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Introduction

It has been suggested that during the past five decades, 
human sperm counts have declined and the occurrence 
of testicular cancer and cryptorchidism has increased. 
Though males lack an obvious, easily measurable repro-
ductive cycle, and the primary clinical indicator, semen 
analysis, offers uncertain clues to reproductive perfor-
mance, progress is being made in developing and evaluat-
ing tests to identify chemical hazards and estimate human 
health risks (Queiroz and Waissmann, 2006). Mammalian 
male reproductive function can be affected through a 
direct effect on the testis, resulting in decreased or altered 
sperm production, through impairment of the accessory 
sex gland secretions, and indirectly through the neuroen-
docrine system, causing hormonal imbalance (Chandra 
et al., 2012a). Adverse effects on male fertility include 
altered genetic material of sperm, contributing to altered 
spermatogenesis, pregnancy loss, or genetic disease in 
offspring. Common endpoints for the evaluation of male 
reproductive function include size of testis, semen qual-
ity, secretory function of the prostate and seminal vesicles, 

reproductive endocrine function, impotence or reduced 
libido, and fertility (Nordberg et al., 2005). Current evi-
dence suggests that there may be environmental reasons 
for deteriorating sperm quality, including occupational 
exposure to various metals, chemicals, heat, and radia-
tion. In addition, exposure to pesticides has been linked 
to alterations in spermatogenesis (Sinclair, 2000).

When assessing reproductive effects of a certain metal 
on male reproductive health, one must make an allow-
ance for possible influences of concomitant exposures to 
other toxic and essential metals; these may act additively, 
synergistically, or antagonistically. Certain toxic metals, 
such as lead and cadmium, are pervasive in the human 
environment and accumulate in the human body over 
a lifetime; biomarkers of lead and cadmium exposure 
commonly correlate with age, smoking habits, and alco-
hol consumption (Lin et al., 2010).

Recent evidences indicate that the human male 
reproductive capacity has deteriorated considerably 
during the past five decades. In industrialized countries, 
a substantial number of couples seek in vitro fertilization 
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(IVF) or intracytoplasmic sperm injection (ICSI) because 
of poor semen quality (Nordberg et al., 2005). Data 
collected over the last 30 years have shown disturbing 
trends in male reproductive health. An earlier report 
from Scotland revealed that men born after 1970 had a 
sperm count 25% lower than those born before 1959—an 
average decline of 2.1% a year (Brown, 1999). The lower 
sperm count was also associated with poor semen quality 
(Waissmann, 2002). Further, large differences in mean 
sperm concentration between countries, and between 
different locations within a country, have been observed.

The human male has a relatively low fertility poten-
tial, compared with other mammals. For example, the 
number of sperm per human ejaculate is typically only 
2- to 4-fold higher than the number at which fertility is 
significantly reduced, whereas the number of sperm in 
rat, rabbit, or bull ejaculate is many times (up to 1,400-
fold) the number that will produce maximum fertility 
(Working, 1988). Human males have markedly smaller 
relative testis size and the lowest rate of daily sperm 
production per gram of testis, by a factor of more than 3, 
compared with the mouse, rat, or monkey. The percent-
ages of progressively motile sperm and morphologically 
healthy sperm in human semen are also considerably 
lower than in experimental animals (Working, 1988). 
The human male may be more susceptible than the rat 
to metal toxicity, possibly because of poorer efficacy of 

the antioxidant defense system and greater vulnerability 
to oxidative damage to sperm DNA and sulfhydryl (–SH) 
groups required for the maintenance of sperm matura-
tion and motility. Because of differences among species 
in reproductive endpoints and in the route level, and 
duration of metal exposure, the experimental animal 
data may be useful for estimates of allowable human 
exposure (Sengupta, 2011a; Sengupta, 2012).

Although experimental animal and in vitro studies 
have indicated adverse reproductive effects of high doses 
of many metals and beneficial or protective effects of some 
essential metals (particularly zinc, selenium, and magne-
sium), the internal metal dose was often not measured 
and relatively few studies have evaluated the effects of 
long-term moderate oral exposure. For most metals, data 
relevant to humans are scanty and are usually limited by 
inadequate controls and adjustments for the influence of 
potentially confounding variables (Nordberg et al., 2005).

Male reproductive tract target sites
An endocrine disruptor can affect several potential tar-
get sites in the male reproductive tract, with the most 
important being the testes, which usually exist in pairs 
and are the sites of spermatogenesis and androgen pro-
duction. There are para- and autocrine regulations in 
various compartments of the testis that are under endo-
crine influences from the pituitary and hypothalamus. 

Table 1.  Male reproductive tract target sites.
Potential sites Functions Effects of metals Evaluative tests
Sertoli cells Sertoli cells or “nurse cells” establish the blood-testis barrier by 

virtue of tight junctions. The luminal environment, as controlled 
by these Sertoli cells, is under the influence of FSH and inhibin. 
These Sertoli cells: 1) provide nourishment for the developing 
sperm cells; 2) destroy defective sperm cells; 3) secrete fluid that 
helps in the transport of sperm into the epididymis; and 4) release 
the hormone inhibin that helps regulate sperm production.
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Receptor analysis, 
RIA; in vitro 
production and 
hormone assay

Leydig cells Produce testosterone under the control of LH from the pituitary. 
These cells arise from interstitial mesenchymal tissue between the 
tubules during week 8 of human embryonic development. They 
are located in the connective tissue between the seminiferous 
tubules.

Receptor  
analysis, RIA; In vitro 
tests (coculture), 
morphology

Spermatogenesis Spermatogenesis is a chronological process spanning 
approximately 72 days in humans and 40–50 days in rodents 
(depending upon species). During this period, the immature 
germ cells (undifferentiated spermatogonia) develop into highly 
specialized spermatozoa in a cyclic manner. Spermatogonia 
undergo several mitotic divisions to generate a large population 
of primary spermatocytes, which produce haploid spermatids by 
two meiotic cell divisions. Spermiogenesis is the transformation of 
spermatids into elongated flagellar germ cells capable of motility. 
The release of mature germ cells is known as spermiation.

Germ cell count and 
% tubules without 
germ cells, spermatid 
counts and % tubules 
with luminal sperm, 
germ-cell culture, 
morphology

Epididymis Sperm maturation Histopathology,  
biochemical tests

Seminal fluid Daily sperm production Spermatid counts, 
semen evaluation

Brain Hypothalamic-pituitary axis Pituitary cell culture, 
hypothalamus  
perfusion histopathol-
ogy, hormone assay

RIA, radioimmunoassay.
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Approximately 80% of the testicular mass consists of 
highly coiled seminiferous tubules within which sper-
matogenesis takes place. The remaining 20% consists of 
Leydig cells and Sertoli cells, whose main job is to estab-
lish healthy spermatogenesis. Spermatozoa are the hap-
loid germ cells responsible for fertilization and species 
propagation (Roy Chowdhury, 2009) (Table 1).

Role of metals in male reproductive health
Potential toxic effects of more than 20 metals (i.e., lead, 
cadmium, chromium, arsenic, calcium, and so on), those 
that cause alteration in sperm morphology, count, motil-
ity, as well as biochemical and endocrine disruptions, as 
well as those metals that are beneficial or protective for 
male reproductive functions (particularly zinc, selenium, 
and magnesium) are discussed in this review.

