, we have an “r-parameter Lie group”.

We won’t here develop the theory of Lie groups from an abstract level.
Instead, we’ll directly mostly think in terms of representations by matrices,
where the matrices are specified by some number of continuosly varying real
parameters (up to possibly discrete points of discontinuity in some situations).

1The reader may wish to refer back to the note on Hilbert Spaces from Ph 129a for some
concepts.
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28 CHAPTER 4. LIE GROUPS AND LIE ALGEBRAS

As with finite groups, it is convenient when we can deal with unitary repre-
sentations. This is guaranteed to be possible in the following case:

Theorem: Every finite-dimension representation of a compact Lie group is
equivalent to a unitary representation, and is either irreducible or fully
reducible.

By “compact” here we mean that the parameters that specify an element of the
Lie group vary over a compact set (i.e., over a closed set of finite extent). The
proof of this parallels the proof given for finite groups that we gave in the note
on representation theory, but now using the notion of an invariant integration
over the group. Compactness ensures that this integral will be finite.

The notions of compactness and invariance of the group integral are topolog-
ical concepts. There is a further topological property we will sometimes assume,
that the group is “connected”. By this, we mean that we can get to any element
of the group from the identity via a sequence of small steps.

For some examples:

• The group O+(3) (representing proper rotations in three dimensions) is a
compact, connected, 3-parameter Lie group.

• The group O(3) (proper and improper rotations in three dimensions) is a
compact, but not a connected group. It contains two disjoint categories
of elements, those with determinant +1, and those with determinant −1,
and it is not possible to continuously go from one to the other. This may
be regarded as the direct product group:

O(3) = O+(3) ⊗ I, (4.1)

where I is the inversion group.

• The Lorentz group (of proper homogeneous Lorentz transformations) is
connected, but not compact. This is a little more subtle – the lack of
compactness is due to the fact that there is a limit point of a sequence
of group elements that is not an element (consider a sequence of velocity
boosts in which v → 1).

• The improper, homogeneous Lorentz group is neither connected nor com-
pact.

We will sometimes also restrict discussion to simple compact Lie groups,
recalling that a simple group is one that contains no proper invariant subgroup.

If we have a compact Lie group, then we can define the invariant integral over
the group and also work with unitary representations without loss of generality.
The general orthogonality relation of finite groups may be generalized to include
compact Lie groups. For unitary irreducible representations D(i) and D(j) we
have: ∫

G

D(i)(g)μνD
(j)∗(g)αβμ(dg) =

1
�i
δijδμαδνβ . (4.2)
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We have assumed that the invariant integral over the group is normalized to
one: ∫

G

μ(dg) = 1. (4.3)

Let’s consider an example. In the note on representation theory, we defined
the spherical harmonic functions in terms of irreducible representations of the
rotation group:

Y�m(θ, φ) ≡
√

2�+ 1
4π

D�∗
m0(φ, θ, 0). (4.4)

Suppose we wish to know the orthogonality properties of the Y�m’s. We com-
pute:

∫
(4π)

Y�m(θ, φ)Y ∗
�′m′(θ, φ)d cos θdφ = (4.5)

√
(2�+ 1)(2�′ + 1)

4π

∫
(4π)

D�∗
m0(φ, θ, 0)D�′

m′0(φ, θ, 0)d cos θdφ

√
(2�+ 1)(2�′ + 1)

4π

∫
(4π)

D�∗
m0(φ, θ, α)D�′

m′0(φ, θ, α)d cos θdφ

√
(2�+ 1)(2�′ + 1)

8π2

∫
(8π2)

D�∗
m0(φ, θ, α)D�′

m′0(φ, θ, α)d cos θdφdα.(4.6)

We have used here the invariance of the integral when adding the rotation by
angle α about the x-axis, and averaging over this rotation. The result is now in
the form of the general orthogonality relation:

1
8π2

∫
(8π2)

D�∗
mn(φ, θ, α)D�′

m′n′(φ, θ, α)d cos θdφdα =
1

2�+ 1
δ��′δmm′δnn′ . (4.7)

Therefore, ∫
(4π)

Y�m(θ, φ)Y ∗
�′m′(θ, φ)d cos θdφ = δ��′δmm′ . (4.8)

A perhaps less-familiar but very important example may be found in classical
mechanics: Consider a system with generalized coordinates qi, i = 1, 2, . . . , n
and corresponding generalized momenta pi = ∂qiL, where L is the Lagrangian.
Hamilton’s equations are:

ṗi = −∂qiH, (4.9)
q̇i = ∂piH, (4.10)
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whereH is the Hamiltonian. We may rewrite this in terms of the 2n-dimensional
vector:

x ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

q1
...
qn
p1
...
pn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, (4.11)

as:
ẋ = J

∂H

∂x
, (4.12)

with

J =
(

0 I
−I 0

)
. (4.13)

That is, J is a 2n× 2n matrix written in terms of n× n submatrices 0 and I.
A canonical transformation is a transformation from x to y where

y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Q1
...
Qn

P1
...
Pn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, (4.14)

such that

ẏ = J
∂H [x(y)]

∂y
. (4.15)

That is, Hamilton’s equations are preserved under a canonical transformation.
We have

ẏi =
∑

j

∂yi

∂xj
ẋj , (4.16)

which may be written in matrix form:

ẏ = Mẋ, (4.17)

where
Mij ≡ ∂yi

∂xj
. (4.18)

Hence,

ẏ = MJ
∂H

∂x
. (4.19)

Now
∂H

∂xi
=

∑
j

∂H

∂yj

∂yj

∂xi
=

∑
j

∂H

∂yj
Mji, (4.20)
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or,
∂H

∂x
= MT ∂H

∂y
. (4.21)

We conclude that

ẏ = MJMT ∂H

∂y
, (4.22)

and that the transformation is canonical if

MJMT = J. (4.23)

A matrixM which satisfies the condition of Eqn. 4.23 is said to be symplectic.
The reader is encouraged to verify that the set of 2n× 2n symplectic matrices
forms a group, called the symplectic group, denoted Sp(2n).

