
Effective Identification of Source Code Authors Using
Byte-Level Information

Georgia Frantzeskou Efstathios Stamatatos Stefanos Gritzalis Sokratis Katsikas
Laboratory of Information and Communication Systems Security

Department of Information and Communication Systems Engineering
University of the Aegean, Karlovasi, Samos, 83200, Greece

(gfran, stamatatos, sgritz, ska)@aegean.gr

ABSTRACT
Source code author identification deals with the task of
identifying the most likely author of a computer program, given a
set of predefined author candidates. This is usually .based on the
analysis of other program samples of undisputed authorship by
the same programmer. There are several cases where the
application of such a method could be of a major benefit, such as
authorship disputes, proof of authorship in court, tracing the
source of code left in the system after a cyber attack, etc. We
present a new approach, called the SCAP (Source Code Author
Profiles) approach, based on byte-level n-gram profiles in order to
represent a source code author’s style. Experiments on data sets of
different programming-language (Java or C++) and varying
difficulty (6 to 30 candidate authors) demonstrate the
effectiveness of the proposed approach.
A comparison with a previous source code authorship
identification study based on more complicated information
shows that the SCAP approach is language independent and that
n-gram author profiles are better able to capture the idiosyncrasies
of the source code authors. Moreover, the SCAP approach is able
to deal surprisingly well with cases where only a limited amount
of very short programs per programmer is available for training. It
is also demonstrated that the effectiveness of the proposed model
is not affected by the absence of comments in the source code, a
condition usually met in cyber-crime cases.

Categories and Subject Descriptors
K.4.1 [Public Policy Issues] Abuse and crime involving
computers

General Terms
Experimentation, Security.

Keywords
Source Code Authorship Identification, Software Forensics.

1. OVERVIEW AND MOTIVATION
Nowadays, in a wide variety of cases source code authorship

identification has become an issue of major concern. Such
situations include authorship disputes, proof of authorship in
court, cyber attacks in the form of viruses, trojan horses, logic
bombs, fraud, and credit card cloning etc.
The most extensive and comprehensive application of authorship
analysis is in literature. One famous authorship analysis study is
related to Shakespeare’s works and is dating back over several
centuries. Recently, a number of authorship attribution
approaches have been presented ([15, 6, 11]) proving that the
author of a natural language text can be reliably identified.
Although source code is much more formal and restrictive than
spoken or written languages, there is still a large degree of
flexibility when writing a program [2]. Spafford and Weeber [14]
suggested that it might be feasible to analyze the remnants of
software after a computer attack, such as viruses, worms or trojan
horses, and identify its author.
On the evening of 2 November 1988, someone infected the
Internet with a worm program. Spafford [13] conducted a manual
analysis of the program using three reversed-engineered versions
and conclusions were drawn about the author’s abilities and
intent. Longstaff and Shultz [9] studied the WANK and OILZ
worms which in 1989 attacked NASA and DOE systems. They
have manually analyzed code structures and features and have
reached a conclusion that three distinct authors worked on the
worms. In addition, they were able to infer certain characteristics
of the authors, such as their educational backgrounds and
programming levels. Sallis et al [12] expanded the work of
Spafford and Weeber by suggesting some additional features,
such as cyclomatic complexity of the control flow and the use of
layout conventions.
An automated approach was taken by Krsul and Spafford [8] to
identify the author of a program written in C. The study relied on
the use of software metrics, collected from a variety of sources.
They were divided into three categories: layout, style and
structure metrics. These features were extracted using a software
analyzer program from 88 programs belonging to 29 authors. A
tool was developed to visualize the metrics collected and help
select those metrics that exhibited little within-author variation,
but large between-author variation. A statistical approach called
discriminant analysis (SAS) was applied on the chosen subset of
metrics to classify the programs by author. The experiment
achieved 73% overall accuracy.
Other research groups have examined the authorship of computer
programs written in C++ [7]; [10], a dictionary based system
called IDENTIFIED was developed to extract source code metrics
for authorship analysis [3]. Satisfactory results were obtained for
C++ programs using case-based reasoning, feed-forward neural
network, and multiple discriminant analysis [10]. The best
prediction accuracy has been achieved by Case-Based Reasoning
and it was 88% for 6 different authors.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICSE’06, May 20–28, 2006, Shanghai, China.
Copyright 2006 ACM 1-58113-000-0/00/0004…$5.00.

