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1. Introduction. In this lecture we shall discuss a problem that has fasci­
nated many mathematicians throughout history, such as Eratosthenes (~ —284— 
- -202), Fibonacci (~ 1180- - 1250), Fermât (1601-1665), Euler (1707-1783), 
Legendre (1752-1833), and Gauss (1777-1855). This is the problem of how to 
find the prime factor decomposition of a given large integer. 

Surveys of methods that are used for this purpose can be found in RiesePs 
recent book [27] and in the contributions to [21]. The present lecture is devoted 
to a development that took place since the appearance of Riesel's book, namely, 
the introduction of elliptic curves. 

Two stages can be distinguished in most methods to find the prime factoriza­
tion of a given number. In the first stage (primality testing) one decides whether 
the number is prime or composite. In the second stage (factorization) one finds 
a nontrivial divisor of the number, if it is composite. It is clear that the complete 
prime factor decomposition can be obtained by applying a primality testing al­
gorithm and a factorization algorithm recursively. Elliptic curves can be applied 
both to primality testing and to factorization, and they give rise to algorithms 
with an excellent performance, both in theory and in practice. 

Primality testing is considered to be easier than factorization. Suppose, for 
example, that two 100-digit numbers p and q have been proved prime; this is 
easily within reach of the current primality testing methods. Suppose moreover 
that the numbers p and q are thrown away by mistake, but that the product pq 
is saved. How to recover p and q? It must be felt as a defeat for mathematics 
that, in these circumstances, the most promising approaches are searching the 
waste paper basket and applying mnemo-hypnotic techniques. 

Until recently, the subject of primality testing and factorization was not 
taken seriously by most mathematicians. Nowadays, a change in this attitude is 
noticeable. Partly, this change is due to the introduction of more sophisticated 
mathematical techniques than were used before. Indeed, the use of elliptic curves, 
which is the main topic of this lecture, has been referred to as the first application 
of twentieth-century mathematics to the problem of prime factor decomposition. 
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Another reason for the increased interest in this area is the possibility to apply 
number theory to the outside world. The existence and uniqueness of the prime 
factor decomposition constitute the fundamental theorem of arithmetic, and this 
theorem plays indeed a basic role. For example, a number-theoretical question 
about a positive integer n—can n be written as the sum of two squares? what 
is the order of the multiplicative group (Z/rcZ)*?—is considered as settled if it 
is answered in terms of the prime factorization of n. Given the basic role of the 
prime factor decomposition in number theory, it seems reasonable to suppose 
that algorithms to achieve this prime factor decomposition play an important 
role in possible applications of number theory. To date, the most striking il­
lustration is the cryptographic scheme devised by Rivest, Shamir, and Adleman 
[28]. For the use of this scheme it is essential that primality testing is easy, 
and the security of the system depends on the fact that factorization is hard. It 
should be remarked that, to a certain extent, this is negative application: if a 
better factoring method is discovered, then the application may cease to exist. 
This remark should serve as a stimulus for those mathematicians to whom the 
possibility of applying number theory to the outside world does not appeal and 
who wish to restore the purity of their science. 

To test a given integer n > 1 for primality, one usually subjects it to a series 
of pseudoprime tests. Most of these tests are based on a variant of Fermât's 
theorem. This theorem asserts that if n is prime then a71 = a modn for all 
integers a. These pseudoprime tests have the property that any prime number 
passes them, but that a composite number is very unlikely to pass them. Hence 
a single test that n fails to pass suffices to prove that n is composite, although 
it does not readily yield a factor of n. If, on the other hand, n passes many 
pseudoprime tests, then it is very likely that n is a prime number. The problem 
then becomes how to prove that n is a prime number. It may be said that the real 
difficulty of primality testing algorithms is not to obtain the answer, "prime" or 
"composite," but to prove the correctness of the answer, in the case it is "prime." 
For this reason one sometimes speaks about primality proving algorithms. 

If a primality test decides that a number is not prime then, as we just noted, 
it usually does not exhibit a factor of the number. To obtain a factor one 
applies a factorization algorithm. In contrast to primality testing, the difficulty 
of factorization is to obtain the answer, i.e., a nontrivial divisor of the number; 
checking the correctness of the answer, once it is obtained, is completely trivial. 
The total freedom one has in the choice of the method by which to obtain a 
nontrivial divisor seems to be one of the reasons that there is much more variety 
in factorization algorithms than in primality tests. Indeed, it is not a priori 
clear why methods that depend on a mathematical theory would be better than 
nonmathematical methods, and why factorization should be beyond the abilities 
of competent clairvoyants or religious officers. 

The elliptic curve methods that form the subject of this lecture are best under­
stood as analogue of certain older algorithms, which are discussed in §2. These 
older algorithms depend on properties of the multiplicative group, in particular 
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on the fact that for a prime number p the order of the multiplicative group 
(Z/pZ)* equals p - 1. We remark that the algorithms discussed in §2 are by no 
means the best algorithms that were used before elliptic curves were introduced; 
we only discuss them because they are helpful in motivating and understanding 
the new methods. 

Section 3 contains the basic properties of elliptic curves that we need. The 
best reference is Silverman's recent textbook [35]. As most of the literature 
on the subject, this book restricts itself to elliptic curves that are defined over 
fields. For our purposes it is more natural, both from a conceptual and from 
an expository point of view, to work with elliptic curves that are defined over 
rings. The general theory of elliptic curves over commutative rings with 1 can 
be found in [16, Chapter 2], In §3 we give the basic definitions, but only in 
the case that the ring in question satisfies a certain condition; this condition 
is satisfied, for example, if the ring is a field, and also if the ring is finite, 
which is the case in our applications. This condition allows us to give a very 
straightforward definition: an elliptic curve is defined by a ternary homogeneous 
cubic polynomial of a certain normal form; to keep this normal form as simple as 
possible we assume that 6 is a unit of the ring. The set of points of the curve over 
the ring is then defined as the set of zeros of this polynomial in a suitably defined 
projective plane. It is a basic property of elliptic curves that this set of points 
has the structure of an abelian group. It should be remarked that in principle it 
is possible, by more or less artificial considerations, to avoid elliptic curves over 
rings that are not fields in the description and analysis of the algorithms that we 
shall discuss. This was, in fact, done in the original publications [30, 20, 14], 

We mentioned above that a number of older primality testing and factorization 
methods depend on the fact that the order of the multiplicative group (Z/pZ)* 
modulo a prime number p equals p — 1. Likewise, in the elliptic curve methods 
an important role is played by the order of the group E(Z/pZ) of points of an 
elliptic curve E over Z/pZ, for a prime number p. By a theorem of Hasse from 
1934, this order is of the form p +1 — t, where t is an integer depending on E 
and p for which \t\ < 2^/p. It may be said that the success of the new methods 
is due to the fact that, for fixed p, this number t varies if one varies the elliptic 
curve E. In §4 we discuss several methods to calculate the number t. 