Arsenic
Arsenicals are widespread in the environment as a result 
of natural and anthropogenic occurrence. Ingestion 
of contaminated drinking water is the major route for 
human exposure to arsenic (Neiger and Osweiler, 1985). 
Arsenic exposure causes both acute and chronic toxic-
ity in humans. Exposure of mice and rats to high doses 
of inorganic arsenic can adversely affect spermato-
genesis and can decrease testicular and accessory sex 
organ weights and serum levels of lutenizing hormone 
(LH), follicle-stimulating hormone (FSH), and testoster-
one (Pant et al., 2001; Sarkar et al., 2003). Chronic oral 
exposure of mice to sodium arsenite in drinking water 
is reported to cause significant accumulation of arsenic 
in the testis, epididymis, seminal vesicles, and prostate, 
a decrease in the absolute and relative testicular weight, 
but not of epididymal and accessory sex organ weights, 
a decrease in sperm count and motility, increase in 
abnormal sperm morphology, and changes in the activi-
ties of testicular enzymes (Pant et al., 2004). Exposure 
of sodium arsenite in drinking water is also shown to 
produce steroidogenic dysfunction that leads to impair-
ment of spermatogenesis in rats (Sarkar et al., 2003). Few 
recent investigations have shown that arsenic in drink-
ing water is associated with oxidative stress (OS) (Chang 
et al., 2007) of genotoxicity in testicular tissue of mice 
(Biswas et al., 2006). On the other hand, recent studies 
suggest that arsenic causes testicular toxicity, probably 
by affecting the pituitary-testicular axis (Jana et al., 2006). 
But, the dose- and duration-dependent effect of sodium 
arsenite in drinking water on testicular tissue of mice is 
not well established.

Bismuth
The most common exposures to bismuth include work-
ing in close correlation with the element; for instance, 
a plumber who uses a lot of solder can be exposed to 
bismuth by breathing in the fumes from soldering in 
a confined space. Bismuth compounds (e.g., bismuth 
subsalicylate, bismuth oxychloride, and bismuth subgal-
late) are used in a number of applications where it can 

come in direct contact with the body (Stoltenberg et al., 
2002). The consumption of bismuth is increasing, and 
knowledge of the potential teratogenic and reproductive 
damage of bismuth exposure is fragmentary. Bismuth 
treatment has been reported to show its accumulation in 
Leydig cells, with a subsequent reduction in serum tes-
tosterone levels. In addition, the mean number of Leydig 
cells in the bismuth-treated groups is reported to be less 
than the control (Pedersen et al., 2003). Bismuth expo-
sure has been stated to reduce sperm creatine kinase 
activity, feasibly by displacing the Mg+2 from this enzyme 
(Ghaffari and Motlagh, 2011). In some studies, trace of 
bismuth in the testis and pituitary glands of Wistar rats 
were found after they were injected intraperitoneally 
(i.p.). Large amounts of bismuth were found to be con-
centrated in the lysosomes of Leydig cells. Reports sug-
gested that neither FSH nor LH were affected, compared 
to their corresponding controls. The selective uptake of 
bismuth in Leydig cells, followed by decreased testoster-
one levels, has been emphasized as a potential hazard 
of bismuth-provoked male reproductive impairment in 
those reports (Stoltenberg et al., 2002).

Boron
Boron is not present in nature in its elemental form. It 
is found combined in borax, boric acid, kernite, ulex-
ite, colemanite, and borates. Volcanic spring waters 
sometimes contain boric acids. Borates are mined in 
the United States, Tibet, Chile, and Turkey, with world 
production being approximately 2 million tons per year. 
Miners are generally exposed to this element (Robbins et 
al., 2007). Earlier studies in human workers and popula-
tions have not identified adverse effects of boron expo-
sure on fertility, but outcome measures in these studies 
were relatively insensitive, based mainly on family size, 
and did not include an evaluation of semen endpoints. A 
recent study of men working in boron mining or process-
ing in the Liaoning province in northeast China has been 
published in several Chinese and a few English-language 
articles. Employed men living in the same community 
and in a remote community were used as controls. Boron 
workers had a mean daily boron intake of 31.3 mg/day, 
and a subset of these men, employed at a plant where 
there was heavy boron contamination of the water supply, 
had an estimated mean daily boron intake of 125 mg/day. 
Estimates of mean daily boron intake in local community 
and remote background controls were 4.25 and 1.40 mg/
day, respectively. Reproductive outcomes in the wives of 
945 boron workers were not significantly different from 
outcomes in the wives of 249 background control men 
after adjustment for potential confounders. There were 
no statistically significant differences in semen char-
acteristics between exposure groups, including in the 
highly exposed subset, except that sperm Y/X ratio was 
reduced in boron workers. Within exposure groups, the 
Y/X ratio did not correlate with boron concentration in 
blood, semen, and urine. In conclusion, whereas boron 
has been shown to adversely affect male reproduction 
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in laboratory animals, there is no clear evidence of male 
reproductive effects attributable to boron in studies of 
highly exposed workers (Scialli et al., 2010). Boron treat-
ment of rats, mice, and dogs has been associated with 
testicular toxicity, characterized by inhibited spermia-
tion at lower dose levels and a reduction in epididymal 
sperm count at higher dose levels (Robbins et al., 2007). 
Results of some studies on laboratory animals (i.e., mice) 
showed significant increase in weight, volume, and 
size of testicles and seminal vesicles of treated animals; 
histological analysis of testicles showed an epithelium 
notoriously altered with few spermatids. Spermatogonia 
were present with picnotic nuclei, suggesting apoptosis. 
In conclusion, boron in high doses produces important 
cytotoxic effects, with degeneration of the epithelium 
of seminiferous tubules, possibly inhibiting spermia-
tion, causing testicular hypertrophy, altering masculine 
reproductive patterns, and a reduction in fertility of mice 
(Espinoza-Navarro et al., 2007).

Cadmium
The main exposure to cadmium, in people, occurs 
through the consumption of foods and drinking water, 
the inhalation of cadmium particles from ambient air 
or cigarette smoke, and the incidental ingestion of con-
taminated dust or soil. Foods (e.g., grains, cereals, and 
leafy vegetables) that have been contaminated through 
water and crops grown on polluted soil are the highest 
source of cadmium exposure for the general popula-
tion. People with low calcium, protein, or iron reserves 
appear to absorb cadmium more efficiently and may 
be at increased risk of developing toxicity (Benoff et al., 
1997). Cadmium is also present as an endocrine disrupt-
ing compound (EDC) that interferes with the synthesis 
and regulation of several hormones in both females and 
males (Cheng et al., 2011).

Even though various cadmium-induced effects on the 
male reproductive system have been described, there is 
little conclusive published evidence of cadmium-related 
effects on semen quality, sex hormones, or fertility in 
human males. Most studies have failed to adjust for the 
influence of potentially confounding variables, such as 
age, smoking habits, alcohol consumption, and the body 
status of the relevant metals, particularly lead, zinc, and 
selenium. In men not occupationally exposed to cad-
mium, a significant increase in cadmium levels in blood 
and seminal plasma has been related to smoking habits 
(Telišman et al., 2000). However, in addition to increas-
ing individual exposure to cadmium, smoking itself may 
adversely affect male reproductive function by mecha-
nisms of OS involving other compounds present in ciga-
rette smoke (Lin et al., 2010). Published data on men with 
suspect infertility (including nonsmokers and smokers) 
showed a significant positive correlation between abnor-
mal sperm morphology and blood cadmium levels, but 
not with seminal plasma cadmium levels (Telišman  
et al., 2000). An inverse correlation has been reported on 
between testis size and blood cadmium (Jurasovíc et al.,  

