
CONT RACTOR

SOUNDING

_ _ Bruce Botlermann

SYSTEMS

AND DATA REVIEW

C. - MAY1970



1. Report No. 2. Government Accession No.

NASA CR-1529 (Part 2)

4. Title and Subtitle VOLUME I: A STUDY OF 30 KM TO 200 KM

METEOROLOGICAL ROCKET SOUNDING SYSTEMS

Part IL Literature and Data Review

7. Author(s)

Bruce Bollermann

9. Performing Organization Name and Address

Space Data Corporation

Phoenix, Arizona

12. Sponsoring Agency Name and Address

NASA-George C. Marshall Space Flight Center
Marshall Space Flight Center, Alabama 35812

Contract Monitor: Robert E. Turner

3. Recipient's Catalog No.

5. Report Date

May 1970

6. Performing Organization Code

8. Performing Organization Report No.

10. Work Unit No.

11. Contract or Grant No.

NAS8-20797

13. Type of Report and Period Covered

CONTRACTOR REPORT

14. Sponsoring Agency Code

15. Supplementary Notes

Distribution of this report is provided in the interest of information exchange.

Responsibility for the contents resides in the author or organization that prepared it.

16. Abstract

This report reviews the contemporary literature on meteorological rockets and

associated systems, to determine the accuracies and limitations of the current meteorological

rocket systems from available data, and to determine the adaptability of the more complex

geophysical rocket experiments to simplified, economical, routine meteorological rocket

soundings. This literature review covers the various system requirements and techniques

used in obtaining meteorological measurements of the 30 km to 200 km region of the atmo-

sphere. In addition to the detailed descriptions of the various rocket vehicles, telemetry,

sensors, decelerators and other related equipment, this review also includes a study of the

gun probe systems.

The study is presented in two books: Book 1 contains an introduction, a discussion

of systems requirements and a description of the various sensing techniques; Book 2 con-

tains details of the rocketsonde decelerator techniques, telemetry and tracking equipment,

descriptions of the rocket vehicles, gun probe systems and a summary of the report. The

two books are printed under separate cover, and are labeled Volume L

17. Key Words (Suggested by Author(s)) 18. Distribution Statement

Unclassified - Unlimited

19. Security Classif. (of this report_

Unclassified

20. Security Classif. (of this page) 21. No. of Pages

Unclassified 435

*For sale by the Clearinghouse for Federal Scientific and Technical Information

Springfield, Virginia 22151

22, Price*

$3.00



FOREWORD

Most of the material in this report has been taken directly from

the current literature; thus, to avoid frequent interruptions in the

text, references have been omitted. Instead, acknowledgements are made

preceding Book I for the primary investigators and authors whose works

have been abstracted and whose data are presented. A bibliography of

the digested literature follows the conclusion of Book 2.

This survey was made under Contract NAS8-20797 with the Aerospace

Environment Division, Aero-Astrodynamics Laboratory, Marshall Space

Flight Center. Mr. Robert E. Turner was the Contract Monitor.

ACKNOWLEDGEMENTS

Special recognition is expressed to the Meteorological Working

Group of the Inter-Range Instrumentation Group, Range Commander's

Conference, whose efforts brought about the formation of the Meteor-

ological Rocket Network, and consequently the widespread distribution

of its valuable data to the scientific community. The Network has

grown worldwide, and has directly influenced developments in rocket

meteorology.

Appreciation is expressed to Mr. Robert E. Turner and Mr. O. E.

Smith of the Aerospace Environment Division, Aero-Astrodynamics

Laboratory, NASA-Marshall Space Flight Center for their support and

guidance in presenting this study, and to Mr. Edgar Schaefer for the

many illustrations and Mr. David Gironda and staff of the Space Data

Corporation for editorial assistance.

ooo

III



TABLE OF CONTENTS

VOLUME I

BOOK 2

Chapter Page

FOREWORD "'"• • • • • • • • • • . • • • • . • • • • • • • • ill

4 ROCKETSONDE DECELERATORS

4.1
4.1.1

4.1.2

4.1.3

4.1.4

4.1.5

4.1.6

GENERAL ................ I

Ballistic Coefficient ........... I

Deployment Reliability .......... 7

Stability ................. 7
Radar Cross-Section ........... 10

Constant Descent Rate .......... 11

Cost ........ . .......... 11

4.2

4.2.1

4.2.2

4.2.3

4.2.4

4.2.5

4.2.6

CONVENTIONAL PARACHUTES
General ................. 12

Design Parameters ............ 12
Arcas 15' Gentex Parachute ....... 23

Loki Dart 7.6' Parachute ........ 44

NOL 6 t Square Parachute ........ 44
NOL Wind Sensor Parachute . . ..... 53

4.3
4.3.1

4.3.2

4.3.3

4.3.4

4.3.5

PARACHUTES WITH GEOMETRY POROSITY
G enera I .................. 55

Disk-Gap-Band Parachute ........ 55
Cross Patch Parachute .......... 62

Annular Ring Parachute ......... 62

Miscellaneous Geometric Porosity Designs. 66

4.4
4.4.1

4.4.2

4.4.3

4.4.4

4.4.5

4.4.6

STROKES FLOW RIBBON MESH PARACHUTE
General .................. 72

Theoretical ................ 73

Proposed Parachute Design ........ 74

Proposed Performance .......... 78
Test Data ................. 78

Summary ................. 83

-V-



Chapter Page

4.5

4.5.1

4.5.2

4,5,3

4.5.4

4.5.5

4.5.6

RAM-AIR DECELERATORS

OeneraJ ........ • ........

Ballute Principle ............
Arcasonde Ballute ............

Datasonde Starute ...........

High Speed Ballutes ...........
Biconical Decelerator ..........

88
88

89

94
94

98

4.6 SUMMARY 100

TELEMETRY AND TRACKING

5.1 GENERAL ................ 101

5.2
5.2.1

5.2.2

5.2.2.1

5.2.2.2
5.2.2.3

5.2.2.4

5.2.2.5

5.2.2.6

5.2.2.7
5.2.2.8

5.2.2.9

5.2.3

RADAR

General ................. 103

Radar Descriptions ........... 104
Radar Set AN/SPS-12 .......... 104

Radar Set AN/MPS-19 ......... 104
Mod II Radar ............... 108

Radar Set AN/FPS-16 ...... . . . . 108

Radar Set AN/FPQ-I I ......... 112

Radar Set AN/MPS-504 ......... 112

NASA Long-Range S-Band (Spandar) . . 121
Radar Set AN/FPQ-6 .......... 121

Velocimeter, Model 10A, Doppler Radar. 125

Radar Application to Rocketsonde System . 129

5.3

5.3.1
5.3.2

5.3.3

5.3.4

5.3.4.1
5.3.4.2

5.3.4.2.1

5.3.4.2.2
5.3.4.2.3

5.3.4.2.4

TELEMETRY
General ................. 139

IRIG Telemetr 7 Systems ......... 140

DOVAP Telemetry Tracking System . . . 153

AN/GMD Telemetry and Tracking System . 159
General .................. 159

Ground Station Equipment ........ 160
Rawin Set AN/GMD-1 ......... 160

Rawin Set AN/GMD-2 ......... 165

Rawin Set AN/GMD--4 ......... 169

NASA Radiosonde ADP System ..... 169

- v| -



Chapter Page

5.3.4.3
5.3.4.3.1
5.3.4.3.2
5.3.4.3.3
5.3.4.3.4
5.3.4.4
5.3.5
5.3.5.1
5.3.5.2
5.3.5.3
5.3.6
5.3.6.1
5.3.6.2
5.3.6.3

RocketsondeInstrumentation ....... 176

Stratospheric Terhperature Sonde (STS-1) . 176
Arcasonde- 1A .............. 180
A N/DMQ -9 ............... 180