We remark that the evolution of the system in time corresponds to a sequence
of canonical transformations, and hence the time evolution corresponds to the
application of successive symplectic matrices. This finds practical application
in various situations, for example in accelerator physics.

We turn now to another feature of unitary representations. Let U be a
unitary matrix. Write

U = eiA ≡
∞∑

n=0

(iA)n

n!
, (4.24)

where we leave it to the reader to investigate convergence. Now,

U−1 = U † =
(
eiA

)†
=

[ ∞∑
n=0

(iA)n

n!

]†

=
∞∑

n=0

[(−iA∗)n]T

n!

=
∞∑

n=0

[
(−iA†)n

]
n!

= e−iA†
. (4.25)

But we also know that,
U−1 = e−iA, (4.26)

since A commutes with itself, and hence exponentials of multiples of A may be
treated like ordinary numbers in products. Therefore, we may take A = A†.
That is, A is a hermitian matrix.

Note that if we also have detU = 1, then A can be taken to be traceless:
The matrix A is hermitian, hence diagonalizable by a unitary transformation.
Let

Δ = SAS−1 = diag(λ1, λ2, . . . , λn), (4.27)
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be a diagonal equivalent of A, where S is unitary. Then, A = S−1ΔS, or

1 = det
(
eiS−1ΔS

)

= det
∞∑

k=0

1
k!

(
iS−1ΔS

)k

= detS−1

[ ∞∑
k=0

1
k!

(iΔ)k

]
S

= det(S−1)det(S)det eiΔ

= exp

⎛
⎝i n∑

j=1

λj

⎞
⎠ . (4.28)

Thus, the sum of the eigenvalues is equal to 2πm, where m is an integer. Notice
that if m �= 0, we can define a new diagonal matrix Δ′ = Δ−2πmδ11, where δ11
is the matrix with the i, j = 1, 1 element equal to one, and all other elements
zero. The trace of Δ′ is zero. Hence A′ ≡ S−1Δ′S is also traceless. But
exp(iΔ′) = exp(iΔ), and therefore

U = S−1eiΔ′
S = exp(iS−1Δ′S) = eiA′

, (4.29)

where A′ is hermitian and traceless.
Suppose D is a unitary representation of a group G. Then the elements of

the group representation may be written in the form:

D(g) = exp [iεα(g)Xα] , (4.30)

where the summation convention on repeated indices is used, {Xα} is a set of
constant hermitian matrices, and {εα} is a set of real parameters.

We are in particular concerned here with Lie groups (with unitary represen-
tations assumed here). In that case, if G is an r-parameter Lie group, we can
find a set of r matrices Xα, α = 1, 2, . . . , r such that Eqn. 4.30 holds. We refer
to these matrices as the infinitesimal generators of the group. In this case, we
have the “fundamental theorem of Lie”:

Theorem: The local structure of a Lie group is completely specified by the
commutation relations among the generators Xα:

[Xα, Xβ ] = Cγ
αβXγ , α, β = 1, 2, . . . , r, (4.31)

where the coefficients Cγ
αβ (called the structure constants of the group)

are independent of the representation.

We investigate the proof of this, or rather of the Baker-Campbell-Hausdorff
theorem, in exercise 6.

The reader is encouraged to check that the structure constants must satisfy:

Cγ
αβ = −Cγ

βα, (4.32)
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and (with summation convention over repeated indices)

Cδ
αβC

ε
δγ + Cδ

γαC
ε
δβ + Cδ

βγC
ε
δα = 0. (4.33)

The matrices Xα may be regarded as operators on a vector space. If we
are doing quantum mechanics, and we have a hermitian set of operators, they
correspond to observables.

The commutator may be regarded as defining a kind of product, and the
matrices {Xα} as generating a vector space, which is closed under this product.
This brings us to the subject of Lie algrebras, in the next section.

4.2 Lie Algrebras

In the discussion of infinite groups of relevance to physics (in particular, Lie
groups), it is useful to work in the context of a richer structure called an alge-
bra. For background, we start by giving some mathematical definitions of the
underlying structures:

Def: A ring is a triplet 〈R,+, ◦〉 consisting of a non-empty set of elements (R)
with two binary operations (+ and ◦) such that:

1. 〈R,+〉 is an abelian group.

2. R is closed under ◦.
3. (◦) is associative.

4. Distributivity holds: for any a, b, c ∈ R

a ◦ (b+ c) = a ◦ b+ a ◦ c (4.34)
and

(b+ c) ◦ a = b ◦ a+ c ◦ a (4.35)

Conventions:
We use 0 (“zero”) to denote the identity of 〈R,+〉 . We speak of (+) as addition
and of (◦) as multiplication, typically omitting the (◦) symbol entirely (i.e.,
ab ≡ a ◦ b).

Def: A ring is called a field if the non-zero elements of R form an abelian group
under (◦).

Def: An abelian group 〈V,⊕〉 is called a vector space over a field 〈F,+, ◦〉 by
a scalar multiplication (∗) if for all a, b ∈ F and v, w ∈ V :

1. a ∗ (v ⊕ w) = (a ∗ v) ⊕ (a ∗ w) distributivity

2. (a+ b) ∗ v = (a ∗ v) ⊕ (b ∗ v) distributivity

3. (a ◦ b) ∗ v = a ∗ (b ∗ v) associativity

4. 1 ∗ v = v unit element (1 ∈ F )
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Conventions:
We typically refer to elements of V as “vectors” and elements of F as “scalars.”
We typically use the symbol + for addition both of vectors and scalars. We also
generally omit the ∗ and ◦ multiplication symbols. Note that this definition
is an abstraction of the definition of vector space given in the note on Hilbert
spaces, page 6.

Def: An algebra is a vector space V over a field F on which a multiplication
(×) between vectors has been defined (yielding a vector in V ) such that
for all u, v, w ∈ V and a ∈ F :

1. (au) × v = a(u × v) = u× (av)

2. (u+v)×w = (u×w)+(v×w) and w×(u+v) = (w×u)+(w×v)

(Once again, we often omit the multiplication sign, and hope that it is clear
from context which quantities are scalars and which are vectors.)