2004), sperm motility and blood cadmium (Telišman 
et al., 2000), semen volume and either blood cadmium 
(Chia et al., 1992) or seminal plasma cadmium (Chia  
et al., 1994), and sperm concentration and sperm count 
with respect to blood cadmium levels (Chia et al., 1994). 
Several other studies reported no significant correlations 
between semen quality and cadmium levels in semen, 
seminal plasma, or blood. Nonsmoking patients with var-
icocele had significantly higher cadmium and lower zinc 
levels in the seminal plasma, compared to fertile subjects 
(Benoff et al., 1997). In nonsmokers and nonconsumers 
of alcohol, a significant positive correlation was found 
between sperm DNA oxidative damage and seminal 
plasma levels of both cadmium and lead, whereas an 
inverse correlation was found with seminal plasma sele-
nium levels, suggesting that cadmium may contribute to 
sperm DNA oxidative damage and thereby affect semen 
quality (Xu et al., 2003); however, the study did not evalu-
ate the combined effect or interaction of cadmium, lead, 
and selenium concerning these endpoints. A study on 
Chinese men environmentally exposed to cadmium 
showed a significant dose-response trend of increas-
ing urinary cadmium and the prevalence of cases with 
abnormal levels of prostate-specific antigen in serum. 
Further, subjects with abnormal findings on digitorec-
tal examination of the prostate had significantly higher 
blood cadmium, suggesting that increased chronic cad-
mium exposure can cause injury to the human prostate 
(Zeng et al., 2004). In some other studies, significant rela-
tionships were found between increasing serum levels 
of estradiol, FSH, and testosterone that have been found 
with respect to blood cadmium (Jurasovíc et al., 2004). 
Another study of men not occupationally exposed to 
cadmium also showed a significant relationship between 
increasing serum testosterone and blood cadmium lev-
els (Telišman et al., 2000).

Many studies in experimental animals have shown that 
the mammalian testis is highly vulnerable to cadmium, 
which can cause germinal cell damage and testicular 
necrosis, possibly through a direct effect on the tes-
ticular vasculature, which may exert a secondary action 
by lowering testosterone production and thereby also 
affecting accessory genital organs, including the prostate 
(Lymberopoulos et al., 2003). The following acute effects 
have been reported in experimental animals injected 
with soluble cadmium salts: decreased serum testoster-
one; a decreased size and weight of the testes, epididymis, 
vas deferens, prostate and seminal vesicles; decreased 
sperm production and motility; and suppressed libido 
and reproductive capacity (Waalkes and Rehm, 1994). 
Testicular atrophy and necrosis and decreased fertility 
have been observed in animals at nearly fatal doses of 
cadmium (Bomhard et al., 1987). In rats, long-term expo-
sure to cadmium through the drinking water (10 mg/L for 
52 weeks) led to pathological testicular changes, as well 
as liver and kidney damage, whereas reproductive capac-
ity was reduced in 40% of animals (Saygi et al., 1991). A 
synergistic effect of lead and cadmium on testicular 
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injury in rats has been reported on (Saxena et al., 1989). 
In contrast, a protective effect against male reproductive 
toxicity of cadmium was observed in animals treated 
with zinc (Saxena et al., 1989), selenium (Jones et al., 
1997), or –SH-containing compounds, such as cysteine, 
glutathione, and metallothionein (MT) (Nordberg et al., 
1971). Neither small chronic doses of cadmium, which 
induce MT biosynthesis nor injections of cadmium par-
tially bound to MT cause testicular necrosis (Nordberg  
et al., 1971).

Calcium
Excess calcium exposure in the body may be caused by 
too much intake of the increasing number of calcium-for-
tified food products or may be the result of calcium over-
supplementation or drinking of hard water containing 
excessive calcium salt (Chandra et al., 2012a). Calcium is 
indispensable for healthy functioning of male reproduc-
tion. But, many reports on its detrimental effect on male 
reproduction have also been described. Some studies 
showed it could also be used as chemocastrative agent 
(Sengupta and Chandra, 2009; Canpolat et al., 2006). 
Most of the studies are carried out in laboratory animals 
by injecting calcium chloride intratesticularly (Canpolat 
et al., 2006; Jana and Samanta, 2006). But, some studies 
also showed that supplementation of excess calcium in 
the diet for a long duration may also disrupt male repro-
ductive function (Chandra et al., 2012b). Calcium was 
shown to generate free radicals, thus causing oxidation 
of lipids of testicular germ cells and Leydig cells; gen-
eration of free radicals causes activation of the testicular 
antioxidant defense mechanism (Chandra et al., 2012b; 
Jana and Samanta, 2006). Testicular free radicals also 
affect healthy spermatogenesis processes. Reproductive 
parameters showed a significant decrease, such as in 
testicular and accessory sex organ weight, epididy-
mal sperm count, testicular steroidogenic enzyme [Δ5 
3β-hydroxy steroid dehydrogenase (HSD) & 17β-hydroxy 
steroid dehydrogenase] activities, serum testosterone, 
LH, and FSH. Testicular histoarchitecture also showed 
degenerative changes (Sengupta et al., 2011b). Generated 
free radicals are also reported to act by hypothalamo-
pituitary-adrenal (HPA) axis. Thus, interaction between 
the hypothalamo-pituitary-gonadal (HPG) and HPA axes 
results in the structural and functional disruption of male 
reproduction (Sengupta et al., 2011c).

Chromium
Chromium exposure may occur by breathing air, drink-
ing water, or eating food containing chromium or through 
skin contact with chromium or chromium compounds. 
The level of chromium in air and water is generally low. 
The concentration of total chromium in air (both CrIII 
and CrVI) generally ranges between 0.01 and 0.03 µg/m3 
(Hui, 2002). Chromium concentrations in drinking water 
(mostly as CrIII) are generally very low (less than 2 ppb). 
Contaminated well water may contain CrVI. Chromium 
may also occur by household utensils, wood preservatives, 

cement, cleaning products, textiles, and tanned leather 
(Lotrich, et al., 2006). People who work in industries that 
process or use chromium or chromium compounds can be 
exposed to higher than normal levels of chromium. An esti-
mated 305,000 workers in the United States are potentially 
exposed to chromium and chromium-containing com-
pounds in the workplace. Hexavalent chromium (CrVI), 
used in more than 50 industries, is an important metal 
pollutant (Barceloux, 1999). Several systemic toxicities of 
CrVI have been demonstrated in experimental animals in 
vivo and in vitro (Bagchi et al., 2002; Levina et al., 2003). 
However, reproductive toxicity of chromium has been 
underplayed since the report of Bonde (1993), which stated 
that low-level exposure to CrVI might not be a major hazard 
affecting spermatogenesis in stainless-steel welders. Even 
in a recent review, Bonde (2002) emphasized the need for 
additional data to recognize the reproductive toxicity of 
chromium. Nevertheless, a number of investigations using 
laboratory animals have pointed out the testicular toxic-
ity of CrVI (Chowdhury and Mitra, 1995; Sutherland et al., 
2000). Two recent reports also correlated chronic occupa-
tional exposure to CrVI to abnormal semen quality in men 
(Li et al., 2001; Danadevi et al., 2003), though the amount 
and type of CrVI used by Li et al. were questioned (Duffus, 
2002). Li et al. showed male workers exposed to chromium 
(VI) for 1–15 years in an electroplating factory, compared 
to unexposed workers (Li et al., 2001), had significantly 
decreased sperm concentration (by 47%), sperm motility, 
and seminal plasma levels of zinc, lactate dehydrogenase 
(LDH), and the LDH isoenzyme, LDH-C4, whereas serum 
FSH was significantly increased; serum chromium lev-
els in exposed workers were 1.40 ± 0.01 µmol/L. Another 
study of male welders, whose blood chromium levels were 
131.0 ± 52.6 µg/L, showed significantly decreased sperm 
concentration (by 67%) in exposed workers, compared to 
controls, and an inverse correlation between sperm con-
centration and blood chromium levels in exposed workers 
(Dandevi et al., 2003).