In §5 it is explained how to do primality testing with the help of elliptic 
curves. In particular, we discuss the algorithms of Goldwasser-Kilian [14] and 
Atkin [2]. Atkin's method is of great practical value, and on most numbers on 
which it has been tried it is much faster than the previous champion, which is 
the Cohen-Lenstra version of the test of Adleman, Pomerance, and Rumely [1, 
9, 10]. 

Section 6, finally, describes the elliptic curve factorization method [20]. It is, 
at the moment, the undisputed champion among factoring methods for the great 
majority of numbers. The quadratic sieve algorithm of Pomerance [26], which 
was the previous champion, still seems to perform better on numbers that are 
built up from two primes of the same order of magnitude. The elliptic curve 
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method has the very attractive property that its speed depends on the size of 
the smallest prime divisor of the number n that is being factored: smaller prime 
factors are easier to find. The quadratic sieve and many other fast factoring 
algorithms do not have this property; they have a running time that only depends 
on the size of n and not on the size of its prime factors. 

By F g we shall denote a finite field of cardinality q. Rings are supposed to be 
commutative with a unit element, and the latter is supposed to be preserved by 
ring homomorphisms. The group of units of a ring R is denoted by R*. 

2. Multiplicative methods. In this section we discuss two older algorithms 
for primality testing and factorization, which depend on properties of the mul­
tiplicative group. In practice, these algorithms are not feasible for all numbers, 
but only if certain conditions are satisfied. 

We begin with primality testing. The following theorem is due to Pocklington 
[24]. 

THEOREM 1. Let n be an integer, n > 1, and s a positive integer dividing 
n — 1. Suppose that there is an integer a satisfying 

an-i ^ j modn, 

gcd(a( n _ 1^ 9 — l,n) = 1 for each prime divisor q of s. 

Then every prime divisor p of n is 1 mod s, and if s > y/n — 1 then n is prime. 

The proof is as follows. Let p be a prime divisor of n, and write b = 
(a(ra-i)/s modn). From aw _ 1 = 1 modn it follows that bs = 1 modp, so the 
order of (6 modp) in the group F* divides s. Also, if q is a prime divisor of s, 
then b3/q is not 1 modp, since by hypothesis a( n _ 1) /^ — 1 is not divisible by p. 
Therefore the order of (b modp) is not a divisor of s/q, for any prime q dividing 
s, so this order is equal to s itself. By Lagrange's theorem in group theory it 
follows that s divides # F * = p—1. This proves the first assertion of the theorem. 
If also s > yjn — 1 then it follows that p > y/n, and this can only be true for all 
primes p dividing n if n is prime. This proves Theorem 1. 

The use of Theorem 1 in primality testing is as follows. Let n be an integer 
> 1 that one believes to be prime, for example because it passes pseudoprime 
tests as described in [17, p. 379; 27, p. 98]. Denote by s the largest divisor 
of n — 1 that one is able to factor completely into primes, and suppose that 
s > y/n — 1. Now pick a random nonzero integer a (modn), and test whether 
it satisfies the two conditions of Theorem 1. Observe that these conditions are 
easy to test: the prime divisors q of s are known, the powers an~1 (modn) and 

a{n-i)/q (modn) can be calculated with O(logn) multiplications and squarings 
modn, and the greatest common divisors can be calculated by means of the 
Euclidean algorithm. If all conditions are found to be satisfied then it follows 
from the theorem that n is indeed prime, as required. 

It should be mentioned that if n is prime it should not be difficult to find an 
element a G Z/nZ satisfying the conditions of the theorem. Clearly, any nonzero 
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a G Z/nZ must satisfy the first condition, if n is prime. It is easy to show that, 
for fixed q, the second condition is satisfied with probability 1 — g"1 , if n is a 
given prime and a ^ 0 is drawn at random. The probability that a satisfies 
the second condition for all q may be somewhat smaller, but in any case it is at 
least Co/log log n for some positive constant Co; also, it is not difficult to prove 
a slightly more general version of the theorem, in which o is allowed .to depend 
on q. 

The basic shortcoming of the primality test based on Theorem 1 is that it can 
only prove the primality of prime numbers n for which n — 1 has a large divisor 
that one is able to factor completely. This is the case if n — 1 has many small 
prime factors, which happens, for example, for the Fermât numbers n = 2k + 1. 
Theorem 1 is also useful if n — 1 is the product of a small number and a large 
prime number q; in the latter case one can attempt to prove the primality of q 
recursively. 

There is an analogue to Theorem 1 with the multiplicative group replaced by 
a twisted multiplicative group. For example, if p is prime then the group F* 2 /F* 
is a twisted multiplicative group, and it has order (p2 — l ) / (p — 1) = p + 1. This 
leads to primality tests that can be used for numbers n for which n + 1 has a 
large completely factored divisor. This is the case, for example, for the Mersenne 
numbers n = 2k — 1. These tests are classically formulated in terms of Lucas 
sequences. 

We refer to [27, 38] for the details of these and other generalizations of Theo­
rem 1, and for a description of the primality tests that are based on a combination 
of the (n — 1)- and (n + l)-methods. If n has the property that at least one of 
n db 1 can be written as the product of a completely factored number and a 
prime number q that, recursively, has the same property, then the primality of 
n can be proved by repeated application of the two methods. This method was 
developed by Selfridge and Wunderlich [32], and they found empirically that it 
can be applied to most primes of at most 35 digits, if "completely factored" is 
taken to mean "built up from primes below 30030." The generalizations due to 
Williams et al. [38] can be used for most prime numbers of at most 80 digits. 

The advantage of elliptic curves in this context is that there are so many of 
them. Each elliptic curve gives rise to a group, and the order of this group varies 
with the curve. Instead of using the numbers n ± l , one uses essentially a random 
number in the neighborhood of n, and one can keep changing the curve until this 
number factors in the desired way. We refer to §5 for more details. 

Next we consider a factorization method that also depends on the multiplica­
tive group. It was invented by Pollard [25], and it is known as the Pollard 
(p — l)-method, 

The Pollard (p — l)-method attempts to find a nontrivial divisor of a compos­
ite integer n > 1 in the following way. Pick a G Z/nZ at random, and select a 
positive integer k that is divisible by many small prime powers; for example, one 
can take k = lcm{l ,2 , . . . ,w} for a suitable bound w. Next one calculates 
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db = (afcmodn). This can be done by performing O(logfe) squarings and 
multiplications (modn). Finally, one calculates gcd(afc — l,n) by means of Eu­
clid's algorithm, and one hopes that this gcd is a nontrivial divisor of n. 

Pollard's (p — l)-method is usually successful if n has a prime divisor p for 
which p — 1 is built up from small prime factors only. Suppose, to be specific, 
that p — 1 divides fc, and that p does not divide a. Since the order of (Z/pZ)* 
equals p — 1, it then follows that ak = 1 modp, so p divides gcd(ûfc - l,n). In 
many cases one has p = gcd(a& — 1, n), and the method finds a nontrivial divisor 
of n. 

Along these lines it can be proved that the Pollard (p — l)-method is good 
in discovering prime divisors p of n for which p — 1 has no large prime factors. 
It can also be proved that if n has no such prime divisor p then the method is 
unlikely to work within a reasonable amount of time. 