Ding [1], investigated the extraction of a set of software metrics
of a given Java source code, that could be used as a fingerprint to
identify the author of the Java code. The contributions of the
selected metrics to authorship identification were measured by a
statistical process, namely canonical discriminant analysis, using
the statistical software package SAS. A set of 56 metrics of Java
programs was proposed for authorship analysis. Forty-six groups
of programs were diversely collected. Classification accuracies
were 62.7% and 67.2% when the metrics were selected manually
while those values were 62.6% and 66.6% when the metrics were
chosen by SDA (stepwise discriminant analysis).
The traditional methodology that has been followed in this area of
research is divided into two main steps. The first step is the
extraction of software metrics representing the author’s style and
the second step is using these metrics to develop models that are
capable of discriminating between several authors, using a
classification algorithm.
However, there are some disadvantages in this traditional
approach. The first is that software metrics used are programming
- language dependant. For example metrics used in Java cannot be
used in C or Pascal. The second is that metrics selection is not a
trivial process and usually involves setting thresholds to eliminate
those metrics that contribute little to the classification model. As a
result, the focus in a lot of the previous research efforts, such as
[1] and [4] was into the metrics selection process rather than into
improving the effectiveness and the efficiency of the proposed
models.
In this paper we present an approach to source code author
identification we call the SCAP (Source Code Author Profiles)
approach, which is an extension of a method that has been applied
to natural language text authorship identification [3]. The
assumption used is, that programs are written by a single author
and that it is possible in cases where programs are the result of
team effort to distinguish the pieces of code written by a certain
author. In the SCAP method, byte-level n-grams are utilised
together with author profiles. We propose a new simplified profile
and similarity measure that proved to be quite effective even in
cases where only limited training set is available for each author.
Our methodology is programming - language independent since it
is based on low-level information and has been tested to data sets
from two different programming languages Java and C++. Special
attention is paid to the evaluation methodology. Disjoint training
and test sets of equal size were used in all the experiments in
order to ensure the reliability of the presented results. Moreover,
the significance of the comments in the source code is examined.
It is demonstrated that the effectiveness of the SCAP model is not
affected by the absence of comments, a condition usually met in
cyber-crime cases.

2. DESCRIPTION OF PRELIMINARY
RESULTS
2.1 THE SCAP Approach
In this paper, we present the SCAP (Source Code Author
Profiles) approach, which is an extension of a method that has
been successfully applied to text authorship identification [5]. It is
based on byte level n-grams and the utilization of a similarity
measure used to classify a program to an author. Therefore, this
method does not use any language-dependent information.
An n-gram is an n-contiguous sequence and can be defined on the
byte, character, or word level. Byte, character and word n-grams

have been used in a variety of applications such as text authorship
attribution, speech recognition, language modelling, context
sensitive spelling correction, optical character recognition etc. In
our approach, the Perl package Text::N-grams [6] has been used
to produce n-gram tables for each file or set of files that is
required. The n-gram table contains the n-grams found in a source
code file in descending frequency order.
The algorithm we propose, computes n-gram based profiles that
represent each of the author category. First, for each author the
available training source code samples are concatenated to form a
big file. Then, the set of the L most frequent n-grams of this file is
extracted. Hence the profile of an author we propose is a
Simplified Profile (SP) and is the set {x1; x2;,…,xL} of the L most
frequent n-grams xi Similarly, a profile is constructed for each
test case (a simple source code file). In order to classify a test case
in to an author, the profile of the test file SPT is compared with
the profiles of all the candidate authors SPA based on a similarity
measure. The similarity distance is given by the size of the
intersection of the two profiles:

)1(TA SPSP ∩

where |X| is the size of X. In other words, the similarity measure
we propose is the amount of common n-grams in the profiles of
the test case and the author. The program is classified to the
author with whom we achieved the biggest size of intersection.
Hereafter, this similarity measure will be called Simplified Profile
Intersection (SPI). We have developed a number of perl scripts in
order to create the sets of n-gram tables for the different values of
n (i.e., n-gram length), L (i.e., profile length) and for the
classification of the program file to the author with the smallest
distance.
One of the inherent advantages of this approach is that it is
language independent since it is based on low-level information.
As a result, it can be applied with no additional cost to data sets
where programs are written in C++, Java, perl etc. Moreover, it
does not require multiple training examples from each author,
since it is based on one profile per author. The more source code
programs available for each author, the more reliable the author
profile. Also the new similarity measure SPI is suitable for cases
where only a limited training set is available for each author. Note
that this is especially the case in many source code author
identification problems, where only a few short source code
samples are available for each author.

2.2 Experiments & Results
2.2.1 Comparison with a previous method
We have performed a number of experiments in order to
demonstrate the effectiveness of our approach in a number of data
sets with different characteristics. The data set of the first
experiment has been initially used by Mac Donell [10] for
evaluating a system for automatic discrimination of source code
author based on more complicated, programming language-
dependent measures. All the source code samples were written in
C++. The data set was split (as equally as possible) into the
training set 50% (134 programs) and the test set 50% (133
programs) and we had to classify programs from 6 different
authors. The best reported result by Mac Donell [10] on the test
set was 88% using the case-based reasoning (that is, a memory-
based learning) algorithm. We used byte-level n-grams extracted
from the sample programs in order to create the author and
program profiles as well as the author and program simplified

profiles. Classification accuracy reached 100% (see Table 1) for
various combinations of n (n-gram size) and L (profile size),
much better than the best reported ([10]) accuracy for this data set
(88% on the test set). This proves that the presented methodology
can cope effectively with the source code author identification
problem based on low-level information.

Table 1. Classification accuracy (%) on the MacDonellC++
data set for different values of n-gram size and profile size
Profile Size

L n-gram Size

 3 4 5 6 7 8

500 100 100 100 98 98 98

1000 100 100 100 100 100 99

1500 100 100 100 100 99 100

2000 100 100 100 100 100 100

2500 100 100 100 100 100 100

3000 100 100 100 100 100 100

2.2.2 Evaluation on another programming language.
The next experiment was performed on student programs written
in Java. Henceforth, this data set will be called StudentJava. There
are 8 different programmers in total and 6-8 programs per author.
In particular, the source code samples of this data set include
assignments from an introductory programming course. Hence the
programs on this data set were on the same subject written by
different programmers. The size of the programs was between 36
and 258 lines of code. The data set was split into quasi equally-
sized training and test sets. This data set contains limited data per
programmer (6-8 per programmer) and, moreover, the available
source code samples are short (mean LOC per program 129). In
addition, the programs written by students usually have no
comments while their programming style is influenced by the
guidelines of the instructor. More significantly, the source code
samples are plagiarised. All these facts introduce some extra
difficulties in the source code authorship analysis. As a
consequence, the classification results for the StudentJava data set
are expected to be lower than that of McDonellC++ data set. The
best result achieved was 88.5% for a number of n, L combinations
(see Table 2). These results are quite satisfactory given the
difficulties of this data set. This indicates that the SCAP method
can reliably handle difficult cases. Finally, it is demonstrated that
the proposed method can be applied to any programming
language equally well. Note, that no modification or adjustment is
required in order to apply our method to this data set.

