
OFFICIAL COMMENT: Grostl

1 of 1 1/21/2009 8:04 AM

Subject: OFFICIAL COMMENT: Grostl
From: "Søren S. Thomsen" <ssth@win.dtu.dk>
Date: Fri, 16 Jan 2009 14:51:33 +0100
To: <hash-function@nist.gov>
CC: <hash-forum@nist.gov>

Dear all,

we have implemented Groestl using inline assembly with MMX/SSE/SSE2
instructions. Using this implementation we obtained new and improved
benchmarks on a Core2 Duo processor: Groestl-256 now runs at about 22.4
cycles/byte, and Groestl-512 runs at about 30.1 cycles/byte. See the
Groestl website, http://www.groestl.info.

On behalf of the Groestl team,
Søren Thomsen.

--
Søren Steffen Thomsen
PH.D. student
DTU Mathematics

Technical University of Denmark
Department of Mathematics
Matematiktorvet 303S
Building 303S
2800 Kgs. Lyngby
Direct +45 4525 3010
Mobile +45 2290 5443
S.Thomsen@mat.dtu.dk
www.mat.dtu.dk/

OFFICIAL COMMENT: Grostl

1 of 1 4/30/2009 9:08 AM

Subject: OFFICIAL COMMENT: Grostl
From: John Kelsey <john.kelsey@nist.gov>
Date: Tue, 28 Apr 2009 17:00:29 -0400
To: Multiple recipients of list <hash-forum@nist.gov>

Everyone,

I have some observations on Grostl, which I've written up in a PDF file attached to this
message. None of these observations appears to threaten the security of Grostl at all,
but I'm hoping they are of some use to other cryptographers looking at this hash function.

--John Kelsey, NIST

grostl-comment-april28.pdf
Content-Type: application/pdf

Content-Encoding: base64

Some notes on Grøstl
John Kelsey, NIST, April 2009

These are some quick notes on some properties and observations of Grøstl. Nothing in this note
threatens the hash function; instead, I'm pointing out some properties that are a bit surprising, and some
broad approaches someone might take to get attacks to work. I've discussed these with the Grøstl team,
and gotten quite a bit of useful feedback. I'm pretty sure they agree that my observations are correct,
but obviously, any errors here are mine alone.

1 Grøstl Compression Function

The Grøstl compression function is built from two different fixed permutations, P and Q, on 2n bits,
where n is the final hash output size. The design is quite interesting; among other things, this (like
LANE and Luffa, among others) takes away the key schedule as a way of affecting things inside P and
Q.

Here is a picture of the Grøstl compression function:

In this diagram, I've labeled the input hash chaining value Y, the output Z, and the message M.
Similarly, I have introduced variables for the internal values inside the compression function--u, v, and
w. I'll use this notation a lot in the next few pages to simplify discussion. To write this in terms of
equations:

u = Y xor M
v = Q(M)
w = P(u)
Z = v xor w xor Y

or, in a shorter form:

Z = Q(M) xor P(Y xor M) xor Y

P

Q

+ +
u

v

w

M

Y Z

It's important to remember here that all variables are 2n bits, so for a 256-bit hash, they're 512 bits
each.

Now, the hash function also includes a final transformation, and it's useful to look at the hash function
as a whole. So this is the full hash function as it would be used to hash a two block message:

In this diagram, I've marked the first message block as m[0], the second as m[1] (which includes the
padding), and have also included the output transformation. The box marked “trunc” simply chops half
the bits from the value before releasing it; this is how the 512 bit intermediate states are used to
ultimately produce a 256 bit hash.

Now, a pretty trivial observation here is that any single-block collision is going to have to put a nonzero
difference into both permutations. This is inevitably going to complicate the attack, as:

• The same XOR difference must work for P and Q.
• If we assume the hash chaining value coming in is fixed (for example, the IV), then the attacker

is quite constrained--by controlling the input to Q, the attacker gives up control of the input to P.
Alternatively, the attacker can get more choice of what goes into P by losing some control over Q.

To me, this suggests strongly that the right way to attack Grøstl will be with multiblock collisions. The
first block of the message with a difference in it will have both P and Q active, but later message blocks
can restrict their control to only P or only Q. I'll talk a bit about how to do that below.

2 XOR Differences in Hash Values and Chosen Inputs in the Permutations

There is an interesting property brought about by the compression function constuction used in Grøstl:
Once I know any pair of inputs M,M* with the property that:

M xor M* = Q(M) xor Q(M*) = D
I can always get a collision in the hash function, once I get a pair of hash chaining values whose XOR
difference is D. This diagram shows what's going on:

IV P

Q

+ +
u

v

w
P

Q

+ +
u

v

w

truncP +
s th[0] h[end] h[final]

m[0] m[1]

In the diagram, we know a pair M, M* such that M* = M xor D, and Q(M) xor Q(M*) = D. Note that
here, we're talking about actual values input into Q which have a known XOR difference in and out.
Now, given knowledge of such a pair, if we ever get a pair of hash inputs Y,Y* such that Y* = Y xor D,
we can force a collision.

