
Improving Context-Aware Query Classification via
Adaptive Self-training

Minmin Chen1
∗

, Jian-Tao Sun2, Xiaochuan Ni2, Yixin Chen1

1Department of Computer Science and Engineering
Washington University in Saint Louis, Saint Louis, MO, USA

2Microsoft Research Asia, Beijing, P.R. China
1{mc15, chen}@cse.wustl.edu, 2{jtsun, xini}@microsoft.com

ABSTRACT
Topical classification of user queries is critical for general-
purpose web search systems. It is also a challenging task,
due to the sparsity of query terms and the lack of labeled
queries. On the other hand, search contexts embedded in
query sessions and unlabeled queries free on the web have
not been fully utilized in most query classification systems.
In this work, we leverage these information to improve query
classification accuracy.

We first incorporate search contexts into our framework
using a Conditional Random Field (CRF) model. Discrimi-
native training of CRFs is favored over the traditional max-
imum likelihood training because of its robustness to noise.
We then adapt self-training with our model to exploit the
information in unlabeled queries. By investigating different
confidence measurements and model selection strategies, we
effectively avoid the error-reinforcing nature of self-training.
In extensive experiments on real search logs, we have av-
eraged around 20% improvement in classification accuracy
over other state-of-the-art baselines.

Categories and Subject Descriptors
H.3.m [Information Storage and Retrieval]: Miscella-
neous; I.5.2 [Pattern Recognition]: Design Methodology
– Classifier design and evaluation

General Terms
Algorithms, Experimentation, Measurement, Performance

Keywords
Query classification, User search context, Unlabeled queries

1. INTRODUCTION
∗This work was done when Minmin Chen was an intern at
Microsoft Research Asia.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’11, October 24–28, 2011, Glasgow, Scotland, UK.
Copyright 2011 ACM 978-1-4503-0717-8/11/10 ...$10.00.

Recent years have witnessed the booming of web search
and its related services. Commercial web search engines
receive hundreds of millions of queries every day. Under-
standing user intents behind queries is essential in develop-
ing search engines. Query classification is a task studied for
this purpose. In query classification, user queries are clas-
sified into one (or more) predefined target categories. Such
category information later can be used for refining web page
rankings, triggering the most appropriate vertical searches,
and finding matched online advertisements, etc..

Challenges associated with query classification include s-
parseness of both query features and training data. First, us-
er queries usually contain only several unique terms, thus it
is difficult to derive a good feature representation. Previous
works focused primarily on tackling this feature sparseness
problem, e.g., by augmenting queries with external knowl-
edge such as search engine results. Second, despite colossal
volumes of unlabeled queries stored in search engine logs,
manually labeled queries are very limited and expensive to
obtain. Several works [1, 19] introduced semi-supervised
learning methods to explore the information hidden in logs.
However, most of the systems take a single query as a u-
nit of search engine interaction, without considering search
contexts.

It has been argued forcefully that exploiting search con-
texts can improve information retrieval systems [10, 13, 26].
Intuitively, introducing search contexts, such as the neigh-
boring queries in the same query session, can help better
understand users’ search intents and thus improve classifi-
cation accuracy. For instance, when a user issues a query
“giant”, it is unclear whether he or she is interested in the
San Francisco National League baseball team, the bicycle
manufacturer, or something else. However, if we knew that
the query “MLB” (Major League Baseball) was issued in
the same query session, we could have classified the query
as “Sports” rather than “Products”. Conversely, if the us-
er issued queries related to other bicycle brands before the
query “giant”, it would have suggested the query was related
to “Products”.

In this paper, we utilize search contexts embedded in
query sessions, together with the large number of unlabeled
queries available free on the web, to improve query classifica-
tion. To achieve this goal, we need to address the following
questions: 1) How to model search contexts? 2) How to
incorporate the information in unlabeled queries? 3) How
to integrate these two components? 4) How to scale our
algorithm to handle web-scale data?

First, we model search contexts using a Conditional Ran-

Table 1: Two user query sessions with sequences of queries, clicked url titles and user dwell time in seconds
(“-” indicates that there is no url clicks associated with the query).

SID
observations

Category
QID Query Url title Time

1

1 tires 75067 Lewisville tires | Find tires in Lewisville, TX 18 Compare products or services
2 Traders Village Grand prairie Traders Village / A Texas-Size Marketplace 4 Compare products or services
3 craiger wheels CRAIGER WHEELS 17 Compare products or services
4 craiger wheels 75067 - 12 Find contact information

5 Bing BingTM Official Site 1 Find a specific miscellaneous fact
6 wheels 75067 Listings for Wheels near Texas 75067 14 Find contact information
7 Colleyville tx Colleyville tx - Google Maps 53 Plan travel

2
1 discount tire lake jackson tx - 446
2 michelin - 43
2 michelin tires Angleton tx - 20

dom Field (CRF) model. Second, we explore the informa-
tion in unlabeled query sessions by combining them with
a few manually labeled ones using self-training (bootstrap-
ping). Third, to integrate these two components, we inves-
tigate: 1) different training methods for CRFs; Discrimina-
tive training is favored as it is more robust to labeling noise
introduced by self-training. 2) different confidence measure-
ments and model selection strategies for self-training to help
the CRF model converge faster. We refer to the resulting
framework as Adaptive Self-training with Conditional Ran-
dom Field (ASCRF). Forth, we adopt a softmax approxima-
tion during the discriminative training of our CRF model,
resulting in a formulation which can be efficiently computed
and optimized by a slight variant of existing algorithms. As
such, our solution can apply to web-scale data.