We refer to [25] for a refinement of the method, which improves its practical 
performance; to [39] for a variant that uses a twisted multiplicative group, and 
for which p + 1 rather than p — 1 should be built up from small prime factors; 
and to [3] for a generalization that appears to be only of theoretical value. 

The advantage of elliptic curves is the same as with primality testing. If one 
uses an elliptic curve rather than the multiplicative group, then p ± 1 is replaced 
by a number in the neighborhood of p that varies with the curve, and one can 
keep changing the curve until the algorithm is successful; one may hope that a 
fair proportion of the numbers in the neighborhood of p is built up from small 
primes only, so that not too many curves need be tried. More details can be 
found in §6. 

3. Elliptic curves over rings. Let R be a ring. A finite collection (a{)iei 
of elements of R will be called primitive if it generates R as an fi-ideal, i.e., if 
there exist bi G R, for i G J, such that J2iei biai = 1- This terminology will 
in particular be applied to vectors and to matrices that have coefficients in R. 
Notice that if R is a field, a collection (ai)iej is primitive if and only if not all 
ai are zero. 

In the sequel we assume that R satisfies the following two conditions: 
( i ) 6 G f i * ; 
(ii) for all positive integers n, m and every primitive matrix (a^)i<i<n, i<j<m 

over R with the property that all 2x2-subdeterminants vanish (aijaki—auakj = 0 
for all i,j, k,l with 1 < i < k < n, 1 < j < I < m) there exists an Ä-linear 
combination of the rows that is primitive as an element of Rm. 

If R is a field the first condition means that char R ^ 2 , 3 . We impose this 
condition only to simplify the exposition; for 6 £ R* one must work with more 
general normal forms for elliptic curves, as in [35, Chapter 3]. 

The second condition, however, is essential for the definition of elliptic curves 
and their addition law that we shall give. Condition (ii) means that every 
projective R-module of rank one is free, or equivalently that the Picard group 
Pic R of R vanishes [4]. Obviously, the condition is satisfied for fields, and below 
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we shall see that it is also satisfied for finite rings. More generally, it holds for 
rings that have only finitely many maximal ideals, If R is a Dedekind ring, for 
example, the ring of integers in a number field, then (ii) is true if and only if the 
class group of R is trivial. 

It is easy to prove that the primitive element of Rm whose existence is pos­
tulated by (ii) is in fact uniquely determined up to multiplication by units. 

Let Ä b e a ring satisfying (i) and (ii). The unit group R* acts on the set 
of primitive triples (x,y,z) G R3 by u(x,y,z) = (ux,uy,uz). The set of orbits 
under this action is denoted by P2(-R), and called the projective plane over R. 
The orbit of (x, y, z) is denoted by (x : y : z). 

An elliptic curve over R is a pair of elements a,bE R for which 4a3 + 27b2 G 
R*. These elements are to be thought of as the coefficients in the homogeneous 
Weierstrass equation 

y2z~x3 + axz2 + bz3. 

We denote the elliptic curve (a,b) by Ea^, or simply by E. If we multiply the 
above equation by u6, for some u G R*, and replace u2x, u3y by x, y, respectively, 
then we obtain the equation for Eaip, where a1 = u4a and bf = u6b. Two such 
curves are said to be isomorphic over R. 

Let E = Eayh be an elliptic curve over R. The set of points E(R) of E over 
R is defined by 

E(R) = {(x:y:z)€ P2(R): y2z = x3 + axz2 + bz3}. 

The point (0 : 1 : 0) G E(R) is called the zero point of the curve, and denoted by 
O. Notice that if R is a field this is the only element of E(R) whose ^-coordinate 
is zero. 

It is a basic fact that E(R) has in a natural way the structure of an abelian 
group with O as the neutral element. The group law, which is written additively, 
is such that —(x : y : z) = (x : —y : z) for all (z : y : z) G E(R). To define the 
group law we first consider the case that R is a field. In this case the addition 
formulae, and the proof that E(R) is a group, can be found in [35, Chapter 3]. 
We briefly summarize what we need. 

Let i J b e a field, and let Pi,P2 G E(R). To add Pi and P%, consider the 
straight line passing through Pi and P% (the tangent line to the curve if Pi = P2). 
The line and the curve have three intersection points, if we count them with 
suitable multiplicities, and two of them are Pi and P2. If Q is the third one, 
then Pi + P2 = - Q . To turn this geometric description into algebraic formulae, 
we may suppose that Pi and P2 are nonzero and that Pi ^ — P2. Then we 
can write Pi = (Xì : yi : 1) for i = 1,2, where (xi,yi) lie on the affine curve 
y2 = x3 + ax + b. The straight line is given by y = Xx + v, where 

x = 2/2 - 2/1 \ =
 xl + x^xi + xl + a 

X2 -X! 2/2 + 2/1 

and v = 2/1 — \x\. Notice that Pi ^ —P2 implies that at least one of the values 
for A is well defined, and that they are equal if they are both well defined. The 
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sum P3 = Pi + P2 is now given by P3 = (z3 : 2/3 : 1), where 

x3 = X2 - xx - x2, 2/3 = -(Xxa + v). 

This gives the addition formulae if R is a field, but for the sequel it is desirable to 
bring them into homogeneous form. To do this, one replaces Xi and yi by Xì/Zì 

and yijzi, respectively, and one clears the denominators. Then one finds that the 
sum of two points Pi = (x\ : 2/1 : z\), P2 = (x% : 2/2 : z%) on E(R) is given by one 
of two formulae (q\ : r\ : si), (q2 : r% : 82), depending on which formula for A is 
used. Here q\,..., S2 are certain polynomial expressions in x 1, 2/1, z\, x2,2/2, 22, <*> 
with integer coefficients. It turns out that for every pair (Pi, P2) G E(R) x E(R) 
except (Pi, P2) = (O, O) at least one of these two formulae is meaningful in the 
sense that it does not give ( 0 : 0 : 0 ) , and that any of the two that is meaningful 
actually gives the sum of Pi and P2 in the group E(R). For the remaining pair 
(O, O) we know of course that O + 0 = O = ( 0 : 1 : 0 ) , but this formula is not 
satisfactory because it does not have the property of correctly giving the sum 
Pi + P2 for all pairs of points Pi , P2 for which it is meaningful. To remedy this 
situation one has to develop an addition law that is valid "in a neighborhood of 
(0,0),n and that can be done as in [35, Chapter IV, §1]. The result is that one 
finds nine polynomial expressions qi,u,Si (i = 1,2,3) in x±, y\, z\, x2,2/2, ^2, o,, b 
with integer coefficients, with the property that the sum of any two points Pi = 
(zi : 2/1 : z\), P2 = (x2 ' 2/2 : ^2) on E(R) is given by one of the three formulae 
(qi : ri : Si), i = 1,2,3, and that in fact any of the three formulae that is 
meaningful is correct. The latter statement is equivalent to nine formal identities 
tfir2 -q2ri = 0 , . . . , r 2 5 3 - r3s2 = 0 in the ring Z[a,b,x1,y1,z1,X2iy2,z2]/I, 
where a,..., Z2 are considered as polynomial variables and J denotes the ideal 
generated by the two polynomials y2Zi — x% — aXiZ2 — bz3, i = 1,2. Likewise, 
the fact that Pi + P2 lies again on the curve, and that the addition defined in 
this way satisfies the group axioms, with the zero element and the negatives of 
points as indicated above, is expressed by a series of formal identities in the same 
ring. Nine explicit polynomials q\,..., S3 with all these properties can be found 
in [19]. 