Animal exposure to high doses of chromium (III or 
VI) has been shown to adversely affect spermatogenesis. 
Chromium (VI) is considerably more toxic (Ernst, 1990; 
Ernst and Bonde, 1992; Li et al., 2001) and may involve OS. 
This is evidenced by increased lipid peroxidation (LPO) in 
the testes, decreased sperm count, and increased abnor-
mal sperm morphology of mice exposed to chromium (VI), 
each of which was partially preventable by tsupplementa-
tion with antioxidants, such as vitamin E and, especially, 
vitamin C (Acharya et al., 2004). In addition, uptake of 
CrVI by the testis and its subsequent reduction to trivalent 
chromium (CrIII) are well known (Sipowicz et al., 1997; 
Sutherland et al., 2000). Recent reports showed that the 
accumulation of uni- and multinucleate germ cells in the 
epididymal lumen of monkeys treated with CrVI caused 
ductal obstruction (Aruldhas et al., 2004).

Cobalt
Cobalt is an essential oligoelement that enters in the 
composition of vitamin B

12
 (Lauwerys and Lison, 1994). 
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For the general population, food and beverages repre-
sent the main source of cobalt exposure. Traces of cobalt 
are also present in cement and various household prod-
ucts. In industry, the potential for exposure to cobalt is 
particularly important during the production of cobalt 
powder, the production, processing and use of hard met-
als, the polishing of diamonds with cobalt containing 
disks, and the processing of cobalt alloys. Except in the 
production of cobalt powders, these activities involve 
exposure not only to cobalt, but also to other substances, 
such as tungsten carbide, iron, and diamond, which may 
modulate the biological reactivity of cobalt. Cobalt salts 
are used for the preparation of enamels and pigments. 
Chronic exposure of male mice to cobalt chloride dra-
matically affected their reproductive potential, whereas 
acute administration had minimal effects (Pedigo et al., 
1988). Acute exposure, followed by evaluation weekly 
over a 7-week period, revealed no significant changes 
in epididymal sperm concentration or testicular weight. 
However, small, but significant, decreases in fertility at 
weeks 2 and 3 of the study were observed. Sperm motility 
was depressed only during week 1 of the study (Kumar 
et al., 1990). In chronic studies, cobalt affected fertil-
ity in a time- and dose-dependent manner. There was a 
decrease in testicular weight, epididymal sperm concen-
tration, and fertility. Sperm motility was also depressed. 
Serum testosterone levels were dramatically increased 
in cobalt-treated animals, whereas FSH and LH serum 
levels were normal. It appears that cobalt is directly or 
indirectly interfering with spermatogenesis and with 
local regulatory mechanisms in testosterone synthesis 
(Pedigo et al., 1988). Cobalt is an essential oligoelement 
for mammals, not a cumulative toxin, but chronic expo-
sure induces negative effects on the organism. Data from 
the literature evidenced that in experimental animals, 
cobalt impaired male reproductive organs and fertility 
when applied chronically. Some other studies showed 
the effect of cobalt on pubertal male progeny of female 
mice treated with cobalt in late pregnancy and during the 
suckling period. Significant reduction in macroscopic 
parameters, such as as body weight and 20% decrease 
(nonsignificant) of testicular and epididymal weight as 
well as in testis/body-weight index, was found. The effect 
of cobalt on male progeny could be explained with the 
transplacental route of exposure and with the possible 
transfer of cobalt into mothers’ milk. The negative effect 
of cobalt was not observed in midpuberty (day 25), with 
the exception of epididymal weight, which was not com-
pensated, suggesting that epididymis is more sensitive to 
cobalt treatment. Those studies concluded that exposure 
to cobalt during the peri- and postnatal period affected 
body weight during puberty, but did not significantly 
reduce reproductive organ growth (Madzharova et al., 
2010). However, as in other studies, it could be concluded 
that a negative effect of cobalt on later life could not be 
rule out and that cobalt might be considered as a pos-
sible risk factor for male reproductive health (Pedigo  
et al., 1988; Becker and Smith, 1951).

Copper
Copper can be found in many kinds of food, in drinking 
water, and in air. The absorption of copper is necessary, 
because copper is a trace element that is essential for 
human health. Although humans can handle proportion-
ally large concentrations of copper, too much copper can 
still cause eminent health problems. But, people that live 
near smelters that process copper ore into metal do expe-
rience this kind of exposure. People that live in houses 
that still have copper plumbing are exposed to higher 
levels of copper than most people, because copper is 
released into their drinking water through the corrosion 
of pipes. Occupational exposure to copper often occurs. 
In the working environment, copper contagion can lead 
to a flu-like condition known as metal fever (Armstrong 
et al., 1983). In the reproductive system, the effect of cop-
per on spermatozoa was studied as early as 1956 and has 
given rise to numerous studies, and the assay findings 
have recurred in all the tissues of the male reproductive 
system, with considerable individual differences, the 
cause of which is not understood. Its role in the sperm 
is unclear, but it appears to be involved in spermatozoa 
mobility and it may also act on pituitary receptors, which 
control the release of LH. Copper can act on FSH recep-
tors, interfering in spermatogenesis. In the seminal fluid, 
the level of copper appears to fall in cases of azoosper-
mia and to increase in oligo- and asthenozoospermia, 
but the findings of different investigators are somewhat 
contradictory, and some investigators do not report on 
any correlation between the seminal level of copper and 
the number or mobility of the gametes (Skandhan, 1992). 
It is true that the concentrations in the ejaculate vary 
considerably from one day to the next and that they also 
vary in different fractions from a single ejaculate. Copper 
reduces oxidative processes and glucose consumption, 
which reduces or abolishes mobility: this property is 
exploited in intrauterine devices (IUDs). The use of cop-
per for male contraception has given rise to experimental 
implantations at various sites within the male system—
lumen of the deferens, epididymis, seminal vesicle, and 
scrotum—and the mobility of spermatozoa was abolished 
in all cases (Eidi et al., 2010; Chattopadhyay et al., 2005). 
Tissue toxicity makes it impossible to use this method in 
human practice. This is why research is concentrating on 
preparations able to release tiny quantities of the metal 
in a regular continuous fashion until testicular function is 
blocked without damaging the tissues (Skandhan, 1992).