The rest of this paper is organized as follows. In Section
2, we introduce notations and problem settings. In Section
3, we briefly introduce the CRF model. We compare two
commonly used CRF training methods, and apply an ap-
proximation to tailor the training algorithm to deal with
web-scale data. In Section 4, we detail the ASCRF frame-
work. A series of experiments are carried out to demonstrate
the effectiveness of our proposed framework in Section 5. In
Section 6, we review related works. Finally, we conclude our
work in Section 7.

2. NOTATIONS AND SETTINGS
Search contexts are usually embodied as interactions be-

tween queries and related user behaviors within a query ses-
sion. Various works [7, 24, 17, 14] proposed different meth-
ods for identifying the boundaries of query sessions. In this
work, we follow a simple yet effective session segmentation
rule; that is, two user queries are separated into different ses-
sions if they were issued longer than 30 minutes apart [11,
6].

Table 1 shows two query sessions extracted from real log,
one labeled and the other one not. They both consist of
a sequence of queries and related user behaviors. Due to
space limitations, the urls clicked are not listed. We can
make two observations: 1) search contexts can help clarify
ambiguous queries; The query “michelin” in Session 2 can
either refer to the tire brand, or the Michelin guide book,
or something else. However, considering the search context
within the session can help correctly classify the query; 2)
unlabeled query sessions can help relief the demand for a
large number of labeled data. Intuitively, we can infer the
category label of the first query in Session 2 based on its
similarity to the queries in Session 1, and obtain the labels

for the other queries based on context information. By do-
ing so, we can expand the small labeled set with unlabeled
queries to improve performance.

Motivated by these observations, we propose to build a
semi-supervised context-aware query classification framework
that takes advantage of both search contexts and unlabeled
query sessions to improve query classification.

Let x = 〈x1, x2, · · · , xT 〉 denote a query session, where
each observation xt, t = 1, · · · , T includes a query qt issued
by the user, and sometimes related user behaviors, such as
clicked urls, url titles and user dwell time. For any query
qt(1 ≤ t ≤ T), the observations x1, · · · , xt−1 are referred to
as the search context of qt [6].

Let D = {(x(n),y(n))}Nn=1 be a set of labeled query ses-

sions, where each x(n) is a query session as defined, and y(n)

is its corresponding labeling sequence. Let U = {x(m)}Mm=1

be a set of unlabeled query sessions. We have, N ≪ M .
Our goal is to learn a classifier h(x;w) based on both the
labeled and unlabeled query sessions, so that given a new
query qt, it can correctly classify qt into one of the prede-
fined categories, taking into account the search context of
qt.

3. MODELING SEARCH CONTEXT BY CRF-
S

Inspired by Cao’s work [6], we model search contexts em-
bedded in each query sessions with a linear-chain CRF mod-
el.

0
y

1y 1Ty Ty

1x 1
x

 T Tx

Figure 1: A linear-chain CRF modeling search con-
text.

Let x = 〈x1, x2, · · · , xT 〉 be a user query session, and
y = 〈y1, y2, · · · , yT 〉 be its corresponding category labeling
sequence. As shown in Figure 1, a CRF models the con-
ditional distribution of the labeling sequence y, given the
observation sequence x, as [18]

p(y|x) =
1

Z(x)
exp

(

∑

t

∑

k

ωkfk(yt−1, yt,x)

)

=
ew

⊤fx(y)

Z(x)
,

where f = {fk} is a set of predefined feature functions, and

Z(x) =
∑

y′ e
w⊤fx(y′) is a normalization function.

Given a set of trained parameters w∗, a new query session
x is classified as

ŷ = h(x;w∗) = arg max
y′

w∗⊤fx(y′). (1)

3.1 Training CRFs
In this work, we investigate two commonly used training

methods for CRF models, i.e., maximum likelihood training
vs. margin maximization training.

3.1.1 Maximum Likelihood Training.
Given a set of i.i.d training data D = {(x(n),y(n))}Nn=1,

maximum likelihood training finds the parameters w = {ωk}
such that the logarithm of the likelihood,

ℓ(D;w) =
N
∑

n=1

log p(y(n)|x(n))

is maximized.
The method has been widely used for CRF training be-

cause both of its training and inference can be carried out
efficiently using standard dynamic programming algorithms
[25], making it scalable to large scale problems. However, as
the approach explicitly considers only the probability of the
exact training parses, it can easily overfit the training data
without proper regularization [22, 9].

