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Variance Reduction Methods II

1 Importance Sampling

Suppose we wish to estimate θ := P(X ≥ 20) = E[I{X≥20}] where X ∼ N(0, 1). The raw estimator given by
the “usual approach” is obtained as follows:

1. Generate X1, . . . , Xn IID N(0, 1)

2. Set Ij = I{Xj≥20} for j = 1, . . . , n

3. Set θ̂n =
∑n

j=1 Ij/n

4. Compute approximate CI’s

For this problem, however, the usual approach would be completely inadequate since approximating θ to any
reasonable degree of accuracy would require n to be inordinately large. For example, on average we would have
to set n ≈ 2.7014× 1089 in order to obtain just one non-zero value of I.1 Clearly this is impractical and a much
smaller value of n would have to be used. Using a much smaller value of n, however, would almost inevitably
result in an estimate, θ̂n = 0, and an approximate confidence interval [L,U ] = [0, 0]! So the naive approach
does not work. We could try to use the variance reduction techniques we have seen in the course so far, but
they would provide little, if any, help.2

Before proceeding any further, it is not unreasonable to ask why such a problem would be important. After all,
if you want to estimate θ = P(X ≥ 20), isn’t it enough to know that θ is very close to 0? Put another way, who
cares whether θ = 10−10 or θ = 10−20? For many problems, this is a valid objection, and indeed for such
problems the answer is that we don’t care. However, for many other other problems it is very important to know
θ to a much greater level of accuracy.

For example, suppose we are designing a nuclear power plant and we want to estimate the probability, θ, of a
meltdown occurring sometime in the next 100 years. Then to start with, we would expect θ to be very small,
even for a poorly designed power plant. However, this is not enough. Should a meltdown occur, then clearly the
consequences would be extremely significant and we care enough about those consequences that we want to
know θ to a high degree of accuracy.

As another example, suppose we want to price a deep-out-of-the-money option using simulation. Then the price
of the option will be very small, perhaps lying between 10 cents and .1 cents. Clearly a bank is not going to
suffer if it misprices an option and sells it for .1 cents when the correct value is 10 cents. But what if the bank
sells 1 million of these options? And what if the bank makes similar trades several times a week? Then it
becomes very important to price the option correctly.

Note that both of these examples involve estimating the probability of a rare event. Even though the events are
rare, they are very important because when they do occur, their impact can be very significant. We will study
importance sampling, a variance reduction technique that can be invaluable when estimating rare event
probabilities and expectations.3

1We will see where this figure comes from later.
2Why is this?
3It can of course also be used for estimating non rare event probabilities and expectations but it is not as useful in such

circumstances. An exception to this statement is when importance sampling is easier than the regular simulation method.
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1.1 The Importance Sampling Estimator

Suppose we wish to estimate θ = Ef [h(X)] where X has PDF4 f(·). Let g(·) be another PDF with the
property that g(x) 6= 0 whenever f(x) 6= 0. That is, g has the same support as f . Then

θ = Ef [h(X)] =
∫

h(x)f(x) dx

=
∫

h(x)
f(x)
g(x)

g(x) dx.

Since g is a PDF, it is therefore also the case that

θ = Eg

[
h(X)f(X)

g(X)

]

where Eg[ · ] denotes an expectation with respect to the density g(·). This has very important implications for
estimating θ. The original simulation method is to generate n samples of X from the density, f(·), and set

θ̂n =
∑

h(Xj)/n. An alternative method, however, is to generate n values of X from the density, g(·), and set

θ̂n,is =
n∑

j=1

h(Xj)f(Xj)
ng(Xj)

.

θ̂n,is is then5 an importance sampling estimator of θ.

Notation
Suppose we wish to estimate θ = Ef [h(X)] where X has PDF, f(·). We saw above that it is also the case that

θ = Eg

[
h(X)f(X)

g(X)

]

where g is another PDF with the same support as f . Then we define

h∗(X) :=
h(X)f(X)

g(X)

so that θ = Eg[h∗(X)]. We will refer to f as the original density, and call g the importance sampling density6

or simply, the sampling density.

Example 1 (Estimating P(X ≥ 20))

Consider again our original problem where we want to estimate

θ = P(X ≥ 20) = E[I{X≥20}]

when X ∼ N(0, 1). We may then write

θ = E[I{X≥20}] =
∫ ∞

−∞
I{X≥20}

1√
2π

e−
x2
2 dx

=
∫ ∞

−∞
I{X≥20}




1√
2π

e−
x2
2

1√
2π

e−
(x−µ)2

2


 1√

2π
e−

(x−µ)2

2 dx

4Or PMF, if X is a discrete random variable.
5We will see later where the name “importance sampling” comes from.
6Obviously if X was discrete we would use mass function in place of density function.
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=
∫ ∞

−∞
I{X≥20}e−µx+µ2/2 1√

2π
e−

(x−µ)2

2 dx

= Eµ

[
I{X≥20}e−µX+µ2/2

]

where now X ∼ N(µ, 1). (This is clear from our notation, Eµ[ . ].) Let us now estimate θ by simulating X from
the N(µ, 1) distribution, so that

g(x) =
1√
2π

e−
(x−µ)2

2 .

If we set µ = 20, for example, then we have the following Matlab code.

Matlab Code for Estimating P(X ≥ 20)

> n=1000000;
> mu=20;
> x=randn(n,1) + mu;
> hprime = [x >= 20] .*exp(-mu*x + mu^2/2);
> theta_est = mean(hprime)

theta_est = 2.7514e-089

> se = std(hprime)

se = 1.3526e-088

> CI95 = [theta_est - 1.96*se/sqrt(n), theta_est + 1.96*se/sqrt(n)]

CI95 = 1.0e-088 *

0.2725 0.2778

We can of course also estimate expectations using importance sampling.

Example 2

Suppose we wish to estimate θ = E[X4eX2/4I{X≥2}] where X ∼ N(0, 1). Then the same argument as before
implies that we may also write

θ = Eµ[X4eX2/4e−µX+µ2/2I{X≥2}]

where now X ∼ N(µ, 1). In our importance sampling notation we would write

θ = Eg[X4eX2/4e−µX+µ2/2I{X≥2}]

where g refers to the N(µ, 1) distribution.