Fluoride
Fluoride is found in drinking water, toothpaste, soda and 
juices, fluoridated salts, et al. But, for fluoride toxicity, 
fluoridated water is one of the biggest culprits; total expo-
sure to fluoride is one of the factors that ultimately deter-
mine one’s level of risk for the adverse effects of fluoride. 
Therefore, it is important to reduce the level of exposure 
to fluoride from all sources. In some reports, it has been 
described that when sexually mature male Swiss mice 
were exposed to 100, 200, and 300 ppm of sodium fluoride 
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(NaF) in their drinking water for 4 weeks or 10 weeks, 
fertility was significantly reduced at all three concentra-
tions by exposure for 10 weeks, but not for 4 weeks. The 
number of implantation sites and viable fetuses was sig-
nificantly reduced in females mated with males that had 
ingested NaF at a concentration of 200 ppm for 10 weeks. 
Relative weights of seminal vesicles and preputial glands 
were significantly increased in mice exposed to 200 and 
300 ppm of NaF for 4 weeks, but not in mice exposed for 
10 weeks. These results indicate that long-term ingestion 
of NaF adversely affects fertility in male mice (Darmani 
et al., 2001; Elbetieha et al., 2000). The most important 
consequences of these fluoride exposures are changes 
in the structure and functional behavior of spermato-
zoa, disruption of spermatogenesis, and disturbances of 
multiple hormone systems that affect male reproduction. 
Changes in spermatozoa result from oxidative damage, 
zinc deficiency, and disturbed signal transduction. There 
is evidence that fluoride interferes with spermatogenesis 
by depressing levels of epidermal growth factor (EGF) 
and epidermal growth factor receptor (EGFR), modifying 
G-protein signaling, diminishing levels of testosterone 
and its androgen receptor (AR), and disturbing levels of 
estradiol. Further, fluoride is also known to interfere with 
thyroid hormone metabolism, which directly and indi-
rectly affects not only spermatogenesis, but also other 
reproductive functions (Long et al., 2009). Although fluo-
ride appears to exert its toxic effects in the male repro-
ductive system through these pathways, the molecular 
details are still poorly understood. The growing evidence 
that fluoride overexposure leads to male reproductive 
toxicity through multiple pathways indicates that an 
assessment of chronic fluoride exposures in human and 
animal populations is urgently required.

Gold
For centuries, Ayurveda, the ancient medicine of India, 
mentions the role of gold in the treatment of male 
infertility (Tripathi, 1998; Sharma et al., 1979). “Swarna 
bhasma” (ash of gold) has been used with good results 
by Ayurvedic practitioners in the treatment of infertility 
(Godatvar, 1995; Shrinivas, 1998; Thaker, 2000). The pres-
ence of gold in the body is thought to be a contaminant 
from environmental elements, such as sea water, and total 
human body content of gold is calculated to be 0.1 mg. 
Oser (1975) and Bondani et al. (1973) considered semen 
to be a source of excretion for electrolytes, although this 
may not be true for gold. Gold has been claimed to have 
a beneficial effect on testicular function and sperm. Jain 
et al. (2010) has shown that estimated gold was after 
complete digestion (oxidation of organic matters; hence, 
whatever amount of gold is detected denotes the levels 
in seminal plasma as well as the sperm itself) in whole 
semen (seminal plasma and sperm) is quite high, when 
compared with the results of Skandhan (1981). Though 
Skandhan, in his study, had not included the sperm and 
did not mention the digestion procedure (i.e., to convert 
all organically bound gold into inorganic forms, which is 

the detectable form), which could be the possible cause 
for the high values of gold in results of Jain et al. However, 
the literature available correlating the effect of gold on 
male reproductive health is quite scanty, and further 
studies are required to make scientific correlation of gold 
and male infertility.

Indium
Workers in welding and semiconductor industries were 
found to be exposed to relatively high levels of indium. 
Indium is increasingly used in a variety of industries, 
and though there are few studies of its developmental 
toxicity, there are no reports of its potential reproductive 
toxicity, though a few studies carried out in experimental 
animals showed some detrimental changes to the male 
reproductive tract (i.e., vacuolization in the epithelium 
in indium-treated hamsters, which is a histopathologic 
change) may be responsible for the testicular damage. 
The severity and nature of the adverse effect is variable 
and can be influenced by factors such as sex, level of 
exposure, and individual sensitivity to the chemical. 
Its effects on the male reproductive system can include 
such things as altered sexual behavior, altered fertility, 
and problems with sperm shape or count (Chaplin et 
al., 1995). The weights of the testis and epididymis were 
not decreased, and the caudal sperm count was found to 
be decreased in treated animals (Omura et al., 2002). In 
addition, indium exposure was also reported to reduce 
sperm creatine kinase activity (Ghaffari and Motlagh, 
2011). Change in the testicular damage caused by indium 
arsenide (InAs) and indium phosphide (InP) was exam-
ined during 2 years after repetitive intratracheal instilla-
tions in hamsters. Both InAs and InP were proven to be 
definite testicular toxicants. Both materials were reported 
to decrease reproductive organ weight and caudal sperm 
count and caused severe histopathologic changes in the 
testes. InAs-induced testicular damage was more potent 
than InP-induced testicular damage. In histopathologic 
examination, vacuolization of seminiferous epithelium 
was frequently observed as an early histopathologic 
change, and spermatogonia remained, in general, even 
in the seminiferous tubules with severe histopathologic 
changes in both groups. lt is therefore estimated that 
Sertoli cells, not stem cell spermatogonia, were the target 
cells of these indium-containing compound semicon-
ductor materials (Omura et al., 2000).

Lead
Humans are exposed occupationally and environmentally 
to metal aerosols, including lead. It accumulates in male 
reproductive organs that result in male infertility. Over the 
last two centuries, many studies have shown the effect of 
lead on male reproductive physiology. Several studies of 
men occupationally exposed to lead have shown signifi-
cantly reduced semen quality, but not affected reproduc-
tive endocrine function (Telišman et al., 2000), whereas 
studies that measured only hormonal profiles (e.g., 
serum FSH, LH, testosterone, and sex-hormone–binding 
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globulin level) have shown no relevant effect on male 
reproductive endocrine profile (Erfurth et al., 2001).

A decrease in semen volume (Lerda, 1992), sperm 
concentration, and sperm count (Alexander et al., 1996), 
sperm motility (Viskum et al., 1999), and an increase in 
abnormal sperm morphology, particularly at the head 
of the sperm (Lerda, 1992), and impairment of prostate 
secretory function, as indicated by decreased seminal 
plasma zinc level (Wildt et al., 1983), was observed by 
various studies. Some data suggest that the reproduc-
tive effects of lead in men are reversible; a trend toward 
normalization was found in subjects treated with a lead-
chelating agent (Fisher-Fischbein et al., 1987) or after ces-
sation of occupational lead exposure (Viskum et al., 1999). 
After adjusting for age, smoking, alcohol, blood cadmium, 
serum zinc, and serum copper, an increase in blood lead 
was significantly associated with decreasing sperm con-
centration, counts of total sperm and progressively motile 
sperm, seminal plasma levels of zinc, acid phosphatase 
and citric acid, and increasing percentage of pathological 
sperm with abnormal sperm head morphology.

Abnormal sperm chromatin structure was not sig-
nificantly related to blood lead levels. However, it seems 
possible that differences in some lifestyle factors and the 
body burden of other relevant metals, not controlled for in 
this study, might have contributed to variations in repro-
ductive parameters among the study population, thereby 
weakening or masking the relationship between blood 
lead and reproductive effects (Hamadouche et al., 2009).