We are sometimes interested in the following types of algebras:

Def: An algebra is called associative if the multiplication of vectors is asso-
ciative.

We may construct the idea of a “group algebra”: Let G be a group, and V
be a vector space over a field F , of dimension equal to the order of G (possibly
∞). Denote a basis for V by the group elements. We can now define the
multiplication of two vectors in V by using the group multiplication table as
“structure constants”: Thus, if the elements of G are denoted by gi, a vector
u ∈ V may be written:

u =
∑

aigi

We require that, at most, a finite number of coefficients ai are non-zero. The
multiplication of two vectors is then given by:

(∑
aigi

) (∑
bjgj

)
=

∑⎛
⎝ ∑

gigj=gk

aibj

⎞
⎠ gk

[Since only a finite number of the aibj can be non-zero, the sum
∑

gigj=gk
aibj

presents no problem, and furthermore, we will have closure under multiplica-
tion.]

Since group multiplication is associative, our group algebra, as we have con-
structed it, is an associative algebra.

We note that an associative algebra is, in fact, a ring. Note also that the
multiplication of vectors is not necessarily commutative. An important non-
associative algebra is:

Def: A Lie algebra is an algebra in which the multiplication of vectors obeys
the further properties (letting u, v, w be any vectors in V ):
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1. Anticommutivity: u× v = −v × u.

2. Jacobi Identity: u× (v × w) + w × (u× v) + v × (w × u) = 0.

We concentrate on Lie algebras henceforth in this note, in particular on Lie
algebras associated with a Lie group. The generators, {Xα}, of a Lie group
generate a Lie algebra, where multiplication of vectors is defined as the com-
mutator. Just as for groups, we have the notion of a regular representation (or
also “adjoint representation”) of the Lie algebra. We may rewrite the identity
for the structure constants:

Cδ
αβC

ε
δγ + Cδ

γαC
ε
δβ + Cδ

βγC
ε
δα = 0. (4.36)

in the suggestive form:

Cδ
αβ

(Cδ)
ε
γ + (−Cβ)ε

δ (−Cα)δ
γ + (−Cα)ε

δ (Cβ)δ
γ = 0. (4.37)

Interpreting, e.g., Cα as a matrix with elements (Cα)ε
δ, where δ is the column

index, we find:
[Cα, Cβ ] = Cδ

αβCδ. (4.38)

The matrices Cα formed from the structure constants have the same commuta-
tion relations as the generators Xα of the Lie group, and hence form a repre-
sentation of the Lie algebra, called the regular or adjoint representation.

The problem of classifying Lie groups is essentially the problem of finding
the numbers {C} satisfying the requirements of Eqns. 4.32 and 4.33 above, and
then finding the r constant matrices which satisfy the commutation relations.
This problem was solved by Cartan in 1913. We list the simple Lie groups here:

The “classical Lie groups” are (except as noted, � = 1, 2, . . .):

1. The group of unitary unimodular (i.e., determinant equal to one) (�+1)×
(�+ 1) matrices, denoted A� or SU(�+ 1). This is an �(�+ 2)-parameter
Lie group, as the reader is encouraged to demonstrate.

2. The group of orthogonal unimodular (2�+ 1)× (2�+ 1) matrices, denoted
B� or SO(2�+1) or O+(2�+1). This is an �(2�+1)-parameter Lie group,
as the reader is encouraged to demonstrate.

3. The group of orthogonal unimodular (2�) × (2�) matrices, for � > 2, de-
noted D� or SO(2�) or O+(2�). This is an �(2�− 1)-parameter Lie group,
as the reader is encouraged to demonstrate. It may be noted that for � ≤ 2
the group is not simple.

4. The group of symplectic (2�)× (2�) matrices, denoted C� or Sp(2�). This
is an �(2�+1)-parameter Lie group, as the reader is encouraged to demon-
strate.

In addition, there are five “exceptional groups”: G4 with 14 parameters, F4

with 52 parameters, E6 with 78 parameters, E7 with 133 parameters, and E8

with 248 parameters.
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Consider briefly the example of the rotation group and associated Lie algebra
in quantum mechanics.2 In three dimensions, a rotation about the α̂ unit axis
by angle φ can be expressed in the form:

Rα̂(φ) = e−iβ·T , (4.39)

where β · T ≡ βxTx + βyTy + βzTz, β = β(α̂, φ), and Tx,y,z are the infinitesimal
generators of rotations in three dimensions:

Tx ≡
⎛
⎝ 0 0 0

0 0 −i
0 i 0

⎞
⎠ , Ty ≡

⎛
⎝ 0 0 i

0 0 0
−i 0 0

⎞
⎠ , Tz ≡

⎛
⎝ 0 −i 0
i 0 0
0 0 0

⎞
⎠ . (4.40)

We may consider the application of successive rotations (which must be a
rotation):

e−iα·T e−iβ·T = e−iγ·T

=
∞∑

m=0

(−iα · T )m

m!

∞∑
n=0

(−iβ · T )n

n!

= 1 − i(α+ β) · T +
(−iα · T )2

2!
+

(−iβ · T )2

2!
+ (−iα · T )(−iβ · T ) +O

[
(α, β)3

]
= 1 − i(α+ β) · T +

[−i(α+ β) · T ]2

2!
− [α · T, β · T ]

2!
+O

[
(α, β)3

]
= exp

{
−i(α+ β) · T − [α · T, β · T ]

2!
+O

[
(α, β)3

]}
. (4.41)

Thus, to this order in the expansion, we need to have the values of commutators
such as [Tx, Ty], but not of products TxTy. This statement is true to all orders,
as stated in the celebrated Campbell-Baker-Hausdorff theorem. Hence, every
order is linear in the T ’s, and therefore γ exists. This is also why we can learn
most of what we need to know about Lie groups by studying the commutation
relations of the generators, as indicated in the general “fundamental theorem of
Lie”.

