Combustion: Flame Theory and Heat Produced

Arthur Anconetani Oscar Castillo Everett Henderson

What is a Flame?

Reaction Zone Thermo/Chemical characteristics

Types of Flame

Premixed

 Mixed before Combustion
 Characteristics

 Reacts Rapidly
 Constant Pressure
 Propagates as Thin Zone

 Ex: Spark Engine

Diffusion

- Mixed during Combustion
- Characteristics
 - Reaction occurs at Fuel/Air interface
 - Controlled by the Mixing of the Reactants
- Ex:Diesel Engines

Laminar

Premixed
 Simplest flame type
 Ex: Bunsen burner
 Diffusion
 Ex: Candle

Turbulent

Premixed

- Faster heat release than laminar
- Ex: Indirect fuel injection engines
- Diffusion
 - Ex: Direct fuel injection engines

Chemical Energy

The energy inside fuel can be considered "potential energy"

Combustion unleashes that "potential energy"

How do we calculate the amount of energy released?

Basic Chemistry

Hydrocarbon fuels
Air

Nitrogen (79%)
Oxygen (21%)
1 mol O₂:3.76 mol N₂

Common Products: H₂O, CO₂, N₂

Basic Chemistry-Moles

- Amount of mass of an element or compound that contains Avogadro's number of atoms or molecules
- Avogadro's number = 6.022 E 23
- For example one mole of Hydrogen contains 6.022E 23 Hydrogen atoms.
- Molar mass is the amount of mass in one mole of a substance.

Basic Chemistry–Molar Mass

Mass is conserved in chemical equations

 $1 \text{ kmol H}_2 + \frac{1}{2} \text{ kmol O}_2 \longrightarrow 1 \text{ kmolH}_2\text{O}$

$$\operatorname{kmol} \operatorname{H}_{2}\left(\frac{2.016 \operatorname{kg}}{\operatorname{kmol} \operatorname{H}_{2}}\right) + \frac{1}{2} \cdot \operatorname{kmol} \operatorname{O}_{2}\left(\frac{32 \operatorname{kg}}{\operatorname{kmol} \operatorname{O}_{2}}\right) = 1 \operatorname{kmol} \operatorname{H}_{2} \operatorname{O}\left(\frac{18.02 \operatorname{kg}}{\operatorname{kmol} \operatorname{H}_{2} \operatorname{O}}\right)$$

18.02kg = 18.02 kg

Balancing an Equation

Original Chemical Equation:

 $C_4H_{10} + a(O_2 + 3.76N_2) \rightarrow bCO_2 + cH_2O + dN_2$

Write equations for each element, solve:

C: 4 = b H: 10 = 2c O: 2a = 2b + c

c = 5 a = 6.5

N: 2(3.76)a = 2d

d = 24.44

Final Balanced Equation:

 $C_4H_{10} + 6.5(O_2 + 3.76N_2) \rightarrow 4CO_2 + 5H_2O + 24.44N_2$

Focusing on the Problem

We have
 Basics of Flame Theory
 Balanced Equations

Enthalpy

Definition h = u + Pv
Reference State

25 °C
1 atm

Δh = h(T,P) - h(T,P)_{ref}

Enthalpy

More Enthalpy

Energy Equation

 $Q-W = \Delta U$ $Q= \Delta U+W= \Delta U+ P\Delta V$ $Q = \Delta H$ $Q = H_p - H_r$

Combustion Chamber

 Burned and Unburned regions

Flame propagation

Constant Pressure

Heat Loss Example

A mixture of 1kmol of gaseous methane and air, originally at reference state, burns completely in a combustion chamber, at constant pressure. Determine the amount of heat the chamber loses if the Product temperature measured after combustion is 890K.

$$CH_4 + (O_2 + 3.76 \cdot N_2) \longrightarrow CO_2 + H_{2O} + N_2$$

Balanced

$$CH_4 + 2 \cdot (O_2 + 3.76N_2) \longrightarrow CO_2 + 2H_{2O} + 7.52N_2$$

$$Q = H_p - H_r$$
$$Q = \sum_{P} (n \cdot h) - \sum_{R} (n \cdot h)$$

Heat Loss Example

$$Q = H_p - H_r$$
$$Q = \sum_{P} (n \cdot h) - \sum_{R} (n \cdot h)$$

$$\sum_{P} (n \cdot h) = \frac{1 \cdot (h_{CO2}) + 2(h_{H2O}) + 7.52(h_{N2})}{\sum_{R} (n \cdot h) = 1(h_{CH4}) + 2 \cdot (h_{O2}) + 7.52(h_{N2})}$$

 $h = h_{form} + \Delta h$ $h = h_{form} + (h(T) - h(T_{ref}))$

A lot of terms Lets look at two of them.