We now drop the condition that R be a field. To add two points Pi = (x\ : 
2/1 : ^ I ) î P2 = (x2 '• 2/2 : 22) on E(R) one proceeds as follows. One uses the same 
nine polynomial expressions that appeared above to obtain a 3 x 3-matrix 

with entries from R. This is a primitive matrix, since otherwise there would 
be a maximal ideal m c R containing all nine entries; but this would contra­
dict the fact that at least one of the rows can be used to add the two points 
Pi modm, P2 mod m on the elliptic curve Ea modm,b modm(Ä/m) over the field 
R/m. Also, all 2 x 2-subdeterminants of the matrix are zero, so by condition (ii) 
above there is an iî-linear combination (^OJ^O^O) of the rows that is primitive; 
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moreover, the orbit of (qo,ro,so) under R* is uniquely determined. We now 
define the sum of Pi and P2 on E(R) to be (qo : ro : so). 

The fact that E(R) is closed under this operation, and that the addition 
defined in this way satisfies the group axioms, with the zero element and the 
negatives of points as indicated earlier, is a consequence of the formal identities 
that we mentioned above. We omit the details, which are somewhat tedious. 

It is a natural question to ask for an algorithm to add two points on E(R). 
From the definition of addition we see immediately that, given the formulae 
from [19], it suffices to have an algorithmic version of condition (ii): one needs a 
method to find the primitive linear combination that is asserted to exist. Before 
we describe such a method for the case that R is finite it should be pointed 
out that at the moment this method has only theoretical value. Namely, for the 
purposes that we have in mind (see the following sections) there is a much easier 
method, as follows. Pick any nonzero entry from the matrix, and determine 
whether it is a unit in R. If it is, then the row containing that element is 
primitive, and one is done. If it isn't, then one knows a nonzero nonunit of R, 
and in each of the cases that we shall consider this is also satisfactory. Suppose 
for example, that R = Z/nZ, where n is an integer that one is trying to factor; 
then a nonzero nonunit of R leads to a nontrivial divisor of n, which is exactly 
what one wants. 

Assume now that R is a finite ring. We assume that the elements of R 
are represented by elements of a certain finite set S\ one may think of S, for 
example, as consisting of strings of zeros and ones. It is allowed that two distinct 
elements s, s' of S represent the same element of R, but we do require that given 
s,sf G S there is an efficient algorithm to decide whether this is the case. Here 
"efficient" may be taken to mean that the time needed by the algorithm is 
bounded by a polynomial function of log#«S\ We also require that there is an 
efficient algorithm to do addition in R\ that is, given s, s' G S, one should be 
able to find an element of S that represents the sum of the elements represented 
by s and sf. Likewise we require that subtraction and multiplication can be done 
efficiently, as well as the solution of equations of the sort ex — d (given c and 
d, find x), if they are solvable. Finally we require that an element representing 
1 G R is known. 

With these hypotheses there is an efficient algorithm that given a primitive 
n X m-matrix (a^) as in condition (ii) produces a linear combination of the rows 
that is primitive; here "efficient" means that the time needed by the algorithm is 
bounded by a polynomial function of n, m, and log # S . We begin with a lemma. 

LEMMA. Let R,S be as above, and denote by t the least positive integer for 
which 2 t + 1 > #S. Then for every c G R there exists x G R with ct+1x = à. 
Moreover, an element cE R is nilpotent if and only if cl = 0. 

PROOF. Consider the sequence of ideals 

RDRcDRc2 D • • O Ä C * D Rct+1. 
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If any two consecutive ideals in this chain are distinct, one obtains # S > #R > 
index[P:Pc t+1] > 2t+1, which is a contradiction. Hence c1 = c%+1x for some 
x G R and some integer i with 0 < i < t, and the first statement of the lemma 
follows upon multiplication by c*~\ 

If u is an integer with u > t, then it follows that cux = cu~1. Therefore, if 
c is nilpotent, the smallest integer u with cu = 0 cannot be larger than t. This 
implies the last statement of the lemma. 

It follows from the lemma that there is an efficient algorithm to decide whether 
an element of the ring is nilpotent. 

We now describe an efficient algorithm that given an n x ra-matrix A = (a,j) 
as in (ii) finds a primitive combination of its rows. The algorithm proceeds by 
recursion on the cardinality of R. If R is the zero ring (which can be decided by 
testing whether 1 = 0 , where 0 = 1 — 1), then any row of the matrix is primitive. 
Now suppose that R is not the zero ring. Since the matrix is primitive, not all 
of its entries are nilpotent. Let c be an entry that is not nilpotent. Using the 
lemma, solve ct^1x = c*. Then c2txl = cl, so if we put e = ctxt then e is an 
idempotent: e2 = e. Also, from cte = c* ^ 0 one sees that e ^ 0. If now e = 1 
then c is a unit, so the row of the matrix containing c is primitive, and one is done. 
Suppose therefore that e ^ 1. Then Ri = Re and R2 = R(l - e) are nonzero 
commutative rings with unit elements e and 1 — e, respectively. Moreover, the 
map R —• R\ x R2 sending r G R to (re, r(l — e)) is an isomorphism of rings. 
The matrix A gives rise to a matrix A\ over P i and a matrix A2 over P2- Now 
notice that, for each i = 1,2, the map S —> R —> Ri shows that the set S can 
again be used to represent the elements of Ri, and that the same conditions as 
for R are satisfied. Hence, recursively, we can find an Pi-linear combination of 
the rows of Ai that is primitive as an element of R™, for each i = 1,2. Adding 
these two rows in Rm one finds the desired primitive linear combination of the 
rows of A. This finishes the description of the algorithm. 

We remark that, in the above algorithm, the element c G R is mapped to an 
element (ci,C2) G P i x R2 for which ci is a unit and C2 is nilpotent. Hence the 
row of Ai containing ci is already primitive, and the recursion is only needed 
for the ring R2 • Since the number of nilpotent entries in A2 is at least one more 
than in the matrix A, this shows that the depth of the recursion is bounded by 
nm. In the case that is of interest to us one has nm = 9. 

4. The number of points on an elliptic curve. Let R be a finite ring 
with 6 G R*, and E = Ea,b an elliptic curve over R. In this section we discuss 
the order of the finite group E(R). 

If / : R —• R! is any ring homomorphism from R to a ring R! that also satisfies 
the two conditions (i), (ii) from §3, then Ef^a)j^ is an elliptic curve over R'. 
We denote this elliptic curve again by E. 