The interesting thing about this is that it is independent of the values of Y and Y*. We care about the
specific values of M and M* for this to work, but we have no need to care about the specific values of
Y and Y*; instead, we care only about the XOR difference between them. This is quite different from
the behavior of a hash function like SHA256 or Whirlpool, where we would be quite surprised to have
the same message pair lead to collisions for absolutely any pair of input chaining values with the right
XOR difference.

We can do a variant of the same trick using permutation P:

In this diagram, we start by knowing a pair of inputs u,u* such that u xor u* = P(u) xor P(u*) = D.
Now, given any pair Y,Y* such that Y xor Y* = D, we can get the collision to work: We use M (shown
in green) to force the input to P on the left to go to u. This also forces the input on the right to go to

P

Q

+ +
u

v

w

Z

M

Y*
=

Y xor D

P

Q

+ +
u

v* = v xor D

w

Z

M* = M xor D

P

Q

+ +
u

v

w

Z

M

Y Y*
=

Y xor D

P

Q

+ +
u xor D

v

w

Z

M

u* = u xor D.
Again, we would not expect this for a compression function, in general; it's a specific and interesting
property of the Grøstl compression function. I have no idea how to use this to get any further on
Grøstl, but it does seem like the kind of observation that might come in handy somehow.

Søren Thompson, one of the Grøstl designers, has pointed out in an email that this property is implicit
in the discussion of Wagner's generalized birthday attack in the Grøstl submission document. However,
since it wasn't obvious to me until I spent a bit of time looking, I think it's worthwhile to point it out
here.

3 Most of the Output Transformation Doesn't Help

Grøstl includes an output transformation. Since it is a wide pipe design, some kind of output
transformation is needed to map the 512 bit intermediate state to a 256 bit final hash value. In Grøstl,
this is done by applying P once more to the result of the compression function on the final message
block, doing a feedforward XOR, and then truncating the result. That is, if h[end] is the result of the

P

Q

+ +
u

v

w
truncP +

s th[end]
h[final]

IV P

Q

+ +
u

v

w h[0] h[1]

K||P

P

Q

+ +
u*

v*

w*

0

IV

K||P

. . . .+

...so
are

these

 These
 are

 equal....

Given t, we
can compute
h[1].

Without truncation,
this would be fatal!

compression function on the last padded message block, then

h[final] = Truncate(P(h[end]) XOR h[end]).

The output transformation is intended, among other things, to block the length extension attack.
However, the use of P and the feedforward here makes the resulting hash no stronger against length
extensions than it would be, if the output transformation included nothing but truncation.
To see this, look at the above picture, and imagine that we eliminated the truncation from the output
transformation. In that case, the final hash of the first message, K (shown with padding P) would be
the value of the variable

t = P(h[end]) XOR h[end].

We're showing the first two compression function computations of the process of hashing a second
message, consisting of the two blocks K||P and 0. From the diagram, it's easy to see that the output of
the second compression function is

P(h[0]) xor h[0] xor Q(0) = P(h[end]) xor h[end] xor Q(0)

In this, I'm using the fact that h[0] in hashing second message equals h[end] in hashing the first
message; this is easy to see in the diagram.

Now, note that we can compute Q(0) without knowing anything about K||P. This means that if we were
given the non-truncated value t from the hashing of the first message, we could use it to compute h[1]
from the second message. That would allow us to use knowledge of hash(K) to compute hash(K||P||0||
x) for any x. In other words, without the truncation in the output transformation, the hash would be
vulnerable to a length-extension attack. (This attack works just as well if K is a whole block and the
padding P appears in the second block--that gives the attacker a more powerful attack, but it also
requires a more complicated diagram to explain.)

Grøstl's output transformation includes truncation, however, so we don't have a length extension attack
here. However, it's interesting to note that the output transformation seems to be providing little
security benefit except for that truncation. I think the output transformation would accomplish more, if
it used Q instead of P as its permutation. Given the Grøstl compression function, the intermediate hash
value never goes through Q in the normal operation of the hash, and so the result of computing
Q(h[end]) xor h[end] would not give any information about the intermediate state of a different hash
computation.

Praveen Gauravarum and Nasour Bagheri have used the above observation to show that without
truncation, Grøstl is differentiable from a random oracle.

4 Wrapup

I've shown a couple of interesting and surprising properties of the Grøstl hash function, but nothing that
suggests any particular weakness. The output transformation accomplishes less than it should, but still
seems to resist the relevant attacks. An attacker can in general concern himself with specific values of
inputs to the permutations P and Q, but need only worry about XOR differences in the chaining values,
but since the chaining values are twice the length of the hash output, this doesn't seem to lead to any
obvious weaknesses. I hope these observations are of use to other people trying to analyze Grøstl.