It may be remarked that for a general, abstract Lie algebra, we should not
even think of the product [A,B] as AB−BA, since the product AB may not be
defined, while the “Lie product” denoted [A,B] may be. Of course, if we have
a matrix representation for the generators, then AB is defined. In physics we
typically deal with matrix representations, so referring to the Lie product as a
commutator is justified.

For our three-dimensional rotation generators, the Lie products are found
by evaluating the commutation relations of the matrices, with the result:

[Tα, Tβ] = iεαβγTγ , (4.42)

2Again, this example is considerably expanded upon in the note on the rotation group in
quantum mechanics, linked to the Ph 129 web page.
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where εαβγ is the “antisymmetric tensor” (in three dimensions), or “Levi-Civita
antisymmetric symbol”, defined by:

εαβγ ≡
{ +1 α, β, γ an even permutation of 1, 2, 3,
−1 α, β, γ an odd permutation of 1, 2, 3,
0 otherwise.

(4.43)

With these commutation relations, we may define an abstract Lie algrebra,
with generators (basis vectors) t1, t2, t3 satisfying the Lie products:

[tα, tβ ] = iεαβγtγ , (4.44)

We complete the Lie algebra by considering linear combinations of the t’s, re-
quiring:

[a · t+ b · t, c · t] = [a · t, c · t] + [b · t, c · t] (4.45)

and
[a · t, b · t] = −[b · t, a · t]. (4.46)

Our Lie algrebra satisfies the Jacobi indentity:

[a · t, [b · t, c · t]] + [b · t, [c · t, a · t]] + [c · t, [a · t, b · t]] = 0. (4.47)

The matrices Tx, Ty, Tz generate a representation of this Lie algebra with
dimension three, since the matrices are 3 × 3 and hence operators on a 3-
dimensional vector space. We note that the vector space of the Lie algebra
itself is also three-dimensional, but this is not required, and the two vector
spaces should not be confused.

Recalling quantum mechanics, we know that it is useful to define

t+ ≡ t1 + it2 (4.48)
t− ≡ t1 − it2. (4.49)

We may obtain the commutation relations

[t3, t+] = t+ (4.50)
[t3, t−] = −t− (4.51)
[t+, t−] = 2t3. (4.52)

We suppose that the t’s are represented by linear transformations, J , acting on
some vector space V , where V is of finite dimension, but not necessarily three
dimensions. We make the correspondence t± → J±, t3 → J3. Since none of
these generators commute, only one of J±, J3 can be diagonalized at a time. We
have the definition:

Def: The number of generators of a Lie algebra that can simultaneously be
“diagonalized” is called the rank of the Lie group.
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Thus, the rotation group is of rank 1.
We pick J3 to be in diagonal form with respect to some basis {v}. We label

the basis vectors by the diagonal element (eigenvalue) k:

J3vk = kvk. (4.53)

By repeated action of J± on vk it may be demonstrated that k is either in-
teger or 1

2 -integer, with some maximal value j, and the eigenvalues of J3 are
−j,−j + 1, . . . , j. This demonstration is commonly performed in quantum me-
chanics courses. There are 2j + 1 distinct eigenvalues, so the dimension of our
representation is ≥ 2j + 1. If we define our space to be the space spanned by
{vk, k = −j,−j + 1, . . . , j} then our space is said to be irreducible – there is no
proper subspace of V which is mapped onto itself by the various J ’s.

As remarked earlier, for a compact Lie group we may find a unitary rep-
resentation, and hence we may represent the generators of the associated Lie
algebra by hermitian matrices. Assuming we have done so, we find

[Xα, Xβ ]† = (XαXβ −XβXα)†

= X†
βX

†
α −X†

αX
†
β

= XβXα −XαXβ

= −[Xα, Xβ]. (4.54)

We thus have

Cδ∗
αβX

†
δ = Cδ∗

αβXδ

= [Xα, Xβ ]†

= −[Xα, Xβ]
= −Cδ

αβXδ. (4.55)

That is, Cδ∗
αβ = −Cδ

αβ, and the structure constants are thus pure imaginary for
a unitary representation.

We may introduce the concept of an operator for “raising and lowering in-
dices” or a “metric tensor”, by defining:

gμν = gνμ ≡ Cβ
μαC

α
νβ . (4.56)

It may be shown that for a semi-simple Lie group detg �= 0, where g is the
matrix formed by the elements gμν . Thus, in this case, g has an inverse, which
we define by:

gμνgνρ = δμ
ρ , (4.57)

where we have written the Kronecker function with one index raised.
The metric tensor may be used for raising or lowering indices, for example:

gαβgμνgνβ = gαβδμ
β = gαμ. (4.58)
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We have here “raised” the indices on gνβ. In general, given a quantity with lower
indices, we may define a corresponding quantity with upper indices according
to:

Aα ≡ gαβAβ . (4.59)

Or, given a quantity with raised indices, we may define a corresponding quantity
with lower indices:

Aα ≡ gαβA
β . (4.60)

In particular, we may define structure constants with all lower indices:

Cαβγ = Cδ
αβgδγ . (4.61)

The Cαβγ so defined is antisymmetric under interchange of any pair of indices.
Note that, if Cδ

αβ is pure imaginary, then g is real, and Cαβγ is pure imaginary.
Now consider the quantity

F ≡ gαβX
αXβ = XαXα = XαX

α, (4.62)

where the Xα are the infinitesimal generators of the Lie algebra. Consider the
commutator of F with any generator:

[F,Xγ ] = gαβ[XαXβ , Xγ ]
= gαβ {Xα[Xβ, Xγ ] + [Xα, Xγ ]Xβ}
= gαβ

(
Cδ

βγXαXδ + Cδ
αγXδXβ

)
= gαβCδ

βγXαXδ + gβαCδ
βγXδXα

= gαβCδ
βγ (XαXδ +XδXα)

= gαβgδεCβγε (XαXδ +XδXα)
= Cβγε

(
XβXε +XεXβ

)
= Cεγβ

(
XεXβ +XβXε

)
= −Cβγε

(
XεXβ +XβXε

)
= 0, (4.63)

since it is equal to its negative. Thus, F commutes with every generator, hence
commutes with every element of the algebra. By Schur’s lemma, F must be a
multiple of the identity, since if F commutes with every generator, then it must
commute with every element of the group in some irreducible representation. An
operator which commutes with every generator is known as a Casimir operator.

