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Introduction

Turbulence has initially been defined as an irregular motion in fluids. The cloud
formations in the atmosphere and the motion of water in rivers make this point
clear. These are but a few readily available examples of a multitude of flows which
display turbulent regimes. From the blood that flows in our veins and arteries to
the motion of air within our lungs and around us. From the flow of water in creeks
to the atmospheric and oceanic currents. From the flows past submarines, ships,
automobiles, and aircrafts to the combustion processes propelling them. In the flow
of gas, oil, and water, from the prospecting end to the entrails of the cities. The great
majority of flows in nature and in engineering applications are somehow turbulent.

But turbulent flows are much more than simply irregular. More refined definitions
were desirable and were later coined. A definitive and precise one, however, may only
come when the phenomenon is fully understood. Nevertheless, several characteristic
properties of a turbulent flow can be listed:

Irregularity and unpredictability: A turbulent flow is irregular both in space
and time, displaying unpredictable, random patterns.

Statistical order: From the irregularity of a turbulent motion there emerges
a certain statistical order. Mean quantities and correlation are regular and
predictable (Figure 1).

Wide range of active scales: A wide range of scales of motion are active and
display an irregular motion, yielding a large number of degrees of freedom.

Mixing and enhanced diffusivity: The fluid particles undergo complicated
and convoluted paths, causing a large mixing of different parts of fluid. This
mixing significantly enhances diffusion, increasing the transport of momen-
tum, energy, heat, and other advected quantities.
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Figure 1. Illustration of the irregular motion of a turbulent flow over
a flat plate (thin lines), and of the well-defined velocity profile of the
mean flow (thick lines).

Vortex stretching: When a moving portion of fluid also rotates transversally
to its motion an increase in speed causes it to rotate faster, a phenomenon
called vortex stretching. This causes that portion of fluid to become thinner
and elongated, and fold and intertwine with other such portions. This is an
intrinsically three-dimensional mechanism which plays a fundamental role in
turbulence and is associated with large fluctuations in the vorticity field.

Turbulent regimes

Turbulence is studied from many perspectives. The subject of transition to turbu-

lence attempts to describe the initial mechanisms responsible for the generation of
turbulence starting from a laminar motion in particular geometries. This transition
can be followed with respect to position in space (e.g. the flow becomes more compli-
cated as we look further downstream on a flow past an obstacle or over a flat plate)
or to parameters (e.g. as we increase the angle of attack of a wing or the pressure gra-
dient in a pipe). This subject is divided into two cases: wall-bounded and free-shear
flows. In the former, the viscosity, which causes the fluid to adhere to the surface of
the wall, is the primary cause of the instability in the transition process. In the latter,
inviscid mechanisms such as mixing layers and jets are the main factors. The tools for
studying the transition to turbulence include linearization of the equations of motion
around the laminar solution, nonlinear amplitude equations, and bifurcation theory.

Fully-developed turbulence, on the other hand, concerns turbulence which evolves
without imposed constraints, such as boundaries and external forces. This can be
thought of turbulence in its “pure” form, and it is somewhat a theoretical frame-
work for research due to its idealized nature. Hypotheses of homogeneity (when the
mean quantities associated with the statistical order characterizing a turbulent flow
are independent in space), stationarity (idem in time), and isotropy (idem with re-
spect to rotations in space) concern fully-developed turbulent flows. The Kolmogorov
theory was developed in this context and it is the most fundamental theory of turbu-
lence. Current research is dedicated in great part to unveil the mechanisms behind
a phenomenon called intermittency and how it affects the laws obtained from the
conventional theory. Research is also dedicated to derive such laws as much from
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first principles as possible, minimizing the use of phenomenological and dimensional
analysis.

Figure 2. Illustration of a flow past an object, with a laminar bound-
ary layer (light gray), a turbulent boundary layer (medium gray), and
a turbulent wake (dark gray).