Datasonde ................ 192

Miscei ianeous Instruments ........ 192

AN/SMQ-1 Telemetry Systems ...... 199
General .................. 199

Ground Station Equipment ........ 199
Rocketsonde Instrumentation ....... 202

Advanced Concept -Motorola Study . . 209
General ................. 209

Ground Equipmen t ............ 218
Radiosonde ................ 223

6 ROCKET VEHICLES

6.1 G EN ERAL ................ 228

6.2 HISTORICAL REVIEW .......... 233

6.3

6.3.1

6.3.2

6.3.3
6.3.4

6.3.5

6.3.6

6.3.7

6.3.8
6.3.9

6.3.10

CURRENT VEHICLE SYSTEMS ...... 243
General ................. 243

Arcas .................. 248

Loki Dart ................ 259

Skua .................. 281
MT-135 ................. 282

Super Loki Chaff Dart .......... 282

Viper Dart ................ 298

Cajun Dart ................ 303
Boosted Arcas ............... 311

Nike Vehicles .............. 321

6.4

6.4.1
6.4.2

6.4.3

6.4.4

6.4.5

6.4.6

DEVELOPMENT SYSTEMS ........ 323

General ................. 323

Improved Viper Dart ........... 323

Super Loki Instrumented Dart ...... 323
Destructable Arcas ........... 324

Consumable Rocket ............ 333

Army RDT&E Rocket ........... 336

- vii -



Chapter

6.4.7

6.4.8

6.5

6.5.1

6.5.2

6.5.3

6.5.4

7 GUN PROBES

7.1

7.2

7.3

7.4

7.5

7.6

8 SUMMARY

APPENDIX A

BI BLIOGRAPHY

Pag e

Kangaroo ................. 337
Destructible Dart ............. 339

DISCUSSION .............. 346

General ................. 346

Vehicle Performance ........... 346

Vehicle Impact Dispersion ........ 348

Vehicle Wind-Sensitivity ......... 348

GENERAL ................ 351

5-I NCH PROJECTILES .......... 354

7-I NCH PROJECTILES .......... 358

16-I NCH PROJECTILES .......... 360

GUN-BOOSTED ROCKETS ........ 362

METEOROLOGICAL ROCKET vs GUN
PROBE COMPARISON .........

Corrections for Meteorological Rocket

Temperature Soundings on an Individual
Basis

365

369

379

381

ooo

-- Vlll --



LIST OF FIGURES

BOOK 2

Figure

4.1

4.1-I

4. I-2

4. 1-3

4.1-4

4. I-5

4.1-6

4.2-I
4.2-2

4.2-3

4.2-4

4.2-7

4.2-8

4.2-9

4.2-10

4.2-I I

4.2-12

4.2-13

4.2-14

4.2-15

4.2-16

4.2-17

4.2-18

ROCKETSONDE DECELERATORS - GENERAL

Velocity-Altitude Profile-Various Ballistic
Coefficients .................... 3

Drop from 245,000 Ft to 200,000 Ft. W/CD
A-0.020 ...................... 4

Altitude vs Decent Rate .............. 5

Descent Curves from Various Release Altitude . . 6

Dynamic Pressure at Apogee ............ 8
Critical Velocity for Parachute Self-inflation . . 9

4.2 CONVENTIONAL PARACHUTES

Hemispherical Parachute Gliding Mode ....... 18
Arcas Gentex Parachute, 15' Diameter ....... 24

Cross-Sectional Diagram of the Arcas Parachute

Assembly ...................... 26

Principle of Separation of the Arcas Payload

Assembly ...................... 26

Arcas Parachute and Payload after Expulsion . . . 27
Arcas Parachute (Gentex Company) Descent Rate

Average for Standard Payload Weight ....... 29
Arcas Parachute Fall Rates ............. 30

Arcas Parachute Descent Curve ........... 31

FPS-16 Radar Tracks of Arcas Flights at Pacific

Missile Range .....................

Initial Wind Response Altitude vs Apogee Altitude.
Arcas Parachute Fall Rate Data-WSMR Flights//1 .

Arcas Parachute Fall Rate Data-WSMR Flight//2 .

Areas Parachute Fall Rate Data-WSMR Flight//3 .

Arcas Parachute Fall Rate Data-WSMR Flight//4.

Arcas Parachute Fall Rate Data-WSMR Flight it5.

Arcas Parachute Fall Rate Data-WSMR Flight//6.

Areas Parachute Fall Rate Data-WSMR Flight//7.

Arcas Parachute Fall Rate Data-WSMR Flight//8.

Page

34

35

36

37

38

39
4O

41

42

43

- ix -



Figure

4.2-19

4.2-20

4.2-21

4.2-22

4, 2-23

4.2-24

4, 2-25

4.2-26

4.2-27

4.3-I

4.3-2

4.3-3

4.3-4

4.3-5

4.3-6

4.3-7

4.3-8

4.3-9

4.4-3

4.4-4

4.4-5
4.4-6

4.4-7

Page

Dartsonde Instrument Package on 7.6' Chute . . . 45

Loki 7.6 Parachute-Sonde Descent Velocity . . . 47
Loki 7.6 Parachute-Sonde Descent Time ...... 47

Loki #173 Launched 19 October 1967 ....... 48

Lokl 7.6 Descent Rate Profiles -WSMR Flight
Test Data, #I ............. 49

Loki 7.6 Descent Rate Profiles- WSMR

Test Data, //2............. 50

Loki 7.6 Descent Rate P_ofiles- WSMR

Test Data, #3 ............. 51

Lok[ 7.6 Descent Rate Profiles-WSMR

Test Data, #4 ............. 52

NOL Wind Sensor Parachute ............ 54

• . . . • •

Flight

• • • • • •

Flight

• • . • • •

Flight

• • . . . • •

4.3 PARACHUTES WITH GEOMETRY POROSITY

Disk-Gap-Band Parachute Configuration ...... 56

Modified Deployment Bag with Packed Parachute . 60

Sequence of DGB Deployment Events ....... 61

Cross Patch Parachute ............... 63

35' Cross Patch Parachute Fall Rate Results.... 65

Drag Coefficient of Annular Plates(Rings).... 67

Annular Ring Parachute Design .......... 68

Wagon Wheel Parachute .............. 69

Ring Sail Parachute .... . ........... 70

4.4 STROKES FLOW RIBBON MESH PARACHUTE

Drag Coefficient of an Infinite Single Cylinder . . 75
Drag Coefficient for a Flat Disc wlth 20%

Solidity in a Normal Flow ............. 76

The Concept of the Stokes Flow Ribbon Mesh
Parachute ..................... 77

Descent Trajectory of the Dartsonde Parachute . . 80

Descent Trajectory of the Dartdrifter Parachute . . 81

Descent Trajectory of the Arcas Parachute .... 82
Experimental Drag Coefficients for Models of 0.2,

0.1 and 0.05 Solidity as a function of Reynolds

Numbers compared with Theory .......... 85

-X-



Figure Pag____ee

4.5 RAM-AIR DECELERATORS

4.5-I
4.5-2

4.5-3

4.5-4

4.5-5

4.5-6

5.2-1

5.2-2

5.2-3

5.2-4

5.2-5
5.2-6

5.2-7

5.3-1

5.3-2

5.3-3
5.3-4

5.3-5

5.3-6

5.3-7

5.3-8
5.3-9

5.3-10

5.3-11

5.3-12

5.3-13
5.3-14

5.3-15

5.3-16

Bailute Configuration (Typical) ........ . . 90
Ballute Drag Force Distribution .......... 91