3.1.2 Margin Maximization Training.
Margin maximization training of CRF models is a popular

alternative. Given a set of training dataD = {(x(n),y(n))}Nn=1,
it finds a hyperplane that not only separates the training da-
ta, but also maximizes the score difference between the true
label and the others, i.e. [27, 28],

min
w

1

2
‖w‖2 + C

∑

ξn (2)

s.t. −w⊤fx(n)(y
(n)) + max

y

(

w⊤fx(n)(y) + ∆y(n) (y)
)

≤ ξn,∀n

where ∆y(n)(y) = I(y
(n)
t 6= yt) denotes the hamming dis-

tance between y(n) and y.
To simplify the optimization, we replace the “hard” max

margin in (2) with a softmax log
∑

exp approximation as
proposed in [23, 12]. Let

ρn(w) = max

0,
−w⊤fx(n) (y(n))+

log

(

∑

y 6=y(n) e
w⊤f

x(n) (y)+∆
y(n) (y)

)

,

we can now eliminate the slack variables in (2) and rewrite
our objective function as follows:

SMMCRF: min ℓ(D;w, C) =
1

2
‖w‖2 + C

∑

n

ρn(w). (3)

We refer to the resulting model as SoftMax Margin Con-
ditional Random Field (SMMCRF). The objective is con-
vex, and can be computed efficiently with a slight varia-
tion of the standard forward-backward algorithm used in
maximum likelihood training [23]. We present an analysis
of the generalization performance of SMMCRF as follows.
The bound provides a natural way to bridge SMMCRF with

semi-supervised learning to utilize unlabeled data to improve
query classification.

3.1.3 Generalization Performance of SMMCRF.
Given a set of i.i.d. training data D = {(x,y)}N , Vapnik

[29] showed that with probability 1− η, the expected risk

R(w) ≤ Remp(w) + Ω(N, d, η), (4)

where Remp(w) =
1

|D|

∑

(x,y)∈D ∆(y, hw(x)) is the empiri-

cal risk on the training set, and the VC-confidence Ω(N, d, η)
is a term depending on the number of training examples N
and the VC-dimension d of the hypothesis class H .

Proposition 1. Let w∗ be the optimal solution to (3).

Then
1

|D|

∑

n ρn(w∗) upper bounds the empirical risk.

The proof can be easily generalized from Tsochantaridis’s
proof for the generalization bound of structured SVM. We
refer interested readers to [28].

It is known that the VC-dimension of margin-based clas-
sifiers grows inversely with the size of the margin [5]. In
other words, the margin control factor C in (3) controls the
tradeoff between the training error and the complexity of
the classifiers. As C → ∞, the empirical risk goes to zero,
at the cost of increasing the complexity of the hypothesis
class. Contrarily, as C decreases, the size of the margin in-
creases, resulting in a hypothesis class of lower complexity.
However, the empirical risk would be increased. In the next
section, we will detail how we effectively control C to help
avoid the error-reinforcing nature [32] of self-training.

4. INCLUDING UNLABELED QUERIES VI-
A ADAPTIVE SELF-TRAINING

Now we have a model that incorporates search contexts,
in this section, we will be focusing on how to use semi-
supervised learning to explore the information contained in
unlabeled query sessions to further improve query classifica-
tion.

4.1 Self-training
The general idea behind semi-supervised learning is to

use a large amount of unlabeled data, together with a few
labeled data, to build better classifiers. A variety of semi-
supervised learning methods have been proposed [30, 4, 2,
16, 20, 15]. However, only a few of them work with graphical
models, like CRFs. Self-training [30] is a very commonly
used algorithm to wrap complex models for semi-supervised
learning. It works as follows:

1. Train a base classifier using the small labeled set;
2. Infer the labels for the unlabeled data;
3. Add confident predictions to the training set;
4. Repeat the process.

Note that the classifier uses its own predictions to teach
itself. The procedure is therefore also called self-teaching or
bootstrapping.

The advantage of self-training lies in its simplicity and
the ability to combine with complex models. On the other
hand, the drawbacks of this approach are: 1) erroneous la-
bels are introduced into the training set; and 2) errors are

reinforced at each iteration. In other words, wrong predic-
tions are strengthened during the self-teaching procedure,
especially when combined with complex models. Neverthe-
less, the analysis of the generalization performance of the
SMMCRF model in Section 3.1.3 provides heuristics on how
to best integrate our model with self-training to avoid error-
reinforcing.

4.2 Adaptive Self-training
In this section, we detail the adaptations we made to the

self-training algorithm, based on the characteristics of the
SMMCRF model.

4.2.1 Overall Framework
Algorithm 1 listed the details of the overall framework.

We call our framework ASCRF, Adaptive Self-training with
Conditional Random Field. We start a SMMCRF model
trained on the small set of labeled data. A common practice
to set the margin controlling factor C in (3) is through cross-
validation. However, since manually labeled data is very
limited in this case (in our experiments, only a few hundreds
of the query sessions are labeled), it is not practical to do so.
Structural risk minimization tells us that we get the smallest
bound on the test error if we select a class of hypotheses H
that minimizes the right hand side of (4). We start with a
relatively large C, so that we can enforce zero empirical risk
on the training set. As we gradually decrease C, the margin
of our classifier is increased, so that the second term of the
bound (4) is decreased. As proved in Proposition 1,

∑

ρ(w)
upper bounds the empirical risk. We stop when the bound
exceeds 0.

We then label query sessions in the unlabeled set U with
the trained base classifier. That is, ∀x ∈ U , a prediction
ŷ = h(x,w) is assigned using the trained parameters w.
Then, num, the number of most confident predictions (x, ŷ)
are picked out and added to the labeled set D′. The model is
then retrained with the augmented labeled data set D ∪D′.
The process repeats until we can no longer find confident
predictions to aid our learning. To further help our algo-
rithm avoid stuck with wrong predictions in D′, we remove
predictions that our model deems unconfident during this
process.

To complete our algorithm, we investigated 1) different
confidence measurements for selecting unlabeled queries to
expand the training set; 2) different model selection strate-
gies (margin control schemes) to balance the capacity of the
SMMCRF model to fit the training data, and the complexity
of the models.