Real turbulent flows involve various regimes at once. A typical flow past a blunt
object, for instance, displays laminar motion at its upstream edge, a turbulent bound-
ary layer further downstream, and the formation of a turbulent wake (Figure 2). The
subject of turbulent boundary layer is a world in itself with current research aiming to
determine mean properties of flows over rough surfaces and varied topography. Con-
vective turbulence involves coupling with active scalars such as large heat gradients,
occurring in the atmosphere, and large salinity gradients, in the ocean. Geophysi-
cal turbulence involves also stratification and the anisotropy generated by the Earth
rotation. Anisotropic turbulence is also crucial in astrophysics and plasma theory.
Multiphase and multicomponent turbulence appear in flows with suspended particles
or bubbles and in mixtures such as gas, water, and oil. Transonic and supersonic flows
are also of great importance and fall into the category of compressible turbulence,
much less explored than the incompressible case.

In all those real situations one would like, from the engineering point of view, to
compute mean properties of the flow, such as drag and lift for more efficient designs
of aircrafts, ships, and other vehicles. Knowledge of the drag coefficient is also of
fundamental importance in the design of pipes and pumps, from pipelines to artificial
human organs. Mean turbulent diffusion coefficients of heat and other passive scalars
– quantities advected by the flow without interfering on it, such as chemical products,
nutrients, moisture, and pollutants – are also of major importance in industry, ecology,
meteorology, and climatology, for instance. And in most of those cases a large amount
of research is dedicated to the control of turbulence, either to increase mixing or
reduce drag, for instance. From a theoretical point of view, one would like to fully
understand and characterize the mechanisms involved in turbulent flows, clarifying
this fascinating phenomenon. This could also improve practical applications and lead
to a better control of turbulence.
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The concept of two-dimensional turbulence is controversial. A two-dimensional
flow may be irregular and display mixing, statistical order, and a wide range of active
scales but definitely it does not involve vortex stretching since the velocity field is
always perpendicular to the vorticity field. For this reason many researchers discard
two-dimensional turbulence altogether. It is also argued that real two-dimensional
flows are unstable at complicated regimes and soon develop into a three-dimensional
flow. Nevertheless, many believe that two-dimensional turbulence, even lacking vortex
stretching, are of fundamental theoretical importance. It may shed some light into
the three-dimensional theory and modeling, and it can serve as an approximation to
some situations such as the motion of the atmosphere and oceans in the large and
meso scales and some magneto-hydrodynamic flows. The relative shallowness of the
atmosphere and oceans or the imposition of a strong uniform magnetic field may force
the flow into two-dimensionality, at least for a certain range of scales.

Chaos serves as a paradigm for turbulence, in the sense that it is now accepted
that turbulence is a dynamic processes in a sensitive deterministic system. But not
all chaotic motions in fluids are termed turbulent for they may not display mixing
and vortex stretching or involve a wide range of scales. An important such example
appears in the dispersive, nonlinear interactions of waves.

The equations of motion

It is usually stressed that turbulence is a continuum phenomenon, in the sense that
the active scales are much larger than the collision mean free path between molecules.
For this reason, turbulence is believed to be fully accounted for by the Navier-Stokes
equations.

In the case of incompressible homogeneous flows, the Navier-Stokes equations in
the Eulerian form and in vector notation read

∂u

∂t
− ν∆u + (u · ∇)u + ∇p = f , (1a)

∇ · u = 0. (1b)

Here, u = u(x, t) = (u1, u2, u3) denotes the velocity vector of an idealized fluid particle
located at position x = (x1, x2, x3), at time t. The mass density in a homogeneous
flow is constant, denoted ρ. The constant ν denotes the kinematic viscosity of the
fluid, which is the molecular viscosity µ divided by ρ. The variable p = p(x, t) is the
kinematic pressure, and f = f(x, t) = (f1, f2, f3) denotes the mass density of volume
forces.

Equation (1a) expresses the conservation of linear momentum. The term ν∆u ac-
counts for the dissipation of energy due to molecular viscosity, and the nonlinear term
(u ·∇)u, also called the inertial term, accounts for the redistribution of energy among
different structures and scales of motion. Equation (1b) represents the incompress-
ibility condition. In Einstein’s summation convention these equations can be written
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as
∂ui

∂t
+ ν

∂2ui

∂x2
j

+ uj
∂ui

∂xj

+
∂p

∂xi

= fi,
∂uj

∂xj

= 0.