Recent data indicate that lead can adversely affect 
human semen quality, even at blood lead levels <150 μg/L 
(Jurasovíc et al., 2004). In a study of 123 men who had 
never been occupationally exposed to metals, the median 
(range) blood lead values were 57 μg/L (range, 25–149). 
After adjusting for confounding variables (e.g., age, smok-
ing, alcohol, blood cadmium, and serum copper, zinc, 
and selenium), an increase in blood lead was significantly 
associated with decreasing percentages of morphologi-
cally healthy and subnormal sperm and with increas-
ing percentages of slow sperm and overly wide sperm. 
A decrease in δ-aminolevulinic acid dehydrogenase 
(ALAD) activity was significantly associated with decreas-
ing size of testes and seminal plasma levels of the LDH iso-
enzyme, LDH-C4 (Jurasovíc et al., 2004). In another study 
(Benoff et al., 2003), the seminal plasma lead levels of 
subjects not occupationally exposed to lead were found to 
inversely correlate with fertilizing capacity of sperm acro-
some reaction and the fertilization rate when using the 
IVF technique, but also with seminal plasma zinc levels. 
Taken together, these studies suggest that lead may sig-
nificantly reduce human semen quality, even at low-level 
lead exposure, that is common for general populations 
worldwide. Several studies of lead workers have indicated 
that paternal blood lead levels of approximately 300–400 
μg/L are a most likely threshold for the increased rate of 
spontaneous abortions (Lindbohm et al., 1991), reduced 
rate of live births (Lin et al., 1996), and prolonged time 
to pregnancy (Shiau et al., 2004), although inconsistent 

findings (Joffe et al., 2003) or a minor incompatibility 
were also reported. An Italian study (Apostoli et al., 2000) 
reported that, although shorter time to pregnancy (TTP) 
was found in lead workers, compared to control subjects, 
within the group of lead workers, a longer TTP was associ-
ated with higher blood lead levels and significantly longer 
TTP was observed at blood lead levels equal to 400 μg/L. 
A recent study from Taiwan (Shiau et al., 2004) showed a 
clear dose-response trend of prolonged TTP with respect 
to increasing paternal blood lead levels; the fecund-
ability ratios (inversely related to TTP) were 0.90, 0.72, 
0.52, and 0.40 for blood lead categories <200, 200–290, 
300–390, and equal to 400 μg/L, respectively, compared 
to unexposed men, indicating that even blood lead lev-
els <300 μg/L may prolong TTP. A significantly increased 
rate of congenital malformations was found in children 
of occupationally lead-exposed fathers at paternal blood 
lead levels of 200 μg/L (Sallmén et al., 1992). A reduced 
sex ratio (reduced male proportion) among offspring of 
lead-exposed fathers has been observed in some studies 
(Dickinson and Parker, 1994), but not in others (Min et al., 
1996). Several experimental studies in rats, mice, rabbits, 
or monkeys have indicated that chronic lead exposure 
for at least 30 days, resulting in current blood lead levels 
equal to 400 μg/L, was associated with decreased intra-
testicular or epididymal sperm counts, sperm produc-
tion rate, sperm motility, and serum testosterone levels, 
although mainly without significant effect on male fertil-
ity, whereas several other studies have shown no signifi-
cant reproductive effect at comparable blood lead levels 
(Apostoli et al., 1998). An experimental study in rabbits 
(Moorman et al., 1998) showed an estimated threshold 
for reduced sperm count at a blood lead level of 240 μg/L 
and even lower for several other semen characteristics. 
A study on the effect of combined exposure to lead and 
cadmium on the testes of rats (Saxena et al., 1989) showed 
that animals orally exposed to the combination exhibited 
significantly more pronounced pathological testicular 
changes, with a reduction in sperm counts, compared 
with animals exposed to either of the metals alone. A 
protective effect of zinc against lead- and cadmium-
induced testicular injury in rats was reported on (Batra 
et al., 1998). With regard to possible mechanisms for a 
male-related transgenerational effect of lead, an in vitro 
study (Quintanilla-Vega et al., 2000) has shown that lead 
can compete with or replace zinc in human protamine 
P2 (HP2), a zinc-containing protein that protects sperm 
DNA by binding to it during spermatogenesis. Exposure 
of HP2 to lead resulted in a dose-dependent decrease in 
the extent of HP2-DNA binding, although lead effects on 
sperm DNA also contributed to this effect. This may affect 
sperm chromatin integrity, thereby reducing sperm-fer-
tilizing capacity and causing sperm DNA damage.

Magnesium
Magnesium, an essential element for health and disease 
has been identified as a cofactor in various enzymatic 
reactions, including energy metabolism and protein and 
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nucleic acid biosynthesis. Its exposure is only occurring 
if people consume magnesium-rich foods or consume 
hard water for a long time (Yang, 1998). Available lit-
erature on the effect of excess magnesium on the male 
reproductive system is insufficient. A few reports sug-
gested the effect of excess dietary magnesium on the male 
reproductive system (Sengupta et al., 2011d). Treatment 
of magnesium in adult male rats was at different doses, 
and durations showed increase in relative weight of 
testis, but no such change in accessory sex organs, epi-
didymal sperm count, serum testosterone, and LH and 
FSH levels. Testicular steroidogenic enzymes activities 
(Δ5 3β-HSD and 17β-HSD) were found to be elevated 
after chronic treatment with magnesium. Testicular his-
toarchitecture also showed no change in tubular struc-
ture. Magnesium, on the other hand, was not found to 
promote oxidative stress, as evidenced by activities of 
a testicular antioxidant enzyme profile [i.e., superoxide 
dismutase (SOD) and catalase (CAT)] (Chandra et al., 
2012c; Sengupta et al., 2011d).

Manganese
Manganese is found naturally in the environment and is 
also released into the air from mining and manufacturing 
operations and from combustion of gasoline additives. In 
men occupationally exposed to manganese dust, clinical 
signs of manganism were commonly accompanied with 
impotence or reduced libido (Emara et al., 1971; Mena 
et al., 1967; Rodier, 1955), indicating that manganese-
related effects were, in part, neurological in origin; they 
found that men with high manganese levels had a greater 
than 5-fold higher likelihood of low sperm motility. Low 
blood manganese levels were also associated with low 
sperm motility (Wirth et al., 2007). A study of male work-
ers moderately exposed to manganese dust (Lauwerys 
et al., 1985) showed a significantly reduced rate of live 
births, compared to a control group. A high single dose of 
manganese (160 mg of MnO

2
/kg by intratracheal instilla-

tion) caused degenerative testicular changes and sterility 
in rabbits (Chandra et al., 1973; Seth et al., 1973). Chronic 
dietary exposure of young rats to manganese Mn

3
O

4
 for 

224 days resulted in no effect on male fertility at manga-
nese doses <1,100 ppm, whereas at a dose of 3,500 ppm, 
decreased testicular weight, sperm count, and serum 
levels of FSH and testosterone were noted, together with 
general toxic effects (Laskey et al., 1982). In mice orally 
exposed to manganese acetate for 43 days, a significant 
decrease in sperm count and motility was observed at 
doses of 15.0 and 30.0 mg/kg/day, whereas there was no 
effect on fertility and testicular pathology (Ponnapakkam 
et al., 2003).

On the other hand, the antioxidative action of Mn2+ on 
various peroxidizing systems (i.e., sperms and neurons) 
has been studied. It has been found that Mn2+ inhibits 
LPO produced by a free-radical–producing system, but 
not LPO induced by a single oxygen (Cavallini et al., 
1984). Some reports suggested manganese deficiency 
may cause symptoms such as impaired or depressed 

reproductive functions (Barber et al., 2005; Singh et al., 
1989). It is an essential component of several enzymes, 
some of which (e.g., SOD, pseudo-CAT, and the photo-
synthetic oxygen evolving center) are involved in redox 
processes (Campanella et al., 2005). Manganese has also 
been designated as a chain-breaking antioxidant because 
it is able to quench peroxyl radicals (Coassin et al., 1992).