Typical Ballute ................... 92

Loki Dart Starute Configuration Sketch ...... 95

Typical Telemetry Records from Parachute Flight
and a koki Statute Flight .............. 96
NOL Biconical Decelerator ..... . ...... 99

5.2 RADAR

Radar Set AN/MPS-19, Block Diagram ....... 107
Model 10A Velocimeter, Block Diagram ...... 130
The Mean of 6 Cases from FPS-16 Tracks ...... 133

S-Band Radar Track of 8-Foot Parachute ...... 134

S-Band Radar Track of S-Band Chaff ........ 136
X-Band Radar Track of X-Band Chaff ....... 137

Signal Strength vs Time after Expulsion of Chaff.. 138

5.3 TELEMETRY

IRIG FM/FM Telemeter Subcarrier Bands ...... 141
Pulse Duration Modulation ............. 145

Missile Antenna Configurations .......... 149

PDM/FM Telemetry System, Block Diagram .... 150

F/V_/FM Telemetry System, Block Diagram ..... 151

FM/'AM Telemetry System, Block Diagram ..... 152

X-Band Telemetry Receiving System, Block Diagram. 154

Representative Dovap Telemetry Record ...... 156
Shroud-Type Dovap Antenna Radiation Pattern #1 . 157
Shroud-Type Dovap Antenna Radiation Pattern #2. 158

Rawin Set AN/GMD-1At Systems ......... 162

Rawin Set AN/GMD-1Bt Functional Diagram . . . 163

Block Diagram of the TMQ-5 Recorder.. ..... 166

Rawinsonde System AN/GMD-2t Block Diagram . . 168
Statistical AN/GMD-2 Wind Errors vs Slant Range

for Averaging Times ...... . ......... 170

Simplified Block Diagram of AN/GMD-4 System.. 171

- xi -



Fi gur e Pag__._e

5.3-17
5.3-18

5.3-19

5.3-20

5.3-21
5.3-22

5.3-23

5.3-24

5.3-25

5.3-26

5.3-27
5.3-28

5.3-29

5.3-30
5.3-31

5.3-32
5.3-33

5.3-34

5,3-35

5.3-36

5.3-37
5.3-38

5.3-39

6.3-I
6.3-2

6.3-3

6.3-4

6.3-5

6.3-6

6.3-7

6.3-8

6.3-9
6.3-10

6.3-I I

6.3-12

Radiosonde ADP System Simplified, Block Diagram . 174

Statospheric Temperature Sonde, STS-1 ....... 178

STS-1 Electrical Circuit Diagram .......... 179
Arcasonde-lA Instrument and Nose Cone ...... 181

Arcasonde-lA Instrument Components ........ 182
Arcasonde-lA, Block Diagram ............ 183

AN/DMQ-9 Rocket Instrument Package ...... 185

AN/DMQ-9 Block Diagram ............ 187
AN/DMQ-9 Schematic Diagram .......... 188

Datasonde Instrument Configuration ........ 193
Arcasonde-3 Instrument .............. 196

Arcasonde-3, Telemetry Block Diagram ...... 197
AN/SMQ-1 Radiosonde Receptor, Block Diagram . 203
Radiosonde Set WOX-1A .............. 205

WOX-1AI Block Diagram ............. 206

Advanced Sounding System, Block Diagram .... 211
PN Range System .................. 216

Telemetry Modulator, Block Diagram ........ 217

Telemetry Extractor, Block Diagram ......... 220
Range Signal Demodulator, Block Diagram ..... 220

64 kHz Component vs Code Correlation-Zone Loop . 222

64 kHz Component vs Code Correlation-Code Loop . 222

AMSS Radiosonde, Block Diagram ......... 225

6.3 CURRENT VEHICLE SYSTEMS

Meteorological Rocket Configurations ........ 244
The Arcas Rocket .................. 249

Arcas Nose Cone .................. 251

Cross-Sectional Diagram of the Arcas Motor .... 253

The Maior Components of the Arcas Vehicle .... 256

Major Components of the Closed-Breech Arcas
Launcher ....................... 257

Principle of Operation of the Arcas Closed-Breech
Launcher ....................... 258

The Loki Dart Meteorological Sounding Rocket . . . 261

Loki-Dart Vehicle Configuration ........ . . 263
Cross Section of the Instrumented Dart ....... 265

Photo of Instrumented Dart System ......... 267

Meteorological Probe PWN-8B, Major Dimensions . 268

- xii -



Figure Page

6.3-13
6.3-14
6.3-15
6.3-16
6.3-17
6.3-18
6.3-19
6.3-20

6.3-21
6.3-22
6.3-23
6.3-24
6.3-25

6.3-26

6.3-27

6.3-28

6.3-29
6.3-30

6.3-31

6.3-32

6.3-33
6.3-34

6.3-35

6.3-36

6.4-1
6.4-2

6.4-3

6.4.-4

6.4-5

PWN-8B System, Dart Cross Section ........ 269

Payload Expulsion Sketch ............. 271
Rocket Launcher LAU-66/A 278

• • • • • . . . . . . m

Major Dimensions of Launcher LAU-66/A ..... 279
Skua Performance Curves .............. 283

Super Loki Vehicle Configuration .......... 287

Super Loki Chaff Dart Vehicle Configuration .... 288

Super Loki Chaff Dart compared with Standard Loki
Dart Vehicle .................... 289

Cross-Section view of Super Loki Rocket Motor.. 291

Cross-Section view of Super Loki-Chaff Dart . . . 292

Super koki Launch Rail Assembly .......... 294

Typical Base for Super Loki Launch Rail ...... 295

Nominal Trajectory Summary - Super Loki Dart . . . 296
Viper-Dart Vehicle Configuration ......... 299

Viper-Dart (Dart) Cross Section View ........ 300

Viper Motor and Components ............ 302

Nominal Dart Trajectory, Viper Dart ........ 306
Cajun Dart Vehicle Configuration .......... 307

Cutaway View of the Cajun Dart ........... 309
Cajun-Dart Altitude vs Range ............ 310

Boosted Arcas Vehicle Configuration ........ 312

Sidewinder Arcas Vehicle Configuration ...... 315

Sparrow Arcas Vehicle Configuration ........ 317
Boosted Arcas Ii Vehicle Configuration ....... 319

6.4 DEVELOPMENT SYSTEMS

Super Loki Instrumented Dart Nominal Trajectory . . 325

Frangible Arcas Vehicle Configuration ....... 328

Nominal Frangible Arcas Flight Events Sequence . . 331

Consumable Meteorological Rocket Operation
Concept ....................... 334

Kangaroo Dart Vehicle Configuration ........ 342

-- Xlll -



Fi gur e Pag__ee

7.1-1

7.3-1

7.4-1

7.5-I

8.1-I

8. I-2

8. 1-3

8.1-4

8. I-5

8.1-6

7.1 GUN PROBES - GENERAL

Gun Probe Performance Summary .......... 352

7.2 5-INCH GUN PROJECTILES

5-Inch Gun Projectile Configuration ........ 355

5-Inch Projectile Nominal Traiectories ....... 356

7.3 7-INCH GUN PROJECTILES

Gun Probe Loading Mechanism ........... 359

7.4 16-INCH GUN PROJECTILES

Typical Martlet-2C Payload Configurations ..... 363

7.5 GUN-BOOSTED ROCKETS

Gun Boosted Rocket Configurations .......... 363

8.1 SUMMARY

ETR- APOLLO II Launch Support Density Profile

14 July 1969 .................... 371

ETR -APOLLO II Launch Support Density Profile

16 July 1969 ......... . .......... 372

ETR -APOLLO II Launch Support Wind Profile

14 July 1969 ........... . ........ 373

ETR -APOLLO !1 Launch Support Wind Profile

16 July 1969 ....... . ............ 374

ETR -APOLLO I! Launch Support Temperature

Profile - 14 July 1969 ............... 375

ETR -APOLLO II Launch Support Temperature
Profile - 16 July 1969 ............... 376