The Reynolds number

The transition to turbulence was carefully studied by Reynolds in the late 19th
century in a series of experiments in which water at rest in a tank was allowed to flow
through a glass pipe. Starting with dimensional analysis Reynolds argued that it was
likely to exist a critical value of a certain nondimensional quantity beyond which a
laminar flow gives rise to a “sinuous” motion. This was followed by observations of
the flow for tubes with different diameter L, different mean velocities U across the
tube section, and with the kinematic viscosity ν = ρ/µ being altered through changes
in temperature. The experiments confirmed the existence of such a critical value for
what is now called the Reynolds number:

Re =
LU

ν
.

The dimensional analysis argument can be reproduced in the following form: The
physical dimension for the inertial term in (1a) is U 2/L, while that for the viscous
term is νU/L2. The ratio between them is precisely Re = LU/ν. For small values of
Re viscosity dominates and the flow is laminar, while for large values of Re, the inertial
term dominates, and the flow becomes more complicated and eventually turbulent. In
applications, different types of Reynolds number can be used depending on the choice
of the characteristic velocity and length, but in any case the larger the Reynolds
number the more complicated the flow.

The Reynolds equations

Another advance put forward by Reynolds in a subsequent article was to decompose
the flow into a mean component and the remaining fluctuations. In terms of the
velocity and pressure fields this can be written as

u = ū + u′, p = p̄ + p′, (2)

with ū and p̄ representing the mean components and u′ and p′, the fluctuations.
By substituting (2) into (1) one finds the Reynolds-averaged Navier-Stokes (RANS)
equations for the mean flow:

∂ū

∂t
− ν∆ū + (ū · ∇)ū + ∇p̄ = f + ∇ · τ,

∇ · ū = 0.

It differs from (1) only by the addition of the Reynolds stress tensor:

τ = −u′ ⊗ u′ = −
(

u′
iu

′
j

)3

i,j=1
.
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In a laminar flow, the fluctuations are negligible, otherwise this decomposition shows
how they influence the mean flow through this additional turbulent stresses.

The closure problem and turbulence models

The RANS equations cannot be solved directly for the mean flow since the Reynolds
stresses are unknown. Equations for these stress terms can be derived but they
involve further unknown moments. This continues with equations for moments of a
given order depending on new moments up to a higher order, leading to an infinite
system of equations known as the Friedman-Keller system. For practical applications,
approximations closing the system at some finite order are needed, in which is called
the closure problem. Several ad-hoc approximations exists, the most famous being
the Boussinesq eddy-viscosity approximation, in which the turbulent fluctuations are
regarded as increasing the viscosity of the flow. Prandtl’s mixing-length hypothesis
yields a prescription for the computation of this eddy viscosity, and together they
form the basis of the algebraic models of turbulence. Other models involve additional
equations, such as the k-ε and k-ω models. Most of the practical computations of
industrial flows are based on such lower-order models, and a large amount of research
is done to determine appropriate values for the various ad-hoc parameters which
appear in these models and which are highly dependent on the geometry of the flow.
This dependency can be explained by the fact that the RANS is supposed to model
the mean flow even at the large scales of motion, which are highly affected by the
geometry.

Computational fluid dynamics (CFD) is indeed a fundamental tool in turbulence,
both for research and engineering applications. From the theoretical side, direct

numerical simulations (DNS), which attempt to resolve all the active scales of the
flow, reveal some fundamental mechanisms involved in the transition to turbulence
and in vortex-stretching. As for applications, DNS applies to flows up to low-Reynolds
turbulence, with the current computational power not allowing for a full resolution
of all the scales involved in high-Reynolds flows. And the current rate of evolution of
computational power predicts that this will continue so for several decades.

An intermediate CFD method between RANS and DNS is the large-eddy simulation

(LES), which attempts to fully resolve the large scales while modeling the turbulent
motion at the smaller scales. Several models have been proposed which have their
own advantages and limitations as compared to RANS and DNS. It is currently a
subject of intense research, particularly for the development of suitable models for
the structure functions near the boundary. Theoretical results on fully-developed
turbulence play a fundamental role in the modeling process.

