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1 Introduction

Graph alignment is a challenging but very important problem within the field of graph
theory that has a wide range of applications.

In general, graph alignment is the problem of mapping two or more graphs to each
other such that a given cost function is optimized [9]. That is, it aims at aligning graphs in
a way that they become as “similar” as possible. There are several different definitions of
what similarity between graphs might mean and thus, there are also different definitions
of the graph alignment problem [9, 12, 8]. Graph alignment can therefore be regarded
as a superset of problems from which each one incorporates its own subtle adaptation as
required by the specific domain.

During the last years, graph alignment has become more and more important for
systems biology [5]. It is used to compare biological networks, for example protein-
protein interaction networks (PPI), metabolic networks or gene regulatory networks and
is consequently mostly referred to as network alignment. Due to the enormous growth
of such data over the last decade |7|, there has been much research on how to gain
biological insight from network comparisons, leading to a variety of new and enhanced
algorithms for network alignment. These often aim at finding similar parts in networks
of different species or at calculating an overall similarity score that can, for instance, be
used to recover phylogenetic trees. Techniques for the alignment of biological networks
are expected to prove at least as valuable for biological research as did sequence alignment
[5]-

Even though the definitions of graph alignment differ slightly, the main principle of
mapping nodes of different graphs to each other is always the same. With that in mind,
one general definition that holds for many applications and expresses the idea of graph
alignment is the following.

Let G1(Vi, E1) and Go(Va, E2) be two simple graphs (undirected, unweighted and
without loops and multiple edges). The graph alignment problem consists of finding
an alignment function f : V3 — Vs such that the quality of the alignment, denoted
by Q(G1,Ga, f), is maximized. ) expresses the similarity between the two graphs with
respect to that specific alignment — the higher it is, the better the graphs could be aligned.
We require f to be a bijection between V; and V5 in the general case, but sometimes
allow graphs of slightly different sizes, in which case we assume |Vi| < |V| and only
require f to be total and injective. By requiring an injective function, we ensure that
the nodes of graph G are all mapped to different nodes of Gbs.

Clearly, the concrete problem strongly depends on the similarity function (). The
following types of measuring alignment quality are commonly used:

topological similarity In this case, the graphs are aligned solely based on their topol-
ogy. Thus, a perfect alignment would imply that the two graphs are isomorphic
to each other. One standard measurement for this is the so-called edge-correctness
(EC). It is defined as the ratio of edges in G} that are aligned to edges in Ga: [16]

EC(G1, G, f) = H{(f(v1), f(v2)) ||j(;11|,v2) € E1} N By




However, the edge-correctness does not reflect, whether the correctly aligned edges
are near each other and form a connected graph, which might be a desirable prop-
erty. |14] Therefore, often the size of the largest common connected subgraph that
is preserved under the alignment, is also used as an indicator of the alignment’s
quality. Formally, it may be defined as the number of nodes or edges in the largest
connected subgraph of the following alignment graph G 4(Va, E4):

Va=Va,  Ea={(f(n1), f(v2)) | (v1,v2) € Ex} N E»

node similarity In some applications, it does not make sense to align graphs only with
respect to their topology, since the nodes themselves can be more or less similar
to each other. So the aim could be to align similar nodes to each other. With a
given node similarity function s : V; x Vo — R, one measurement of the alignment’s
quality might be the overall similarity between all nodes that are aligned to each

other:
> s(v, f(v))

veV]

Note, however, that this kind of topology-independent node similarity measure is
not always meaningful. While, for example, when aligning protein-protein interac-
tion networks, sequence similarity of proteins can be used, there is no general node
similarity in arbitrary graphs.

combination of both As both of the aforementioned types of quality measure might
fail to express what is meant by a good alignment of graphs, it is common practice
to combine both of them [16]. One possibility to do so is as simple as adding them
up using a user-defined weight «, assuming two quality measures ¢; and ¢y that
map to [0, 1]:

Q(G1,Ga, f) = a- q1(G1,Ga, f) + (1 — @) - q2(G1, Ga, f)

This definition of an alignment’s quality is rather versatile and is thus supported
by many algorithms |8 11, |12].