In general, we have the following importance sampling algorithm for estimating θ = Ef [h(X)] where we
simulate with respect to the sampling density, g(·).
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Importance Sampling Algorithm for Estimating θ = Ef [h(X)]

for j = 1 to n

generate Xj from density g(·)
set h∗j = h(Xj)f(Xj)/g(Xj)

end for
set θ̂n,is =

∑n
j=1 h∗j/n

set σ̂2
n,is =

∑n
j=1(h

∗
j − θ̂n,is)2/(n− 1)

set approx. 100(1− α) % CI = θ̂n,is ± z1−α/2
σ̂n,is√

n

1.2 The General Formulation

Let X = (X1, . . . , Xn) be a random vector with joint PDF f(x1, . . . , xn) and suppose we wish to estimate
θ = Ef [h(X)]. Let g(x1, . . . , xn) be another PDF such that g(x) 6= 0 whenever f(x) 6= 0. Then

θ = Ef [h(X)] =
∫

x1

. . .

∫

xn

h(x1, . . . , xn)f(x1, . . . , xn) dx1 . . . dxn

=
∫

x1

. . .

∫

xn

h(x1, . . . , xn)
f(x1, . . . , xn)
g(x1, . . . , xn)

g(x1, . . . , xn) dx1 . . . dxn

= Eg[h∗(X)]

where

h∗(X) :=
h(X)f(X)

g(X)
.

So now, we again have two methods for estimating θ: the original method where we simulate with respect to
the density function f , and the importance sampling method where we simulate with respect to the density
function, g.

Example 3 (Estimating θ = P
(∑n

i=1 X2
i ≥ 50

)
)

Suppose we wish to estimate θ = P
(∑n

i=1 X2
i ≥ 50

)
where the Xi’s are IID N(0, 1). Then θ = E[h(X)] where

h(X) := I{∑X2
i
≥50} and X := (X1, . . . , Xn). We could estimate θ using importance sampling as follows.

θ = E[h(X)] =
∫

x1

. . .

∫

xn

e−x2
1/2

√
2π

. . .
e−x2

n/2

√
2π

I{∑X2
i
≥50} dx1 . . . dxn

= σn

∫

x1

. . .

∫

xn

(
e−x2

1/2

e−x2
1/2σ2 . . .

e−x2
n/2

e−x2
n/2σ2

)
e−x2

1/2σ2

√
2πσ2

. . .
e−x2

n/2σ2

√
2πσ2

I{∑X2
i
≥50} dx1 . . . dxn

= σn

∫

x1

. . .

∫

xn

(
e−

x2
1
2 (1−1/σ2) . . . e−

x2
n
2 (1−1/σ2)

)
e−x2

1/2σ2

√
2πσ2

. . .
e−x2

n/2σ2

√
2πσ2

I{∑X2
i
≥50} dx1 . . . dxn

= Eg

[
σn

(
e−

X2
1
2 (1− 1

σ2 ) . . . e−
X2

n
2 (1− 1

σ2 )

)
I{∑X2

i
≥50}

]

= Eg[h∗(X)]
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where Eg[.] denotes expectation under a multivariate normal distribution where the Xi’s are IID N(0, σ2). So to
estimate θ using importance sampling we could use the following algorithm.

for j = 1 to m

generate Xj = (X1,j , . . . , Xn,j) where Xi,j ∼ IID N(0, σ2)

set Yj = σn

(
e−

X2
1,j
2 (1− 1

σ2 ) . . . e−
X2

n,j
2 (1− 1

σ2 )

)
I{∑

i
X2

i,j
≥100}

end for
set θ̂m,is =

∑m
j=1 Yj/m

set σ̂2
m,is =

∑m
j=1(Yj − θ̂m,is)2/(m− 1)

set approx. 100(1− α) % CI = θ̂m,is ± z1−α/2
σ̂m,is√

n

So far we have not addressed the issue of how to choose a good sampling density, g, so that we obtain a
variance reduction when we sample from g instead of f . We will now address this question in the next two
sections, as well as explaining the term, “importance sampling”.

1.3 Obtaining a Variance Reduction

As before, suppose we wish to estimate θ = Ef [h(X)] where X is a random vector with joint PDF, f . We will
assume that h(X) ≥ 0. Now let g be another density with support equal to that of f . Then we know

θ = Ef [h(X)] = Eg[h∗(X)]

and this gives rise to two estimators:

1. h(X) where X ∼ f(·)
2. h∗(X) where X ∼ g(·)

The variance of the importance sampling estimator is given by

Varg(h∗(X)) =
∫

h∗(x)2g(x) dx − θ2

=
∫

h(x)2f(x)
g(x)

f(x) dx − θ2

while the variance of the original estimator is given by

Varf (h(X)) =
∫

h(x)2f(x) dx − θ2.

So the reduction in variance7 is then given by

Varf (h(X))−Varg(h∗(X)) =
∫

h(x)2
(

1− f(x)
g(x)

)
f(x) dx. (1)

In order to achieve a variance reduction, the integral in (1) should be positive. For this to happen, we would like

1. f(x)/g(x) > 1 when h(x)f(x) is small and

7A negative reduction means a variance increase.
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2. f(x)/g(x) < 1 when h(x)f(x) is large.

Now the important part of the density, f , could plausibly be defined to be that region, A say, in the support of
f where h(x)f(x) is large. But, by the above observation, we would like to choose g so that f(x)/g(x) is small
whenever x is in A. That is, we would like a density, g, that puts more weight on A: hence the name
importance sampling. Note that when h involves a rare event so that h(x) = 0 over “most” of the state space,
it can then be particularly valuable to choose g so that we sample often from that part of the state space where
h(x) 6= 0. This is why importance sampling is most useful for simulating rare events. Further guidance on how
to choose g is obtained from the following observation.