LES are a promising tool and they have been successfully applied to a number of
situations. The choice of the best method for a given application, however, depends
very much on the Reynolds number of the flow and the prior knowledge of similar
situations for adjusting the parameters.
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Elements of the statistical theory

Several types of averages can be used. The ensemble average is taken with respect
to a number of experiments at nearly identical conditions. Despite the irregular
motion of, say the velocity vector u(n)(x, t) of each experiment n = 1, . . . , N , the
average value

ū(x, t) =
1

N

N
∑

n=1

u(n)(x, t)

is expected to behave in a more regular way. This type of averaging is usually denoted
with the symbol 〈 · 〉. This notion can be cast into the context of a probability space
(M, Σ,P), where M is a set, Σ is a σ-algebra of subsets of M, and P is a probability
measure on Σ. The velocity field is a random variable in the sense that it is a density
function ω 7→ u(x, t, ω) from M into the space of time-dependent divergence-free
velocity fields. The mean velocity field in this context is regarded as

〈u(x, t)〉 =

∫

M

u(x, t, ω) dP(ω).

Other flow quantities such as energy and correlations in space and time can be ex-
pressed by means of a function ϕ = ϕ(u(·, ·)) of the velocity field, with their mean
value given by

〈ϕ(u(·, ·))〉 =

∫

M

ϕ(u(·, ·, ω) dP(ω).

In general the statistics of the flow are allowed to change with time. A particu-
lar situation is when statistical equilibrium is reached, so that 〈u(x, t)〉, and, more
generally, 〈ϕ(u(·, · + t))〉 are independent of t. In this case, an ergodic assumption

is usually invoked, which means that for “most” individual flows u(·, ·, ω0) (i.e. for
almost all ω0 with respect to the probability measure P), the time averages along this
flow converge to the mean ensemble value as the period of the average increases, to
the mean value obtained by the ensemble average:

lim
T→∞

1

T

∫ T

0

ϕ(u(·, · + s, ω0)) ds =

∫

M

ϕ(u(·, ·, ω)) dP(ω).

Based on this assumption, the averages may in practice be calculated as time averages
over a sufficiently large period T . There is a related argument for substituting space
averages by time averages and based on the mechanics of turbulence which is called
the Taylor hypothesis.

Another fundamental concept in the statistical theory is that of homogeneity, which
is the spatial analog of the statistical equilibrium in time. In homogeneous turbulence

the statistical quantities of a flow are independent of translations in space, i.e.

〈ϕ(u(· + `, ·)〉 = 〈ϕ(u(·, ·)〉,
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for all ` ∈ R
3. The concept of isotropic turbulence assumes further independence

with respect to rotations and reflections in the frame of reference, i.e.

〈ϕ(Qtu(Q·, ·)〉 = 〈ϕ(u(·, ·)〉,

for all orthogonal transformations Q in R
3, with adjoint Qt.

Under the homogeneity assumption, mean quantities can be defined independently
of position in space, such as the mean kinetic energy per unit mass

e =
1

2
〈|u(x)|2〉 =

1

2

3
∑

j=1

〈|ui(x)|2〉

and the mean rate of viscous energy dissipation per unit mass and unit time

ε = ν

3
∑

i=1

〈|∇ui(x)|2〉 = ν

3
∑

i,j=1

〈

∣

∣

∣

∣

∂ui(x)

∂xj

∣

∣

∣

∣

2

〉.

