

Curr iculum for

Certified Professional
for

Software Architecture
(CPSA)

– Foundation Level –

V e r s i o n 3 . 0 1 (M a y 5 t h 2 0 1 5)

	 	

iSAQB Curriculum for Foundation Level

Page 2 of 26 Last updated April 30th 2015 © 2009-2015 iSAQB e.V.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
©	 (Copyright),	 International	 Software	 Architecture	 Qualification	 Board	 e.	 V.	 (iSAQB®	 e.	 V.)	
2009-‐2015	
	
The	 curriculum	 may	 only	 be	 used	 subject	 to	 the	 following	 conditions:	
	

1. You	 wish	 to	 obtain	 the	 CPSA	 Certified	 Professional	 for	 Software	 Architecture	
Foundation	 Level®	 certificate.	 For	 the	 purpose	 of	 obtaining	 the	 certificate,	 it	 shall	
be	 permitted	 to	 use	 these	 text	 documents	 and/or	 curricula	 by	 creating	 working	
copies	 for	 your	 own	 computer.	 If	 any	 other	 use	 of	 documents	 and/or	 curricula	 is	
intended,	 for	 instance	 for	 their	 dissemination	 to	 third	 parties,	 for	 advertising	 etc.,	
please	 write	 to	 contact@isaqb.org	 to	 enquire	 whether	 this	 is	 permitted.	 A	 separate	
licence	 agreement	 would	 then	 have	 to	 be	 entered	 into.	

2. If	 you	 are	 a	 trainer,	 training	 provider	 or	 training	 organiser,	 it	 shall	 be	 possible	 for	
you	 to	 use	 the	 documents	 and/or	 curricula	 once	 you	 have	 obtained	 a	 usage	 licence.	
Please	 address	 any	 enquiries	 to	 contact@isaqb.org.	 Licence	 agreements	 with	
comprehensive	 provisions	 for	 all	 aspects	 exist.	

3. If	 you	 fall	 neither	 into	 category	 1	 nor	 category	 2,	 but	 would	 like	 to	 use	 these	
documents	 and/or	 curricula	 nonetheless,	 please	 also	 contact	 iSAQB	 e.	 V.	 by	 writing	
to	 contact@isaqb.org.	 You	 will	 then	 be	 informed	 about	 the	 possibility	 of	 acquiring	
relevant	 licences	 through	 existing	 licence	 agreements,	 allowing	 you	 to	 obtain	 your	
desired	 usage	 authorisations.	

	
We	 stress	 that,	 as	 a	 matter	 of	 principle,	 this	 curriculum	 is	 protected	 by	 copyright.	 The	
International	 Software	 Architecture	 Qualification	 Board	 e.	 V.	 (iSAQB®	 e.	 V.)	 has	 exclusive	
entitlement	 to	 these	 copyrights.	 The	 abbreviation	 "e.	 V."	 is	 part	 of	 iSAQB's	 official	 name	 and	
stands	 for	 "eingetragener	 Verein"	 (registered	 association),	 which	 describes	 its	 status	 as	 a	
legal	 person	 according	 to	 German	 law.	 For	 the	 purpose	 of	 simplicity,	 iSAQB	 e.	 V.	 shall	
hereafter	 be	 referred	 to	 as	 iSAQB	 without	 the	 use	 of	 said	 abbreviation.	
	 	

iSAQB Curriculum for Foundation Level

Page 3 of 26 Last updated April 30th 2015 © 2009-2015 iSAQB e.V.

Table	 of	 contents	

0	 INTRODUCTION	 ...	 6	

0.1	 WHAT	 DOES	 FOUNDATION	 LEVEL	 TRAINING	 INCLUDE?	 ..	 6	
0.2	 OUTLINE	 OF	 THE	 CURRICULUM	 AND	 RECOMMENDED	 ALLOCATION	 OF	 STUDY	 TIMES	 	 7	
0.3	 DURATION,	 TEACHING	 METHODS	 AND	 FURTHER	 DETAILS	 ON	 ACCREDITED	 TRAINING	 	 7	
0.4	 PREREQUISITES	 ...	 7	
0.5	 CPSA-‐F	 CURRICULUM	 CHAPTERS,	 LEARNING	 GOALS	 AND	 RELEVANCE	 FOR	 THE	 EXAMINATION	 	 8	
0.6	 WHAT	 IS	 AND	 WHAT	 IS	 NOT	 COVERED	 BY	 THE	 CURRICULUM	 ...	 8	
0.7	 INTRODUCTION	 TO	 THE	 ISAQB	 CERTIFICATION	 PROGRAMME	 ...	 8	

1	 BASIC	 CONCEPTS	 OF	 SOFTWARE	 ARCHITECTURES	 ...	 10	

1.1	 TERMS	 AND	 CONCEPTS	 ..	 10	
1.2	 LEARNING	 GOALS	 ...	 10	

2	 DESIGN	 AND	 DEVELOPMENT	 OF	 SOFTWARE	 ARCHITECTURES	 ..	 13	

2.1	 TERMS	 AND	 CONCEPTS	 ..	 13	
2.2	 LEARNING	 GOALS	 ...	 13	

3	 SPECIFICATION	 AND	 COMMUNICATION	 OF	 SOFTWARE	 ARCHITECTURES	 ..	 17	

3.1	 TERMS	 AND	 CONCEPTS	 ..	 17	
3.2	 LEARNING	 GOALS	 ...	 17	

4	 SOFTWARE	 ARCHITECTURES	 AND	 QUALITY	 ..	 19	

4.1	 TERMS	 AND	 CONCEPTS	 ..	 19	
4.2	 LEARNING	 GOALS	 ...	 19	

5	 TOOLS	 FOR	 SOFTWARE	 ARCHITECTS	 ..	 21	

5.1	 TERMS	 AND	 CONCEPTS	 ..	 21	
5.2	 LEARNING	 GOALS	 ...	 21	

6	 EXAMPLES	 OF	 SOFTWARE	 ARCHITECTURES	 ..	 22	

7	 SOURCES	 AND	 REFERENCES	 FOR	 SOFTWARE	 ARCHITECTURE	 ...	 23	

 	

iSAQB Curriculum for Foundation Level

Page 4 of 26 Last updated April 30th 2015 © 2009-2015 iSAQB e.V.