4.2.2 Confidence measurements

First, margin maximization training offers us a straight-
forward margin-based confidence measurement:

c(1)w (x, ŷ) = w⊤fx(ŷ)− log
∑

y′ 6=ŷ

ew
⊤fx(y′)+∆ŷ(y′).

It measures the gap between the prediction ŷ to any other
sequence y′ in the output space. The larger the gap, the
more confident our model is about this prediction. We select

the predictions with the maximum c
(1)
w .

Second, as introduced in section 3, a CRF models the con-
ditional distribution of a labeling sequence y given the ob-
servation x. Given a trained model w, we can also measure

the confidence in a prediction by the conditional probability,

c(2)w (x, ŷ) = p(ŷ|x) =
ew

⊤fx(ŷ)

∑

y′ ew
⊤fx(y′)

.

Similarly, the larger the conditional probability, the more
our model favors the prediction ŷ. We select the prediction

with the maximum c
(2)
w

Third, the decision boundary of margin-based classifiers
depends on the set of support vectors, i.e., the set of data
points with

w⊤fx(ŷ)− log
∑

y′ 6=ŷ

ew
⊤fx(y′)+∆ŷ(y′) = 0.

Therefore, our third strategy is to select support vectors, i.e.,
the predictions that are closest to the decision boundary.

c(3)w (x, ŷ) = −c(1)w (x, ŷ) · I
(

c(1)w (x, ŷ) ≥ 0
)

Notice here, to avoid wrong predictions, only the predic-
tions that are right on the margin or outside of the margin

are considered. It is plausible to call c
(3)
w a confidence mea-

surement since high c
(3)
w does not indicate that our model is

confident about the correctness of the prediction. However,
to be consistent with the rest of the notations, we still refer
to it a confidence measurement.

By definition, the confidence measurement becomes less
strict from c(1) to c(3). With a simple transformation, we
can rewrite c(1) as

exp
(

c(1)w (x, ŷ)
)

=
ew

⊤fx(ŷ)

∑

y′ 6=ŷ ew
⊤fx(y′)+∆ŷ(y′)

.

In other words, in order to obtain a high confidence c(1), a
prediction ŷ has to maintain a dominant score even when the
other parses y′ is helped by ∆ŷ(y′). In c(2), the hamming
loss ∆ŷ(y′)) is dropped,

c(2)w (x, ŷ) =
ew

⊤fx(ŷ)

∑

y′ ew
⊤fx(y′)

,

resulting in a looser standard. c(3) further relax the require-
ment by only constraining the predictions to lie on or outside
of the decision boundary. Therefore, we would expect that
the predictions selected using confidence measurement c(1)

contain the least noise, and the amount of noise increases
when using c(2), and c(3) is the worst. However, in terms
of the usefulness of the new predictions to the convergence
of the self-training process, the order is reversed. In [31],
Zhang et al. showed that knowing the label of an unlabeled
data point, on which the current model has low confidence,
has more potential in improving the classification. Intu-
itively, adding a prediction (x, ŷ) on which our model has
already achieved a large margin over the other parses will
not add any new constraints to our formulation in (2), since
they are already satisfied by the current set of parameters
w. Thus, using confidence measurement c(1) leads to slow
convergence. In contrast, the unlabeled points lying right on
the decision boundary have great influence on the change of
w. During our empirical study, we found that, as a trade-
off between c(1) and c(3), the confidence measurement c(2)

performs the best. It introduces less noise than c(3), and it
helps the classifier achieve faster convergence than c(1).

Algorithm 1: Adaptive Self-training with Conditional Random Fields (ASCRF)

Input:

• Labeled query sessions D = {(x,y)}N ;
• Unlabeled query sessions U = {x}M ;
• N ≪M .

Parameters:

• β: constant for tuning the penalty factor C in (3);
• num: number of unlabeled query sessions to be labeled at each iteration;
• cw(x, ŷ): confidence measurement of the prediction (x, ŷ).

Output:

• w the set of optimal parameters

Initialize C to a relatively large number;
repeat

w = Train SMMCRF(D, C);
C ← C/β;

until
∑

n
ρn(w) > 0;

repeat
Label query sessions in U with the trained classifier: ∀x ∈ U −→ ŷ = h(x;w);
Extract num predictions (x, ŷ) of the highest confidence cw(x, ŷ) from U and add them to the labeled set D′;
Train a SoftMax Margin CRF with the data in D ∪ D′: w = Train SMMCRF(D ∪D′, C);

Remove unconfident instances: ∀(x, ŷ) ∈ D′, remove it from D′ if w⊤fx(ŷ) < maxy′ w⊤fx(y′) + ∆ŷ(y′);
Estimate the labeling noise ǫ newly introduced to D′ by ǫ ≈

∑

num
(1− p(ŷ|x))/num;

Increase the margin of the classifier to take into consideration the noise by decreasing C: C ← C/(1 + ǫ);

until no more confident predictions can be found ;

4.2.3 Model selection
At each iteration of the self-training procedure, we have

to retrain our model based on the set of augmented training
data D ∪ D′. As self-training goes on, labeling noise would
be introduced to the training set. In this case, instead of
forcing the classifier to come up with a set of parameters w
that perfectly classify the training data, we should increase
the margin so that the mistakenly labeled training data can
be ignored. As the margin increases, the second term of the
generalization bound (4) can be reduced to ensure general-
ization performance. However, blindly enlarging the margin
will result in a model with very high bias, increasing both
the empirical and expected risk. The tradeoff here is bal-
anced through the margin control factor C. Often the case,
cross-validation is used to tune hyperparameters. However,
it is prohibitive to do in this setting, due to the sparseness
of training data, as well as the relatively long running time
of the entire self-training process.