For example, consider again the rotation group in quantum mechanics. The
structure constants are

Cγ
αβ = iεαβγ . (4.64)

The metric tensor is thus

gμν = Cβ
μαC

α
νβ

= −εμαβενβα

= 2δμν . (4.65)
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Hence, Jα = 2Jα, and J2 = J2
1 + J2

2 + J2
3 is a Casimir operator, a multiple

of the identity. To determine the multiple, we consider the action of J2 on
a basis vector. This may be accomplished by writing it in the form J2 =
J2

z + 1
2 (J+J− + J−J+), where J± ≡ Jx ± iJy. This exercise yields the familiar

result
J2vk = j(j + 1)vk, (4.66)

where 2j + 1 is the dimension of the representation. Thus,

J2 = j(j + 1)I. (4.67)

4.3 Example: SU(3)

The group SU(3) consists of the set of unitary unimodular 3×3 matrices. In the
exercises, you show that it is an eight parameter group. Thus, we know that the
associated Lie algebra must have eight linearly independent generators. That
is, we wish to find a set of eight linearly independent traceless hermitian 3 × 3
matrices. It is readily demonstrated that the vector space of such matrices is
in fact eight dimensional, that is, our generators provide a basis for the vector
space of traceless hermitian 3 × 3 matrices.

There are many ways we could pick our basis for the Lie algebra. However,
it is generally wise to make as many as possible diagonal. In this case, there are
three linearly-independent 3 × 3 diagonal hermitian matrices, but the traceless
requirement reduces these to only two. The number of simultaneously diago-
nalizable generators is called the rank of the Lie algebra, hence SU(3) is rank
two.

A common choice for the generators, with two diagonal generators, is the
“Gell-Mann matrices”:

λ1 =

⎛
⎝ 0 1 0

1 0 0
0 0 0

⎞
⎠ , λ2 =

⎛
⎝ 0 −i 0
i 0 0
0 0 0

⎞
⎠ , λ3 =

⎛
⎝ 1 0 0

0 −1 0
0 0 0

⎞
⎠ , (4.68)

λ4 =

⎛
⎝ 0 0 1

0 0 0
1 0 0

⎞
⎠ , λ5 =

⎛
⎝ 0 0 −i

0 0 0
i 0 0

⎞
⎠ , (4.69)

λ6 =

⎛
⎝ 0 0 0

0 0 1
0 1 0

⎞
⎠ , λ7 =

⎛
⎝ 0 0 0

0 0 −i
0 i 0

⎞
⎠ , λ8 =

1√
3

⎛
⎝ 1 0 0

0 1 0
0 0 −2

⎞
⎠ . (4.70)

Notice the SU(2) substructure. For example, the upper left 2×2 submatrices of
λ1, λ2, and λ3 are just the Pauli matrices. The group SU(3) contains subgroups
isomorphic with SU(2) (but not invariant subgroups).

One area where SU(3) plays an important role is in the “Standard Model” –
SU(3) is the “gauge group” of the strong interaction (Quantum Chromodynam-
ics). In this case, the group elements describe transformations in “color” space,
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where color is the analog of charge in the strong interaction. Instead of the sin-
gle dimension of electromagnetic charge, color space is three-dimensional. The
SU(3) symmetry reflects the fact that all colors couple with the same strength
– there is no preferred “direction” in color space. In field theory, once the gauge
symmetry is specified, the form of the interaction is determined.

There is another example in particle physics where SU(3) enters. Instead of
the color symmetry just discussed, there is a “flavor” symmetry. The three light-
est quarks are called “up” (u), “down” (d), and “strange” (s). The quantum
number that distinguishes these is called flavor. The strong interaction couples
with the same strength to each flavor. Thus, we may make “rotations” in this
three-dimensional flavor space without changing the interaction. These rota-
tions are described by the elements of SU(3). The symmetry is actually broken,
because the u, d, and s quarks have different masses (also, the electromagnetic
and weak interaction couplings depend on flavor), but it is still a useful approx-
imation in many situations. We’ll develop this application somewhat further
here.

We use the Gell-Mann representation, in which λ3 and λ8 are the diagonal
generators. According to the assumption of SU(3) flavor symmetry, our opera-
tors in flavor space commute with the Hamiltonian. We’ll label our quark flavor
basis according to the eigenvalues of λ3 and λ8. It is conventional to notice
the SU(2) substructure of (λ1, λ2, λ3) and refer to the two-dimensional oper-
ations of these generators as operations on “isospin” (short for isotopic spin)
space. This is the ordinary nuclear isospin. It really doesn’t have anything to
do with angular momentum, but gets its “spin” nomenclature from the anal-
ogy with angular momentum where SU(2) also enters. By analogy with angular
momentum, a two-dimensional representation gets “third-component” quantum
numbers of ±1/2. That is, we define, in this representation,

I3 =
1
2
λ3 =

1
2

⎛
⎝ 1 0 0

0 −1 0
0 0 0

⎞
⎠ . (4.71)

The eigenstates with I3 = +1/2,−1/2 are called the u quark and the d quark,
respectively. The strange quark in this convention has I3 = 0, it is an I = 0
state (an isospin “singlet”). Note that this three-dimensional representation of
SU(2) is reductible to two-dimensional and one-dimensional irreps.