LIST	 OF	 LEARNING	 GOALS	

LG 1-1: Being able to discuss definitions of software architecture (R1) 10	
LG 1-2: Being able to understand and identify the benefits and objectives of software architecture

(R1) .. 10	
LG 1-3: Understanding the place of software architecture within the software life cycle (R2) 10	
LG 1-4: Being able to understand software architects' tasks and responsibilities (R1) 11	
LG 1-5: Being able to relate the role of software architects to other stakeholders (R1) 11	
LG 1-6: Being able to explain the correlation between development approaches and software

architecture (R1) .. 11	
LG 1-7: Being able to differentiate between architecture and project objectives (R1) 11	
LG 1-8: Distinguish explicit statements and implicit assumptions (R1) ... 12	
LG 1-9: Knowing the roles and responsibilities of software architects within enterprise

architecture (R3) .. 12	
LG 1-10: Understanding the differences between types of software-intensive systems (R2) 12	
LG 2-1: Being able to select and adhere to approaches and heuristics for architecture

development (R1) .. 13	
LG 2-2: Being able to design architectures (R1) ... 13	
LG 2-3: Being able to identify and rank influencing factors upon software architecture (R1) 14	
LG 2-4: Being able to select and develop cross-cutting concepts (R1) .. 14	
LG 2-5: Describe, explain and appropriately use important architectural patterns and architectural

styles (R1-R3) .. 14	
LG 2-6: Being able to explain and use design principles (R1) .. 15	
LG 2-7: Being able to plan correlations and dependencies between modular components (R1) . 15	
LG 2-8: Being able to design building blocks / structural elements of software architectures (R1)

 ... 15	
LG 2-9: Being able to design and define interfaces (R1) .. 16	
LG 2-10: Understanding and using architecture-relevant design patterns (R2) 16	
LG 3-1: Being able to explain and consider quality attributes of technical documentation (R1) ... 17	
LG 3-2: Being able to describe and communicate software architectures appropriately to

stakeholders (R1) .. 17	
LG 3-3: Understanding how to explain and use notations / models to describe software

architecture (R2) .. 17	
LG 3-4: Being able to explain and use architectural views (R1) ... 17	
LG 3-5: Being able to explain and use the system context (R1) ... 18	
LG 3-6: Being able to explain and use cross-cutting and technical architecture concepts (R1) ... 18	
LG 3-7: Being able to describe interfaces (R1) ... 18	
LG 3-8: Understanding the explanation and documentation of architecture decisions (R2) 18	
LG 3-9: Understanding the use of documentation as written communication (R2) 18	
LG 3-10: Knowing additional resources and tools for documentation (R3) 18	
LG 4-1: Being able to discuss quality models and quality characteristics (R1) 19	
LG 4-2: Being able to define quality requirements for software architectures (R1) 19	
LG 4-3: Understanding the qualitative evaluation of software architectures (R2) 19	
LG 4-4: Understanding the quantitative evaluation of software architectures (R2) 20	
LG 4-5: Understanding how quality objectives are achieved using appropriate approaches and

techniques (R2) ... 20	
LG 5-1: Being able to name and rank important tool categories (R1) ... 21	

iSAQB Curriculum for Foundation Level

Page 5 of 26 Last updated April 30th 2015 © 2009-2015 iSAQB e.V.

LG 5-2: Understanding how tools are selected as required (R2) .. 21	
LG 6-1: Knowing how the relation between requirements and solutions is established (R3) 22	
LG 6-2: Knowing the rationale of a solution's technical implementation (R3) 22	

iSAQB Curriculum for Foundation Level

Page 6 of 26 Last updated April 30th 2015 © 2009-2015 iSAQB e.V.

0 Introduction	

0.1 What	 does	 Foundation	 Level	 training	 include?	

Licensed Certified Professional for Software Architecture – Foundation Level (CPSA-F)
training will provide participants with the knowledge and skills required for designing and
documenting a problem-specific software architecture based on a sufficiently detailed
requirements specification for small and medium-sized systems. Participants will be provided with
a set of tools enabling them to make problem-specific design decisions on the basis of their
previously acquired practical experience.

In particular, such training shall include:
• The term software architecture and its meaning
• The tasks and responsibilities of software architects
• The roles of software architects within projects
• State-of-the-art methods and techniques for developing software architectures, as well as the

following competences:
• Consulting other parties involved in a shared project, in particular representatives from

requirements management, development, project management and testing, in order to
make essential decisions on software architecture

• Documenting and communicating software architectures on the basis of views, cross-
cutting concepts, decisions as well as architectural patterns and styles

• Understanding the main steps necessary for developing software architectures and
implementing these independently in small and medium-sized systems

Participants of CPSA-F training will learn that the design and documentation of a software
architecture are consistent with its actual implementation. Depending on approaches, processes
and organisation, one set of results may influence another and vice versa, and ideally it will be
possible for these results to be constantly updated and improved.

iSAQB Curriculum for Foundation Level

Page 7 of 26 Last updated April 30th 2015 © 2009-2015 iSAQB e.V.