- xiv -



LIST OF TABLES

BOOK 2

Table

4-1

4-2

4-3

4-4

4-5

4-6

4-7

4-8

4-9

4-10

4-11

5-1

5-2

5-3
5-4

5-5

5-6
5-7

5-8

5-9

5-10

5-11

5-12

5-13

5-14

5-15

Page

4. ROCKETSONDE DECELERATORS

Fall Velocities at Various Altitudes ........ 17

Arcas 15 ! Gentex Parachute ............ 25

Fall Rate Study of Arcas Parachute and Sonde
Payload ...................... 32

Initial Wind Response Lag Data .......... 33
Loki 7.6 Irvin Parachute ............. 46

Arcas Cross Patch Parachute Design Parameters.. 64

Proposed Parachute Design Parameters ....... 79

Summary of Test Results and Model Weights for

Models of Different Solidity ............ 84

Comparison of Proposed Dartdrifter Model (Theoretical)
with Chamber Tests Data .............. 86

Arcasonde Ballute Specifications .......... 93

Dartsonde Starute Specifications .......... 97

5. TELEMETRY AND TRACKING

Radar Set AN/SPS-12, Technical Characteristics . . 105

Radar Set AN/MPS-19, Technical Characteristics . 106

Mod !i Radar, Technical Characteristics ...... 109
Radar Set AN/FPS-16, Technical Characteristics . . 113

Radar Set AN/FPQ-11, Technical Characteristics . 117

Radar Set AN/MPS-504, Technical Characteristics . 120

SPANDAR, Technical Characteristics ........ 122

Radar Set AN/FPQ-6, Technical Characteristics . . 126

Model 10A Velocimeter, Technical Characteristics . 131
Radar Characteristics ................ 132

IRIG F/Vk/FM Telemeter Subcarrier Bands. ..... 142

X-Band Telemetry System Characteristics ...... 155

AN/GMD-1 Specifications ............. 167
Rocketsonde Instruments ............... 177

Arcasonde-lA Specifications ..... ....... 184

-XV-



Table Pag__ee

5-16

5-17
5-18

5-19

5-20

6-1

6-2

6-3
6-4

6-5

6-6
6-7

6-8

6-9

6-10

6-11
6-12

6-13

6-14

6-15

6-16

6-17

6-18

6-19

6-20

6-21

6-22

6-23

6-24

Arcasonde-2B Specifications ............ 195
Arcasonde-3 Specifications ............. 198

Advanced System Characteristics .......... 212

AN/AMQ-9 vs AMSS Comparison .......... 213
AMSS Radiosonde Characteristics .......... 226

6. ROCKET VEHICLES

Meteorological Rockets ............... 234

Summary of ARC Rocket Study ............ 239

Summary of Current Meteorological Rocket Vehicles . 245
Loki Dart Vehicles ................. 246

Obsolete Vehicles ................. 247

Arcas Rocket System Dimensions ........... 252
Arcas Rocket Motor Performance Characteristics . . • 255

Flight Performance Characteristics of the Arcas

System ........................ 260

Principle Characteristics of the Loki Sounding Rocket 264

Rocket Motor Major Design Characteristics
Summary ....................... 273
Hardware Design Characteristics Comparison .... 274

Rocket Motor Ballistic Performance Comparison . . . 274

Skua - General Specifications ........... 284

Japanese MT-135 vs Arcas .............. 285

Super Loki Rocket Motor Design Characteristics

Summary ....................... 290
Super Loki Chaff Dart Design Characteristics .... 290

Nominal Trajectory Summary, Super Loki Dart .... 297

Viper Dart Weight Table ............... 304

Nominal Performance Summary ........... 305

Summary of Boosted Arcas Vehicles ......... 313

Summary of Nike-Boosted Vehicles ......... 322

Comparison of the Super Loki with the Current koki

Dart System ..................... 326
Frangible Arcas Vehicle Dimension and Weight

Comparisons ..................... 329

Detailed Weight Breakdown of the Frangible Arcas
Vehicle ....................... 330

- xvi -



Table Page

6-25

6-26

6-27

6 -28

7-1

AMICOM RDT&E Rocket Design Characteristics . . 338

Kangaroo Weight Table ............... 343

Coming Glass Works Pyro Ceram Physical

Properties ...................... 344

Comparison of Wind Dispersion Effects for Various
Vehicles ....................... 350

7. GUN PROBES

Meteorological Rocket vs Gun Probe Comparison . . 366

- xvll -



e

ROCKETSONDE DECELERATORS

4.1 General.

High altitude decelerators, such as parachutes or inflatable structures,
have been used to conduct meteorological soundings to altitudes of at least

60 kilometers. Although many of these same data could have been obtained

as direct probe measurements, it was found to be more economical to employ

a descent vehicle and a rocketsonde payload. The instrumentation for these

payloads has been a great deal less sophisticated and less costly than would

be required for direct probing during rocket vehicle ascent• It is likely that

rocketsonde techniques will be required for gathering data to the upper
altitude limits of at least the simpler sensors to maintain a low system cost.

Therefore, the need for improved decelerators in future systems is of para-

mount importance.

The requirements for a meteorological rocketsonde decelerator can be
enumerated as follows:

• Low ballistic coefficient

o Deployment reliability

. Acceptable stability

• Adequate radar cross-section

e Relatively constant descent rate

6. Low cost

Although the above factors are interdependent to some degree, each

is discussed separately in the sections which follow for ease in presentation.

4.1.1 Ballistic Coefficient•

A low ballistic coefficient (W/CDA) is the primary factor which governs
the usefulness of a high altitude meteorological decelerator system. This

characteristic determines the equilibrium or terminal fall rate of the rocketsonde
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at the various altitudes as indicated in Figure 4.1-1. Also for a given
apogee or deployment altitude, the ballistic coefficient determines the

maximum dynamic overshoot velocity and the altitude at which the des-
cending system reaches terminal velocity. Figure 4.1-2 presents initial

trajectory data for a typical high-altitude deployment of a descent system

with a given ballistic coefficient. The system accelerates downward past

the zero g value (where drag equals weight) and then accelerates in the

upward direction because the drag force at this point is greater than the
weight. This upward acceleration continues until the vehicle slows down

to terminal velocity for the particular altitude where the drag force equals

the weight. In the meantime the descent velocity has significantly exceed-

ed or overshot the terminal velocity. At a lower altitude the descent

velocity slows up to the terminal velocity value. After this the terminal

velocity curve is followed during the remainder of the descent provided
the system remains deployed and aerodynamically stable. The net result

is that for a high altitude deployment, the descent systems fall faster than
terminal velocity for a portion of the descent. The magnitude of this
velocity overshoot is a function of ballistic coefficients as indicated in

Figure 4.1-3. The overshoot velocity is also a function of deployment
altitude as indicated in Figure 4.1--4.

For most meteorological measurements utilizing the rocketsonde
technique, descent velocities must be maintained at subsonic levels.

Aerodynamic heating of the sensor, stagnation pressure increase and wind
shear measurement error are all a function of the square of the descent

velocity and measurement errors increase drastically as fall velocity in-

creases. In addition, faster fall rates present to the sensor instrumentation
a greater timewise gradient of the parameter to be measured. Most of the

inexpensive sensors and instrumentation are response time limited, and the

measurement accuracy is thereby degraded by fast fall rates. Transonic and
supersonic velocities render most of the meteorological measurements useless.