As we are free to choose g, let’s suppose we choose8 g(x) = h(x)f(x)/θ. Then it is easy to see that

Varg(h∗(X)) = θ2 − θ2 = 0

so that we have a zero variance estimator! This means that if we sample with respect to this particular choice of
g, then we would only need one sample and this sample would equal θ with probability one.9 Of course this is
not feasible in practice. After all, since it is θ that we are trying to estimate, it does not seem likely that we
could simulate a random variable whose density is given by g(x) = h(x)f(x)/θ. However, all is not lost and this
observation can often guide us towards excellent choices of g that lead to extremely large variance reductions.

1.4 How to Choose a Good Sampling Distribution

We saw above that if we could choose g(x) = h(x)f(x)/θ, then we would obtain the best possible estimator of
θ, that is, one that has zero variance. In general, we cannot do this, but it does suggest that if we could choose
g(·) so that it is similar to h(·)f(·), then we might reasonably expect to obtain a large variance reduction.

What does the phrase “similar” mean? One obvious thing to do would be to choose g(·) so that it has a similar
shape to h(·)f(·). In particular, we could try to choose g so that g(x) and h(x)f(x) both take on their
maximum values at the same value, x∗, say. When we choose g this way, we say that we are using the
maximum principle. Of course this only partially defines g since there are infinitely many density functions
that could take their maximum value at x∗. Nevertheless, this is often enough to obtain a significant variance
reduction and in practice, we often take g to be from the same family of distributions as f . For example, if f is
multivariate normal, then we might also take g to be multivariate normal but with a different mean vector and /
or variance-covariance matrix.10

Example 4 (Example 2 Continued)

Recall that we wish to estimate θ = E[h(X)] = E[X4eX2/4I{X≥2}] where X ∼ N(0, 1). Then if we sample from
a PDF, g, that is also normal with variance 1, but mean µ, we know that g(·) takes it maximum value at x = µ.
Therefore, a good choice of µ might be

µ = arg max
x

h(x)f(x)

= arg max
x

x4ex2/4I{x≥2}
e−x2/2

√
2π

= arg max
x≥2

x4e−x2/4

=
√

8.

8Note that this choice of g is valid since
∫

g(x) dx = 1 and we have assumed h is non-negative.
9Recall that with this choice of g, h∗(x) = h(x)f(x)/g(x) = θ.

10We note that it is not necessary that f and g come from the same family of distributions. In fact sometimes it is necessary
to choose g from a different family of distributions. This might occur, for example, if it is difficult or inefficient to simulate
from the family of distributions to which f belongs. In that case, our reason for using importance sampling in the first place is
so that we can simulate from an ‘easier’ distribution, g.
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Then, as we saw before, θ = Eg[h∗(X)] = Eg[X4eX2/4e−µX+µ2/2I{X≥2}] where g(·) denotes the N(µ, 1) PDF.

So to estimate θ, we might use the following algorithm where we have set µ =
√

8.

for j = 1 to m

generate Xj ∼ N(
√

8, 1)
set h∗j = X4

j eX2
j /4e−

√
8Xj+4I{Xj≥2}

end for
set θ̂m,is =

∑m
j=1 h∗j/m

set σ̂2
m,is =

∑m
j=1(h

∗
j − θ̂m,is)2/(m− 1)

set approx. 100(1− α) % CI = θ̂m,is ± z1−α/2
σ̂m,is√

n

Example 5 (Pricing an Asian call option)

For the purpose of option pricing, we assume as usual that St ∼ GBM(r, σ2), where St is the price of the stock
at time t and r is the risk-free interest rate. Suppose now that we want to price an Asian call option whose
payoff at time t is given by

h(S) := max
(

0,

∑m
i=1 SiT/m

m
−K

)
(2)

where S := {SiT/m : i = 1, . . . , m}, T is the expiration date and K is the strike price. The price of this option
is then given by

Ca = E[e−rT h(S)].

Now we can write
SiT/m = S0e

(r−σ2/2) iT
m +σ

√
T
m (X1+...+Xi)

where the Xi’s are IID N(0, 1). This means that if f is the joint PDF of X = (X1, . . . , Xm), then (with a mild
abuse of notation) we may write

Ca = Ef [h(X1, . . . , Xn)].

Now if K is large relative to S0 then the option is said to be out-of-the-money which means that most of the
time, the option expires worthless, or unexercised. Pricing such options using simulation amounts to doing a rare
event simulation. This is particularly true when K is very large relative to S0, and the option is deep
out-of-the-money. As a result, estimating Ca using importance sampling will often result in a very large variance
reduction. In order to apply importance sampling, we need to choose the sampling density, g(·). For this, we
could take g(·) to be multivariate normal with variance-covariance matrix equal to the identity, Im, and mean
vector, µ∗. That is we shift f(x) by µ∗. As before, a good possible value of µ∗ might be

µ∗ = arg max
x

h(x)f(x)

which can be found using numerical methods.

1.4.1 Potential Problems with the Maximum Principle

Sometimes applying the maximum principle to choose g(·) will be difficult. For example, it may be the case that
there are multiple or even infinitely many solutions to µ∗ = arg maxx h(x)f(x). Even when there is a unique
solution, it may be the case that finding it is very difficult. In such circumstances, an alternative method for
choosing g is to scale f . We will demonstrate this by example.



Variance Reduction Methods II 8

Example 6 (Using Scaling to Select g(·))
Assume in Example 3 that n = 2. Then θ = P

(
X2

1 + X2
2 ≥ 50

)
= E[I{X2

1+X2
2≥50}] where X1, X2 are IID

N(0, 1). Then

h(x)f(x) = I{x2
1+x2

2≥50}
e−(x2

1+x2
2)/2

2π
.

Therefore, h(x)f(x) = 0 inside the circle x2
1 + x2

2 ≤ 50 and it takes on its maximum value at every point on the
circle x2

1 + x2
2 = 50. As a result, it is not possible to apply the maximum principle.