2.2.3 The role of comments
The experiments described in this section are based on a data set
of open source programs written in Java. In more detail, source
code samples by 8 different authors were downloaded from
freshmeat.net. The amount of programs per programmer is highly
unbalanced, ranging from 4 to 30 programs per author. The source
code sample size was between 23-760 lines of code. In many
cases, source code samples by the same programmer have
common comment lines at the beginning of the program. Such
comment lines were manually removed since they could
(positively) influence the classification accuracy. The total
number of programs was 107 and they were split into equally-
training and test sets. Hereafter, this data set will be called

OSJava1. This data set provides a more realistic case of source
code author identification than student programs. Open source
code is similar to commercial programs which usually have
comments and they are usually well structured. Most of the open
source programs were longer than the student programs. More
importantly, this data set enables us to examine the role comments
play in the classification model. We have decided to perform
three different experiments on this data set. For this reason, we
first filtered out any comments from the OSJava1 data set,
resulting a new data set (hereafter, called NoComJava). Then,
another data set was constructed using only the comments from
each source code sample (hereafter, called OnlyComJava). Note
that in the latter case, the resulting data set includes fewer
programs than the original because any source code files with no
comments were removed. The OnlyComJava data set includes
samples by 6 different authors with 9 – 25 files per author.
On this set of experiments we used two different profile sizes
1500 and 2000, since they provide the best results (as has been
demonstrated in the previous experiments). The classification
results for the OSJava1 data set are perfect for any n-gram size,
100% in all n, L combinations (see Table 2). This is mainly
because the source code samples of this data set are relatively
long. Moreover, for many candidate authors there is a sufficient
amount of training samples. Interestingly, the accuracy remains at
the top level, between 94%-100%, when removing the comments
lines of these samples (NoComJava data set). This is a strong
indication that the proposed SPI similarity measure suits the
source code author identification problem. On the other hand,
when examining only the comments of each source code sample
(OnlyComJava dataset), the results remain high between 95 –
100%. This result is an indication that it is possible to identify the
author of a program by analysing its comments only.

Table 2. Best classification results
Data Sets No of

Autho
rs

Best
Classificat
ion
accuracy

Profile size(L) & n-
gram size(n) used
for the best
accuracy

MacDonellC++ 6 100% As shown in Table1

StudentJava 8 88.5% L=2000,2500 &
n=6

OSJava1 8 100% L=1500,2000 &
n=3,4,5,6,7,8

NoComJava 8 100% L=2000 &
n=5,6,7,8

OnlyComJavas 6 100% L=1500 & n=5 and
L=2000 & n=4,5,6

OSJava2 30 96.9% L=1500 & n=7

2.2.4 Dealing with many authors.
The previous experiments have shown that our approach is quite
reliable when dealing with a limited number of candidate authors
(6 to 8). In this section we present an experiment that
demonstrates the effectiveness of the proposed method when
dealing with dozens of candidate authors. For that purpose a data
set was created by downloading open-source code samples by 30
different authors from freshmeat.net. Hereafter, this data set will
be called OSJava2. This data set includes programs on the same
application domain written by different authors. In addition the
samples of many authors are written over a long time period and

therefore there might be programming style changes of certain
authors. The samples were split into equally-sized training and
test set. Note that the training set was highly unbalanced (as
OSJava1). The best accuracy result was 96.9% and in most cases,
accuracy exceeds 95%, indicating that the SCAP approach can
reliably identify the author of a source code sample even when
there are multiple candidate authors.

3. CONCLUSIONS
In this paper, the SCAP approach to source code authorship
analysis has been presented. It is based on byte-level n-gram
profiles. The current version of the SCAP approach does not
claim that authorship identification is possible when programs
have been written with the purpose to disguise the author. Our
method was applied to data sets of different programming
languages and varying difficulty demonstrating surprising
effectiveness. The SCAP approach includes a new simplified
profile and a similarity measure that better suit the characteristics
of the source code authorship analysis problem. In particular the
SCAP approach can deal with cases where very limited training
data per author is available (especially, when at least one author
profile is shorter than the predefined profile size) or there are
multiple candidate authors, conditions usually met in source code
authorship analysis problems (e.g. source code authorship
disputes, etc.) with no significant compromise in performance.
More significantly, the role of comments in the source code is
examined. The SCAP method can reliably identify the most likely
author when there are no comments in the available source code
samples, a condition usually met in cyber-attacks. However, it is
demonstrated that the comments provide quite useful information
and can significantly assist the classification model to achieve
quasi-perfect results. Actually, the comments alone can be used to
identify the most likely author in open-source code samples where
there are detailed comments in each program sample.