Therefore, an adequately low ballistic coefficient for the descent system is
necessary for accurate measurements. Once this ballistic coefficient is

determined, then the optimum deployment altitude can be selected. To

achieve a low ballistic coefficient the weights of the descent vehicle and

payload instrumentation must be kept to as low a value as possible. Pay-
load miniaturization must be carried to the extent which is economically
feasible. In addition, the drag of the descent vehicle should be maximized

based upon packaging volume requirements. Generally speaking, this means

-2-
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#

that the drag coefficient per unit packaging volume should be maximized

for the flow region being considered. This indicates the use of very thin

and lightweight fabrics for canopy materials. The weight and packaging
volume requirements for shroud lines and fittings should also be minimized.

4.1.2 Deployment Reliability.

To achieve the descent rates indicated by the respective ballistic

coefficient, the decelerator must achieve full deployment upon ejection

from the rocket vehicle. Conventional silk parachutes require a dynamic
pressure of at least 0.03 to 0.07 Ibs/ft 2, depending upon parachute design,

in order to inflate reliably. The dynamic pressure is a function of deploy-
ment altitude and velocity. For a given rocket vehicle both of these factors

are related to launch angle. Typical examples are presented in Figure 4.1-5

which indicated marginal inflation reliability for the Arcas parachute at

launch angles above 86° and for the Loki Dart parachute at launch angles
above 83 °. Deployment velocity vs. deployment altitude for reliable

inflation of conventionally shaped silk parachutes are presented in Figure
4.1-6. These data indicate that self inflation is not practical above an
altitude of about 230,000 feet. Above this altitude the critical inflation

velocity is in the transonic and supersonic flow regions.

In addition to the altitude and deployment velocity effects upon

self inflation reliability, the deployment altitude wind velocity must be
considered. High altitude winds can be as great as typical deployment

velocities, and can either subtract from or add to the deployment velocity
depending upon wind direction.

The above factors indicate the need for positive inflation techniques

for decelerator deployment much above 180,000 feet.

4.1.3 Stability.

In order to take full advantage of the decelerator ballistic coefficient,

a reasonable degree of stability must be achieved. The drag coefficient for
many decelerators is slightly greater at a small angle of attack than at zero

and does net fall off much until about 30 degrees is experienced. Therefore,

from a fall rate standpoint oscillations as great as _ 30 degrees are not
objectionable.
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Some authors have implied that even a mildly oscillating system
would result in wind measurement errors because of the instantaneous hor-

izontal component of velocity established at an instantaneous angle of

attack. However, when the period of the oscillation is taken into account,
it has been found that the horizontal displacement due to the oscillation

is negligible, i.e., within the random error (rms) of the typical tracking
radars.

A major objection to instability of the decelerator is that relatively

severe telemetry signal dropouts occur for severely oscillating decelerators.
All of the sondes flow to date have nulls in the transmitted antenna patterns

along the longitudinal axis of the sonde. At high elevation angles where
the decelerators oscillate to the greatest extent, signal dropouts at the
receiver are most troublesome. As the sonde descends to a lower altitude

and the oscillations dampen, signal dropouts are virtually eliminated.

Very often there is a severe loss of telemetered data in the high altitudes
where it is most needed. Therefore, stability of the decelerator within

reasonable bounds is important for high altitude data retrieval.

\

The effect of decelerator oscillations on the sensor instrumentation

has been mentioned by some authors as an important factor, however, for
the sensors flown to date the normal attitude variations of the sensors due to

decelerator oscillations have not appeared to cause any significant error in
the reduced data.

4.1.4 Radar Cross-Section.

A majority of the rocketsondes which have been flown in the past

have required radar tracking of the decelerator. The current development
trend is toward a telemetry instrument which incorporates slant range track-

ing in addition to azimuth and elevation angle determination. With such an

instrument the requirement for radar tracking will be eliminated and the

decelerator will not be required to present a radar target. However, if the

cost of the transponder type instrument is significantly greater than the trans-

mit-only type, the latter sonde will probably be used at launch sites where

tracking radar is available. For these systems the decelerator will be required
to incorporate a radar target with at least a 71m 2 radar cross-section. This

is generally accomplished by coating the silk canopy material with either a
silver or copper conductive finish. Canopies can also be formed with aluminized

mylar for this purpose.
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4.1.5 Constant Descent Rate.

Since the upper altitude densities are much less than those of the

lower atmosphere, sensor response is generally a good deal slower at high

altitudes. This is not only true of sensors such as the thermistor temperature
measurement element but is also true of wind response of the decelerator.
Most of the decelerators have a constant drag coefficient and fall fast at

high altitudes and slow at the lower altitudes. This is indirect opposition
to the sensor requirements, it would be advantageous to obtain as slow

descent velocities as possible in the upper atmosphere and to increase the

fall rates in the lower atmosphere. Although it is possible to employ reef-

ing devices to achieve a more uniform fall rate, it is probably not worth
the expense to speed up the fall rate in the lower atmosphere for the sake

of saving a few moments of tracking time. Major efforts should be directed

toward obtaining the slowest high altitude descent velocities possible.

4.1.6 Cost.

Since meteorological rocketsondes are being used on a routine baslst

and a large number of them are being flown each year1 the cost of the

decelerator must be kept to a low value. One hundred dollars or so per
unit seems to be a reasonable cost for such a device.

-11-



4.2 Conventional Parachutes.

4.2.1 General.

The meteorological rocketsonde parachute is used for wind measure-

ment and to lower the temperature measuring sonde at a sufficiently slow
velocity for adequate temperature measurements. The descent rate of the

parachute is of prime importance since wind measurement errors and temp-
erature measurement errors due to aerodynamic heating and sensor response

log are directly related to rate of fall of the parachute-sonde system. Of

course, the parachute must deploy properly and fully inflate to take advant-
age of its shape and fabric area. Although the flat and hemispherical silk

parachutes seem to inflate fairly reliably at altitudes as high as 180,000

feet, the mylar and specially shaped parachutes seem to require mechanical
inflation aids, such as an inflatable torus ring. Although parachute stability

is a desirable feature, oscillations as great as 30-degrees for most designs

are probably not too harmful for descent rates, or telemetry signal drop outs.

In general, the drag coefficient for most parachute designs increases with

angle of attack up to about 15 to 20 degrees. For parachutes oscillating
within this range, slower rather than more rapid descent rates, compared

to a perfectly stable parachute, are to be expected. The period of oscilla-

tion has been found experimentally to agree with the law of the simple

pendulum where the effective length of the pendulum is related to the shroud

line length in the expression for the natural period, T, as in

T : 2 _ v' L//2 where L : Length of shroud lines

For the Arcas parachute the effective length, L, is 20-feet and the period,

T, is 5-seconds. For the smaller dartsonde parachutes the effective lengths,

about 10-feet, and the corresponding periods, about 3.5-seconds, are shorter

than for the Arcas parachute. For both types of parachutes the oscillation
periods are so short that displacements of the parachutes which might lead to

wind determination error are negligible. The prime consideration for parachute

design should, therefore_ be to obtain as slow a descent rate as possible to
minimize measurement errors.

4.2.2 Design Parameters.

To appreciate some of the problems of designing an effective parachute

(or decelerator of any kind) imagine a stationary decelerator in a stream of

moving air. Conservation of mass flow requires that the air must be deflected
and caused to flow around the decelerator. The shadow area aft of the body

experiences a low pressure and the diverted air tends to Collapse into the

shadow, usually in a highly turbulent manner.

\
\
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Now, turbulence has both its good and its bad effects, it can be

shown that those shapes that create the most turbulence also offer the high-

est amount of drag or resistive force. Because turbulence represents a
consumption of energy, this correlation should not be surprising. Unfortunate-

ly, turbulence also produces undesirable instabilities.