Before choosing a sampling density, g, recall that we would like g to put more weight on those parts of the
sample space where h(x)fx(x) is large. One way to achieve this is by scaling the density of X = (X1, X2) so
that X is more “dispersed”. For example, we could take g to be multivariate normal with mean vector 0 and
variance-covariance matrix

Σg =
(

σ2 0
0 σ2

)

where σ2 > 1. Note that this simply means that under g, X1 and X2 are IID N(0, σ2). Furthermore, when
σ2 > 1, then more probability mass is given to the region X2

1 + X2
2 ≥ 50 as desired.

We should choose the value of σ using heuristic methods. One method would be to choose σ so that
Eg[X2

1 + X2
2 ] = 50 which in this case would imply that σ = 5. Why? Then11

θ = E[I{X2
1+X2

2≥50}] = Eg

[
σ2 exp

(
−X2

1

2
(1− 1/σ2)− X2

2

2
(1− 1/σ2)

)
I{X2

1+X2
2≥50}

]
.

For the more general case where n > 2, we could proceed by again choosing σ so that Eg[
∑n

i=1 X2
i ] = 50.

1.5 Tilted Densities

A common way of generating the sampling density, g, from the original density, f , is to use the moment
generating function (MGF) of X. We use Mx(t) to denote the MGF and it is defined by

Mx(t) = Ef [etX ].

Then a tilted density of f is given by

ft(x) =
etxf(x)
Mx(t)

for −∞ < t < ∞. The tilted densities are useful since a random variable with density ft(·) tends to be larger
than one with density f when t > 0, and smaller when t < 0. This means, for example, that if we want to
sample more often from the region where X tends to be large, we might want to use a tilted density with t > 0
as our sampling density g. Similarly, if we want to sample more often from the region where X tends to be
small, then we might use a tilted density with t < 0.

Example 7

Suppose X is an exponential random variable with mean 1/λ. Then f(x) = λe−λx for x ≥ 0, and it is easy to
see that ft(x) = Ce−(λ−t)x where C is the constant that makes the density integrate to 1.

Example 8

Suppose X1, . . . , Xn are independent random variables, where Xi has density fi(·). Let Sn :=
∑n

i=1 Xi and
suppose we want to estimate θ := P(Sn ≥ a) for some constant, a. If a is large so that we are dealing with a

11This is the same expression we had earlier in Example 3 except n =2.
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rare event we should use importance sampling to estimate θ. Since Sn is large when the Xi’s are large it makes
sense to sample each Xi from its tilted density function, fi,t(·) for some value of t > 0. Then we may write

θ = E[I{Sn≥a}]

= Et

[
I{Sn≥a}

n∏

i=1

fi(Xi)
fi,t(Xi)

]

= Et

[
I{Sn≥a}

(
n∏

i=1

Mi(t)

)
e−tSn

]

where Et[.] denotes expectation with respect to the Xi’s under the tilted densities, fi,t(·), and Mi(t) is the
moment generating function of Xi. If we write M(t) :=

∏n
i=1 Mi(t), then it is easy to see that the importance

sampling estimator, θ̂n,i, satisfies

θ̂n,i ≤ M(t)e−ta. (3)

Therefore a good choice of t would be that value that minimizes the bound in (3). Why is this? See Ross
(2002) for further details.

1.6 Estimating Conditional Expectations

Importance sampling can also be very useful for computing conditional expectations when the event being
conditioned upon is a rare event. For example, suppose we wish to estimate

θ = E[h(X)|X ∈ A]

where A is a rare event and X is a random vector with PDF f . Then the density of X, given that X ∈ A, is

f(x|x ∈ A) =
f(x)

P(X ∈ A)
for x ∈ A

so

θ =
E[h(X)I{X∈A}]

E[I{X∈A}]
.

Now since A is a rare event we would be much better off if we could simulate using a sampling density, g, that
makes A more likely to occur. Then, as usual, we would have

θ =
Eg[h(X)I{X∈A}f(X)/g(X)]

Eg[I{X∈A}f(X)/g(X)]
.

So to estimate θ using importance sampling, we would generate X1, . . . ,Xn with density g(·), and set

θ̂n,i =
∑n

i=1 h(Xi)I{Xi∈A}f(Xi)/g(Xi)∑n
i=1 I{Xi∈A}f(Xi)/g(Xi)

.

In contrast to our usual estimators, θ̂n,i is no longer an average of n IID random variables but instead, it is the
ratio of two such averages. This has implications for computing approximate confidence intervals for θ. In
particular, confidence intervals should now be estimated using the bootstrapping technique.12

An important application of this methodology in financial engineering is the estimation of conditional
value-at-risk. For example, suppose a bank has estimated that its 10 day 99% VAR is 1 million dollars. That is,
the probability of losing more than 1 million dollars over the next 10 days is approximately 1− .99 = .01. In this
case, the conditional value-at-risk is the expected loss over the next 10 days given that the loss is greater than 1
million dollars.13

12See Ross, Chapter 7, for details. We will not study the bootstrapping technique in this course.
13Sometimes banks like to reduce their VAR by adopting various hedging strategies but in so doing, it is quite possible that

they are actually increasing their conditional VAR. This is hardly desirable.
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1.7 Difficulties with Importance Sampling

The most difficult aspect to importance sampling is in choosing a good sampling density, g. In general, one
needs to be very careful for it is possible to choose g according to some good heuristic such as the maximum
principle, but to then find that g results in a variance increase. In fact it is possible to choose a g that results in
an importance sampling estimator that has an infinite variance! This situation would typically occur when g puts
too little weight relative to f on the tails of the distribution.

2 Stratified Sampling

Consider a game show where contestants first pick a ball at random from an urn and then receive a payoff, Y.
The payoff is random and depends on the color of the selected ball so that if the color is c then Y is drawn from
the PDF, fc(·). The urn contains red, green, blue and yellow balls, and each of the four colors is equally likely to
be chosen. The producer of the game show would like to know how much a contestant will win on average when
he plays the game. To answer this question, she decides to simulate the payoffs of n contestants and take their
average payoff as her estimate. The payoff, Y , of each contestant is simulated as follows:

1. Simulate a random variable, I, where I is equally likely to take any of the four values r, g, b and y

2. Simulate Y from the density fI(y).

The average payoff, θ := E[Y ], is then estimated by

θ̂n :=

∑n
j=1 Yj

n
.

