

## New Zealand Mathematical Olympiad Committee

## Bertrand's Theorem <br> Arkadii Slinko

## 1 Introduction

In this tutorial we are going to prove:
Theorem 1 (Bertrand's Postulate). For each positive integer $n>1$ there is a prime $p$ such that $n<p<2 n$.
This theorem was verified for all numbers less than three million for Joseph Bertrand (1822-1900) and was proved by Pafnutii Chebyshev (1821-1894).

## 2 The floor function

Definition 1. Let $x$ be a real number such that $n \leq x<n+1$. Then we define $\lfloor x\rfloor=n$. This is called the floor function. $\lfloor x\rfloor$ is also called the integer part of $x$ with $x-\lfloor x\rfloor$ being called the fractional part of $x$. If $m-1<x \leq m$, we define $\lceil x\rceil=m$. This is called the ceiling function.

In this tutorial we will make use of the floor function. Two useful properties are listed in the following propositions.

Proposition 2. $2\lfloor x\rfloor \leq\lfloor 2 x\rfloor \leq 2\lfloor x\rfloor+1$.

Proof. Proving such inequalities is easy (and it resembles problems with the absolute value function). You have to represent $x$ in the form $x=\lfloor x\rfloor+a$, where $0 \leq a<1$ is the fractional part of $x$. Then $2 x=2\lfloor x\rfloor+2 a$ and we get two cases: $a<1 / 2$ and $a \geq 1 / 2$. In the first case we have

$$
2\lfloor x\rfloor=\lfloor 2 x\rfloor<2\lfloor x\rfloor+1
$$

and in the second

$$
2\lfloor x\rfloor<\lfloor 2 x\rfloor=2\lfloor x\rfloor+1 .
$$

Proposition 3. let $a, b$ be positive integers and let us divide $a$ by $b$ with remainder

$$
a=q b+r \quad 0 \leq r<b
$$

Then $q=\lfloor a / b\rfloor$ and $r=a-b\lfloor a / b\rfloor$.
Proof. We simply write

$$
\frac{a}{b}=q+\frac{r}{b}
$$

and since $q$ is an integer and $0 \leq r / b<1$ we see that $q$ is the integer part of $a / b$ and $r / b$ is the fractional part.

Example 1. $\lfloor x\rfloor+\lfloor x+1 / 2\rfloor=\lfloor 2 x\rfloor$.

## 3 Prime divisors of factorials and binomial coefficients

We start with the following
Lemma 4. Let $n$ and $b$ be positive integers. Then the number of integers in the set $\{1,2,3, \ldots, n\}$ that are multiples of $b$ is equal to $\lfloor n / b\rfloor$.

Proof. Indeed, by Proposition 2 the integers that are divisible by $b$ will be $b, 2 b, \ldots,\lfloor m / b\rfloor \cdot b$.
Theorem 5. Let $n$ and $p$ be positive integers and $p$ be prime. Then the largest exponent such that $p^{s} \mid n!$ is

$$
\begin{equation*}
s=\sum_{j \geq 1}\left\lfloor\frac{n}{p^{j}}\right\rfloor . \tag{1}
\end{equation*}
$$

Proof. Let $m_{i}$ be the number of multiples of $p^{i}$ in the set $\{1,2,3, \ldots, n\}$. Let

$$
\begin{equation*}
t=m_{1}+m_{2}+\ldots+m_{k}+\ldots \tag{2}
\end{equation*}
$$

(the sum is finite of course). Suppose that $a$ belongs to $\{1,2,3, \ldots, n\}$, and such that $p^{j} \mid a$ but $p^{j+1} \nmid a$. Then in the sum (2) $a$ will be counted $j$ times and will contribute $i$ towards $t$. This shows that $t=s$. Now (1) follows from Lemma 1 since $m_{j}=\left\lfloor n / p^{j}\right\rfloor$.

Theorem 6. Let $n$ and $p$ be positive integers and $p$ be prime. Then the largest exponent $s$ such that $p^{s} \left\lvert\,\binom{ 2 n}{n}\right.$ is

$$
\begin{equation*}
s=\sum_{j \geq 1}\left(\left\lfloor\frac{2 n}{p^{j}}\right\rfloor-2\left\lfloor\frac{n}{p^{j}}\right\rfloor\right) . \tag{3}
\end{equation*}
$$

Proof. Follows from Theorem 2.
Note that, due to Proposition 1, in (3) every summand is either 0 or 1.
Corollary 7. Let $n \geq 3$ and $p$ be positive integers and $p$ be prime. Let $s$ be the largest exponent such that $p^{s} \left\lvert\,\binom{ 2 n}{n}\right.$. Then
(a) $p^{s} \leq 2 n$.
(b) If $\sqrt{2 n}<p$, then $s \leq 1$.
(c) If $2 n / 3<p \leq n$, then $s=0$.

Proof. (a) Let $t$ be the largest integer such that $p^{t} \leq 2 n$. Then for $j>t$

$$
\left(\left\lfloor\frac{2 n}{p^{j}}\right\rfloor-2\left\lfloor\frac{n}{p^{j}}\right\rfloor\right)=0
$$

Hence

$$
s=\sum_{j=1}^{t}\left(\left\lfloor\frac{2 n}{p^{j}}\right\rfloor-2\left\lfloor\frac{n}{p^{j}}\right\rfloor\right) \leq t
$$

since each summand does not exceed 1 by Proposition 1. Hence $p^{s} \leq 2 n$.
(b) If $\sqrt{2 n}<p$, then $p^{2}>2 n$ and from (a) we know that $s \leq 1$.
(c) If $2 n / 3<p \leq n$, then $p^{2}>2 n$ and

$$
s=\left(\left\lfloor\frac{2 n}{p}\right\rfloor-2\left\lfloor\frac{n}{p}\right\rfloor\right)
$$

As $1 \leq n / p<3 / 2$, we se that $s=2-2 \cdot 1=0$.