Wind tunnel tests show that the shadow area behind the canopy tends
to be filled from two sections at opposite points on the circumference in a
seesaw manner. As the collapsing airstream oscillates, so does the local

external pressure, and since the force on the canopy is governed by the
difference between internal and external pressure, a cyclical rocking moment

deveiopes. The parachute oscillates at a rate and magnitude governed by a

complex set of factors. In some cases the oscillation may cause the load to
swing through an arc of 60-degrees or more.

None of the conventional parachute designs - and that includes the

hemisphere, the flat-circular, and the conical - are particularly stable in

flight. All of them allow the payload to swing beneath the canopy, part-

icularly when the air itself is turbulent, gusty and unstable. Conventional
parachutes do not open reliably at very low dynamic pressures and they

exhibit poor stability with coning angles or oscillations of about + 45o or

more at high altitudes. Experience with parachutes at dynamic pressures
below 1 lb/ft 2 has shown that for repeatable and immediate canopy opening,

an inflation aid must be provided.

Descent rates of current conventional parachutes are excessive for
accurate meteorological measurements above an altitude of 180,000 feet.

The ballistic coefficients of the current parachute - sonde systems are
greater than 0.05 lb/ft 2 and larger parachutes are required for the given

payload weight to reduce the fall rates. As long as metalization of the silk

canopy fabric is required for radar tracking, it appears that the conventionally
shaped parachute is limited to a ballistic coefficient of at least 0.01 ib/ft 2

by itself without any allowance for payload weight.

Fairly extensive investigations indicate that a major problem in

parachute deployment is the tangling and twisting of the parachute shroud
lines and their interference with the canopy. Photography has shown that

shroud lines flung over the crown of the parachute have reduced the effective

flying area and have caused the abnormal descent rates. There have also
been discontinuities in the descent rates of recent conventional parachute

systems. It appears that once the parachute has been sized properly for the

-13-



desired descent rate and the dynamic pressure is adequate for self-inflation,

the major cause of failure to attain this rate is mechanical tangling of the

shroud lines which causes a reduction in the effective canopy area. High

rocket spin rates may certainly be a cause of such interference and twisting

of the shroud lines, but it is probable that some degree of tangling will take

place even with modest vehicle spin rates.

Although the high altitude parachutes are suspected of gliding to a
certain degree, this has been difficult to detect since gliding would be

interpreted as wind drift during data reduction of the tracking data. Solid

mylar parachutes, without special apertures to create an artificial porosity,

and even the fine mesh 3-moraine silk parachutes most likely have very

little effective permeability at high altitudes. These parachutes, there-
fore, must be susceptible to a degree of instability in gliding and/or

oscillating. It is well known that the Arcas and Loki parachute oscillate

to angles nearly horizontal with the horizon, and that these oscillations,

although eventually damped out, will persist down to altitudes of 80,000

feet. Variations in the initial deployment or injection conditions will no
doubt govern the magnitude of the high altitude oscillations from flight to

flight. There is a great deal of flight data on received telemetry signal

strength variations to indicate that large oscillations occur on every flight.

Although parachute stability is desired, payload packaging volume

and fall rates are critical in the rocketsonde application_ therefore, the

parachute fabric area is critical.

A brief review of the factors which affect parachute performance is

presented in the paragraphs as follows:

1. Basic Shape - The drag coefficient of a particular

parachute design does not vary appreciably with flow speed at Reynolds

numbers above Re = 1000. For the high altitude applications it is certain
that the descent conditions will maintain values well above this limit so

that a constant drag coefficient can be used.

The Reynolds number data for typical conditions in the high altitude

for parachutes is as follows:

\
\
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Altitude

DescentVelocity

p = 1.6929x 10-6

= 3.6816 x 10-7

170,000 feet

225 ft/sec

Ibf-sec 2 - ft'4

Ibf-sec ft 2

Parachute Flying Diameter Crown Height

Arcas 15.0 ft 7.5 ft

Dartsonde 6.0 ft 3.0 ft

Reynolds Number

8, 800

31520

Experimental evidence indicates that a maximum drag coefficient,

which is based on projected area, is obtained for a parachute with a crown

height to inflated to flying diameter ratio of one-half (0.5); that is, for a

parachute which is approximately hemispherical in shape. If designed and

joined together as flat circles, parachute canopies have inflated diameters

which are approximately two-thirds (0.66) of the laid-out fabric diameters

and are essentially hemispherical in shape. The ratio of their inflated frontal
area, SD , to that of the area of the fabric, Se , is consequently on the

order of S,, /Se = 0.45. The drag coefficient referred to canopy fabric

area is then approximately CDe = 0.45 CDa . The parachute descent vel-
ocity, U, can then be calculated as either,

_ 2W _/ 2WU-- _ - or -

p CDo So p CDe So

2. Equilibrium Descent Velocity - The descent velocity of a
parachute system can be given by:
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Z

g

where: K = C D S

2 mg

p = atmospheric density

= altitude coordinate

g = acceleration of gravity

If the second term, g, is neglected, descent velocity can be predicted within

5-percent accuracy for 2_ _< 140 m/sec, and within a 1-percent accuracy for
2_ -< 63 m/sec. Table 4-1 can be used to predict descent velocities at various

altitudes for given values of K.

3. Gliding - The stable equilibrium of a nonporous hemispherical

parachute about a point 1.3 times the diameter below the canopy is at an angle

of attack of approximately 45 degrees. A hemispherical parachute which does

not oscillate may therefore maintain a steady gliding angle of 45 degrees in
still air. The weight of the parachute and load is supported in this case by the

resultant aerodynamic forcer R, composed of both lift and drag as indicated in

Figure 4.2-1. The effective vertical velocity or weight coefficient, CWa ,
used to calculate descent velocity may be defined as

CW a

W C R

1/2 p U2Sa sin 2

where Cwn may be as much as twice the value of C,, A gliding parachute
has a slower rate of descent than a nongliding parach_u_e I_y a factor of the

square of the sine of the angle of attack. The angle of stable gliding is also

affected by the shroud line length. For the rocketsonde application the gliding
mode is to be avoided since the horizontal glide velocities will be interpreted
as wind velocities in the data reduction and erroneous wind velocities will be

reported. Gliding can be reduced by increasing the porosity or permeability

of the parachute canopy•

-16-



E
v

ILl
t_

I.---

I"--
,--.I
.<

Z)

0

.<
>
I---
<

II

u
0
=-I
ILl
>
.-,I
.._1
.<
13-

'T

ILl
,=--I

I.,I.i

.--I

.<
>

_J' L

Z
ILl

lull
t_

I--.

,=.1

0 0 0 0 0 0 0 0 0 0 0 0

O- 0 0 0 8 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0
,0 0 _ CO C',I "0 0 _ _0 C'_ ,0 0

-17-



d

V

\

\

9 °
,'," .3d

d = Flying Diameter R = Resultant Aerodynamic Force
V = Total Velocity R = -_/L2 + _D2
u = Descent Velocity
D = Drag Force 7 = Glide Angle
L = Lift Force c_ = Angle of Attack

FIGURE 4o2-1 HEMISPHERICAL PARACHUTE GLIDING MODE
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4. Oscillating Parachutes - Stable gliding occurs only under
certain favorable conditions. A more probable mode of motion for most

parachutes is an oscillation which is produced through dynamic interaction

between canopy forces and the suspended load. While gliding may prevail

at slow rates of descent, oscillations are predominant at speeds anticipated
for the rocketsonde application. The drag or weight coefficients are

significantly reduced from stable conditions to the oscillating mode, and

telemetry signal strength variations (i.e., signal dropouts) at the ground-

based receiver are caused by the oscillating payload. In such a system,
let _ be the angle from the vertical through which the pendulum acts.