Now suppose n = 1000, and that a red ball was chosen 246 times, a green ball 270 times, a blue ball 226 times
and a yellow ball 258 times.

Question: Would this influence your confidence in θ̂n? What if fg tended to produce very high payoffs and fb

tended to produce very low payoffs?

Is there anything that we could have done to avoid this type of problem occurring? The answer is yes. We know
that each ball color should be selected 1/4 of the time so we could force this to be true by conducting four
separate simulations, one each to estimate E[X|I = c] for c = r, g, b, y. Note that

E[Y ] = E[E[Y |I]] =
1
4
E[Y |I = r] +

1
4
E[Y |I = g] +

1
4
E[Y |I = b] +

1
4
E[Y |I = y]

so that an unbiased estimator of θ is obtained by setting

θ̂st,n :=
1
4
θ̂r,nr +

1
4
θ̂g,ng +

1
4
θ̂b,nb

+
1
4
θ̂y,ny (4)

where θc := E[Y |I = c] for c = r, g, b, y.14

How does the variance of θ̂st,n compare with the variance of θ̂n, the original raw simulation estimator? To
answer this question, assume for now that nc = n/4 for each c, and that Yc is a sample from the density, fc(·).
Then a fair15 comparison of Var(θ̂n) with Var(θ̂st,n) should compare

Var(Y1 + Y2 + Y3 + Y4) with Var(Yr + Yg + Yb + Yy) (5)

14θ̂c,nc is an estimate of θc using nc samples. θ̂st,n is an estimate of θ using n samples, so it is implicitly assumed in (4) that
nr + ng + nb + ny = n.

15Fair here means that each estimator is based on the same total number of samples.
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where Y1, Y2, Y3 and Y4 are IID samples from the original simulation algorithm (i.e., where we first select the
ball randomly and then receive the payoff), and the Yc’s are independent with density fc(·), for c = r, g, b, y.
Now recall the conditional variance formula which states

Var(Y ) = E[Var(Y |I)] + Var(E[Y |I]). (6)

Each term in the right-hand-side of (6) is non-negative so this implies

Var(Y ) ≥ E[Var(Y |I)]

=
1
4
Var(Y |I = r) +

1
4
Var(Y |I = g) +

1
4
Var(Y |I = b) +

1
4
Var(Y |I = y)

=
Var(Yr + Yg + Yb + Yy)

4

which implies
Var(Y1 + Y2 + Y3 + Y4) = 4Var(Y ) ≥ Var(Yr + Yg + Yb + Yy). (7)

As a result, we may conclude that using θ̂st,n instead of θ̂n leads to a variance reduction. This variance
reduction will be substantial if I accounts for a large fraction of the variance of Y . Note also that the
computational requirements for computing θ̂st,n are similar16to those required for computing θ̂n.

We call θ̂st,n a stratified sampling estimator of θ, and we say that I is the stratification variable.

2.1 Stratified Sampling Algorithm

We will now formally describe the stratified sampling algorithm. Suppose as usual that we wish to estimate
θ := E[Y ] where Y is a random variable. Let W be another random17 variable that satisfies the following two
conditions:

Condition 1: For any ∆ ⊆ R, P(W ∈ ∆) can be easily computed.

Condition 2: It is easy to generate (Y |W ∈ ∆), i.e., Y given W ∈ ∆.

Now divide R into m non-overlapping subintervals, ∆1, . . . , ∆m, such that
∑m

j=1 pj = 1 where
pj := P(W ∈ ∆j) > 0.

Note that if W can take any value in R, then the first interval should be [−∞, b], while the final interval should
be [a,∞] for some finite a and b.

Notation

1. Let θj := E[Y |W ∈ ∆j ] and σ2
j := Var(Y |W ∈ ∆j).

2. We define the random variable I by setting I := j if W ∈ ∆j .

3. Let Y (j) denote a random variable with the same distribution as (Y |W ∈ ∆j) ≡ (Y |I = j).

Our notation then implies θj = E[Y |I = j] = E[Y (j)] and σ2
j = Var(Y |I = j) = Var(Y (j)). In particular we

have

θ = E[Y ] = E[E[Y |I]] = p1E[Y |I = 1] + . . . + pmE[Y |I = m]
= p1θ1 + . . . + pmθm.

16For this example, the stratified estimator will actually require less work, but it is also possible in general for it to require
more work.

17Y and W must be dependent to achieve a variance reduction.
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Note that to estimate θ we only need to estimate the θi’s since by condition 1 above, the pi’s are easily
computed. Furthermore, we know how to estimate the θi’s by condition 2. If we use ni samples to estimate θi,
then an estimate of θ is given by

θ̂st,n = p1θ̂1,n1 + . . . + pmθ̂m,nm .

It is clear that θ̂st,n will be unbiased if for each i, θ̂i,ni is an unbiased estimate of θi.

2.2 Obtaining a Variance Reduction

How does the stratification estimator compare with the usual raw simulation estimator? As was the case with
the game show example, to answer this question we would like to compare Var(θ̂n) with Var(θ̂st,n). First we
need to choose n1, . . . , nm such that n1 + . . . + nm = n. That is, we need to determine the number of samples,
ni, that will be used to estimate each θi, but in such a way that the total number of samples is equal to n.
Clearly, the optimal approach would be to choose the ni’s so as to minimize Var(θ̂st,n).

Consider for now, however, the sub-optimal allocation where we set nj := npj for j = 1, . . . ,m. Then

Var(θ̂st,n) = Var(p1θ̂1,n1 + . . . + pmθ̂m,nm
)

= p2
1

σ2
1

n1
+ . . . + p2

m

σ2
m

nm

=

∑m
j=1 pjσ

2
j

n
.

On the other hand, the usual simulation estimator has variance σ2/n where σ2 := Var(Y ). Therefore, we need
only show that

∑m
j=1 pjσ

2
j < σ2 to prove that the non-optimized18 stratification estimator has a lower variance

than the usual raw estimator.19

The proof that
∑m

j=1 pjσ
2
j < σ2 is precisely the same as that used for the game show example. In particular,

equation (6) implies

σ2 = Var(Y ) ≥ E[Var(Y |I)] =
m∑

j=1

pjσ
2
j

and the proof is complete!