If R contains an element c that is neither a unit nor nilpotent then, as we 
saw in the previous section, R can be written as the product of two nonzero 
rings. By induction on # P it follows that R is isomorphic to the product of 
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finitely many rings Ri, where each Ri is such that every element of Ri is either 
nilpotent or a unit. Then each Ri is a local ring, which means that the set rty of 
nonunits of Ri forms an ideal of Ri\ this ideal must be maximal, so that Ri/mi is 
a field. It is now easy to see that E(R) is isomorphic to the product of the groups 
E(Ri), so that #E(R) = Yl{#E(Ri). Furthermore, from Hensel's lemma one 
can deduce that for each i the natural group homomorphism E (Ri) —• E (Ri/mi) 
is surjective and that its kernel has the same cardinality as m*, so that #E(Ri) — 
#E(Ri/tt\i) • #rfy. Summarizing, we have 

#E{R) = n #E(R/m) 
#R 11 #Ä/m ' 

where m ranges over the set of maximal ideals of R. If these maximal ideals are 
known, then this formula reduces the computation of #E(R) to the case that R 
is a field. If R = Z/nZ for some positive integer n, then the above formula reads 

#E(Z/nZ) _ n #E(FP) 
n ~ U p ' 

p 

where p ranges over the set of primes dividing n. Notice that the same formula 
holds with the order of the elliptic curve replaced by the Euler ^-function, which 
is the order of the multiplicative group. 

Assume, for the rest of this section, that R is a finite field, of characteristic 
different from 2 and 3. Denote the cardinality of R by q, so that we may write 
R = Fq. We assume that an explicit representation for the elements of R is 
available, as in the previous section, and that each arithmetic operation in R 
can be performed in time 0((logc)2). 

According to a theorem of Hasse (1934) we have #E(Fq) = q + 1 — t, where t 
is an integer satisfying \t\ < 2yfq. Four methods have been proposed to calculate 
the number #E(Fq) or, equivalently, the number t. 

The first method, which was employed by Lang and Trotter [18], depends on 
the formula 

P ( F , ) = 1 + ^ ( 1 + X W ) , 
xEFq 

where x(^) denotes the element of {0,1, —1} that maps to (a;3 + ax + &)^-1)/2 

under the natural map Z —» Fq. To prove this formula one simply notes that, 
for fixed x G Fg, the number of y G Fg with y2 = x3 + ax + b is given by 
l + x(x). Applying this formula in a straightforward way leads to an algorithm 
to calculate #E(Fq) that takes time 0(q1~^e), for any e > 0. 

The second method, which is significantly faster, is probabilistic in the sense 
that it depends on random choices. It is analogous to an algorithm of Shanks 
[33] for the calculation of class numbers of imaginary quadratic fields. We give 
a brief description. 

First, one picks a random point P G E(Fq). This is done by selecting random 
elements x GFq until an element is found for which x3 + ax + ò is a square in 
Fq; this can be tested by checking whether x(z) i1 — 1, with x as above. If such 
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an x has been found, one can find an element y G Fq with y2 = x3 + ax + b by 
applying another probabilistic algorithm of Shanks [34] or by applying a general 
zero-finding routine for polynomials over finite fields [17, §4.6.2]. The point 
P = (x : y : 1) is now on the curve. 

Next one determines all integers m for which both \m — (q + 1)| < 2yfq and 
m • P — O. Clearly such integers exist, since m = #E(Fq) has these properties. 
By means of the "baby step-giant step" strategy, for the details of which we refer 
to [33], all these integers m can be found in time 0(q^1/A^£), for any e > 0. 

If m is unique, then m = #E(Fq), and one is done. If m is not unique, then 
the difference between any two consecutive m's equals the order of P, and it is 
easy to see that P cannot generate the group E(Fq), if q > 37. In the latter 
case one selects another random point P' G E(Fq), and in a similar way one 
determines the order of the point P' modulo the subgroup generated by P. In 
this way one continues until the order k of the subgroup that has been found 
satisfies \k-(q + l)\< 2y/q. Then # £ ( F J = k, if q > 37. 

This algorithm has expected running time 0(q^^4^£), for any e > 0, and 
it determines not only the order of E(Fq) but also its group structure. It is of 
practical value if q has not more than approximately 20 decimal digits. 

The third method that we discuss is due to Schoof [30]. It is completely de­
terministic. The method depends on properties of the Frobenius endomorphism 
<j> of the curve, which is defined as follows. Denote by K an algebraic closure of 
Fq. Then 0 is the automorphism of the abelian group E(K) defined by 

(ß(x:y:z) = (xq:yQ:zq). 

Notice that E(Fq) may be considered as a subgroup of E(K), and that E(Fq) = 
{P G E(K):<j)(P) = P}. It is a basic theorem that 0 satisfies the quadratic 
equation <\>2 — t(j) + q = 0 in the endomorphism ring of E(K), where t is the 
integer for which #E(Fq) = q + l - t . 

To determine t one now observes that it suffices to determine t mod / for all 
odd primes / < Ci\ogq that are different from char F^; here ci is a positive 
constant, chosen such that Y[l > Ayfq for all q. Namely, if one knows all these 
t mod / then one can determine t mod Yl / by means of the Chinese remainder 
theorem, and since \t\ < 2yfq this suffices to find t and hence #E(Fq). 

Now let I be an odd prime number, / ^ charFg . To determine t mod/, one 
first calculates the polynomial -0/ defined by 

^ = l-\\{X-x\ 

with x ranging over the set of those elements of K for which there exists y G K 
for which (x : y : 1) is an element of E(K) of order /. It is known that ipi has 
degree (I2 — l ) /2 and belongs to Fg[X]. The polynomial ipi can be calculated 
by means of recursion formulae that can be found, for example, in [35, Chapter 
III, Exercise 3.7]. 

Define the ring T by 

T = Fq[X,Y]/(^,Y2 -X3-aX- b). 
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Every element of T has a unique representation 

(Z2-3)/2 i 

y ^ y ^ aijX%Y3 with Gij G Fq, 
i=0 j=0 

where X, Y denote the images of X, Y in T. It follows that T is a finite ring in 
which the ring operations can be performed efficiently, in the sense of §3. 

Let Q = (X : Y : 1) G E(T), and define the endomorphism a:E(T) -> 
E(T) by the same formula as 0 above: <j(x : y : z) = (xq : yq : #9). As we 
shall see in a moment, the points Q and v(Q) have order I, and er satisfies the 
equation a2 — tor + ç/ = 0 in the endomorphism ring of E(T). Therefore t modi 
is characterized by the equality 

(T2(Q) + q'Q = t-a(Q). 

Thus, to determine t mod I one can simply calculate the left-hand side of this 
equality, and compare it with 0 • (T(Q), l-a(Q),2-a(Q),,,.. Here the calculations 
in E(T) can be done as in §3. 