0.2 Outline	 of	 the	 curriculum	 and	 recommended	 allocation	 of	 study	 times	

0.3 Duration,	 teaching	 methods	 and	 further	 details	 on	 licensed	 training	

Study times given are recommendations. The duration of a training course should be at least
three days, but may as well be longer. Providers may vary in their approach to duration, teaching
methods, the type and structure of exercises as well as the detailed course outline. In particular,
the types (domains and technologies) of examples and exercises can be determined individually
by the training provider.

0.4 Prerequisites	

Participants should have the following prior knowledge and/or experience:
• More than 18 months practical experience with software development, gained through

programming a variety of projects or systems outside of formal education
• Knowledge of and practical experience with at least one higher programming language
• Basics of modelling and abstraction
• Basics of UML (class, package, component and sequence diagrams) and their relation to

source code
• Practical experience with technical documentation, in particular with documenting source

code, system designs or technical concepts

Furthermore, the following will be useful for understanding certain concepts:
• Knowledge of object-oriented concepts
• Practical experience with a minimum of one object-oriented programming language
• Practical experience with designing and implementing distributed applications, such as client-

server systems or web applications

Basic concetps
of software

architectures

Design and
development

Specification and
communication

Software
architectures and

quality

Tools
Examples

iSAQB Curriculum for Foundation Level

Page 8 of 26 Last updated April 30th 2015 © 2009-2015 iSAQB e.V.

0.5 CPSA-‐F	 curriculum	 chapters,	 learning	 goals	 and	 relevance	 for	 the	 examination	

The structure of the curriculum's chapters follows a set of prioritised learning goals. For each
learning goal, relevance for the examination of this learning goal or its sub-elements is clearly
stated (through the use of the R-1/R-2/R-3 classification, see table).	
Every learning goal describes the contents to be taught including their key terms and concepts.
With regard to relevance for the examination, the following categories are used in this curriculum:

Learning-goal

category
Identifier Meaning Relevance for

examination
Being able to
...

R-1 These are the contents participants will be
expected to be able to put into practice
independently upon completion of the course.
Within the course, these contents will be covered
through exercises and discussions.

Contents will
be part of the
examination.

Understanding
...

R-2 These are the contents participants are expected
to understand in principle. They will normally not
be the main focus of exercises in training.

Contents may
be part of the
examination.

Knowing ... R-3 These contents (terms, concepts, methods,
practices or similar) can enhance understanding
and motivate the topic. They may be covered in
training if required.

Contents will
not be part of
examination.

If required, the learning goals include references to further reading, standards or other sources.
The sections "Terms and Concepts" of each chapter list word that are associated with the
contents of the chapter. Some of them are used in the descriptions of learning goals.
In certification examinations, iSAQB may use relevant questions to test whether the prerequisites
listed above have been met.

0.6 What	 is	 and	 what	 is	 not	 covered	 by	 the	 curriculum	

This curriculum reflects the contents currently considered by iSAQB members to be necessary
and useful for achieving the learning goals of CPSA-F. It is not a comprehensive description of
the entire domain of 'software architecture'.

The following topics or concepts are not part of CPSA-F:
• Concrete implementation technologies, frameworks or libraries
• Programming or programming languages
• Basics or notations of modelling (such as UML)
• System analysis and requirements engineering (please refer to the education and

certification program by IREB e.V., http://ireb.org, International Requirements Engineering
Board)

• Test (please refer to the education and certification program by ISTQB e.V., http://istqb.org,
International Software Testing Board)

• Project or product management
• Introduction to specific software tools

0.7 Introduction	 to	 the	 iSAQB	 certification	 programme	

Duration: 15 min Exercises: n/a

iSAQB Curriculum for Foundation Level

Page 9 of 26 Last updated April 30th 2015 © 2009-2015 iSAQB e.V.

This section is not relevant for the examination.
Participants will become familiar with the context of the iSAQB certification programme as well as
its examinations or examination modalities such as:

• iSAQB as an association

• iSAQB’s responsibility for the curriculum as well as corresponding examination questions

• Organisational separation between training and examination
• Procedures and formal constraints of the CPSA-F examination

• Foundation Level versus Advanced Level
• Optional: other certification schemes

0.8 Change	 history	

Date Editor Description
2014-07-11 pg Added reference to Dern2006
2014-07-31 MISO • References to POSA series on LZ 2-10 corrected.

The reference also corrected (4 digit year)
• References with spaces like [Zörner 2012] replaced

with the correct version without space.
2014-12-12 GStarke • Added test to section 0.6 (what is NOT covered)

• Formatting
• Minor corrections in preparation of Jan-2015 board

meeting, see Trello and Subversion commit history.
• Fixed some translation issues (e.g. LG 1.8)

2014-12-26 MISO Changed overview diagram to 2D like the DE version (section
0.2)

2015-01-16 WG Foundation Finalized V 3.0, several bugfixes
2015-04-14 GS, PG + UB Corrected several translation issues
2015-04-30 AR, GS, PG Minor corrections

iSAQB Curriculum for Foundation Level

Page 10 of 26 Last updated April 30th 2015 © 2009-2015 iSAQB e.V.

1 Basic	 concepts	 of	 software	 architectures	
Duration: 135 min Exercises: 45 min

1.1 Terms	 and	 concepts	

Software architecture; structure; building blocks/components; interfaces; relationships; cross-
cutting concerns/aspects; architecture objectives; software architects and their responsibilities;
tasks and required skills; non-functional and functional requirements of systems; constraints;
influencing factors; types of IT systems (embedded systems, real-time systems, information
systems etc)

1.2 Learning	 goals	

LG 1-1: Being able to discuss definitions of software architecture (R1)

• Comparison of several definitions of software architecture (incl. ISO 42010/IEEE 1471, SEI,
Booch etc) and identification of their similarities:

• Components / building blocks with interfaces and relationships
• Building blocks as a general term, components as specific types of building blocks
• Structures and cross-cutting concerns, principles
• Cross-cutting design decisions and their consequences both across the system and

concerning the entire life cycle

LG 1-2: Being able to understand and identify the benefits and objectives of software
architecture (R1)

• Objectives of software architects and software architectures

• Software architecture focuses on quality attributes such as durability, maintainability,
changeability, robustness more than on pure functionality.