Instead, we came up with an updating rule for the penalty
factor C that depends on an estimated error rate of the
training data. With a set of trained parameter w, we can
estimate the error rate of the newly selected predictions by

ǫ ≈

∑

num
(1− pw(ŷ|x))

num
;

where pw(ŷ|x) computes the conditional probability of the
true parse being ŷ given the observation x under current
model.

At each iteration, C is decreased by a factor proportional
to the estimated error rate, that is,

C ← C/(1 + ǫ).

To further avoid error-reinforcement, we also drop the in-
stances that were added into D′ during the early stage of
the self-training process, but later were found out to be un-
confident ones. That is, a prediction (x, ŷ) is removed from
the training set if

τw(x, ŷ) = w⊤fx(ŷ)−max
y′

(

w⊤fx(y′) + ∆ŷ(y′)
)

< 0.

This term can be efficiently computed with a slight variant
of the standard Viterbi algorithm [21]. Note that our first

confidence measurement c(1) upper bounds this term, that

is, ∀w, (x, ŷ), c
(1)
w (x, ŷ) > τw(x, ŷ). The reason we did not

use c(1) directly is that when it becomes less than zero, the
prediction (x, ŷ) is not necessarily within the margin, which
might cause correct predictions being removed.

5. EXPERIMENTAL RESULTS
In this section, we validate our proposed methods through

systematic empirical comparisons with previous work on two
real datasets.

5.1 Datasets
Both datasets were extracted from real search logs. Queries

were segmented into different sessions according to the rule
described in section 2.

5.1.1 Dataset 1
The first dataset is from previous work [6]. It contain-

s 3,500 query sessions (8,988 queries) extracted from one
day’s search log of a commercial search engine. Three la-
belers were invited to label the queries of each session using

the target taxonomy of ACM KDD Cup’05, which is a two-
level taxonomy with seven level-1 categories and 67 level-2
categories.

5.1.2 Dataset 2
To make our story complete, we also apply our algorithm

to a relatively larger second dataset. The set was extracted
and labeled by a product team in 2010. It contains 1,727
query sessions (39,565 queries) in total. Instead of the ACM
KDD Cup’05 taxonomy, the queries were labeled using a set
of categories more closely related to users’ search intents,
such as, “Compare products, services, or activities for use”,
“Learn how to perform a task”, and “Plan travel”. There are
65 categories in total.

5.2 Evaluation Metric
In our experiments, we used only previous queries in the

same session as the search contexts since related user be-
havior information was missing in Dataset 1. Different from
classic sequential learning tasks in which the testing se-
quences come in batch, queries come in streaming. Hence,
the testing phase for query classification was done different-
ly. Given a sequence of queries q1, q2, . . . , qt, we take the
query qt as the test query, and the queries q1, q2, . . . , qt−1 as
the context of qt, and find the prediction of the session as in
(1). Then the label of query qt is set to ŷt = ŷt. We do this
for each time stamp t.

Given a set of queries qt with true label yt, and prediction
ŷt, we report the accuracy of our trained classifier as

Acc =
1

|T |

∑

t

I(yt = ŷt),

where |T | is the total number of queries in the testing set.

5.3 Preliminary Experiments
We used the smaller set, Dataset 1, for preliminary s-

tudy. We first compared different training methods for our
CRF model. We then investigate different confidence mea-
surements and model selection strategies for our adaptive
self-training framework. Finally we validate our framework
on Dataset 2.

5.3.1 Robustness of SMMCRF
In the first experiment, we compare the performance of

softmax margin maximization training (denoted as SMM-
CRF) with maximum likelihood training (denoted as CR-
F), and maximum likelihood training with regularization
‖w‖/2σ2 [22] (denoted as CRF-R) on Dataset 1.

Experiment Setup. We did 5-fold cross-validation. That
is, the entire dataset was randomly split into five folds. Each
time four of them were used as training, and the remaining
one as testing. The average testing accuracy is reported.
In this experiment, all of the training data are labeled, as
opposed to the following experiments, in which only frac-
tion of the training data are labeled. For this experiment,
the margin control factor C in our loss function (3) and the
Gaussian prior σ2 of the regularized CRF [22] were both
tuned on a validation set.

In order to test the robustness of the trained models to
noise, we added random labeling noise to our training data.
The labeling noise goes from 10% to 40% of the data. To
deal with the increasing noise, the margin control factor C

 0

 10

 20

 30

 40

 50

0 10 20 30 40

A
cc

u
ra

cy
 (

%
)

Noise ratio(%)

CRF
CRF-R

SMMCRF

Figure 2: Comparison of softmax margin maximiza-
tion and maximum likelihood training on dataset 1

of SMMCRF is decreased by a constant factor each time,
same for the Gaussian prior σ2 of CRF-R.