The mean kinetic energy can be written as e = Tr R(0)/2, where Tr R(`) is the
trace

TrR(`) = R11(`) + R22(`) + R33(`), ` ∈ R
3,

of the correlation tensor

R(`) = 〈u(x) ⊗ u(x + `)〉 = (Rij(`))
3
i,j=1 = (〈ui(x)uj(x + `)〉)3

i,j=1,

which measures the correlation between the velocity components at different positions
in space. From the homogeneity assumption, this tensor is a function only of the
relative position `. Then, assuming that the Fourier transform of Tr R(`) exists, and
denoting it by Q(κ), for κ ∈ R

3, we have

Tr R(`) =
1

(2π)3/2

∫

R3

Q(κ)ei`·κ dκ = 2

∫ ∞

0

S(κ)ei`·κ dκ,

where S(κ) is the energy spectrum defined by

S(κ) =
1

2(2π)3/2

∫

|κ|=κ

Q(κ) dΣ(κ), ∀ κ > 0,

with dΣ(κ) denoting the area element of the 2-sphere of radius |κ|. Then we can
write

e =
1

2
〈|u(x)|2〉 =

1

2
Tr R(0) =

∫ ∞

0

S(κ) dκ.

By expanding the velocity coordinates into Fourier modes exp(` · κ), with κ ≤
|κ| ≤ κ + dκ and interpreting them as “eddies” with characteristic wavenumber |κ|,
the quantity S(κ)dκ can be interpreted as the energy of the component of the flow
formed by the “eddies” with characteristic wavenumber between κ and κ + dκ.

Similarly,

ε = 2ν

∫ ∞

0

κ2S(κ) dκ,
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and we obtain the dissipation spectrum 2νκ2S(κ), which can be interpreted as the
density of energy dissipation occurring at wavenumber κ.

In the previous arguments it is assumed that the flow extends to all the space
R

3. This avoids the presence of boundaries, addressing the idealized case of fully-
developed turbulence. It is sometimes customary to assume as well that the flow is
periodic in space, to avoid problems with unbounded domains such as infinite kinetic
energy.

The random nature of turbulent flows was greatly explored by Taylor in the early
20th century, who introduced most of the concepts described above. Another impor-
tant concept he introduced was the Taylor microlength `T , which is a characteristic
length for the small scales based on the correlation tensor. A microscale Reynolds
number based on the Taylor microlength is very often used in applications.

Kolmogorov theory

An inspiring concept in the theory of turbulence is Richardson’s energy cascade

process. For large Reynolds numbers the nonlinear term dominates the viscosity
according to the dimensional analysis, but this is valid only for the large-scale struc-
tures. The small scales have their own characteristic length and velocity. In the
cascade process, the inertial term is responsible for the transfer of energy to smaller
and smaller scales until small enough scales are reached for which viscosity becomes
important (Figure 3). At those smallest scales kinetic energy is finally dissipated into
heat. It should be emphasized that turbulence is a dissipative process; no matter how
large the Reynolds number is, viscosity plays a role in the smallest scales.

Figure 3. Illustration of the eddy breakdown process in which energy
is transferred to smaller eddies and so on until the smallest scales are
reached and the energy is dissipated by viscosity.

The Kolmogorov theory of locally isotropic turbulence allows for inhomogeneity
and anisotropy in the large scales, which contain most of the energy, assuming that
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with the cascade transfer of energy to smaller scales, the orienting effects generated
in the large scales become weaker and weaker so that for sufficiently small eddies
the motion becomes statistically homogeneous, isotropic, and independent of the
particular energy-productive mechanisms. He proposed that the statistical regime of
the small-scale eddies is then universal and depends only on ν and ε. The equilibrium

range is defined as the range of scales in which this universality holds.
Simple dimensional analysis shows that the only algebraic combination of ν and

ε with dimension of length is `ε = (ν3/ε)1/4, which is then interpreted as that near
which the viscous effect become important and hence most of the energy dissipation
takes place. The scale `ε is known as Kolmogorov dissipation length.

Kolmogorov theory gives particular attention to moments involving differences of
velocities, such as the pth order structure function

Sp(`)
def
= 〈(u(x + `e) · e − u(x) · e)p〉,

where e may be taken as an arbitrary unit vector thanks to the isotropy assumption.
By restricting the search for universal laws for the structure functions only for small
values of ` anisotropy and inhomogeneity are allowed in the large scales.