• Software architecture supports the creation and maintenance of software, in particular its
implementation.

• Software architecture supports the achievement of quality requirements.

• Advandages and limitations of the metaphor “architecture for buildings” versus “architecture
for software”. (R2)

LG 1-3: Understanding the place of software architecture within the software life cycle (R2)

• The place and role of software architecture within the overall development of IT systems

• The correlation with business and operational processes for information systems

• The correlation with business and operational processes for decision support systems (data
warehouse, management information systems)

iSAQB Curriculum for Foundation Level

Page 11 of 26 Last updated April 30th 2015 © 2009-2015 iSAQB e.V.

LG 1-4: Being able to understand software architects' tasks and responsibilities (R1)

• Software architects are responsible for achieving the required or necessary quality and
functionality of a solution. Depending on the actual approach or process model used, they
must align this responsibility with the overall responsibilities for project management and/or
other roles.

• Tasks and responsibilities of software architects:

• Clarify and question requirements as well as constraints and refine them if required.
Together with functional requirements (required features), this includes the required
quality attributes in particular (required constraints).

• Decide how to decompose the system into building blocks, while determining
dependencies and interfaces between the building blocks.

• Determine and, if necessary, implement cross-cutting technical concerns (for instance
persistence, communication, GUI etc.)

• Communicate and document software architecture based on views, architectural patterns
and technical concepts

• Accompany the realisation and implementation of the architecture; integrate feedback
from relevant stakeholders into the architecture if necessary; review and ensure the
consistency of source code and software architecture

• Evaluate software architecture, especially with regard to risks involving the required
quality characteristics

• It is the responsibility of software architects to identify and highlight the consequences of
architectural decisions and discuss these with other stakeholders.

• Their role involves recognising the necessity of iterations in all tasks and pointing out
possibilities for relevant feedback.

LG 1-5: Being able to relate the role of software architects to other stakeholders (R1)

• Participants should be familiar with the role of software architects in relation to other
stakeholders and be able to explain this role, in particular any potential connections with:

• Requirements analysis (system analysis, requirements management, specialist field)
• Implementation
• Project management
• Quality assurance
• IT operations (production, data centres), applies primarily to information systems
• Hardware development

LG 1-6: Being able to explain the correlation between development approaches and
software architecture (R1)

• Explain the influence of iterative approaches on architectural decisions (with regard to risks
and predictability)

• Due to inherent uncertainty, software architects often have to work and decide iteratively. To
do so, they must systematically seek feedback from other stakeholders.

LG 1-7: Being able to differentiate between architecture and project objectives (R1)

• Participants should be able to demonstrate the significance of architectural objectives,
constraints and influencing factors for the design of software architectures.

iSAQB Curriculum for Foundation Level

Page 12 of 26 Last updated April 30th 2015 © 2009-2015 iSAQB e.V.

• Explanation of (long-term) architectural objectives and the distinction between them and
(short-term) project objectives

• Identify and specify architectural objectives on the basis of existing requirements

• Explain the connection between requirements and solutions

LG 1-8: Distinguish explicit statements and implicit assumptions (R1)

• Software architects should present assumptions or prerequisites explicitly and avoid implicit
assumptions.

• Implicit assumptions can lead to misunderstandings between stakeholders.

LG 1-9: Knowing the roles and responsibilities of software architects within enterprise
architecture (R3)

• Additional levels of architecture, e.g. enterprise IT architecture/business architecture,
infrastructure architecture (according to [Dern 2006] for instance): several different levels of
architectures exist within the IT of information systems:

• Infrastructure architecture: the technical infrastructure's structure, hardware, networks etc
• Hardware architecture (for hardware-related systems)
• Software architecture: the structure of individual software systems. This is what iSAQB

and CPSA-F identify as the focus for software architects.
• Corporate IT architecture, Enterprise IT architecture: the structure of application

landscapes. CPSA-F does not focus on this topic.
• Business process architecture, business architecture: the structure of business

processes. CPSA-F does not focus on this topic.

LG 1-10: Understanding the differences between types of software-intensive systems (R2)

• Understand how software architecture is differentiated according to different types of IT
systems:

• Relation to the system architecture or overall architecture for embedded or hardware-
related systems
• Understand the characteristics of hardware/software design (and code) (dependencies

between hardware and software design in relation to time and content)

iSAQB Curriculum for Foundation Level

Page 13 of 26 Last updated April 30th 2015 © 2009-2015 iSAQB e.V.

2 Design	 and	 development	 of	 software	 architectures	
Duration: 270 min Exercises: 90 min

2.1 Terms	 and	 concepts	

Design; design approach; design decision; views, technical and crosscutting concepts;
architectural patterns; design principles; domain-related and technical architectures; model-based
design; iterative/incremental design; domain-driven design; top-down and bottom-up approaches,
pattern-languages, stereotypes, tools-and-material-approach

2.2 Learning	 goals	

LG 2-1: Being able to select and adhere to approaches and heuristics for architecture
development (R1)

• Participants can name, explain and apply basic methods of architecture development

• Model- and view-based architecture development

• Domain-driven design

• Iterative and incremental design

• Necessity of iterations, especially when decision-making is affected by uncertainties
• Feedback on design decisions on the basis of source code as well as qualitative

considerations
• Top-down and bottom-up approaches to design

• Influencing factors and constraints for architecture design (global analysis – see [Hofmeis-
ter+2000])