For the other quantum number, we define the “hypercharge” operator, in
this representation:

Y =
1√
3
λ8 =

1
3

⎛
⎝ 1 0 0

0 1 0
0 0 −2

⎞
⎠ . (4.72)

Thus, the u and d quarks both have Y = 1/3, and the s quark has Y = −2/3.
The basis for this three-dimensional representation of flavor SU(3) is illustrated
in Fig. 4.1.
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ud

s

1/3

-2/3

-1/2 1/2
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I 3

Figure 4.1: The 3 representation of SU(3), in the context of quark flavors.

Now, we can also generate additional representations of SU(3), and interpret
in this physical context. Under complex conjugation of an element of SU(3),

U = eiεαλα → U∗ = e−iεαλ∗
α . (4.73)

This generates a new three-dimensional representation, called 3̄. The I3 and Y
quantum numbers switch signs. Thus, the diagram for 3̄ looks like the diagram
for 3 reflected through the origin. We label the states ū, d̄, s̄, reflecting their
interpretation as anti-quark states. Notice that the complex conjugate repre-
sentation 3̄ is not equivalent to the 3 representation. This is a difference from
SU(2), where the two representations (2 and 2̄) are equivalent.

We may also generate higher dimension representations of SU(3) by forming
direct product representations. Some of these have special interpretation in
particle physics: Combining a quark with an anti-quark, that is, forming the
3⊗ 3̄ representation, gives meson states. Combining three quarks, 3⊗3⊗3, gives
baryons. As usual, these direct product representations may be expected to be
reducible. For example, we have the reduction to irreducible representations:
3 ⊗ 3̄ = 8 ⊕ 1. We will discuss the graph in Fig. 4.2 in class.

4.4 Exercises

1. Show that SU(n) requires (n − 1)(n + 1) real parameters to specify an
element.

2. Show that Cαβγ is antisymmetric under interchange of any pair of indices.

3. Show that the complex conjugate representation, 2̄, of SU(2) is equivalent
to the original 2 representation.

4. Consider the Helmholtz equation in two dimensions:

∇2f + f = 0, (4.74)



4.4. EXERCISES 43

ud

s

1/3

-2/3

-1/2 1/2

Y

I3

du

s

uddu

us

su

ds

sd

uu dd ss,,

Figure 4.2: The 3 ⊗ 3̄ = 8 ⊕ 1 representation of SU(3), in the context of quark
flavors.

where

∇2 ≡ ∂2

∂x2
+

∂2

∂y2
. (4.75)

(a) Show that the equation is left invariant under the transformation:

τ(ε, θ, α, β) :
(
x
y

)
→

(
x′

y′

)
=

(
x cos θ − y sin θ + α
xε sin θ + yε cos θ + β

)
, (4.76)

where ε = ±1, −π ≤ θ < π, and α and β are any real numbers
(actually, α, β, and θ could be complex, but we’ll restrict to real
numbers here).

(b) The set of transformations {τ(ε, θ, α, β)} obviously forms a Lie group,
where group multiplication is defined as the application of successive
transformations. Is it a compact group? Is it connected? What is
the identity element? The group multiplication table can be shown
to be:

τ(ε1, θ1, α1, β1)τ(ε2, θ2, α2, β2) = τ(ε3, θ3, α3, β3), (4.77)

where

ε3 = ε1ε2 (4.78)
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θ3 = ε2θ1 + θ2 [mod(−π, π)] (4.79)
α3 = α2 cos θ1 − β2 sin θ1 + α1 (4.80)
β3 = ε1(α2 sin θ1 + β2 cos θ1) + β1. (4.81)

What is the inverse τ−1(ε, θ, α, β)?

5. We consider some properties of a group algebra which can be useful for ob-
taining characters: Let the elements of a class be denoted {a1, a2, . . . , ana},
the elements of another class be denoted {b1, b2, . . . , bnb

}, etc. Form ele-
ment A =

∑na

i=1 ai of the group algebra, and similarly for B, etc.

Suppose D is an n-dimensional irreducible representation. You showed in
problem 19 that

D(A) ≡
na∑
i=1

D(ai) =
na

n
χ(A)I, (4.82)

where χ(A) is the character of irrep D for class A.

(a) Now consider the multiplication of two elements, A and B, of the
group algebra. Show that the product consists of complete classes,
i.e.,

AB =
∑
C

sCC, (4.83)

where sC are non-negative integers. You may find it helpful to show
that g−1ABg = AB for all group elements g.

(b) Finally, prove the potentially useful relation:

naχ(A)nbχ(B) = n
∑
C

scncχ(C). (4.84)

6. We have discussed Lie algrebras (with Lie product given by the commu-
tator) and Lie groups, in our attempt to deal with rotations. At one
point, we asserted that the structure (multiplication table) of the Lie
group in some neighborhood of the identity was completely determined
by the structure (multiplication table) of the Lie algebra. We noted that,
however intuitively pleasing this might sound, it was not actually a triv-
ial statement, and that it followed from the “Baker-Campbell-Hausdorff”
theorem. Let’s try to tidy this up a bit further here.

First, let’s set up some notation: Let L be a Lie algebra, and G be the
Lie group generated by this algebra. Let X,Y ∈ L be two elements of the
algebra. These generate the elements eX , eY ∈ G of the Lie group. We
assume the notion that if X and Y are close to the zero element of the Lie
algebra, then eX and eY will be close to the identity element of the Lie
group.

What we want to show is that the group product eXeY may be expressed
in the form eZ , where Z ∈ L, at least for X and Y not too “large”. Note
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that the non-trivial aspect of this problem is that, first, X and Y may
not commute, and second, objects of the form XY may not be in the Lie
algebra. Elements of L generated byX and Y must be linear combinations
of X,Y , and their repeated commutators.

(a) Suppose X and Y commute. Show explicitly that the product eXeY

is of the form eZ , where Z is an element of L. (If you think this is
trivial, don’t worry, it is!)

(b) Now suppose that X and Y may not commute, but that they are
very close to the zero element. Keeping terms to quadratic order in
X and Y , show once again that the product eXeY is of the form eZ ,
where Z is an element of L. Give an explicit expression for Z.