2.3 Optimizing the Stratified Estimator

We know

θ̂st,n = p1θ̂1,n1 + . . . + pmθ̂m,nm

= p1

∑n1
i=1 Y

(1)
i

n1
+ . . . + pm

∑nm

i=1 Y
(m)
i

nm

where, for a fixed j, the Y
(j)
i ’s are IID ∼ Y (j). Then this implies

Var(θ̂st,n) = p2
1

σ2
1

n1
+ . . . + p2

m

σ2
m

nm
=

m∑

j=1

p2
jσ

2
j

nj
. (8)

18The optimized stratification estimator refers to the estimator where we choose the ni’s to minimize the variance of θ̂st,n.
19The optimized stratification estimator would then of course achieve an even greater variance reduction.
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Therefore, to minimize Var(θ̂st,n) we must solve the following constrained optimization problem:

min
nj

m∑

j=1

p2
jσ

2
j

nj

subject to n1 + . . . + nm = n.

We can easily solve this problem using a Lagrange multiplier and the optimal solution is given by

n∗j =

(
pjσj∑m

j=1 pjσj

)
n (9)

with the minimized variance given by

Var(θ̂st,n∗) =

(∑m
j=1 pjσj

)2

n
. (10)

Note that the solution in (9) makes intuitive sense: if pj is large, then other things being equal, it makes sense
to expend more effort simulating from stratum j, i.e., the region where Wj ∈ ∆j . Similarly, if σ2

j is large then,
other things again being equal, it makes sense to simulate more often from stratum j so as to get a more
accurate estimate of θj .

Remark 1 It is interesting at this point to note how stratified sampling is related to importance sampling. We
saw in the last lecture that when we importance sample, we would like to sample more often from the important
region. The choice of nj in (9) also means that we simulate more often from the important region when we use
optimized stratified sampling.

Remark 2 Note also the connection of stratified sampling to the method of conditional expectations. Both
methods rely on the conditional variance formula to prove that they lead to a variance reduction. The difference
between the two methods can best be explained as follows. Suppose we wish to estimate θ := E[Y ] using
simulation and we do this by first generating random variable, W , and then generating Y given W . In the
conditional expectation method, we simulate W first, but then compute E[Y |W ] analytically. In the stratified
sampling method, we effectively generate W analytically, and then simulate Y given W .

2.4 Advantages and Disadvantages of Stratified Sampling

The obvious advantage of stratified sampling is that it leads to a variance reduction which can be very
substantial if the stratification variable, W , accounts for a large fraction of the variance of Y . The main
disadvantage of stratified sampling is that typically we do not know the σ2

j ’s so it is impossible to compute the
optimal nj ’s exactly. Of course we can overcome this problem by first doing m pilot simulations to estimate
each σj . If we let Np denote the total number of pilot simulations, then a good heuristic is to use Np/m runs
for each individual pilot simulation. In order to obtain a reasonably good estimate of σ2

j , a useful rule-of-thumb
is that Np/m should be greater than 30. If m is large however, and each simulation run is computationally
expensive, then it may be the case that a lot of effort is expended in trying to estimate the optimal nj ’s.

One method of overcoming this problem is to abandon the pilot simulations and simply use the sub-optimal
allocation where nj = npj . We saw earlier that this allocation still results in a variance reduction which
sometimes can be substantial. In practice, both methods are used. The decision to conduct pilot simulations
should depend on the problem at hand. For example, if you have reason to believe that the σj ’s will not vary
too much then it should be the case that the optimal allocation and the sub-optimal allocation will be very
similar. In this case, it is probably not worth doing the pilot simulations. On the other hand, if the σj ’s vary
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considerably, then conducting the pilot runs may be worthwhile. Of course, a combination of the two is also
possible where a only a subset of the pilot simulations is conducted.

The stratified simulation algorithm is given below. We assume that the pilot simulations have already been
completed, or it has been decided not to conduct them at all; either way, the nj ’s have been computed. We also

show how the estimate, θ̂n,st, and the estimated variance, σ̂2
n,st, can be computed without having to store all

the generated samples. That is, we simply keep track of
∑

Y
(j)
i

2
and

∑
Y

(j)
i for each j since these quantities

are all that is required20 to compute θ̂n,st and σ̂2
n,st.

Stratification Simulation Algorithm for Estimating θ

set θ̂n,st = 0; σ̂2
n,st = 0;

for j = 1 to m

set sumj = 0; sum squaresj = 0;
for i = 1 to nj

generate Y
(j)
i

set sumj = sumj + Y
(j)
i

set sum squaresj = sum squaresj + Y
(j)
i

2

end for
set θj = sumj/nj

set σ̂2
j =

(
sum squaresj − sum2

j/nj

)
/(nj − 1)

set θ̂n,st = θ̂n,st + pjθj

set σ̂2
n,st = σ̂2

n,st + σ̂2
j p2

j/nj

end for
set approx. 100(1− α) % CI = θ̂n,st ± z1−α/2 σ̂n,st

2.5 Applications

Example 9

Suppose we want to estimate θ := E[
√

1− U2] where U ∼ U(0, 1). We set Y =
√

1− U2 and we can choose
W = U as our stratification variable. We can do this since

1: P(W ∈ ∆) can easily be computed.

2: Y (j) := (Y |W ∈ ∆j) can easily be generated.

To see that Y (j) can easily be generated, suppose ∆j = [a, b]. Then Y (j) = (
√

1− U2 | U ∈ [a, b]). Now it is
easy to see that

(U | U ∈ [a, b]) ∼ U(a, b),

20Recall that θ̂n,st =
∑m

j=1

(∑nj

i=1
Y

(j)
i

nj

)
pj , Var(θ̂n,st) =

∑m

j=1
Var

(∑nj

i=1
Y

(j)
i

nj

)
p2

j and Var

(∑nj

i=1
Y

(j)
i

nj

)
can be

estimated knowing just
∑nj

i=1
Y

(j)
i and

∑nj

i=1
Y

(j)
i

2
. As stated previously, any simulation study that requires a large number

of samples should only keep track of these quantities, thereby avoiding the need to store every sample.
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so to generate Y (j) we first generate U ∼ U(a, b), and then set Y (j) =
√

1− U2.