The specific quality measure used, only depends on the actual data modelled by the
graph. For example, when aligning PPI networks, one might want to avoid proteins
being aligned to each other that are completely different, as far as sequence or structural
similarity is concerned. Here, it would make sense to use node similarity. Since it is,
nevertheless, possible to draw surprisingly much benefit from only topological analysis
[12], one might want to use a combination of both. In other cases, one might, for
instance, want to align networks whose nodes represent different and non-comparable
things. There, purely topological alignment would be appropriate.

Of course, these different definitions also require different algorithms. Aligning two
graphs only based on their node similarity is the easiest of the mentioned problems. It
can be regarded as an instance of the classical assignment problem and can, for example,



be solved efficiently by the Hungarian algorithm in O(n?). In contrast, maximizing edge-
correctness and the maximum common connected subgraph are both NP-hard problems
[14] |8]. Consequently, the exact computation of an optimal alignment is infeasible if the
graphs under consideration are large, which is the case for biological networks, which
consist of thousands of nodes and edges. Heuristics are necessary for approximating the
optimal solution.

2 Purpose of the Thesis

In my Bachelor’s thesis, I am going to give an overview of existing graph alignment
algorithms. Besides introducing the graph alignment problem itself, I am going to outline
the main principles, these algorithms are built on. I am going to compare the different
approaches and identify similarities and differences concerning their internal functioning
as well as their applicability to different domains. Due to the fact that most progress
on this topic was made concerning the comparison of biological networks, I will present
algorithms that take into account the special characteristics of these networks, such as
the fact that they are mostly very sparse — which is true for many graphs that model
aspects of the real world [7].

Moreover, I am going to compare these algorithms on a quantitative basis in form
of a benchmark. I am going to focus on runtime as well as on the topological quality
of the alignments produced. Currently, I consider benchmarking some of the following
algorithms: IsoRank [8], Graemlin 2.0 |10], GRAAL [12], MI-GRAAL [14], C-GRAAL
[15], Natalie 2.0 [13], GHOST [16] and SPINAL |17]. T am going to test them on publicly
available real PPI data as well as on artificially created random graphs.

I am also going to give a short overview on applications or extensions of the pure
pairwise graph alignment problem. For instance, the alignment of multiple graphs at
a time might prove useful and it would also offer new perspectives to systems biology
research to be able to query a network databases for the network that produces the
best alignment with a given query network, always bearing in mind that even pairwise
alignment is a very hard problem, so algorithms must be scalable in order to be of
practical relevance.

3 Related Work

The graph alignment problem as defined above is just one of several approaches to com-
paring graphs. A lot of research has been done in this field that will not directly be part
of my thesis.

The definition of graph alignment presented above is widely regarded as the definition
of global network alignment |9, 8]. The nodes of two graphs are globally mapped to each
other in a one-to-one relation. In contrast, in local network alignment, the nodes do not
need to be mapped to each other injectively, but one-to-many or many-to-many relations
are allowed. This way, similar regions can be matched to each other independently of the
rest of the graphs. The mapping becomes ambigous, but the local alignments might be



of higher quality than global alignment would have achieved. This is because the global
aligner might have found a different global alignment that reaches a higher overall quality
score but does destroy the mapping of single similar regions. Therefore, local alignment
is, for example, used to find conserved subnetworks across species instead of comparing
the graphs as a whole [1|. In fact, local network alignment was used before the first
global aligner IsoRank was developed [§]. Examples include Graemlin [2], MaWISh [3]
and NetAlign [4].

As a special case of local alignment, one might regard the alignment with only one
region that can be significantly smaller than the other network. This kind of search is
often ambigously referred to as “network querying” [6], but is essentially the same as
approximate subgraph matching.

All of the mentioned problems are closely related to the classical graph problems of
graph isomorphism and subgraph isomorphism, but are more general because they also
compute a solution if there is no exact match. If there is an exact match, however,
they should preferably find it. As the classical problems are known to be NP-hard, it
is generally also computationally demanding to find exact solutions for the mentioned
related problems. Hence, they are usually approximated by heuristics, too.
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