To establish the properties of Q and a that we used we consider the set V of 
points P G E(K) of order /. For each such P = (xp : yp : 1) there is a unique 
Fg-linear ring homomorphism T —> K sendingX, Y to xp,yp, respectively. It is 
straightforward to check that the combined ring homomorphism T —• YlPev ^ ^s 

injective, so that E(T) may be considered as a subgroup of J lpey E(K)- Since 
Q corresponds to (P)pey, it has order I. Also, o is the restriction to E(T) of 
the automorphism of I~Ipey E(K) that oh each coordinate is given by </>; hence 
the equality o2 — ter + q = 0 is a consequence of the equality (j)2 — t(j) + q = 0. 
Clearly, o is injective, so o(Q) has order /. This concludes our sketch of Schoof's 
algorithm. 

The algorithm is completely deterministic, and it can be shown to run in 
time 0((logc/)8). (This is slightly better than Schoof [30], who has 0((log<?)9).) 
However, it seems that the algorithm is not suited for practical computations. 

We remark that Schoof's algorithm does not calculate the structure of the 
abelian group E(Fq). It is known that E(Fq) = Z/diZ x Z/d2Z for certain 
positive integers di,d2 for which di divides d2, and that di divides 

g c d ( # £ ( F , ) , ç - l ) . 

V. Miller has shown that if the prime factorization of the latter gcd is known, 
one can find di and G^ by means of a probabilistic algorithm that has expected 
running time 0((logq)C2) for some C2 > 0. For an account of this algorithm, 
which depends on the Weil pairing, we refer to [22]. 

The fourth method to calculate #E(Fq) applies only to curves E that are 
obtained in a special way. For the sake of simplicity we restrict the discussion 
to the case that q is a prime number. 

The complex multiplication field of the elliptic curve E over the prime field 
Fq is defined to be the field L = Q((t2 - 4c/)1/2), where t G Z is such that 
#E(Fq) = q + l — t. This is an imaginary quadratic field, and its ring of integers 
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A contains a zero TT of the polynomial X2—tX-\-q. We have 7T+7T = t, TTTT = q, and 
#E(Fq) = (7T — l)(7f - 1). This gives an easy way to calculate #E(Fq) provided 
that L is known, which is the case for certain special curves. We illustrate this 
by means of two examples that were basically known to Gauss. For proofs, see 
[15, Chapter 18] and also [12, §7; 5]. 

Let it first be assumed that q = 1 mod 3 and that the curve E = Ea^ has 
a = 0. Then one can prove that L = Q(y/—3). The ring of integers A of L is given 
by A = Z[(l + >/=^3)/2]. To find the element TT G A with #E{Fq) = (ir-l)(ïr-l) 
and 7T7f = q one starts by finding an ideal q with Aq = qq", as follows. 

One first determines an integer d with d2 = —3 mod q. This can be done in one 
of three ways. The first is to apply general zero-finding routines for polynomials 
over finite fields, see [17, §4.6.2]. The second is to apply a square root extraction 
algorithm as in [34]. The third is to draw elements u G F* until one finds one 
for which u ^ - 1 ) / 3 ^ 1 and to put d = 2w^"1)/3 + 1 mod<?. Each of these three 
methods is probabilistic and practical. 

Suppose now that d has been determined. Adding q to d, if necessary, we 
may assume that d is odd. Then q = Zq + Z(d + y/^3)/2 is a prime ideal of A 
dividing q, and qq" = Aq. 

Next one determines an element 7r G q for which q = Air. This can be done 
by searching for the shortest nonzero vector of q, for which there exist standard 
reduction algorithms. Alternatively, one can calculate gcd(q, (d + >/~3)/2) by 
means of the Euclidean algorithm, which is valid in A. Notice that ir is only 
uniquely determined by q up to units of A, of which there are six. 

Now let ç be the unique sixth root of unity in A for which ô^ - 1 ) / 6 = f mod q; 
here b is such that E = EQ^. Multiplying TT by a suitable sixth root of unity we 
can achieve that TT = ç mod 2^/—3. Then one has 

#E(Fq) = (TT - 1)(TT - 1) = q + 1 - 2Re(7r). 

It can be proved that E(Fq) is isomorphic to A/(TT — 1)A as an abelian group, 
so that this method gives the group structure as well. 

In the second example that we give we assume that the prime q satisfies 
q = 1 mod 4 and that the curve E = Ea$ has 6 = 0. Then one can prove 
that L = Q(i) with i2 = — 1. It has ring of integers A = Z[i]. As before, 
one can find a prime ideal q of A such that qq = Aq and an element TT G q 
such that q = Air. Denote by ç the unique fourth root of unity in A for which 
(—a) te-1)/4 = ç modq. Multiplying TT by a suitable fourth root of unity we may 
assume that TT = ç mod2(1 + i), and then one has #E(Fq) = (TT — l)(ir — 1). 

We briefly sketch how these results can be generalized to any imaginary 
quadratic field L. Let A be the ring of integers of L, and denote by JL the 
j-invariant of the elliptic curve C/A over C (cf. [35, Chapter VI]). It is known 
that JL is a zero of an irreducible polynomial FL G Z[X] with leading coefficient 
1 and degree equal to the class number of L. Methods to calculate F& can be 
found in [37]; see also the last section of [30]. The cases j = 0 and j = 1728 
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correspond to the fields L = Q(\ / = 3) and Q(i) that we just considered; let these 
now be excluded. 

Let g be a prime number that does not divide the discriminant of L, and 
suppose that q > 3. Then there are methods, analogous to those discussed 
above, to decide whether there exists TT G A with TTTT = q, and to find such an 
element TT if it does exist; it is unique up to conjugation and sign, Suppose that 
indeed TT exists. Then it can be shown that the polynomial (FL modq) G Fq[X] 
splits into distinct linear factors. Denote by j any zero of this polynomial in Fq. 
One can prove that j ^ 0, 1728. Writing k = y/(1728 — j) G F* we now consider 
the two elliptic curves 

E = Esjç^ic, E = E3fçC2i2kca 

over Fq, where c G Fq is any nonsquare. Then L is the complex multiplication 
field of each of the two curves E,E', and the two numbers ^E(Fq)iit^E,(Fq) 
are the same as the two numbers (7r — l)(7f — 1), (-7T — 1)(—7r - 1). Presumably 
there is an easy rule to tell which curve belongs to which number, but I do not 
know what it is. In practice one can decide between the two cases by picking a 
point P G E(Fq) at random and using that P is annihilated by # E ( F g ) . 

This concludes our discussion of the methods to calculate the number of points 
on an elliptic curve over a finite field. 

It is a natural question to ask how the numbers #E(Fq) are distributed if q 
is held fixed and E ranges over all elliptic curves over Fq, up to isomorphism. 
In particular, one may ask how often a given number occurs as #E(Fq), The 
answer to the latter question, in terms of class numbers of imaginary quadratic 
orders, is basically due to Deuring [13]; see also [36, 31]. If q is a prime number, 
then Deuring's result implies that every integer of the form q + 1 - t with \t\ < 
2yfq occurs as #E(Fq) for some elliptic curve E over F g . Moreover, it can 
be deduced that if E is uniformly distributed over all elliptic curves over Fq, 
then #J£(Fg) is approximately uniformly distributed over the numbers near q-\-
1. More accurately, one has the following proposition, which is useful for the 
analysis of some of the algorithms to be presented in §§5 and 6. 