Mercury
Male reproductive toxicity of organic and inorganic mer-
cury has been observed in animals, mainly at dose levels 
that are otherwise toxic; evidence of a causal relation-
ship in humans is limited because of a small number of 
studies performed and insufficient control for potentially 
confounding variables. In workers exposed to mercury 
vapor, sex-hormone–binding globulin level in serum 
inversely correlated with duration of exposure, whereas 
no correlation was observed with serum levels of FSH, 
LH, and testosterone, neither with respect to dura-
tion of exposure nor mercury levels in blood and urine 
(McGregor and Mason, 1991). A significant positive cor-
relation between serum total testosterone, but not free 
testosterone, and cumulative mercury exposure was 
found in workers exposed to mercury vapor for an aver-
age of 10 years (Barregärd et al., 1994). No effect on fer-
tility, as assessed by the rate of live births, was observed 
in male workers chronically exposed to mercury vapor 
(Lauwerys et al., 1985). An increased rate of spontaneous 
abortions among wives of workers exposed to mercury 
vapor was, however, noted at paternal urinary mercury 
levels >4,000 µg/L; the effect was not significant after 
controlling for previous miscarriage history (Alcser et al., 
1989). In another study of workers exposed to mercury 
vapor (Cordier et al., 1991), a trend of increasing rate of 
spontaneous abortions was associated with paternal 
urinary mercury levels of 1–19 and 20–49 µg/L; however, 
the study did not address confounding factors, such as 
smoking and alcohol consumption. In studies of men 
with suspect infertility, compared to fertile men, nonsig-
nificant association was found between parameters of 
semen quality and mercury levels in blood (Leung et al., 
2001), urine, or ejaculate (Hanf et al., 1996). In another 
study, an increased risk of subfertility was found to be 
associated, in a dose-dependent manner, with increas-
ing levels of mercury in hair (Dickman et al., 1999). Both 
methylmercury and inorganic mercury can accumulate 
in animal testes, although the uptake and clearance of 
methylmercury was faster. Exposure of mice to methyl-
mercury or inorganic mercury resulted in adverse effects 
on spermatogenesis, testicular morphology, and fertility, 
whereas DNA synthesis in spermatogonia was depressed 
by methylmercury and, to a lesser extent, by inorganic 
mercury (Lee and Dixon, 1975). In monkeys dosed 
with methylmercury (orally 25 µg/kg/day for 20 weeks), 
decreased sperm motility and increased abnormal sperm 
tail morphology were observed at subneurotoxic levels; 
there was no change in testicular morphology and serum 
testosterone (Mohamed et al., 1987). In rats exposed to 
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methylmercury (0.8, 8.0, or 80 µg/kg twice-weekly in the 
diet for 19 weeks), significantly decreased intratesticular 
testosterone and somewhat lowered epididymal sperm 
count were found in the high-dose group, whereas 
inverse correlation was observed between fertility and 
testicular mercury content (Friedmann et al., 1998).

In rats, mice, guinea pigs, and hamsters exposed to 
inorganic mercury (mercuric chloride i.p. 1, 2, or 5 mg/
kg/day for 1 month), the highest dosage caused testicular 
degeneration and cellular deformation of the seminifer-
ous tubules and the Leydig cells in all species, whereas 
the lowest dosage caused testicular degeneration only in 
the hamster; partial degeneration was observed in the 
rat and mouse, and no change was noted in the guinea 
pig (Chowdhury and Arora, 1982). In rats orally exposed 
to mercuric chloride (9 mg/kg/day for 60–180 days), tes-
ticular morphological changes and decreased testoster-
one levels were found (Agrawal and Chansouria, 1989). 
In mice exposed to inorganic mercury through drinking 
water (4 ppm of mercuric chloride for 12 weeks), degen-
erative testicular changes, decreased absolute and rela-
tive testicular weight, and decreased epididymal sperm 
count were found; a protective effect of zinc was reported 
(Orisakwe et al., 2001). Vitamin E, administered with 
mercuric chloride (1.25 mg/kg/day) by gavage for 45 
days in mice, was protective against reduced epididy-
mal sperm count and sperm motility and viability and 
resulted in lower concentrations of mercury in the testis, 
epididymis, and vas deferens (Rao and Sharma, 2001).

Molybdenum
Molybdenum exposure occurs from ingestion of natu-
rally occurring or industrially related contamination of 
food and water and molybdenum-containing multivi-
tamin/multimineral supplements or from occupational 
exposure of building materials or consumer products 
(Seldén et al., 2005). Most of the studies of molybdenum 
exposure were carried out in experimental animals. In 
some studies, adult male rats, fed with sodium molyb-
date orally at the dose level of 10, 30, and 50 mg/kg body 
weight (5 days per week) for 60 days, showed a significant 
decrease in absolute and organ-to-body weight ratios of 
testes, epididymis, seminal vesicles, and ventral pros-
tate. Sperm abnormality, associated with decrease in 
sperm motility and sperm count, was also observed. 
Significant alterations in activities of marker testicular 
enzymes, such as sorbitol dehydrogenase (decreased), 
LDH (increased) and gamma-glutamyl transpeptidase 
(increased) associated with histopathological changes in 
testes, was also observed. Accumulation of molybdenum 
in testes, epididymides, and seminal vesicles was also 
observed. The study revealed that the oral ingestion of 
molybdenum may affect the histoarchitecture of testes 
and sperm morphology (Pandey and Singh, 2002). In 
some other studies, when sodium molybdate was fed to 
two Holstein male calves, usual symptoms of molybde-
num poisoning consisting of mild diarrhea, decreased 
body weight gains, anemia, and graying of the black hair 

areas were observed. The most striking and heretofore 
unnoted symptom was the lack of sexual interest or libido 
exhibited by these two animals. Histological examination 
of the testes showed marked damage to interstitial cells 
and germinal epithelium with little or no spermatogen-
esis present (Thomas and Moss, 1951).

Nickel
Nickel salts are considered an industrial health hazard, 
because many nickel compounds reach the human envi-
ronment (Venugopal and Luckey, 1978), and exert potent 
toxic effects on peripheral tissues as well as on the repro-
ductive system. Effects of nickel compounds on repro-
duction in rodent models are well documented (Pandey 
et al., 1999; Das and Dasgupta, 2000). Bioaccumulation 
of nickel in testis is well demonstrated, and the exact 
mechanisms of nickel-induced male reproductive toxic 
effects are mediated by various factors (Kakela et al., 1999; 
Obone et al., 1999). Low dietary protein, coupled with 
exposure to this metal, induces more severe changes, 
including biochemical defects, structural disorders, and 
altered physiologic functions.

Reports suggested nickel exposure causes decrease 
in weights of testicular and accessory sex organs and 
decrease in testicular steroidogenic enzymes activities 
(Δ5 3β-HSD and 17β-HSD) (Das and Dasgupta, 2000). 
Some reports suggested high blood nickel levels have 
a significant positive correlation with morphologi-
cally abnormal sperm, together with sperm tail defects 
(Danadevi et al., 2003). Experiments in animals have 
shown testicular toxicity involving OS after high doses of 
nickel. This is evidenced by increased LPO, DNA dam-
age, and apoptosis in the testes, morphological sperm 
head abnormalities, and decreased fertility in mice 
(Doreswamy et al., 2004), decreased DNA, RNA, and total 
protein in testes, and decreased sperm count and motil-
ity in rats (Das and Dasgupta, 2000), and decreased abso-
lute and relative weights of testes, epididymides, seminal 
vesicles and prostate gland, decreased sperm count and 
motility, and increased abnormal sperm morphology in 
mice (Pandey et al., 1999). Other reports provide some 
evidence that nickel may be essential for male reproduc-
tion in rats (Nielsen et al., 2002; Yokoi et al., 2003).

However, as described by various reports, the basic 
mode of action of nickel-induced toxicity in male repro-
ductive dysfunctions is evident by the involvement of OS 
mechanisms (Stinson et al, 1992; Chen et al 1998).