Heat Loss Example-CO₂

 $H_{CO2} = 1 (h_{CO2}) = h_{form} + (h(T_p) - h(T_{ref}))$

	h° _f (kJ/kmol)	h at 298 K	h at 890 K
Carbon Dioxide	-393,520	9364	36876
Water Vapor H ₂ O	-241,820	9904	31429
Oxygen O ₂	0	8682	27584
Nitrogen N ₂	0	8669	26568
Methane Ch ₄	-74850		
Octane C ₈ H ₁₈	-249910		

 $H_{CO2} = -393520 + (36876 - 9364)$

 $H_{CO2} = -366008 \text{ kJ}$

Heat Loss Example-O₂

 $H_{O2} = 2 (h_{O2}) = 2 [h_{form} + (h(T_R) - h(T_{ref}))]$

	h° _f (kJ/kmol)	h at 298 K	h at 890 K
Carbon Dioxide	-393,520	9364	36876
Water Vapor H ₂ O	-241,820	9904	31429
Oxygen O ₂	0	8682	27584
Nitrogen N ₂	0	8669	26568
Methane Ch ₄	-74850		
Octane C ₈ H ₁₈	-249910		

 $H_{O2} = 2[0 + (8682 - 8682)]$ $H_{O2} = 0$

Heat Loss Example

The remaining terms are evaluated, using the above techniques.

 $Q = (h_{CO2} + 2h_{H2O} + 7.52 \cdot h_{N2}) - (h_{CH4} + 2 \cdot h_{O2} + 7.52 \cdot h_{N2})$

 $Q = [(-366008) + 2(-220295) + 7.52 \cdot (17899)] - [-74850 + 2(0) + 7.52 \cdot (0)]$

Q = -597148 kJ

597148 kJ of heat was lost to the surroundings.

Departures From Ideal

Combustion not always complete Insufficient Mixing Insufficient Air

May Lead to Knocking

Adiabatic Flame Temperature

- Adiabatic
 Conditions
- Limiting Value of Flame
 - Temperature
- Iterative Process

AFT Example

This problem has the same set of assumptions as the last problem. The only difference is that now we are assuming adiabatic flame conditions

 $CH_4 + 2(O_2 + 3.76N_2) \longrightarrow CO_2 + 2H_2O + 7.52 N_2$ $Q = H_P - H_R$ $H_P = H_R$

 $h_{CO2} + 2 \cdot (h_{H2O}) + 7.52 \cdot (h_{N2}) = (h_{CH4}) + 2 \cdot (h_{O2}) + 7.52 \cdot (h_{N2})$

AFT Example

evaluate the products:

 $H_{CO2} = (h_{formCO2} + h_{CO2}(T_P) - h_{CO2}(T_{ref}))$ $H_{H2O} = 2(h_{formH2O} + h_{H2O}(T_P) - h_{H2O}(T_{ref}))$

 $H_{N2} = 7.52(h_{formN2} + h_{N2}(T_P) - h_{N2}(T_{ref}))$

None of these enthalpy terms can be fully evaluated since T_p is unknown

Keeping it Real

Efficiency 5.4 5.2 How far does AFT 5 4.8 fall from actual? 4.6 flame temerature (K) (Thousands) 4.4 4.2 Factors influencing 3.8 p = 100 atm Dissociation 3.6 3.4 p = 10 atmChamber not really 3.2 p = 1 atm3 adiabatic 2.8 2.6 2.4

$\begin{array}{c} 2.8 \\ 2.6 \\ 2.4 \\ 2.2 \\ 0.2 \end{array} \begin{array}{c} 0.4 \\ 0.6 \\ 0.8 \\ O_2/(O_2 + N_2) \end{array}$

FIGURE 3.6

Adiabatic, constant-pressure flame temperature of stoichiometric methane-oxygen with nitrogen mixtures initially at 298 K.

Conclusion

- Premixed and Diffusion
 - Laminar and Turbulent
- Finding Qin
 - Balancing Chemical Equation
 - Energy Balance Equation
- Finding Adiabatic Flame Temperature
 - Gives Limit of Product Temperature
 - Dissociation, other factors decrease temperature