PROPOSITION. There are positive effectively computable constants c^ and C4 
such that for any prime number q > 3 and any set S of integers s for which 
\s — (q + 1)| < yfq one has 

H ^ j • « . < * , ) - < J < j [ J ^ • « ( * , ) • ( l o g l o ^ , 

where N denotes the number of pairs (a, b) G F^ that define an elliptic curve 
E = Eatb over Fq with #E(Fq) G S. 

Note that N/q2 is the probability that a random pair (a, b) has the stated 
property. The proposition asserts that, apart from a logarithmic factor, this 
probability is essentially equal to the probability that a random number near q 
is in S. 



114 H. W. LENSTRA, JR. 

For the proof of the proposition we refer to [20, Proposition (1.16)]. 

5. Pr imal i ty test ing. It was first pointed out in [5] and [8] that elliptic 
curves can be used for primality testing. Goldwasser and Kilian [14] proved, 
modulo a reasonable assumption, that this leads to a probabilistic primality 
testing algorithm of which the expected running time is bounded by a constant 
power of log n, where n is the number to be tested. The algorithm of Goldwasser 
and Kilian depends on Schoof's method to count the number of points on an 
elliptic curve (see §4), and for this reason it is currently not of practical value. 
Atkin [2] developed a variant of this algorithm, in which he employs only the 
special elliptic curves to which the fourth counting method of §4 applies. His 
algorithm performs very well in practice, and for the numbers to which it has 
been applied it beats the method of Adleman et al. [1] as implemented by Cohen 
and A. K. Lenstra [10]; these numbers have approximately 200 digits. It seems 
very hard to give an exact running time estimate of Atkin's algorithm; but a 
rough heuristic analysis indicates that its expected running time is again bounded 
by a constant power of log n. 

All these methods depend on a result similar to the following theorem, which 
is the analogue of Theorem 1. 

THEOREM 2. Let n be an integer, n > 1, with gcd(n,6) = 1. Let E be an 
elliptic curve over Z/nZ, and m, s positive integers with s dividing m. Suppose 
that there is a point P G E(Z/nZ) satisfying 

m-P = 0, 

gcd(zq,n) = 1 for each prime divisor q of s, 

where m(m/q) • P = (xq:yq:zq). 

Then #E(Z/pZ) = 0 mods for every prime divisor p ofn, and ifs> (n1/4 + l )2 

then n is prime. 

The proof, which is analogous to the proof of Theorem 1, is as follows. Let 
p be a prime divisor of n, and write Q = (m/s) • P G E(Z/nZ). Denote by 
Qp the image of Q in E(Z/pZ). From m • P = O it follows that s • Q = O, 
so the order of Qp divides s. Also, if q is a prime divisor of s, then s/q • 
Qp = (xq modp:yq modp:zq modp). This is not the zero point of E(Z/pZ), 
since by hypothesis zq is not divisible by p. Therefore the order of Qp is not a 
divisor of s/q, for any prime q dividing s, so this order is equal to s itself. By 
Lagrange's theorem it follows that #E(Z/pZ) is divisible by s. This proves the 
first assertion of the theorem. If also s > (n1/4 + l ) 2 then Hasse's inequality 
(p1/2 + l ) 2 > #E(Z/pZ) implies that p > n1 /2 , and this can only be true for all 
primes p dividing n if n is prime. This proves Theorem 2. 

The algorithms of Goldwasser-Kilian and Atkin need the above theorem only 
in the case that s is prime, so that only q = s has to be considered in the second 
hypothesis on P in the above theorem. The following schematic description fits 
both algorithms. 
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Let n be a large positive integer that one suspects to be a prime number 
(cf. the remarks in the introduction). To prove that n is prime one proceeds as 
follows. 

(a) One selects an elliptic curve E over Z/nZ and a positive integer m such 
that the following conditions are satisfied: 

(i) m < (>/n + l ) 2 , and ifn is prime then #E(Z/nZ) = m; 
(ii) there are integers fc > 1 and q > (n1/4 + l ) 2 such that m = kq and such 

that q is probably prime. 
Here probably prime means that q passes a pseudoprime test as in [17, p. 

379], cf. the introduction. To find one pair E,m satisfying (i) and (ii), both 
the algorithm of Goldwasser-Kilian and Atkin's algorithm generate many pairs 
E, m satisfying (i); we shall see below how this is done. It is then hoped that 
at least one of these pairs satisfies (ii) as well. To check whether a given pair 
E, m satisfies (ii), one first subjects m to a factoring algorithm that is efficient 
in finding small factors, such as trial division, or the Pollard (p — l)-method (see 
§2), or the elliptic curve method (see §6); next one lets k be equal to the product 
of the small prime factors of m that are found, and one puts q = m/k; finally, 
one checks whether k > 1 and whether q is probably prime in the sense explained 
above. (Goldwasser-Kilian require that in fact fc = 2 in (ii); this makes it even 
easier to check (ii).) 

(b) Now suppose that E, m,k,q as in (a) have been found. Then one picks 
a random point P of the form (xp : yp : 1) in E(Z/nZ). This is done as in 
the second counting algorithm explained in §4. (This algorithm works if Z/nZ 
is a field, which one believes to be the case; for the algorithm to work it is 
not necessary that one has a proof that Z/nZ is a field!) Next one calculates 
Q = k • P. One now hopes that Q ^ O; it can be proved that this is the case 
for more than half of all choices of P, if n is actually prime. If Q = O one picks 
another point P G E(Z/nZ), and one keeps trying until Q — kP^O. Suppose 
now that Q ^ O. Then one checks that q • Q = O, as must be the case if n is 
prime (by q • Q = m • P and (i) above). Finally one checks that gcd(z, n) = 1, if 
Q = (x : y : z)\ this must also be the case if n is prime, since Q ^ O. 

(c) The final stage of the algorithm consists of proving that q is prime. This 
can be done by a recursive application of the algorithm, or, if q is below a certain 
bound, by a more direct method. Notice that q = m/k < (y/n + l ) 2 /2 , so that 
the depth of the recursion is O(logn). 

If (a), (b), and (c) have been performed successfully, then n is indeed a prime 
number. This follows from Theorem 2, with s — q. 

It remains to explain how to find many pairs E, m as in (i). In the Goldwasser-
Kilian algorithm this is done as follows. First one draws a, b G Z/nZ at random 
until 4a3 + 2762 ^ 0; this happens with probability (n — l ) / n , if n is indeed 
prime. Next one checks that gcd(n,4a3 + 2762) = 1, as should be the case if 
n is prime. Now one puts E = Ea)b) and by means of Schoof's algorithm one 
calculates a number m such that (i) holds. If Schoof's algorithm doesn't work 
then n is not prime. (If n is not prime, then it is unlikely but not impossible that 
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Schoof's algorithm calculates a number m; it is an interesting question which 
information about n this would provide, and what the significance of m would 
be.) 