LG 2-2: Being able to design architectures (R1)

• Participants can design a software architecture on the basis of known functional and non-
functional requirements for software systems that are neither safety nor business-critical and
document these appropriately

• Identify and give reasons for interdependencies between design decisions

• Make structure-relevant decisions with regard to system decomposition and the building-
block structure while determining dependencies and interfaces between the building blocks

• Explain the terms 'black box' and 'white box' and use them in a targeted manner

• Apply gradual refinement (hierarchisation) as well as the exact specification of building blocks

• Design of individual architecture views, especially distribution, building-block and runtime
views, and describe their consequences for the relevant source code

• Define how the architecture is mapped to source code and assess or evaluate the associated
consequences

• Justify and apply the separation of technical and domain-related components of architectures

• Design and justify domain-related structures

iSAQB Curriculum for Foundation Level

Page 14 of 26 Last updated April 30th 2015 © 2009-2015 iSAQB e.V.

• Identify, justify and document domain-related building blocks (entities, services)
• Design and explain the interaction between domain-related and technical components of

systems
• Know the considerable impact of non-functional requirements (such as changeability,

robustness, efficiency) and consider these when making architecture and design decisions

LG 2-3: Being able to identify and rank influencing factors upon software architecture (R1)

• Participants are expected to gather and consider constraints and influencing factors that
restrict the freedom in design decisions

• Recognise and consider the impact of quality requirements on architectures

• Recognise and consider the impact of technical decisions and concepts on architectures

• Recognise and consider the (potential) impact of organisational structures on building-block
structures (R2)

LG 2-4: Being able to select and develop cross-cutting concepts (R1)

• Decide / design cross-cutting / technical concepts, for example persistence, communication,
GUI, error handling, concurrency

• Recognise and assess any potential interdependencies between these decisions

LG 2-5: Describe, explain and appropriately use important architectural patterns and
architectural styles (R1-R3)

• Dataflow or data-centred architectural styles (R1)

• Pipes and filters
• Hierarchical architectural styles (R1)

• Layers
• Architectural styles for interactive systems (R2)

• Model view controllers
• Model view presenters

• Heterogeneous architectural styles (R1)
• Architectural styles for asynchronous systems (R3)

• According to Hohpe (messaging, async pattern)
• Architecture styles for distributed systems (R3)

• Further architectural patterns and styles (R3), e.g.:

• Event-based systems
• CQRS
• According to Fowler/PoEAA
• According to POSA (e.g. Blackboard or Microkernel)

• Know essential sources for architectural patterns, for instance POSA literature and PoEAA
(for information systems) (R3)

• Know examples of further pattern languages (R3)

iSAQB Curriculum for Foundation Level

Page 15 of 26 Last updated April 30th 2015 © 2009-2015 iSAQB e.V.

• Organisational patterns
• Reengineering patterns
• Security patterns
• Client/server patterns
• Patterns for distributed systems
• Further patterns depending on the focus of the training

LG 2-6: Being able to explain and use design principles (R1)

• Information hiding

• Coupling and cohesion

• Separation of concerns

• Open/closed principle

• Inversion of dependencies through interfaces

• Dependency injection in order to externalise dependencies

• Relationships between dependencies in the model and in the source code of programming
languages

LG 2-7: Being able to plan correlations and dependencies between modular components
(R1)

• Participants are expected to understand the dependencies between and coupling of building
blocks and apply these in a targeted manner.

• Be able to demonstrate types of coupling (structural, temporal, via data types, via hardware
etc.)

• Identify consequences of coupling

• Understand ways of removing or reducing coupling

• Implementation of relationships in (object-oriented) programming languages

• Constructors
• Factory patterns
• Dependency injection

LG 2-8: Being able to design building blocks / structural elements of software
architectures (R1)

• Participants are expected to know and use desirable characteristics (encapsulation,
information hiding) of building blocks and structural elements.

• Black-box and white-box building blocks

• Types of composition of building blocks (nesting, usage/delegation, inheritance)

• UML notation for various building blocks and their compositions

iSAQB Curriculum for Foundation Level

Page 16 of 26 Last updated April 30th 2015 © 2009-2015 iSAQB e.V.

• Packages as a semantically weak type of building-block aggregation
• Components with clearly defined interfaces as a semantically more precise type of

aggregation

LG 2-9: Being able to design and define interfaces (R1)

• Participants are expected to recognise the importance of interfaces. They should to be able
to design or determine interfaces between architectural building blocks and external
interfaces between architectural building blocks and elements outside of the system.

• Participants know desired characteristics of interfaces:

• Easy to learn, easy to use, easy to expand
• Hard to misuse
• Functionally complete from the perspective of users or building blocks using them

• Participants can describe and document interfaces

• Participants know different ways of looking at interfaces: (R3)
• Resource-oriented approach (see Representational State Transfer)
• Service-oriented approach (see WS-*/SOAP-based webservices)

LG 2-10: Understanding and using architecture-relevant design patterns (R2)

• Understand language-independent design patterns, such as: adapter, wrapper, gateway,
facade, registry, broker

• Be familiar with further design patterns, which do not necessarily need to be part of licensed
training

References

[Fowler2003]

[Gharbi+2014]

[Martin2003]

POSA series, in particular [Buschmann+1996] and [Buschmann+2007]

[Starke2014]

iSAQB Curriculum for Foundation Level

Page 17 of 26 Last updated April 30th 2015 © 2009-2015 iSAQB e.V.