Let’s choose m equi-probable strata so that

∆1 =
[
0,

1
m

]
, ∆2 =

[
1
m

,
2
m

]
, . . . , ∆m =

[
m− 1

m
, 1

]

and pj = 1/m for all j. To avoid conducting pilot runs, we set nj = npj = n/m. We then have the following
code for solving this problem.

Matlab Code for Estimating E[
√

1− U2] using Stratified Sampling

function[theta,CI] = strat(N,m);

p=1/m;
n=N/m; % This is n_j
theta=0; var=0;

for j=1:m
U = (j-1)/m + rand(n,1)/m;
X=sqrt(1-U.^2);
theta = theta + p*mean(X);
Sum = sum(X);
Sum_squares = sum(X.^2);
Sig_square_j = (Sum_squares - (Sum^2)/n )/(n-1);
var = var + Sig_square_j * p^2/n;

end;

CI = [theta - 1.96*sqrt(var), theta + 1.96*sqrt(var)]
% This is an approx 95% CI

At the Matlab prompt we can then execute strat.m with N = 10000 and m = 100:

>> [theta, CI] = strat(10000,100)

theta = 0.7854

CI = 0.7853 0.7855

Example 10 (Pricing a European Call Option)

Suppose that we wish to price a European call option where we assume as usual that St ∼ GBM(r, σ2). Then

C0 = E
[
e−rT max(0, ST −K)

]
= E[Y ]

where
Y = h(X) = e−rT max

(
0, S0e

(r−σ2/2)T+σ
√

TX −K
)
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for X ∼ N(0, 1). While we know how to compute C0 analytically, it is worthwhile seeing how we could estimate
it using stratified simulation. Let W = X be our stratification variable. To see that we can stratify using this
choice of W note that:

(1) Computing P(W ∈ ∆)

For ∆ ⊆ R, P(W ∈ ∆) can easily be computed. Indeed, if ∆ = [a, b], then P(W ∈ ∆) = Φ(b)− Φ(a), where
Φ(.) is the CDF of a standard normal random variable.

(2) Generating (Y |W ∈ ∆)

(h(X)|X ∈ ∆) can easily be generated. We do this by first generating X̃ := (X|X ∈ ∆) and then take h(X̃).
We generate X̃ as follows.

First note that if X ∼ N(0, 1), then we can generate an X using the inverse transform method by setting
X = Φ−1(U). The problem with such an X is that it may not lie in ∆ = [a, b]. However, we can overcome this
problem by simply generating Ũ ∼ U(Φ(a),Φ(b)) and then setting X̃ = Φ−1(Ũ). It is then straightforward to
check that X̃ ∼ (X|X ∈ [a, b]).

It is therefore clear that we can estimate C0 using X as a stratification variable.

Exercise 1 Are there other ways to generate (X|X ∈ [a, b]) in Example 10 ?

Example 11 (Pricing an Asian Call Option)

Recall that the discounted payoff of an Asian call option is given by

Y := e−rT max
(

0,

∑m
i=1 SiT/m

m
−K

)
(11)

and that it’s price is given by Ca = E[Y ] where we assume St ∼ GBM(r, σ2). Now each SiT/m may be
expressed as

SiT/m = S0 exp

(
(r − σ2/2)

iT

m
+ σ

√
T

m
(X1 + . . . + Xi)

)
(12)

where the Xi’s are IID N(0, 1). This means that we may then write Ca = E [h(X1, . . . , Xm)] where the function
h(.) is given implicitly by equations (11) and (12). So to estimate Ca using our standard simulation algorithm,
we would simply generate sample values of h(X1, . . . , Xm) and take their average as our estimate. We can also,
however, estimate Ca using stratified sampling.21

To do so, we must first choose a stratification variable, W . One possible choice would be to set W = Xj for
some j. However, this is unlikely to capture much of the variability of h(X1, . . . , Xm). A much better choice
would be to set W =

∑m
j=1 Xj . Of course, we need to show that such a choice is possible. That is, we need to

show that P(W ∈ ∆) is easily computed, and that (Y |W ∈ ∆) is easily generated.

(1) Computing P(W ∈ ∆)

Since X1, . . . , Xm are IID N(0, 1), we immediately have that W ∼ N(0,m). If ∆ = [a, b] then

P(W ∈ ∆) = P (N(0,m) ∈ ∆) = P (a ≤ N(0,m) ≤ b)

= P

(
a√
m
≤ N(0, 1) ≤ b√

m

)

= Φ
(

b√
m

)
− Φ

(
a√
m

)
.

21The method we now describe is also useful for pricing other path dependent options. See Glasserman, Heidelberger and
Shahabuddin (1998) for further details.
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Similarly, if ∆ = [b,∞), then P(W ∈ ∆) = 1− Φ
(

b√
m

)
, and if ∆ = (−∞, a], then P(W ∈ ∆) = Φ

(
a√
m

)
.

(2) Generating (Y |W ∈ ∆)

We need two results from the theory of multivariate normal random variables. The first result was studied earlier
in the course.

Result 1

Suppose X = (X1, . . . , Xm) ∼ MVN(0,Σ). If we wish to generate a sample vector X, we first generate
Z ∼ MVN(0, Im)22 and then set

X = CT Z (13)

where CT C = Σ. One possibility of course is to let C be the Cholesky decomposition of Σ, but in fact any
matrix C that satisfies CT C = Σ will do.

Result 2

Let a = (a1 a2 . . . am) satisfy ||a|| = 1, i.e.
√

a2
1 + . . . + a2

m = 1, and let Z = (Z1, . . . , Zm) ∼ MVN(0, Im).
Then {

(Z1, . . . , Zm)
∣∣∣

m∑

i=1

aiZi = w

}
∼ MVN(waT , Im − aTa).