(c) Finally, for more of a challenge, let’s do the general theorem: Show
that eXeY is of the form eZ , where Z is an element of L, as long as
X and Y are sufficiently “small”. We won’t concern ourselves here
with how “small” X and Y need to be – you may investigate that at
more leisure.
Here are some hints that may help you: First, we remark that the
differential equation

df

du
= Xf(u) + g(u), (4.85)

where X ∈ L, and letting f(0) = f0, has the solution:

f(u) = euXf0 +
∫ u

0

e(u−v)Xg(v)dv. (4.86)

This can be readily verified by back-substitution. If g is independent
of u, then the integral may be performed, with the result:

f(u) = euXf0 + h(u,X)g, (4.87)

Where, formally,

h(u,X) =
euX − 1
X

. (4.88)

Second, if X,Y ∈ L, then

eXY e−X = eXc(Y ), (4.89)

where I have introduced the notation “Xc” to mean “take the com-
mutator”. That is, Xc(Y ) ≡ [X,Y ]. This fact may be demonstrated
by taking the derivative of

A(u;Y ) ≡ euXY e−uX (4.90)

with respect to u, and comparing with our differential equation above
to obtain the desired result.
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Third, assuming X = X(u) is differentiable, we have

eX(u) d

du
e−X(u) = −h(1, X(u)c)

dX

du
. (4.91)

This fact may be verified by considering the object:

B(t, u) ≡ etX(u) ∂

∂u
e−tX(u), (4.92)

and differentiating (carefully!) with respect to t, using the above two
facts, and finally letting t = 1.
One final hint: Consider the quantity

Z(u) = ln
(
euXeY

)
. (4.93)

The series:

�(z) =
ln z
z − 1

= 1 − z − 1
2

+
(z − 1)2

3
− · · · (4.94)

plays a role in the explicit form for the result. Again, you are not
asked to worry about convergence issues.

7. In the next few problems we’ll pursue further the example we discussed
in the notes and in class with SU(3). We consider systems made from
the u, d, and s quarks (for “up”, “down”, and “strange”). Except for the
differences in masses, the strong interaction is supposed to be symmetric
as far as these three different “flavors” of quarks are concerned. Thus, if
we imagine our matter fields to be a triplet:

ψ =

⎛
⎝ψu

ψd

ψs

⎞
⎠ , (4.95)

then we expect invariance (under the strong interaction) under the trans-
formations

ψ → ψ′ = Uψ, (4.96)

where U is any 3 × 3 matrix. Thus, U is any element of SU(3), and the
interaction possesses SU(3) symmetry.

You have already shown that SU(n) is an (n2 − 1) parameter group.
Thus, SU(3) has 8 parameters, and an arbitrary element in SU(3) can
be expressed in the form:

U = exp

⎧⎨
⎩ i

2

8∑
j=i

ajλj

⎫⎬
⎭

where the {λj} is a set of eight 3 × 3 traceless, hermitian matrices. One
such set is the following: (Gell-Mann)
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λ1 =

⎛
⎝ 0 1 0

1 0 0
0 0 0

⎞
⎠ , λ2 =

⎛
⎝ 0 −i 0
i 0 0
0 0 0

⎞
⎠ , λ3 =

⎛
⎝ 1 0 0

0 −1 0
0 0 0

⎞
⎠ ,

λ4 =

⎛
⎝ 0 0 1

0 0 0
1 0 0

⎞
⎠ , λ5 =

⎛
⎝ 0 0 −i

0 0 0
i 0 0

⎞
⎠ ,

λ6 =

⎛
⎝ 0 0 0

0 0 1
0 1 0

⎞
⎠ , λ7 =

⎛
⎝ 0 0 0

0 0 −i
0 i 0

⎞
⎠ , λ8 =

1√
3

⎛
⎝ 1 0 0

0 1 0
0 0 −2

⎞
⎠ .

If the aj are infinitesimal numbers, we have

ψ′ = (1 +
i

2

∑
ajλj)ψ

and hence, the quantities Λj = 1
2λJ are called the generators of the in-

finitesimal transformations, or, simply, the generators of the group. These
generators satisfy the commutation relations: (and we have a Lie algebra)

[Λi,Λj] = ifijkΛk

.

Evaluate the structure constants, fijk, of SU(3).

8. We may find ourselves interested in “states” consisting of more than one
quark, thus we must consider (infinitesimal) transformations of the form

ψ → ψ′ = (1 + i�α · �Λ)ψ (4.97)

�α · �Λ ≡
8∑

j=1

ajΛj

where the Λj may be represented by matrices of dimension other than 3.
Let us develop a simple graphical approach to dealing with this problem
(We could also use less intuitive method of Young diagrams, as in the final
problem of this problem set).

First, let us introduce the new operators (“canonical form”):

I± = Λ1 ± iΛ2 (4.98)
U± = Λ6 ± iΛ7 (4.99)
V± = Λ4 ± iΛ5 (4.100)
I3 = Λ3 (“3rd component of isotopic spin”) (4.101)

Y =
2√
3
Λ8 (“hypercharge”) (4.102)
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Second, we remark that only two of the 8 generators of SU(3) can be
simultaneously diagonalized (e.g., see the explicit λ matrices I wrote down
earlier). [Thus, SU(3) is called a group of rank 2 – in general, SU(n) has
rank n− 1.] We choose I3 and Y to be the diagonalized generators. Thus,
our states will be eigenstates of these operators, with eigenvalues which
will denote by i3 and y. With the structure constants, you may easily find,
e.g.,

[I3, I±] = ±I±
Thus, if ψ(is) is an eigenstate of I3 with eigenvalue is:

I3I+ψ(is) = I+(1 + I3)ψ(is) = I+(1 + is)ψ(i3)
= (1 + is)I+ψ(is) (4.103)

So I+ acts as a “raising” operator for i3, since I+ψ(is) is again an eigen-
state of I3, with eigenvalue 1 + is. Likewise, we have other commutation
relations, such as:

[I3, U±] = ∓1
2
U± (4.104)

[I3, V±] = ±1
2
V± (4.105)

[Y, I±] = 0 (4.106)
[Y, U±] = ±U± (4.107)
[Y, V±] = ±V± (4.108)
[I3, Y ] = 0 (4.109)

etc.