Discussion. As shown in Figure 2, the model obtained
with maximum likelihood training without regularization is
seriously overfitting the training data. At point 0, that is,
when the data contains no noise, SMMCRF achieved over
20% improvement over CRF in term of generalization perfor-
mance. CRF-R did relieve the overfitting problem. Howev-
er, as more and more labeling noise is added into the dataset,
we can clearly see the advantage of margin maximization
training. While the performance of CRF and CRF-R de-
teriorates very quickly as more noise is added, SMMCRF
turns out to be much more robust. We can see the per-
formance gap between MMCRF and CRF-R/CRF becomes
larger and larger as more noise is added to the training data
from Figure 2.

5.3.2 Adaptive Self-training with SMMCRF
Now that we have a model shown to be robust to label-

ing noise both theoretically and empirically, in this part, we
study the effects of different choices of confidence measure-
ments and model selection strategies on the performance of
our framework on Dataset 1.

Experiment Setup. As classical semi-supervised learn-
ing setting, we used 80% of the data as training, and the
remaining 20% as testing. 10% of the training data are ran-
domly selected to be labeled, and the others are used as
unlabeled data. We did 10 runs of these experiments, each
time with a different labeled set. Since the size of the train-
ing set is small, we used the level-1 categories of the ACM
KDD Cup’05 taxonomy, which contains seven categories in
total, as the output.

Confidence measurements. In this experiment, we s-
tudy the effects of various confidence measurements on the
performance of our framework. Figure 3(a) shows the progress
of ASCRF framework with the three confidence measure-
ments we introduced in Section 4.2.2. Figure 3(b) shows the
percentage of noise introduced into our training set when
unlabeled query sessions are extracted and added to the set
D′ using different confidence measurements.

The results are consistent with our discusion in Section
4.2.2. 1) In terms of noise rate (Figure 3(b)), c

(1)
w includes

the least amount of noise into the training set, c
(2)
w the sec-

ond, and c
(3)
w is the worst. Especially at the very beginning

of the process, since our model is trained with a very s-
mall labeled set, it is seriously overfitting the training data,

and does not generalize well to unseen data at that point.
Therefore, the predictions close to the decision boundary
under the current model are very likely to be wrong. 2) In
terms of model convergence (Figure 3(a)), the few correct

predictions selected by c
(3)
w significantly drive up the perfor-

mance, since they are the data points the original model not
sure of. Knowing the labels for these query sessions have
great potential in improving the performance. On the other

hand, although the predictions selected by c
(1)
w are of high

accuracy, since they are the data points the current model is
very confident about, adding these data points do not help
much. 3) In the long run, as the self-training procedure goes

on, the wrong predictions selected by c
(3)
w start to hurt the

learning process; while on the other hand, as the size of the
margin increases, the highly accurate predictions selected by

c
(1)
w start to help the learning process. c

(2)
w , as a tradeoff be-

tween these two, leads our model to the best generalization

performance. In the following experiments, we used c
(2)
w as

our confidence measurement.

 45

 46

 47

 48

 49

 50

 51

 52

 0 5 10 15 20 25 30 35

A
cc

u
ra

cy
 (

%
)

Iteration

c(1)

c(2)

c(3)

(a) Accuracy

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30 35L
a

b
e

lin
g

 n
o

is
e

 in
tr

o
d

u
ce

d
 s

o
 f

a
r

(%
)

Iteration

c(1)

c(2)

c(3)

(b) Noise

Figure 3: Comparison of different confidence mea-
surements: (a) Accuracy of Adaptive Self-training
with different confidence measurements (b) Noise
rate in D′ with different confidence measurements.

Model selection. In this experiment, we test different
model selection strategies introduced in Section 4.2.3. We
proposed to update the margin control factor C in (3) with
an estimate of the noise rate in set D′. We compare this
strategy with 1) a constant factor C; 2) a constant update,
that is, C ← C/β at each iteration of self-training. All ex-
periments were carried out in the same setting, except with
different updating rules for C. The confidence measurement

c
(2)
w is used.

 44

 45

 46

 47

 48

 49

 50

 51

 52

 0 5 10 15 20 25 30 35

A
cc

u
ra

cy
 (

%
)

Iteration

C<--C/(1+e)
C<--C

C<--C/1.05
C<--C/2.00
SMMCRF

CRF

Figure 4: Comparison of different model selection
strategies.

For constant update, we tried β = 1.05 and β = 2. As
shown in Figure 4, self-training with constant C is over-
whelmed by the noise introduced, thus shows no progress.
For constant update, a small β leads to slow convergence,
while a large β results in a model of high bias. As shown in
the magenta curve, when β = 2, the model can not find con-
fident predictions within several iterations, and terminates
very quickly. On the other hand, with the proposed updat-
ing rule, we achieved over 10% improvement compared to
a SMMCRF model trained with only the labeled instances
shown as red solid line, and around 20% improvement over
a CRF model trained with maximum likelihood training,
shown as green dotted line in Figure 4. To make compari-
son, we also trained a SMMCRF with all the training data
labeled, it achieved 58.85% test accuracy (Notice here the
number is higher than the one shown in Figure 2 because
in this experiment we used only 7 level-1 categories as op-
posed to 67 level-2 categories in previous one), while our
framework achieved 51.38% precesion with only 10% of the
training data labeled.

5.4 Overall performance
In this experiment, we test our overall framework on Dataset

2. The experiment setting is same as previous, 80% of the
data are used as training set, and the remaining 20% as test-
ing. We only used 5% of the training data as labeled ones,
and the remaining 95% are unlabeled. Same here, we did 10
runs of this experiments.