3 Specification	 and	 communication	 of	 software	 architectures	
Duration: 150 min Exercises: 90 min

3.1 Terms	 and	 concepts	

Views; structures; (technical) concepts; documentation; communication; description; meta
structures for description and communication; building blocks; building-block view; run-time view;
deployment view; node; channel; deployment units; mapping building blocks onto deployment
units; description of interfaces

3.2 Learning	 goals	

LG 3-1: Being able to explain and consider quality attributes of technical documentation
(R1)

• Understandability, accuracy, efficiency, adequacy, maintainability

• Form, content and level of detail of documentation chosen in accordance with its target group

• Readers alone can assess the understandability of technical documentation.

LG 3-2: Being able to describe and communicate software architectures appropriately to
stakeholders (R1)

• Due to the diversity of stakeholders, the description of software architectures presents
particular requirements.

• Diverse audiences: management, developers, quality assurance as well as other
software architects

• Diverse authors: software architects, developers and potentially more

LG 3-3: Understanding how to explain and use notations / models to describe software
architecture (R2)

• Participants should know the following UML diagrams for the notation of architectural views:

• Class, package and component diagrams
• Deployment diagrams
• Sequence and activity diagrams
• State machines, state diagrams

• Benefits of template-based documentation

LG 3-4: Being able to explain and use architectural views (R1)

• Building-block or component view (how the system is composed of software building blocks)

• Run-time view (dynamic view, interaction between software building blocks at run time, state
machines)

• Deployment view (mapping software building blocks on hardware or execution environments)

iSAQB Curriculum for Foundation Level

Page 18 of 26 Last updated April 30th 2015 © 2009-2015 iSAQB e.V.

LG 3-5: Being able to explain and use the system context (R1)

• Differentiate between domain-related and technical contexts

LG 3-6: Being able to explain and use cross-cutting and technical architecture concepts
(R1)

• Explain the significance of cross-cutting technical concerns (principles, architectural aspects
or concepts)

• Name some typical concepts (e.g. persistence, workflow management, GUI,
deployment/integration)

LG 3-7: Being able to describe interfaces (R1)

• Description and specification of interfaces

• Differentiation between internal and external interfaces

LG 3-8: Understanding the explanation and documentation of architecture decisions (R2)

• Document and give reasons for the systematic derivation of architecture decisions

LG 3-9: Understanding the use of documentation as written communication (R2)

• Means for describing software architectures also support their design and creation.

• The wording and notation used in technical documentation should be chosen in accordance
with the readers' skills and objectives.

LG 3-10: Knowing additional resources and tools for documentation (R3)

• The basics of several of the published frameworks for describing software architectures, such
as:

• TOGAF, RM/ODP, ISO/IEEE-42010 (previously 1471)
• arc42, FMC, Tigris ReadySet

• Ideas and examples of check lists for the creation, documentation and evaluation of software
architectures

• Potential tools for creating and maintaining architectural documentation

References

[Clements+2002]

[Gharbi+2014]

[Starke2014]

[Zörner2012]

iSAQB Curriculum for Foundation Level

Page 19 of 26 Last updated April 30th 2015 © 2009-2015 iSAQB e.V.

4 Software	 architectures	 and	 quality	
Duration: 60 min Exercises: 60 min

4.1 Terms	 and	 concepts	

Quality; quality attributes; DIN/ISO 9126 resp. 25010; ATAM; scenarios; quality tree;
compromises (when implementing quality attributes); evaluation of software architectures
(qualitative and quantitative)

4.2 Learning	 goals	

LG 4-1: Being able to discuss quality models and quality characteristics (R1)

• Explain the concepts of quality (following ISO/IEC 25010, previously 9126) and quality
attributes

• Explain quality models (such as ISO/IEC 25010)

• Explain relationships and interactions between quality attributes, for instance:

• Flexibility versus robustness
• Memory usage versus run time consumption

LG 4-2: Being able to define quality requirements for software architectures (R1)

• Participants are expected to be able to express the quality requirements for software and
software architectures in concrete terms and present them using scenarios and quality trees
for instance.

• Explain and carry out the creation of scenarios and quality trees

• Express exemplary quality requirements for software

LG 4-3: Understanding the qualitative evaluation of software architectures (R2)

• Participants are expected to be familiar with the methodical approach to analysing and
evaluating software architectures and be able to apply it to smaller examples.

• ATAM approach to qualitative evaluation of software architectures

• For the qualitative evaluation of architectures, the following sources of information may be
helpful:

iSAQB Curriculum for Foundation Level

Page 20 of 26 Last updated April 30th 2015 © 2009-2015 iSAQB e.V.

• Requirements, in particular in the form of quality trees and scenarios
• Architecture documentation
• Architecture and design models
• Source code
• Metrics

LG 4-4: Understanding the quantitative evaluation of software architectures (R2)

• The quantitative evaluation (metrics) of software, in particular of source code, can help to
identify critical parts within systems.

• Further information can be consulted for assessment and evaluation of architectures, such
as:

• Source code (e.g. metrics like lines of code, cyclomatic complexity, incoming and
outgoing dependencies, instability, abstractness, distance)

• Known errors in source code, in particular error clusters
• Test cases and test results
• Requirement and solution models

LG 4-5: Understanding how quality objectives are achieved using appropriate approaches
and techniques (R2)

• Participants are expected to explain and apply tactics, best practices and technical
possibilities of attaining important quality objectives of software systems (different for
embedded systems and information systems), for instance:

• Efficiency/performance
• Maintainability, changeability, expandability, flexibility
• Identification of corresponding risks

References

[Bass+2003]

[Clements+2002]

[Gharbi+2014]

[Martin2003]

[Starke2014]

iSAQB Curriculum for Foundation Level

Page 21 of 26 Last updated April 30th 2015 © 2009-2015 iSAQB e.V.