Selenium
Selenium is an essential trace mineral that is required for 
many physiological functions in animals, and the poten-
tial relevance of selenium to the reproductive system of 
livestock has been considered by many researchers. It is 
also an essential component of several major metabolic 
pathways, including thyroid hormone metabolism, anti-
oxidant defense systems, and immune function (Brown 
and Arthur, 2001). In animals, selenium has been shown 
to be an essential element for healthy male reproductive 
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function. It has been reported to have both beneficial 
and adverse effects to male reproductive functions. It is 
essential for healthy spermatogenesis of mammals and 
its critical role is mainly mediated by two selenoproteins, 
namely, phospholipid hydroperoxide glutathione per-
oxidase (PHGPx/GPx4) and selenoprotein P. PHGPx/
GPx4 is the major selenoprotein expressed by germ cells 
in the testis, having multiple functions and representing 
the pivotal link between selenium, sperm quality, and 
male fertility. Selenoprotein P is a plasma protein that 
is required for selenium supply to the testis (Boitani and 
Puglisi, 2008).

The best-characterized effect of selenium deficiency 
on mammalian spermatozoa is a loss of motility, break-
age at the midpiece level, and an increased incidence of 
sperm-shape abnormalities, mostly of the sperm head 
(Wallace et al., 1983, Watanabe and Endo, 1991). In 
addition, the antioxidant enzyme, GPx, which has been 
assumed to play a role in protecting cells from the harm-
ful effects of toxic metabolites and free radicals by pre-
venting LPO of membranes (Alvarez and Storey, 1989), 
constitutes selenium as an essential component of it 
(Rotruck et al., 1973). It is also considered to be one of 
the most efficient protective agents against cadmium-
induced injury.

On the contrary, selenium has long been known to 
have a damaging effect on different tissues of several 
species of animals. Some reports showed that selenium 
dioxide (SeO

2
) has an adverse toxic effect on the testis 

(Roy Chowdhury and Bhatt, 1983). They showed both 
low and high concentrations of seminal plasma sele-
nium may be harmful to male fertility (Bleau et al., 1984). 
Some repots showed intertubular edema, oligospermia, 
and scattered foci of degenerated spermatids were found 
after chronic exposure of the rat to selenium. In addition, 
marked inhibition in activities of testicular steroidogenic 
enzymes occurred, along with a significant reduction of 
mean tubular diameters, mean tubular areas, and mean 
tubular perimeters (Nebbia et al., 1987).

Silver
Silver is a naturally occurring precious metal, most often 
as a mineral ore in association with other elements. 
Reports regarding the effect of silver on male reproduc-
tion are rather scarce. Few earlier reports suggested the 
beneficial health effects of silver. They showed that sil-
ver, when used in reasonable amounts, has no negative 
effects on the human body and has a natural antimicro-
bial activity (Margaret et al., 2006; Sarkar et al., 2007). But, 
some other research works reported that silver exposure 
causes reduced activity of creatine kinase, an important 
enzyme that plays a major role in sperm energy homeo-
stasis (Yesilli et al., 2005), possibly through the displace-
ment of Mg+2 in this enzyme (Ghaffari and Motlagh, 2011). 
In addition, silver nanoparticles are shown to have severe 
toxic effects on the male reproductive system. The reports 
suggest that nanoparticles cross the blood-testes barrier 
and are deposited in the testes, and that there is potential 

for adverse effects on sperm cells (McAuliffe and Perry, 
2007). Silver nanoparticles can bind to testicular tissues 
and can cause potential toxic effects, such as cell activa-
tion, producing reactive oxygen species (ROS), which are 
more toxic to tissue, inflammation, and, finally, all these 
processes gradually lead to cell death (Xia et al., 2006).

Vanadium
Vanadium has been recognized as an industrial hazard 
that adversely affects human and animal reproductive 
health. Because testicular function is exquisitely suscep-
tible to ROS, some studies have elucidated the possible 
involvement of OS in vanadium-induced testicular toxic-
ity (Llobet et al., 1993). They also reported on a signifi-
cantly reduced sperm count associated with decreased 
serum testosterone and gonadotropin level in the vana-
dium-treated group of rats in the consequence of damag-
ing effects of vanadium-induced ROS on developing germ 
cells and Sertoli cells (Fortoul et al., 2007). Some reports 
suggested that alterations on testicular gamma-tubulin 
might imply changes in microtubule-involved function, 
such as cell division, which, in the testes, might lead to 
damage in the spermatogenesis (Mussali-Galante et al., 
2005). Vanadium has also been reported to cause adre-
nocortical hyperactivity, as evidenced by the elevated 
secretion of glucocorticoids, adrenal gland hypertrophy, 
and increased activity of adrenal Δ53β-HSD, along with 
increased testicular LPO (Uche et al., 2008).

Zinc
The relationship of zinc to morphologic, physiologic, and 
metabolic functions in the male reproductive system is 
well recognized. Semen and its constituents generally 
contain high levels of zinc, although concentrations vary 
among animals and species (Hidiroglou and Knipfel, 
1984); the relationships between zinc and fertility of 
semen are unclear.

During zinc deficiency, retarded development of tes-
ticular growth involved marked atrophy of tubular epi-
thelium and reduced DNA, RNA, and protein, as well as 
reduced zinc contents of testis, epididymis, and dorsolat-
eral prostate (Hidiroglou and Knipfel, 1984). Studies have 
shown that oral zinc supplementation improves both 
sperm count (Carpino et al., 1998), motility (Kynaston 
et al., 1988), and the physical characteristics of sperm 
in some groups of infertile men (Tikkiwal et al., 1987). A 
preliminary trial found that zinc supplements (240 mg/
day) increased sperm counts and possibly contributed 
to successful impregnation by 3 of the 11 men (Marmar 
et al., 1975). Omu et al. (1998) reported, in a controlled 
trial with 100 men, with low sperm motility, who received 
57 mg of zinc twice-daily for 3 months, showed improve-
ment in sperm quality, sperm count, sperm motility, and 
fertilizing capacity of sperm.

Functions of zinc in hormone interrelationships are 
little understood, but zinc deficiency decreases the 
output of pituitary gonadotrophins (e.g., LH and FSH) 
and androgen (e.g., testosterone) production, and zinc 
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turnover involves testosterone as well as pituitary hor-
mones (Prasad et al., 1996). Metabolic regulation of 
sperm appears to be mediated through zinc as a regu-
lator of enzyme activity in semen. Within spermatozoa, 
zinc is closely associated with –SH groups and disulfide 
linkages and is concentrated in the tail (Hidiroglou 
and Knipfel, 1984). Control of motility of sperm by 
zinc apparently involves control of energy utilization 
through adenosine triphosphate system involved in 
contraction and through regulation of phospholipid 
energy reserves (Riffo et al., 1992). The many roles for 
zinc in the male reproductive system are extremely 
complex and scarcely understood. The importance 
of zinc contents of commonly utilized feedstuffs in 
relation to reproductive capabilities of the mamma-
lian sperm remain unclear, although zinc deficiency 
in relation to male reproduction may be much more 
widespread than is recognized commonly.

Conclusions

Findings from different scientific studies indicated that 
the degree of toxic manifestation of different metals 
depends on dose, duration, route of administration, and 
other physiological factors, especially nutrition. Toxic 
manifestation by different metals varies from species 
to species. The signs and symptoms of metal toxicity 
depend on the duration of exposure, type of metal, con-
dition of workplace, socioeconomic status, and history of 
disease. But, extensive literature study has explored that 
there is a gap of knowledge in the proper toxicity survey. 
Current ongoing trials will provide answers on the safety 
and effectiveness of exposure of these metals, and further 
efforts should be made to widen our knowledge in this 
unmapped area of research.
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