Figure 5 shows the progress of our framework on Dataset
2, with proposed model selection strategy and confidence

measurement c
(2)
w . We compare our ASCRF framework to

a baseline, which trains a SMMCRF with the labeled query
sessions. As shown in the figure, in Run 1, we improved over
the baseline for around 20% in accuracy; and in Run 2, we
nearly doubled the performance.

Table 2: Overall performance comparison (Accuracy
and Standard Deviation) of ASCRF vs. baseline on
Dataset 1 and Dataset 2, with 10 runs each.

Accuracy(Std) Baseline ASCRF

Dataset 1 44.67%(1.48× 100) 49.94%(8.07× 10−1)

Dataset 2 35.25%(4.95 × 10−2) 43.53%(4.44× 10−3)

Table 2 reports the overall experimental results. The re-
sults are consistent across the two datasets. We have aver-
aged around 10% improvement on Dataset 1, and over 20%

 25

 30

 35

 40

 45

 0 10 20 30 40 50

A
cc

u
ra

cy
 (

%
)

Iteration

ASCRF
SMMCRF

(a) Run 1

 25

 30

 35

 40

 45

 0 10 20 30 40 50

A
cc

u
ra

cy
 (

%
)

Iteration

ASCRF
SMMCRF

(b) Run 2

Figure 5: Two runs of ASCRF on Dataset 2: 5(a)
Run 1; 5(b) Run 2.

on Dataset 2. Our algorithm achieved more significant im-
provement and smaller deviation on Dataset 2. We believe
this is due to the size of the unlabeled set is larger in Dataset
2 than Dataset 1.

5.5 Efficiency
The main computational time of our algorithm comes

from the training of SMMCRF. As stated in Section 3.1.2,
using the softmax approximation, we can compute the ob-
jective and gradient for our formulation efficiently with a s-
light variant of the forward-backward algorithm used in the
standard maximum likelihood training. Hence, the compu-
tational time is linear on the sequence length, and quadratic
on the number of categories. Our algorithm was implement-
ed on top of the Limited Memory Variable Metric (LMVM)
solver in the Toolkit for Advanced Optimization (TAO) [3].
The experiments were run on a machine with Intel(R) X-
eon(R) CPU 2.67GHz, and 4G memory. It takes us around 2
minutes to finish the entire adaptive self-training process for
Dataset 1, with 7 level-1 categories, and 8,988 queries; and
around 4 hours on Dataset 2, with 65 categories, and 39,565
queries. The time cost is acceptable for offline training. Al-
so, the algorithm can run parallel to improve efficiency.

Web users often have very strict requirement on the re-
sponse time of online applications. Fortunately, the testing
phase of our algorithm can be done very efficiently using the
standard Viterbi algorithm. During our experiment, it takes
less than 1 second to finish the testing phase for Dataset 2,
which contains around 7,000 test queries in total.

6. RELATED WORK

Cao et al.’s work [6] adopted CRF models to include con-
text information in query classification. There are two ma-
jor differences between our work and theirs: 1) The previous
work was carried out under a supervised learning setting. In
order to achieve satisfactory performance, a great number
of labeling queries are required. In contrast, we propose to
combine a small set of labeled instances with the abundant
unlabeled queries free on the web to build a good query clas-
sifier, reducing human effort in labeling query sessions. 2)
The previous work used the traditional maximum likelihood
training for CRF models. However, during our study, we
found that discriminative training of CRF models is much
more robust to labeling noise. Empirical study also sup-
ports our claim, SMMCRFs consistently outperform CRFs
trained with maximum likelihood training. It provides us
not only with guaranteed generalization performance, but
also a straightforward mechanism to adapt the popular semi-
supervised learning method, self-training, to explore the in-
formation contained in unlabeled queries.

The second class of related work is semi-supervised learn-
ing [32, 8], which aims at utilizing the information in un-
labeled data to improve supervised learning. This can be
achieved in various ways [30, 4, 2, 16, 20, 15]. In 2005,
Beitzel et al. [1] proposed a semi-supervised learning frame-
work tailored specially for query classification. It uses la-
beled data to learn logical relationships between query terms
and query categories, and unlabeled data to fully exploit the
“syntactic” dependencies between query terms, so that more
queries can be classified. Li et al. [19] used click graphs
to increase the amount of training data. Specifically, class
memberships of unlabeled queries are inferred from those of
labeled ones according to their proximities in a click graph.
However, both works ignored the context information con-
tained in query sessions.

7. CONCLUSION AND FUTURE WORK
Accurate topical classification of user queries can bene-

fit a variety of web applications. A great amount of works
have been proposed to study the problem. However, the
issue of lacking training data to obtain a high quality clas-
sifier has not been well addressed. Inspired by a previous
work on context-aware query classification, we built a gen-
eral framework that exploits the large number of unlabeled
queries available free on the web, as well as search contexts
embedded in query sessions to improve query classification.
Extensive experiments on two datasets extracted from real
search log demonstrated the efficacy of our framework.

In our experiments, we used only previous queries in the
same session as search contexts. In future work, we plan
to include related user behaviors, such as clicked urls, user
dwell time, to enrich our feature set and investigate the im-
pact of them. Li et al. [19] found that with a large amount of
training data, classifiers using only query words/phrases as
features can work remarkably well. It would be interesting
to see if the statement still holds in our case.