The theory assumes a wide separation between the energy-containing scales, of
order say `0, and the energy-dissipative scales, of order `ε, so that the cascade process
occurs within a wide range of scales ` such that `0 � ` � `ε. In this range, termed
the inertial range, the viscous effects are still negligible and the statistical regime
should depend only on ε. Then, the Kolmogorov two-thirds law asserts that within
the inertial range the second-order correlations must be proportional to (ε`)2/3, i.e.

S2(`) = CK(ε`)2/3,

for some constant CK known as the Kolmogorov constant in physical space (there is a
related constant in spectral space). The argument extends to higher-order structure
functions, yielding

Sp(`) = Cp(ε`)
p/3.

Kolmogorov’s derivation of these results was not by dimensional analysis, it was in
fact a more convincing self-similarity argument based on the universality assumed for
the equilibrium range. A different and more sounded argument, however, was applied
to the third-order structure function, yielding the more precise four-fifths law:

S3(`) = −
4

5
ε`.

The Kolmogorov five-third law concerns the energy spectrum S(κ) and is the spec-
tral version of the two-third law, given by Obukhoff:

S(κ) = C ′
Kε2/3κ−5/3,

The constant C ′
K is the Kolmogorov constant in spectral space. The spectral version

of the dissipation length is the Kolmogorov wavenumber κε = (ε/ν3)1/4.
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Figure 4. A typical distribution for the energy spectrum S(κ) and
the dissipation spectrum 2νκ2S(κ) in spectral space in nonlogarithmic
and logarithmic scales. The energy is mostly concentrated on the large
scales while the dissipation is concentrated near the dissipation scale. In
the logarithmic scale the four-fifths law for the energy spectrum stands
out as a straight line with slope −4/5 over the inertial range.

A typical distribution of energy in a turbulent flow is depicted in Figure 4. The
energy is concentrated on the large scales, while the dissipation is concentrated near
the Kolmogorov scale `ε. The four-fifths law becomes visible as a straight line in the
logarithmic scale.

A more precise mechanism for the energy cascade assumes that in the inertial
range eddies with length scale ` transfer kinetic energy to smaller eddies during their
characteristic time scale, also known as circulation time. If u` is their characteristic
velocity, then τ` = `/u` is their circulation time, so that the kinetic energy transferred
from these eddies during this time is

ε` ∼
u2

`

τ`
=

u3
`

`
.

In statistical equilibrium, the energy lost to the smaller scales equals the energy gained
from the larger scales, and that should also equal the total kinetic energy dissipated
by viscous effects. Hence, ε` ≡ ε, and we find

ε ∼
u3

`

`
.

It also follows that τ` = `/u` = `(ε`)−1/3 = ε−1/3`2/3 so that the circulation time
decreases with the length scale and becomes of the order of the viscous dissipation
time (ν/ε)1/2 precisely when ` ∼ `ε.

A similar relation between ε and the large scales can also be obtained with heuristic
arguments: Let e be the mean kinetic energy and `0, a characteristic length for the
large scales. Then u0 given by e = u2

0/2 is a characteristic velocity for the large scales,
and τ0 = `0/u0 is the large-scale circulation time. In statistical equilibrium the rate
ε of kinetic energy dissipated per unit time and unit mass is expected to be of the
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order of e/τ0, hence

ε ∼
u3

0

`0

,

which is called the energy dissipation law.

From the energy dissipation law several relations between characteristic quantities
of turbulent flows can be obtained, such as `0/`ε ∼ Re3/4, for Re = `0u0/ν.

PSfrag replacements

`0

`ε

Figure 5. A schematic representation of a flow structure displaying a
range of active scales and a three-dimensional grid with linear dimension
`0 and mesh-length `ε, sufficient to represent all the active scales in a
turbulent flow. The number of degrees of freedom is the number of
blocks: (`0/`ε)

3.

Now, assuming the active scales in a turbulent flow exist down to the Kolmogorov
scale `ε, one needs a three-dimensional grid with mesh spacing `ε to resolve all the
scales, which means that the number N of degrees of freedom of the system is of
the order of N ∼ (`0/`ε)

3 (see Figure 5). This number can be estimated in terms
of the Reynolds number by N ∼ Re9/4. This relation is important in predicting the
computational power needed to simulate all the active scales in turbulent flows.