5 Tools	 for	 software	 architects	
Duration: 45 min Exercises: n/a

5.1 Terms	 and	 concepts	

Modelling tools, static analysis tools, dynamic analysis tools, generation tools, requirements-
management tools, build systems/tools, configuration management tools

5.2 Learning	 goals	

LG 5-1: Being able to name and rank important tool categories (R1)

• Participants are expected to be able to name and explain the most important categories of
tools in relation to the work of software architects.

LG 5-2: Understanding how tools are selected as required (R2)

• The working environment and tools of software architects depend on the relevant constraints
and influencing factors.

iSAQB Curriculum for Foundation Level

Page 22 of 26 Last updated April 30th 2015 © 2009-2015 iSAQB e.V.

6 Examples	 of	 software	 architectures	
Duration: 60 min Exercises: n/a

This section is not examination relevant.

LG 6-1: Knowing how the relation between requirements and solutions is established (R3)

• Participants are expected to recognise and comprehend the correlation between
requirements/architectural objectives and chosen solutions using at least one example.

LG 6-2: Knowing the rationale of a solution's technical implementation (R3)

• With reference to one example, participants are expected to comprehend the technical
realisation (implementation, technical concepts, products used, solution strategies) of a
solution.

iSAQB Curriculum for Foundation Level

Page 23 of 26 Last updated April 30th 2015 © 2009-2015 iSAQB e.V.

7 Sources	 and	 references	 for	 software	 architecture	
This section contains a list of sources used for the development of this curriculum.

B

[Bachmann2000]
Bachmann, Felix/Bass, Len/Carriere, Jeromy/Clements, Paul/Garlan, David/Ivers, James/Nord,
Robert/Little, Reed. Software Architecture Documentation in Practice: Documenting Architectural
Layers, Special Report CMU/SEI-2000-SR-004, March 2000, CMU, 2000.

[Bass+2012]
Bass, L/Clements, P/Kazman, R. Software Architecture in Practice, 3rd edition, Addison-Wesley,
Reading, Mass., 640 pp, 2012, ISBN10 978-0-3218-1573-6.

[Berns+2010]
Berns, K/Schürmann, B/Trapp, M. Eingebettete Systeme, Systemgrundlagen und Entwicklung
eingebetteter Software, 1st edition, Springer, 270 pp, ISBN13 978-3-8348-9661-2 [only available
in German].

[Bosch2000]
Bosch, Jan. Design and Use of Software Architectures: Adopting and Evolving a Product-Line
Approach, ACM Press, 7 June 2000, Addison-Wesley Longman, Amsterdam, 368 pp, 2000,
ISBN10 201674947, ISBN13 978-0201674941.

[Buschmann+1996]
Buschmann, Frank/Meunier, Regine/Rohnert, Hans/Sommerlad, Peter. A System of Patterns:
Pattern-Oriented Software Architecture 1, Wiley Software Patterns, 1st edition, 12 July 1996,
John Wiley & Sons, 476 pp, 1996, ISBN10 471958697, ISBN13 978-0471958697.

[Buschmann+2007]
Buschmann, Frank/Henney, Kevlin/Schmidt, Douglas C. Pattern-Oriented Software Architecture:
A Pattern Language for Distributed Computing, Volume 4: Pattern Language for Distributed
Object Computing, 1st edition, 16 March 2007, John Wiley & Sons, 636 pp, 2007, ISBN10
470059028, ISBN13 978-0470059029.
C

[Clements+2002]
Clements, Paul/Kazman, Rick/Klein, Mark. Evaluating Software Architectures Methods and Case
Studies, Addison-Wesley Longman, Amsterdam, 368 pp, 2001, ISBN10 020170482X, ISBN13
978-0201704822.

[Clements+2010]
Clements, Paul/Bachmann, Felix/Bass, Len/Garlan, David/Ivers, James/Little, Reed/Merson,
Paulo/Nord, Robert L. Documenting Software Architectures: Views and Beyond, 2nd edition, 5
October 2010, Addison Wesley, 608 pp, 2010, ISBN10 321552687, ISBN13 978-0321552686.
D

[Dern2006]
Gernot Dern (Autor): Management von IT-Architekturen: Leitlinien für die Ausrichtung, Planung
und Gestaltung von Informationssystemen (Edition CIO), Edition 3., durchges. Aufl. 2009 (12.
March 2009), Vieweg+Teubner Verlag, p. 343, 2009, ISBN10 3834807184, ISBN13
9783834807182.
E

iSAQB Curriculum for Foundation Level

Page 24 of 26 Last updated April 30th 2015 © 2009-2015 iSAQB e.V.

[Evans2004]
Evans, Eric J. Domain-Driven Design: Tackling Complexity in the Heart of Software, 1st edition,
20 August 2003, Addison-Wesley Longman, Amsterdam, 529 pp, 2003, ISBN10 321125215,
ISBN13 978-0321125217.
F

[Fowler2003]
Fowler, Martin. Patterns of Enterprise Application Architecture, 1st edition, 5 November 2002,
Addison-Wesley Longman, Amsterdam, 560 pp, 2002, ISBN10 321127420, ISBN13 978-
0321127426.
G

[Gamma+1995]
Gamma, Erich/Helm, Richard/Johnson, Ralph/Vlissides, John M. Design Patterns: Elements of
Reusable Object-Oriented Software, 1st edition, 10 November 1994, Addison-Wesley
Professional, 416 pp, 1994, ISBN10 201633612, ISBN13 978-0201633610.

[Gharbi+2014]
Gharbi M., Koschel, A., Rausch, A., Starke, G.: Basiswissen für Softwarearchitekten. 2. Auflage,
Dpunkt Verlag, 2014, ISBN10 3864901650 [only available in German].