8. REFERENCES
[1] S. Beitzel, E. Jensen, O. Frieder, D. Lewis,

A. Chowdhury, and A. Ko lcz. Improving automatic
query classification via semi-supervised learning. In
Proc. ICDM, pages 42–49, 2005.

[2] M. Belkin, I. Matveeva, and P. Niyogi. Regularization
and semi-supervised learning on large graphs.
Learning theory, pages 624–638, 2004.

[3] S. Benson, L. McInnes, J. Moré, and J. Sarich. TAO
user manual (revision 1.9). Mathematics and
Computer Science Division, Argonne National
Laboratory, Tech. Rep. ANL/MCS-TM-242, 2005.

[4] A. Blum and T. Mitchell. Combining labeled and
unlabeled data with co-training. In Proc. COLT, pages
92–100, 1998.

[5] C. Burges. A tutorial on support vector machines for
pattern recognition. Data mining and knowledge
discovery, 2(2):121–167, 1998.

[6] H. Cao, D. Hu, D. Shen, D. Jiang, J. Sun, E. Chen,
and Q. Yang. Context-aware query classification. In
Proc. SIGIR, pages 3–10, 2009.

[7] L. Catledge and J. Pitkow. Characterizing browsing
strategies in the World-Wide Web. Computer
Networks and ISDN systems, 27(6):1065–1073, 1995.

[8] O. Chapelle, B. Schölkopf, A. Zien, et al.
Semi-supervised learning. MIT press Cambridge, MA,
2006.

[9] M. Chen, C. Y., M. Brent, and A. Tenney.
Gradient-Based Feature Selection for Conditional
Random Fields and Its Applications in Computational
Genetics. In Proc. ICTAI, pages 750–757, 2009.

[10] B. Croft et al. The role of context and adaptation in
user interfaces. Journal of Man-Machine Studies,
21(4):283–292, 1984.

[11] H. Cui, J. Wen, J. Nie, and W. Ma. Probabilistic
query expansion using query logs. In Proc. WWW,
pages 325–332, 2002.

[12] K. Gimpel and N. Smith. Softmax-margin crfs:
Training log-linear models with cost functions. In
Proc. ACL, pages 733–736, 2010.

[13] A. Goker. Context learning in Okapi. Journal of
Documentation, 53(1):80–83, 1997.

[14] B. Jansen, A. Spink, C. Blakely, and S. Koshman.
Defining a session on web search engines. Journal of
the American Society for Information Science and
Technology, 58(6):862–871, 2007.

[15] F. Jiao, S. Wang, C. Lee, R. Greiner, and
D. Schuurmans. Semi-supervised conditional random
fields for improved sequence segmentation and
labeling. In Proc. ACL, pages 209–216, 2006.

[16] T. Joachims. Learning to classify text using support
vector machines: Methods, theory, and algorithms.
Computational Linguistics, 29(4):656–664, 2002.

[17] R. Jones and K. Klinkner. Beyond the session timeout:
automatic hierarchical segmentation of search topics
in query logs. In Proc. CIKM, pages 699–708, 2008.

[18] J. Lafferty, A. McCallum, and F. Pereira. Conditional
random fields: Probabilistic models for segmenting
and labeling sequence data. In Proc. ICML, pages
282–289, 2001.

[19] X. Li, Y. Wang, and A. Acero. Learning query intent
from regularized click graphs. In Proc. SIGIR, pages
339–346, 2008.

[20] G. Mann and A. McCallum. Simple, robust, scalable
semi-supervised learning via expectation

regularization. In Proc. ICML, pages 593–600. ACM,
2007.

[21] N. Seshadri and C. Sundberg. List Viterbi decoding
algorithms with applications. Communications, IEEE
Transactions on, 42(234):313–323, 2002.

[22] F. Sha and F. Pereira. Shallow parsing with
conditional random fields. In Proc. Human Language
Technology - NAACL, pages 134–141, 2003.

[23] F. Sha and L. Saul. Large margin hidden Markov
models for automatic speech recognition. In Proc.
NIPS, pages 1249–1256, 2007.

[24] C. Silverstein, H. Marais, M. Henzinger, and
M. Moricz. Analysis of a very large web search engine
query log. In ACM SIGIR Forum, volume 33, pages
6–12, 1999.

[25] C. Sutton and A. McCallum. An Introduction to
Conditional Random Fields for Relational Learning.
Introduction to statistical relational learning, page 93,
2007.

[26] S. Talja, H. Keso, and T. Pietiläinen. The production
of ‘context’ in information seeking research: a
metatheoretical view. Information Processing and
Management, 35(6):751–763, 1999.

[27] B. Taskar, C. Guestrin, and D. Koller. Max-margin
Markov networks. In Proc. NIPS, 2003.

[28] I. Tsochantaridis, T. Hofmann, T. Joachims, and
Y. Altun. Support vector machine learning for
interdependent and structured output spaces. In Proc.
ICML, page 104, 2004.

[29] V. Vapnik and V. Vapnik. Statistical learning theory.
Wiley New York, 1998.

[30] D. Yarowsky. Unsupervised word sense disambiguation
rivaling supervised methods. In Proc. ACL, pages
189–196, 1995.

[31] T. Zhang and F. Oles. A probability analysis on the
value of unlabeled data for classification problems. In
Proc. ICML, pages 1191–1198, 2000.

[32] X. Zhu. Semi-supervised learning literature survey.
Computer Science, University of Wisconsin-Madison,
2006.