Atkin's method to find pairs E, m as in (i) is different. Consider the sequence 

- 3 , - 4 , - 7 , - 8 , - 1 1 , - 15 , -19 , - 2 0 , . . . 

of discriminants of imaginary quadratic fields; an integer belongs to this sequence 
if and only if it is negative, not divisible by the square of an odd prime number, 
and in one of the residue classes 1 mod 4,8 mod 16,12 mod 16. For each A 
in a suitable beginning segment of this sequence, one decides whether the ring 
of integers A = Z[(A + \/Ä)/2] of the imaginary quadratic field L = Q(>/S) 
contains an element ir with n = TTTT, and one finds such an element TT if it exists; 
the probabilistic methods to do this that we referred to in §4 are successful 
provided that n is prime, but, as above, do not require a proof that n is prime. 
The discriminants for which TT does not exist are discarded, and the remaining 
discriminants A each give rise to six (if A = —3) or four (if A = —4) or two (if 
A < —7) pairs E,m as in (i), as explained in §4. 

For most values of A it is easier to determine the values of m than to calculate 
the coefficients a, b defining E; hence, it is wise to test whether m satisfies (ii) 
before calculating a, b. 

This finishes the description of the primality tests of Goldwasser-Kilian and 
Atkin. 

The running time of a suitable version of the Goldwasser-Kilian algorithm can 
be analyzed with the help of the proposition stated in §4. The result is expressed 
in the following two theorems. The first one states that if a certain standard 
conjecture concerning the distribution of primes is true, then the algorithm runs 
in expected polynomial time. The second theorem asserts that in any case this 
is true for almost all input primes n. 

THEOREM 3. Suppose that there are positive constants c$ and Cß such that 
for all real numbers x > 2 the number of primes p with x < p < x+\/2x is at least 
csy/x(logx)~C6. Then on any prime input n, the Goldwasser-Kilian algorithm 
proves the primality of n in expected time O((logn)10+C6). 

For the proof we refer to [14]. (The exponent 10 -f- c& is 1 less than the 
exponent in [14]. This is due to the corresponding improvement in Schoof's 
algorithm.) 

THEOREM 4. There exist positive constants cj and cs such that for all 
integers k > 2 the fraction of the set of primes n that have k binary digits 
and for which the expected running time of the Goldwasser-Kilian algorithm is 
< C7(logrc)n is at least 

l - c 8 2 K 
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For the proof we again refer to [14], It employs a theorem of Heath-Brown, 
which states that the hypothesis made in Theorem 3 is true in a certain average 
sense. 

6. Factorization. We describe a method to factor integers that depends on 
the use of elliptic curves. It is the analogue of Pollard's (p— l)-method described 
in §2. 

Let n be the composite integer that one wishes to factor, and assume that 
n > 1, gcd(n,6) = 1. Pick a random pair (E,P), where E is an elliptic curve 
over Z/nZ and P E E(Z/nZ). This can be done by choosing a,x,y E Z/nZ 
at random, putting P = (x : y : 1), and letting E be defined by the pair (a,b), 
where b is chosen such that P E E(Z/nZ)\ so b = y2 — x3 — ax. To be certain 
that E is an elliptic curve one should check that gcd(4a3 + 27b2,n) = 1. As in 
Pollard's (p — l)-method, one now selects a positive integer fc that is divisible 
by many small prime powers, for example, fc = lcm{l, 2 , . . . , w} for a suitable 
bound w. Next one calculates the point fc • P E E(Z/nZ). This can be done by 
O(logfc) duplications and additions in the group E(Z/nZ). If fc • P = (x : y : z), 
one calculates gcd(z,n). One stops if this gcd is a nontrivial divisor of n. If, 
on the other hand, this gcd equals 1 or n, then one changes the pair (E, P) and 
starts all over again. The latter option is not available in Pollard's method. 

As for the Pollard (p — l)-method, one can show that a given pair (E, P) 
is likely to be successful in this algorithm if n has a prime divisor p for which 
#E(Z/pZ) is built up from small primes only. The probability for this to happen 
increases with the number of pairs (E, P) that one tries. 

We refer to [20] for the running time analysis of a variant of the elliptic curve 
factoring algorithm. Using the proposition from §4 and properties of modular 
curves one finds an upper bound for the expected running time of the algorithm. 
This upper bound is expressed in terms of the probability that a random num­
ber in the interval (p + 1 — y/p, p + 1 + yfp) has all its pr îme factors below a 
certain bound, where p denotes the least prime dividing n. To estimate the lat­
ter probability we need the following unproved conjecture from analytic number 
theory. 

For a real number x > e, define 

A theorem of Canfield, Erdös, and Pomerance [7, Corollary to Theorem 3.1] 
implies the following. Let a be a positive real number. Then the probability 
that a random positive integer m < x has all its prime factors < L(x)°l is 
L(x)~1^2a^0^, for x —y oo. The conjecture that we need is that the same 
result is valid if m is a random integer in the interval (x — y/x, x + y/x). 

Assuming this conjecture, one arrives at the following running time estimate 
for the elliptic curve factoring algorithm. Let n E Z, n > 1, be the integer that 
one wishes to factor, and assume that n is not divisible by 2 or 3 and that it is 
not a prime power. Let further g be any positive integer. Then the variant of 
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the elliptic curve factoring algorithm described in [20] finds with probability at 
least 1 — e~9 a nontrivial divisor of n within time gK(p)(log n)2, where p denotes 
the smallest prime divisor of n and K: R > 0 —• R>o is a function with 

K(x) = ey/P+o(l))logx\o*]ogx forx-^oo. 

The algorithm may be repeated on the divisors that are found, until the 
complete prime factorization of n is obtained. The conjectural running time 
estimate will then also contain terms gK(p')(logn)2 corresponding to the other 
prime divisors p1 of n, with the exception of the largest one. In all cases one 
may expect the total factoring time to be at most L(n)1+0^ for n —> oo, with 
L as above. The worst case occurs if the second largest prime divisor of n is not 
much smaller than y/n, so that n is the product of some small primes and two 
large primes that are of the same order of magnitude. 

Several other factoring methods have been proposed for which, conjecturally, 
the running time is L(n)1+0^ for n —> oo, such as the class group method 
[29] and the quadratic sieve [26]; see also the discussion in [11]. However, for 
these other methods the running time is basically independent of the size of the 
prime factors of n, whereas the elliptic curve method is substantially faster if 
the smallest prime factor of n is much smaller than y/n. 

The storage requirement of the elliptic curve factoring method is only 0(log n). 
This is also true for the class group method [29], but all other known factoring 
algorithms of conjectured speed L(n)1+°^ have a storage requirement that is a 
positive power of L(n). 

We refer to [23, 6] for modifications of the elliptic curve method that improve 
its practical performance. It turns out that, with these modifications, the elliptic 
curve method is one of the fastest integer factorization methods that is currently 
used in practice. The quadratic sieve algorithm still seems to perform better 
on integers that are built up from two prime numbers of the same order of 
magnitude; such integers are of interest in cryptography [28]. 
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