From the previous discussiont it is seen that _ could initially have almost

any value from 0 to 180 ° depending upon the direction in which the nose

cone is pointing during separation. The dynamic behavior is then subject to

analysis as a circular pendulum for which the period, T, is defined in the

fol lowing:

T = 4

g o _/1-K 2 sin 2

where, L, is the length of the pendulum, g is the acceleration due to gravity,
and, K_ is the sin ( a/2). ## is a function of _ whose maximum value is

An evaluation of one of the probable limiting cases, where a approaches

180 °, yields a period of approximately 8.0 seconds for a typical 15-,foot dia-

meter parachute for the initial condition immediately after deployment,

neglecting drag and damping, and assuming a rigid pendulum. In the other
limiting case_ where a is a small angle, the period is approximately 5.5

seconds under the same assumptions.

5. Permeability - Permeability is a measure of the average

speed of the flow of air passing through the parachute fabric. The effective

permeability of parachute canopies can be expressed as:

Weff = Wtest '_ Ptest /
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and the flow speedratio as

W/V = Wtest V 0.2
1/2 p CD_ /A Ptest

0.6

where Weff Effective permeability flow speed

Wtest test permeability flow speed

APtest test pressuredifferential

Thedrag or weight coefficien_ are reducedby permeability as indicated
in the expression,

CDa = CDn (1-W/V)
COlT

where CDa is the drag coefficient for a nonporous material and CD_colT'ls

the corrected value which allows for flow through the canopy. The drag on

a parachute is reduced as the permeability increases. Permeability tends
to reduce the drag but also reduces the tendency for a parachute to oscillate

and glide. Although the effect of permeability can be predicted for low

altitude flight, there is some question as to the effect at high altitudes.
The large mean-free-paths of air molecules at high altitudes significantly

affect the permeability of small-sized pores such as are found in the 3-momme

silk fabric being currently used in the fabrication of current high altitude

meteorological rocket parachutes. There are indications that at the 200,000-

foot levels these parachutes are essentially impervious to flow through the

canopy fabric. A means of increasing the permeability of such parachutes

would be by the cutting out of sufficiently large holes in the canopy material.

6. Critical Velocity - For every parachute there is a velocity,

called the "critical velocity", above which it will not inflate but instead
remain in a duffle bag or "squidded" configuration. The more porous the

fabric, the lower the critical velocity and, of course, the less useful the

parachute. Fortunately, the squidded parachute will generally introduce

-20-



sufficient drag to causethe velocity to drop below the critical velocity
and to permit inflation to proceed- assumingtof courser that it doesnot
strike the ground first.

Thecritical velocity depends upon the overall porosity of the canopy
and the distribution of porosity, it also depends upon the shape of the

canopy mouth opening. No precise analytical method exists for determining

the critical opening velocity but it can be estimated from assumed values of
the critical parameters.

7. Aeroelasticity - The permeability of textile fabrics is

increased by applying tension and causing elastic deformation in the material.

Inasmuch as tension in canopies is proportional to the dynamic pressuret in

low altitudes the drag coefficient of a fabric parachute decreases as the speed

is increased. This factor may not be significant in the high altitudes for the

reasons mentioned in the previous section.

8. Parachute Size and Rigging Line Length - For a given speed

of descent the drag coefficient decreases as parachute size is increased since

rigging line tension increases as the diameter is made larger. The flying

diameter can be increased slightlyr however, by increasing the length of the
rigging lines.

9. Breathing - This is a dynamic phenomenon resulting in an
oscillation in the diameter of the parachute. Since the breathing involves

changes in shape, it may be dependent to some extent upon the elasticity of

the parachute system. Changes in parachute diameter are necessarily attend-

ed by changes in overall length which are communicated to the suspended
load through the suspension lines_ an efficient spring mass system in itself.

The results in a spring mass system supported by an elastic envelope contain-

ing a considerable mass of circulating air, i.e.t two free masses joined by
an elastic link. The forces resisting deformations of shape are apparently

negligible for the normal equilibrium condition of shape of the parachute so

that a transient disturbance is easily translated into small periodic undamped

oscillations in both the length and diameter of the system.

10. Deployment - The complete deployment of a conventional
parachute consists c_a number of steps as follows:
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a. Release or ejection from the vehicle

b, Line and canopy stretch terminated by snatch force

Co Inflation to opening shock, terminated by overinflation

do Rebound and recovery to "steady" drag condition

e. Completion of deceleration to near equilibrium velocity

f, Steady or controlled descent

11. Deployment into a Wind Field - High altitude winds have

quite frequently been found to be as great as 100 meters per second which is
similar in magnitude to the horizontal velocity of some rocket vehicles at

apogee. Experience indicates that parachute deployment and streaming

problems increase when the rocket horizontal velocity is in the same direction
and of the same order of magnitude as the deployment altitude winds. Of
course, the effect is a reduction in the relative wind velocity with respect

to the parachute and a reduction in the available dynamic pressure. Since
high altitude wind reversals and wind speeds are a seasonal and geographical

phenomena, without a positive inflation aid, parachute deployment reliability

can be quite variable.

12. Deployment from a Spinning Missile - Parachute deployment
from a spinning missile is a fairly complex phenomena and defies a precise
analytical treatment. The spin energy may help to open and spread out the

parachute canopy to some extent and no doubt the spin rate of the deployed

canopy is greatly reduced from its packaged condition. In general, the pay-
load will not be despun during the opening process, therefore, a difference

in spin rate between the canopy and the payload will be created. This factor
no doubt tends to twist and tangle the shroud lines and prevent full inflation

in many cases.
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4.2.3 Arcas 15' Gentex Parachute.

The standard Arcas parachute as shown in Figure 4.2-2 is a pre-
formed hemispherical-shaped silk parachute manufactured by the Gentex

Company. Details of this parachute are presented in Table 4-2.

The parachute is generally supplied with alternate gores metalized

far radar tracking. Twenty-two percent of the silk fabric is metalized For
use with FPS-16 quality radar and fifty percent is metalized for use with the

lower powered radars.

The Arcas parachute assembly consists of an instrument mounting base

and a radar-reflectlve parachute (diameter 4.5 meters) packaged inside a

cylindrical parachute container. A cross-sectional diagram of the parachute
assembly is shown in Figure 4.2-3. The parachute container is a sealed unit

which is attached to the forward retaining ring of the motor case. A lanyard

connects the after-closure of the parachute container to the head-end closure

of the rocket motor. The instrument package to be used is attached to the

instrument base and inserted into the nose-cone. When the payload is

assembledt the cone is secured to the instrument base by six steel balls that

are held in place by the collar of the parachute container. The instrument

base is attached to the forward closure of the parachute container by join-

ing the stud of the parachute container closure with the stop nut mounted on
the instrument base. A cork spacer is used between the parachute container

and the instrument base to absorb some of the shock of separation. The

process for the assembly of the payload is outlined in greater detail in the

discussion of the rocket-launchlng procedure.

The principle of separation of the Arcas payload assembly is i l lustrated

in Figure 4.2--4. Pressure generated by the separation charge acts on the

afterciosure of the parachute container, and the pressure is transmitted through

the inner cylinder of the container assembly. The shear pins which secure the
forward closure of the parachute container break, thus allowing the nose-cone,

instrument package and parachute pack to be ejected. The parachute and

lanyard retain the after-closure assembly of the parachute contained. When

the parachute is fully extended, the snap line attached to the crown of the

parachute breaks and the steel ball joining the instrument base and nose-cone
fall away thus allowing the nose-cone to separate from the instrument base

and package. Figure 4.2-5 gives the dimensions of the parachute and the con-

figuration of the parachute and payload after expulsion.
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TABLE4-2

ARCAS151GENTEXPARACHUTE

Design

Flying Diameter

Line Length

Number of Lines

Parachute Weight

Canopy Material

Canopy Weight

Canopy Weight Density

Weight of Shrouds and Fittings

Surface Area

Flying Cross-Section Area

Standard Payload Weight

CD

CD

Ballistic Coefficient W/CDA

Preformed H emlsphericai

15.0 ft

28.0 ft

24

2.62 Ibs

3-Momme Silk

0.865 lbs

2.43 x 10 -3 Ib/ft 2

1.75 lbs.