Thus, the action of the “raising and lowering” operators I±, U±, V± can
be indicated graphically, as in Fig. 4.3.
Thus, we may generate all states of an irreducible representation starting
with one state by judicious application of the raising and lowering opera-
tors. As a simplest example, and to keep the connection to quarks alive,
we consider the 3-dimensional representation: Let’s start at the u−quark;
it has i3 = 1

2 and y = 1
3 . See Fig. 4.4.

Why did we stop after we generated d and s, starting from u? Well,
clearly we can’t have more components (or “occupied sites”) than the
dimensional-maximum allowed. In fact, since this a 3-dimensional repre-
sentation, we can just look at the matrices we gave earlier and see that
the eigenvalues of I3 are going to be ± 1

2 and 0, and those of Y will be
1
3 ,

1
3 , and − 2

3 . A little more consideration of the matrices convinces us
that, e.g., I+u = 0, I+s = 0, U+d = 0, etc.,
We have given the i3 − y graph for the “3” representation of SU(3). Now
give the corresponding graph for the “3∗” (or 3̄) representation, that is,
the conjugate representation.
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Figure 4.3: The actions of the SU(3) raising and lowering operators SU(3), in
the i3 − y state space.
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Figure 4.4: The 3 irreducible representation of SU(3), in the i3 − y state space.
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Figure 4.5: The graph of the SU(3) irreducible representation (p, q) = (6, 2).
The numbers indicate the multiplicities at each site.

9. You are encouraged to develop the detailed arguments, using the com-
mutation relations for the following observations: The graph for a given
irreducible representation is a convex graph which is 6-sided in general
(or three-sided if a side length goes to zero). A graph (of an irreducible
rep.) is uniquely labelled by two numbers (p, q). An example will suffice
to get the idea across. Fig. 4.5 shows the graph for (p, q) = (6, 2). The
origin of the I3−y coordinate system is inside the innermost triangle. The
rule giving the multiplicity of states at each site is that i) the outermost
ring has multiplicity of 1, ii) as one moves to inner rings, the multiplicity
increases by one at each ring, until a triangular ring is reached, whereupon
no further increases occur.

By counting the total number of states (i.e., by counting sites, weighted
according to multiplicity), we arrive at the dimesionality of the represen-
tation. The result, as you may wish to convince yourselves, is

dim = N =
1
2
(p+ 1)(q + 1)(p+ q + 2)

For the 3 and 3∗ representations, give the corresponding pairs (p, q, ), and
check that the dimensions come out correctly.

One more remark: If we have p ≥ q, we denote the representation by its di-
mensionality N. If p < q. we call it a conjugate representation, and denote
it by N∗[e.g., (2, 0) is the representation 6, but 0, 2 is 6∗.] An alternative
notation is to use a “bar”, e.g., N̄ to denote the conjugate representa-
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Figure 4.6: The graph of the SU(3) representation for 3 × 3̄. Physical particle
names for the lowest pseudoscalar mesons are indicated at each site.

tion (since for unitary representations the adjoint and complex conjugate
representations are the same).

10. We know that the mesons are states of a quark and an antiquark. If you
have done everything fine so far, you will see that we can thus gener-
ate the mesons by 3 ⊗ 3∗. The result is shown in Fig. 4.6 (don’t worry
about the particle names, unless you’re interested) Using the rules given
above concerning irreducible representations, we find, from this graph, the
decomposition 3 ⊗ 3∗ = 8 ⊕ 1.

We know baryons are made of three quarks (no antiquarks). Make sure you
understand how I did the mesons, and apply the same graphical approach
to the baryons, and determine the decomposition of 3⊗ 3⊗ 3 into a direct
sum of irreducible reps. Do not use Young diagrams (next problem) to
do this problem, although you are encouraged to check you answer with
Young diagrams. You may find it amusing, if you know something about
particle properties, to assign some known baryon names to the points on
your graphs.

11. Go to the URL: http://pdg.lbl.gov/2007/reviews/youngrpp.pdf. Study
the section on “SU(n) Multiplets and Young Diagrams,” and use the
techniques described there to answer the following question: We consider
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the special unitary group SU(4). This is the group of unimodular unitary
4 × 4 matrices. We wish to consider the product representation of the ir-
reducible representation given by the elements of the group itself with the
irreducible representation formed by the isomorphism of taking the com-
plex conjugate of every element. This turns out to yield a representation
which is not equivalent to 4. We could call this new representation 4∗,
but it is perhaps more typical to use the notation 4̄. Note that, since we
are dealing with unitary matrices, the complex conjugate and the adjoint
representation are identical, so this notation is reasonable.

The question to be answered is: What are dimensions of the irreducible
representaations obtained in the decomposition of the product represen-
tation 4 ⊗ 4̄?

The principal purpose of this problem (which is mechanically very simple)
is to alert you to the existence of convenient graphical techniques in group
theory – most notably that of Young diagrams. We make no attempt yet
to understand “why it works”.

A few more words are in order concerning the language on the web page:
Since it is taken from the Particle Data Group’s “Review of Particle Prop-
erties,” it is concerned with the application to particle physics, and the
language reflects this. However, it is easily understood once one realizes
that the number of particles in a “multiplet” is just the dimension of a
representation for the group. Effectively, the particles are labels for basis
vectors in a space of dimension equal to the multiplet size. [The basic
physics motivation for the application of SU(n) to the classification and
properties of mesons and baryons is that the strong interaction is sup-
posed to be symmetric as far as the different flavors are concerned. The
“n” in this SU(n) is just the number of different flavors. Note that this
(flavor) SU(n) is a different application from the “color” SU(3) symmetry
in QCD.] Those of you who know something about particles may find it
amusing to try to attach some known particle names to the 4⊗4̄ multiplets.