Several such universal laws can be deduced and extended to other situations such
as turbulent boundary layers, with the famous logarithmic law of the wall. They
play a fundamental role in turbulence modeling and closure, for the calculation of the
mean flow and other quantities.

Intermittency

The universality hypothesis based on a constant mean energy dissipation rate
throughout the flow received some criticisms and was later modified by Kolmogorov
in an attempt to account for observed large deviations on the mean rate of energy
dissipation. Such phenomenon of intermittency is related to the vortex stretching and
thinning mechanism, which leads to the formation of coherent structures of vortex
filaments of high vorticity and low dissipation (Figure 6). These filaments have di-
ameter as small as the Kolmogorov scale and longitudinal length extending from the
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Taylor scale up to the large scales and with a lifetime of the order of the large-scale
circulation time.

Figure 6. A portion of rotating fluid gets stretched and thinned as
the flow speeds up, generating one of many coherent structures of high
vorticity and low dissipation.

It has been argued based on experimental evidence that intermittency leads to
modified power laws Sp(`) ∝ `ζ(p), ζ(p) < p/3, for high-order (p > 3) structure func-
tions. The issues of intermittency and coherent structures and whether and how they
could affect the deductions of the universality theory such as the power laws for the
structure functions are far from settled and are currently one of the major and most
fascinating issues being addressed in turbulence theory. Several phenomenological
theories attempt to adjust the universality theory to the existence of such coherent
structures. Multifractal models, for instance, suppose that the eddies generated in
the cascade process do not fill up the space and form multifractal structures. Field-

theoretic renormalization group develops techniques based on quantum-field renor-
malization theory. Intermediate-asymptotics also exploits self-similar analysis and
renormalization theory but with a somewhat different flavor. Detailed mathematical
analysis of the vorticity equations are also playing a major role in the understanding
of the dynamics of the vorticity field.

Mathematical aspects of turbulence theory

From a mathematical perspective it is fundamental to develop a rigorous back-
ground upon which to study the physical quantities of a turbulent flow. The first
problem in the mathematical theory is related to the deterministic nature of chaotic
systems assumed in dynamical system theory and believed to hold in turbulence.
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This has actually not been proved for the Navier-Stokes equations. It is in fact one of
the most outstanding open problems in mathematics to determine whether given an
initial condition for the velocity field there exists, in some sense, a unique solution of
the Navier-Stokes equations starting with this initial condition and valid for all later
times. It has been proved that a global solution (i.e. valid for all later times) exist
but which may not be unique, and it has been proved that unique solutions exist
which may not be global (i.e. they are guaranteed to exist as unique solutions only
for a finite time).

The difficulty here is the possible existence of singularities in the vorticity field
(vorticity becoming infinite at some points in space and time). Depending on how
large the singularity set is uniqueness may fail in strictly mathematical terms. The
existence of singularities may not be a purely mathematical curiosity, it may in fact
be related with the intermittency phenomenon. Rigorous studies of the vorticity
equation may continue to reveal more fundamental aspects on vortex dynamics and
coherent structures.

The statistical theory has also been put into a firm foundation with the notion
of statistical solution of the NSE. It addresses the existence and regularity of the
probability distribution assumed for turbulent flows and of the fundamental elements
of the statistical theory such as correlation functions and spectra. Based on that, a
number of relations between physical quantities of turbulent flows may be derived in
a mathematically sounded and definitive way. This does not replace other theories,
it is mostly a mathematical framework upon which other techniques can be applied
to yield rigorous results.

Despite the difficulties in the mathematical theory of the NSE some successes have
been collected such as estimates for the number of degrees of freedom in terms of
fractal dimensions of suitable sets associated with the solutions of the NSE, and
partial estimates of a number of relations derived in the statistical theory of fully-
developed turbulence.

See also

Dynamical systems in fluid dynamics. Ergodic motions, chaos, and at-

tractors. Geophysical fluid dynamics. Lyapunov exponents, strange at-

tractors. Multi-scale approach and asymptotics. Newtonian fluids and

thermohydraulics. Numerical methods in fluid dynamics.
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