The presented experiments indicate that the best classification
models are acquired for n-gram size 6 or 7 and profile size 1500
or 2000. However, more experiments have to be performed on
various data sets in order to be able to define the most appropriate
combination of n-gram size and profile size for a given problem.
The high accuracy achieved with the data sets, OSJava1 and
OSJava2 could be contributed (to some extent) to the fact that the
programs used from each author belong to a different application
domain, although some initial experiments have shown that
variable, class and method names do not affect classification
accuracy. It is under investigation the factors that contribute to
authorship identification using the SCAP approach (i.e. style,
variable naming etc). Finally, the visualization of the stylistic
properties of each author could be of major benefit in order to
explain the differences between candidate source code authors.

4. REFERENCES
[1] Ding, H., Samadzadeh, M., H., Extraction of Java program

fingerprints for software authorship identification, The

Journal of Systems and Software, Volume 72, Issue 1, Pages
49-57 June 2004.

[2] Frantzeskou, G., Gritzalis, S., Mac Donell, S., Source Code
Authorship Analysis for supporting the cybercrime
investigation process, (ICETE04), Vol 2, pages (85-92),
2004.

[3] Gray, A., Sallis, P., and MacDonell, S.,, Identified: A
dictionary-based system for extracting source code metrics
for software forensics. In Proceedings of SE:E&P’98, IEEE
Computer Society Press, pages 252–259., 1998.

[4] Gray, A., Sallis, P., and MacDonell, S., Software forensics:
Extending authorship analysis techniques to computer
programs, in Proc. 3rd Biannual Conf. Int. Assoc. of
Forensic Linguists (IAFL'97), pages 1-8, 1997.

[5] Keselj, V., Peng, F., Cercone, N., Thomas, C., N-gram
based author profiles for authorship attribution, In Proc.
Pacific Association for Computational Linguistics 2003.

[6] Keselj, V.,. Perl package Text::N-grams
http://www.cs.dal.ca/~vlado/srcperl/N-grams , 2003.

[7] Kilgour, R. I., Gray, A.R., Sallis, P. J., and MacDonell, S.
G., A Fuzzy Logic Approach to Computer Software Source
Code Authorship Analysis, Accepted In Proc. Of
(ICONIP'97). Dunedin. New Zealand, 1997.

[8] Krsul, I., and Spafford, E. H, Authorship analysis:
Identifying the author of a program, In Proc. 8th National
Information Systems Security Conference, pages 514-524,
National Institute of Standards and Technology., 1995.

[9] Longstaff, T. A., and Schultz, E. E., Beyond Preliminary
Analysis of the WANK and OILZ Worms: A Case Study of
Malicious Code, Computers and Security, 12:61-77, 1993.

[10] MacDonell, S.G, and Gray, A.R. Software forensics applied
to the task of discriminating between program authors.
Journal of Systems Research and Information Systems 10:
113-127 (2001).

[11] Peng, F., D., Shuurmans, and S., Wang., Augmenting naive
bayes classifiers with statistical language models,
Information Retrieval Journal, 7(1): 317-345, 2004.

[12] Sallis P., Aakjaer, A., and MacDonell, S., Software
Forensics: Old Methods for a New Science. Proceedings of
SE:E&P’96. Dunedin, New Zealand, IEEE Computer
Society Press, 367-371, 1996.

[13] Spafford, E. H., The Internet Worm Program: An Analysis,”
Computer Communications Review, 19(1): 17-49, 1989.

[14] Spafford, E. H., and Weeber, S. A., Software forensics:
tracking code to its authors, Computers and Security,
12:585-595, 1993.

[15] Stamatatos, E., N., Fakotakis, and G. Kokkinakis. Automatic
text categorisation in terms of genre and author.
Computational Linguistics, 26(4): 471-495, 2000