## 4 Two inequalities involving binomial coefficients

We all know the Binomial Theorem:

$$
\begin{equation*}
(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{n-k} b^{k} \tag{4}
\end{equation*}
$$

Let us derive some consequences from it. Substituting $a=b=1$ we get:

$$
\begin{equation*}
2^{n}=\sum_{k=0}^{n}\binom{n}{k} \tag{5}
\end{equation*}
$$

Lemma 8. (a) If $n$ is odd, then

$$
\binom{n}{(n+1) / 2} \leq 2^{n-1}
$$

(b) If $n$ is even, then

$$
\binom{n}{n / 2} \geq \frac{2^{n}}{n} .
$$

Proof. (a) From (5), deleting all terms except the two middle ones, we get

$$
\binom{n}{(n-1) / 2}+\binom{n}{(n+1) / 2} \leq 2^{n} .
$$

The two binomial coefficients on the left are equal and we get (a).
(b) If $n$ is even, then it is pretty easy to prove that the middle binomial coefficient is the largest one. In (5) we have $n+1$ summand but we group the two ones together and we get $n$ summands among which the middle binomial coefficient is the largest. Hence

$$
n\binom{n}{n / 2} \geq \sum_{k=0}^{n}\binom{n}{k}=2^{n}
$$

which proves (b).

## 5 Proof of Bertrand's Postulate

Finally we can pay attention to primes.
Theorem 9. Let $n \geq 2$ be an integer, then

$$
\prod_{p \leq n} p<4^{n}
$$

where the product on the left has one factor for each prime $p \leq n$.
Proof. The proof is by induction over $n$. For $n=2$ we have $2<4^{2}$, which is true. This provides a basis for the induction. Let us assume that the statement is proved for all integers smaller than $n$. If $n$ is even, then it is not prime, hence by induction hypothesis

$$
\prod_{p \leq n} p=\prod_{p \leq n-1} p<4^{n-1}<4^{n}
$$

so the induction step is trivial in this case. Suppose $n=2 s+1$ is odd, i.e $s=(n-1) / 2$. Since $\prod_{s+1<p \leq n} p$ is a divisor of $\binom{n}{s+1}$, we obtain

$$
\prod_{p \leq n} p=\prod_{p \leq s+1} p \cdot \prod_{s+1<p \leq n} p<4^{s+1} \cdot\binom{n}{s+1}<4^{s+1} 2^{n-1}
$$

using the induction hypothesis for $n=s+1$ and Lemma 2(a). Now the right-hand-side can be presented as

$$
4^{s+1} 2^{n-1}=2^{2 s+2} 2^{n-1}=2^{4 s+2}=4^{2 s+1}=4^{n}
$$

This proves the induction step and, hence, the theorem.
Proof of Bertrand's Postulate. We will assume that there are no primes between $n$ and $2 n$ and obtain a contradiction. We will obtain that, under this assumption, the binomial coefficient $\binom{2 n}{n}$ is smaller than it should be. Indeed, in this case we have the following prime factorisation for it:

$$
\binom{2 n}{n}=\prod_{p \leq n} p^{s_{p}}
$$

where $s_{p}$ is the exponent of the prime $p$ in this factorisation. No primes greater than $n$ can be found in this prime factorisation. In fact, due to Corollary 1(c) we can even write

$$
\binom{2 n}{n}=\prod_{p \leq 2 n / 3} p^{s_{p}}
$$

Let us recap now that due to Corollary $1 p^{s_{p}} \leq 2 n$ and that $s_{p}=1$ for $p>\sqrt{2 n}$. Hence

$$
\binom{2 n}{n} \leq \prod_{p \leq \sqrt{2 n}} p^{s_{p}} \cdot \prod_{p \leq 2 n / 3} p
$$

We will estimate now these product using the inequality $p^{s_{p}} \leq 2 n$ for the first product and Theorem 4 for the second one. We have no more that $\sqrt{2 n} / 2-1$ factors in the first product (as 1 and even numbers are not primes), hence

$$
\begin{equation*}
\binom{2 n}{n}<(2 n)^{\sqrt{2 n} / 2-1} \cdot 4^{2 n / 3} \tag{6}
\end{equation*}
$$

On the other hand, by Lemma 2(b)

$$
\begin{equation*}
\binom{2 n}{n} \geq \frac{2^{2 n}}{2 n}=\frac{4^{n}}{2 n} \tag{7}
\end{equation*}
$$

Combining (6) and (7) we get

$$
4^{n / 3}<(2 n)^{\sqrt{n / 2}}
$$

Applying logs on both sides, we get

$$
\frac{2 n}{3} \ln 2<\sqrt{\frac{n}{2}} \ln (2 n)
$$

or

$$
\begin{equation*}
\sqrt{8 n} \ln 2-3 \ln (2 n)<0 \tag{8}
\end{equation*}
$$

Let us substitute $n=2^{2 k-3}$ for some $k$. Then we get $2^{k} \ln 2-3(2 k-2) \ln 2<0$ or $2^{k}<3(2 k-2)$ which is true only for $k \leq 4$ (you can prove that by inducton). Hence (8) is not true for $n=2^{7}=128$. Let us consider the function $f(x)=\sqrt{8 x} \ln 2-3 \ln (2 x)$ defined for $x>0$. Its derivative is

$$
f(x)=\frac{\sqrt{2 x} \cdot \ln 2-3}{x} .
$$

let us note that for $x \geq 8$ this derivative is positive. Thus (8) is not true for all $n \geq 128$. We proved Bertrand's postulate for $n \geq 128$. For smaller $n$ it can be proved by inspection. I leave this to the reader.