Therefore, to generate {(Z1, . . . , Zm)|∑m
i=1 aiZi = w} we just need to generate a vector, V, where

V ∼ MVN(waT , Im − aTa) = waT + MVN(0, Im − aTa).

Generating such a V is very easy since

(Im − aTa)
T
(Im − aTa) = Im − aTa.

That is, ΣT Σ = Σ where Σ = Im − aTa, so we can take C = Σ in (13).

Now, we can return to the problem of generating (Y | W ∈ ∆). Since Y = h(X1, . . . , Xm), we can clearly
generate (Y | W ∈ ∆) if we can generate [(X1, . . . , Xm) | ∑m

i=1 Xi ∈ ∆]. To do this, suppose again that
∆ = [a, b]. Then

[
(X1, . . . , Xm)

∣∣∣
m∑

i=1

Xi ∈ [a, b]

]
≡

[
(X1, . . . , Xm)

∣∣∣ 1√
m

m∑

i=1

Xi ∈
[

a√
m

,
b√
m

]]
.

Now we can generate [(X1, . . . , Xm) | ∑m
i=1 Xi ∈ ∆] in two steps.

Step 1

Generate
[

1√
m

∑m
i=1 Xi

∣∣∣ 1√
m

∑m
i=1 Xi ∈

[
a√
m

, b√
m

]]
.

This is easy to do since 1√
m

∑m
i=1 Xi ∼ N(0, 1) so we just need to generate

(
N(0, 1)

∣∣∣ N(0, 1) ∈
[

a√
m

,
b√
m

])

22That is, we generate m IID N(0, 1) random variables.
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which we can do using the method described in Example 10. Let w be the generated value.

Step 2

Now generate
[
(X1, . . . , Xm)

∣∣∣ 1√
m

∑m
i=1 Xi = w

]
which we can do by the second result above and the

comments that follow it.

Example 12 (Pricing a Barrier Option)

Recall again the problem of pricing an option that has payoff

h(X) =
{

max(0, ST −K1) if ST/2 ≤ L,
max(0, ST −K2) otherwise.

where X = (ST/2, ST ). We can write the price of the option as

C0 = E
[
e−rT

(
max(0, ST −K1)I{ST/2≤L} + max(0, ST −K2)I{ST/2>L}

)]

where as usual, we assume that St ∼ GBM(r, σ2). Using conditional expectations, we saw earlier that we could
write C0 = E[Y ] where

Y := e−rT/2
(
c(ST/2, T/2,K1, r, σ)I{ST/2≤L} + c(ST/2, T/2,K2, r, σ)I{ST/2≥L}

)
(14)

and where c(x, t, k, r, σ) is the price of a European call option with strike k, interest rate r, volatility σ, time to
maturity t, and initial stock price x.

Question 1: Having conditioned on ST/2, could we now also use stratified sampling?

Question 2: Could we use importance sampling?

Question 3: What about using importance sampling before doing the conditioning?
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3 Low Discrepancy Sequences and Quasi Monte Carlo Methods

Consider the problem of computing an integral over the d-dimensional unit cube. One of the principle
advantages of using Monte Carlo simulation to do this is that the convergence rate has order 1/

√
n which is

independent of d, and where n is the number of simulated points. In contrast, standard numerical integration
schemes based on a rectangular grid of points converge as n−2/d. Since many interesting problems in financial
engineering are high-dimensional, either due to multiple state variables or path-dependence, it is clear that
Monte Carlo simulation can provide a significant computational advantage. On the other hand, a sample of
uniformly distributed points in the d-dimensional unit cube covers the cube inefficiently. This is clear, for
example, in Figure 1, where uniform samples from [0, 1]× [0, 1] are plotted.
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Uniform Random Variables

Figure 1: Uniform Random Variables

A d-dimensional low discrepancy sequence23 is a deterministic sequence of points in the d-dimensional unit cube
that fills the cube efficiently, i.e. it has a low discrepancy. This low discrepancy property results in a
convergence rate of (log n)d/n, implying in particular that they can often be much more effective than Monte
Carlo methods. An example of a 2-dimensional low discrepancy sequence is plotted in Figure 2 where it is clear
that there is nothing random about these points whatsoever. Despite this, the term “Quasi Monte Carlo
methods” is often used to refer to approaches that use low discrepancy sequences as an alternative to standard
Monte Carlo methods.

Exercise 2 How might you evaluate an expectation, θ = E[f(X)], where X is a d-dimensional multivariate
normal random vector? Consider first the case where the d normal random variables are independent.

23This topic does not rightly belong to lecture notes titled “Variance Reduction Methods”. Nonetheless, we place it here as
variance reduction methods and the use of low discrepancy sequences are both employed with a view towards reducing estimator
errors.
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Low Discrepancy Sequence

Figure 2: Low Discrepancy Points

The use of low discrepancy sequences have a number of advantages and disadvantages, some of which we
outline below:

Advantages

1. Their asymptotic convergence properties are superior to those of Monte Carlo simulation.

2. The number of points, n, need not be known in advance. This is a property shared with Monte Carlo but
not with numerical integration techniques that are based on regular grids.

Disadvantages

1. For a fixed sample size, n, there is no guarantee that low discrepancy sequences will outperform Monte
Carlo simulation.

2. Since they are deterministic, confidence intervals are not available and so it is difficult to tell whether or
not an estimate is sufficiently accurate. (There have been attempts to randomize low discrepancy
sequences, motivated in part by the desire to overcome this problem.)

3. The sample size, n, may be too small relative to the dimension, d. For example, many popular low
discrepancy sequences cover the initial coordinates, (x1, x2), more or less uniformly, but do not cover the
final coordinates, (xd−1, xd), in a sufficiently uniform manner. In such circumstances, it might be
necessary to raise n to an unsatisfactorily high level.

4. In general, more care is needed when applying low-discrepancy sequences than when applying Monte Carlo
methods. However, they often produce significantly better estimates.

For further information on low discrepancy sequences, see Glasserman (2003).
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