[Gorton2011]
Gorton, I. Essential Software Architecture, 2nd edition, 2011, Springer, 242 pp, 2011, ISBN13
978-3-642-19176-3.
H

[Hargis+2004]
Hargis, Gretchen/Carey, Michelle/Hernandez, Ann. Developing Quality Technical Information: A
Handbook for Writers and Editors, IBM Press Series-Information Management, 2nd edition, 6
April 2004, Prentice Hall, 432 pp, 2004, ISBN10 131477498, ISBN13 978-0131477490.

[Hofmeister+2000]
Hofmeister, Christine/Nord, Robert/Soni, Dilip. Applied Software Architecture, 1st edition, 14
November 1999, Addison-Wesley Professional, 432 pp, 1999, ISBN10 321643348, ISBN13 978-
0321643346.

[Hofmeister+2005]
Hofmeister, C/Nord, R/Soni, D. "Global Analysis: Moving from Software Requirements
Specification to Structural Views of the Software Architecture", IEE Proceedings Software,
volume 152, issue 4, August 2005, 11 pp, pp. 187-197, 2005.
J

[Josuttis2008]
Josuttis, N M. SOA in der Praxis - System-Design für verteilte Geschäftsprozesse, Dpunkt
Verlag, 408 pp, 2008, ISBN13 978-3-89864-476-1 [only available in German].
K

[Koschel+2008]
Dunkel, J/Eberhart, A/Fischer, S/Kleiner, C/Koschel, A. Systemarchitekturen für Verteilte
Anwendungen - Client-Server, Multi-Tier, SOA, Event-Driven Architectures, P2P, Grid, Web 2.0,
1st edition, Carl Hanser Verlag Munich, 3005 pp, 2008, ISBN13 978-3-446-41321-4 [only
available in German].

[Kruchten1995]
Kruchten, Philippe. "The 4+1 View Model of Architecture", IEEE Software, volume 12 (6), 16 pp,
pp 45-50, 1995, DOI: 10.1109/52.469759.
M

[Martin2003]
Martin, R C. Agile Software Development, Principles, Patterns and Practices, Prentice Hall, 529
pp, 2002, ISBN10 135974445, ISBN13 978-0135974445.

iSAQB Curriculum for Foundation Level

Page 25 of 26 Last updated April 30th 2015 © 2009-2015 iSAQB e.V.

[MVP]
http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93presenter
P

[Parnas1972]
Parnas, David. "On the criteria to be used in decomposing systems into modules",
Communications of the ACM, CACM Homepage archive, volume 15 issue 12, Dec 1972, pp
1053-1058 1972.
Q

[Quian+2010]
Qian, K/Fu, X/Tao, L/Xu, C/Herrera, J. Software Architecture and Design Illuminated, 1st edition,
Jones and Bartlett, 387 pp, 2010, ISBN13 9780763754204.
R

[Reussner+2008]
Reussner, Ralf/Hasselbring, Wilhelm. Handbuch der Software-Architektur, hardback, 2nd edition,
15 December 2008, dpunkt Verlag, 575 pp, 2008, ISBN10 3898645592, ISBN13 978-
3898645591 [available in German only].

[Rupp+2012]
Rupp, C/Queins, S., die Sophisten. UML 2 glasklar, 4th edition, Carl Hanser Verlag Munich, XX
pp, 2012, ISBN13 978-3-446-43057-0.
S

[Schmidt+2000]
Schmidt, Douglas C/Stal, Michael/Rohnert, Hans/Buschmann, Frank. Pattern-Oriented Software
Architecture, volume 2: Patterns for Concurrent and Networked Objects, 1st edition, 15 August
2000, John Wiley & Sons, 666 pp, 2000, ISBN10 471606952, ISBN13 978-0471606956.

[Shaw+1996]
Shaw, Mary/Garlan, David. Software Architecture: Perspectives on an Emerging Discipline,
October 1996, Prentice Hall, 242 pp, 1996, ISBN10 131829572, ISBN13 978-0131829572.

[Siedersleben2004]
Siedersleben, Johannes. Moderne Software-Architektur: Umsichtig planen, robust bauen mit
Quasar, 1st edition, July 2004, Dpunkt Verlag, 281 pp, 2004, ISBN10 3898642925, ISBN13 978-
3898642927 [available in German only].

[Starke+2011]
Starke, Gernot/Hruschka, Peter. Software-Architektur kompakt, 2nd edition, Spektrum
Akademischer Verlag, 121 pp, 2011, ISBN13 978-3-8274-2835-6 [available in German only].

[Starke2014]
Starke, Gernot. Effektive Software-Architekturen, 6th edition, January 2014, Carl Hanser Verlag
GmbH & Co. KG, 409 pp, 2014, ISBN13 978-3-446-43614-5 [available in German only].
T

[Tilkov2011]
Tilkov, S. REST und HTTP: Einsatz der Architektur des Web für Integrationsszenarien, 2nd
edition (expected April 2014), Dpunkt Verlag, 2011 pp, ISBN13 978-3-86490-120-1 [available in
German only].

[Toth2013]
Toth, S. Vorgehensmuster für Softwarearchitektur - Kombinierbare Praktiken in Zeiten von Agile
und Lean. 1st edition, Carl Hanser Verlag Munich, 249 pp, 2013, ISBN13 978-3-446-43615-2
[available in German only].
V

iSAQB Curriculum for Foundation Level

Page 26 of 26 Last updated April 30th 2015 © 2009-2015 iSAQB e.V.

[Vernon2013]
Vernon, V. Implementing Domain Driven Design, 1st edition, February 2013, Addison Wesley,
656 pp, 2013, ISBN13 978-0-3218-3457-7.
Z

[Zörner2012]
Zörner, S. Softwarearchitekturen dokumentieren und kommunizieren, 1st edition, Carl Hanser
Verlag Munich, 280 pp, 2012, ISBN13 978-3-446-42924-6 [available in German only].