354 ft 2

177 ft 2

4.65 lbs

0.624

0.335

0.065 Ib/ft 2
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An analysis has been made of flight test data for the Arcas Gentex

parachute. Figure 4.2-6 presents the descent rate average for hundreds of

Arcas parachute flights with a standard payload of 4.65 pounds. The

weight to effective or flying area ratio, W/S, for these flights was 0.0410
Ib/ft z, and except for occasional erratic flights, the descent rate data
agrees within + 8 per cent of altitudes below 170,000 feet. Figure 4.2-7

presents descent rate data for heavier and lighter payload weights for the
Arcas parachute with weight to effective area ratios of 0.0459 Ib/ft 2 and

0.0334 Ib,/ft2. Descent times are presented in Figure 4.2-8 for various

Arcas payload weights. A statistical analysis of Arcas parachute descent
rates has been conducted by the Air Force at Cape Kennedy. The results
are tabulated in Table 4-3.

WSMR reports that the Areas parachute does not fully deploy for the
first 25, 000 ft. to 35,000 ft. or 80 seconds to 90 seconds after deployment

at apogee. The fall rates are higher than expected right after apogee and
the radar signal is weak. Oscillations of +-45 ° to + 90 ° with a 5-second

period are experienced at the high altitudes, and these are damped out

with a period of 8-seconds in about 23-minutes of descent. For systems

ejected at 250,000 ft. velocities on the order of 800 to 900 ft/sec, are

attained at 230,000 feet. The lag in initial wind response at 60 Km is about

20-seconds° The wind response lag after apogee which we have studied is

presented in Table 4-4.

Figure 4.2-9 presents two typical radar plots from which these kind

of data were derived. Figure 4.2-10 presents the initial wind response

altitude against apogee altitude. Although the scatter of points on this plot

indicate that a correlation does not exist between apogee and wind sensing
altitude, the data are too few from which to draw any final conclusions.

However, it appears that some chutes respond at 2, 000 to 3,000 feet below

apogee, while others lose 20,000 to 30,000 feet before responding to the
wind.

A recent study of Arcas parachute descent rates has been conducted

by the Army at WSMR. Descent velocities for the standard Arcas system
have been plotted by the Army as shown in Figures 4.2-11 through 4.2-18.

These data indicate that the parachute becomes fully deployed and descent

rates are stabilized to the theoretical values by an altitucle of 40 km. It

appears that occasionally the parachute deploys very soon after ejection from
the rocket vehicle and follows the theoretical descent ratio curve essentially

- 28 -
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TABLE 4-3

FALL RATE STUDY OF

ARCAS PARACHUTE AND SONDE PAYLOAD

Avg Fall No. Standard

Ht (K ft) (FPM) Samples Deviation

%

1 Dev

%

2 Dev

81-85 1891 25 62.3

86-90 2233 25 58.6
91-95 2674 25 72.4

96-I00 3118 25 105.3

101-105 3568 25 119.8

106-I 10 4076 25 134.0

111 -I 15 4579 25 122.0
116-120 5168 25 187.2

121 - 125 5855 24 228.9

126-I 30 6543 24 150.2
131 -I 35 7275 25 228.9

136-140 8120 25 225. I
141-145 9118 25 316.4

146-I 50 10220 25 283. I

151 -I 55 11387 25 314.9

156-I 60 12557 24 467.2

161-165 13816 24 340.8

166-170 15113 24 482.1

171 -I 75 16677 23 468.8
176-180 18117 19 554.6

181 -I 85 19857 16 430.3

186-I 90 21807 I 0 608.5

191-195 23611 6 394.2

196-200 25786 4

201-205 27902 2

Ft. 68

76

64

56

72
72

64
68

71

71

72

60

68

72
52

67

75

75

61

74
62

70

67

92

92

100
100

92

92

96
96

92

96

96

96

96
92

100

96

92

92

100
95

100

100

I00

Based on Arcasonde launches at Cape Kennedy Florida 1964-65
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TABLE 4-4

INITIAL WIND RESPONSELAG DATA

Apogee
Altitudes Ti me

First Indication of Wind Response
Altltudes Ti me

220 K'

212

182

188

201

213

203

213

128 Sec

128

128

128

133

128

128

128

200 K' 240 Sec

180 176

177 145

186 136

196 150

171 192

200 148

205 160
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_IC, LIRE 4,,2.-9 FPS-16 RADAR TRACKS OF ARCAS FLIGHTS AT PACIFIC MISSILE
RANGE
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from apogee. More often, however, the descentvelocities exceedthe
theoretical values and showa rather erratic pattern above40 Km.

4.2.4 Loki Dart 7.6' Parachute.

A standard Loki Dart parachute as shown in Figure 4.2-19 is a cir-
cular flat silk parachute which is manufactured by the Irvin Air Chute

Company. Details of this parachute are presented in Table 4-5.

This parachute is made radar-reflective by metalizing alternate gores

so that fifty percent of the area presents a target. A center or squib line is
attached From the payload to the crown of the canopy, so that the crown is

drawn somewhat from the hemispherical shape. This is done to increase the

drag coefficient and to improve deployment reliability. However, a less

stable descent results as compared with the hemispherical shape. Figure 4.2-20

presents typical descent rates for the 7.6' parachute and Figure 4.2-21 presents
altitude vs. time profiles for various ejection altitudes.

A recent study of the 7.6 _ Loki Dart parachute descent rates has been
conducted by the Army at WSMR. Flight test data from this study are plotted

in Figures 4.2-22 through 4.2-26. These data indicate that this system is
capable of achieving a ballistic coefficient better than 0.050 Ib/ft 2, but

many of the flights possess excessive fall rates above an altitude of 40 kilometers.

No doubt deployment problems are the cause of the rapid fall rates.

4.2.5 NOL 6' Square Parachute.

A standard NOL parachute is the 6-feet square silk parachute which

has been used with the Lokl Dart (Hasp) and the five-lnch gun probe projectile.
This parachute consists of 71" x 71" square of 3-Momme silk and eight shroud

lines of 9-feet length. The silk canopy is metalized for radar reflection.

Each of four shroud lines is attached to a corner of the canopy, and each of

the remaining shroud lines is attached to a point slightly offset from the mid-

point of each of the four sides. The purpose of the slight offset is to induce
a slow spin rate to the descending parachute to prevent gliding which might

lead to erroneous wind data. A weight breakdown for this parachute is as
follows:

Canopy 0.088 lb.

Shroud and fittings 0.100

Payload 0.750

TOTAL 0.938 lb.
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FIGURE 4.2-19 DARTSONDE INSTRU/WENT PACKAGE ON 7.6 FOOT CHUTE
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TABLE 4-5

I.OKI 7.6' IRVIN PARACHUTE

Design

Flying Diameter

Line l,ength

Number of Lines

Parachute Weight

Canopy Material

Surface Area

Flying Cross-Section Area

Fabric Diameter

Standard Payload Weight

CD a

CD®

Ballistic Coefficient

Flat Circular

5.7 Ft.

7.6 Ft.

9

0. 225 lb.

3-Momme Silk

45.5 Ft. 2

25.5 Ft. 2

7.6 Ft.

0.788 lb.

0.660

0 o370

0.060 Ib/ft 2
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The fabric area for this parachute is 35 ft 2 and NOL reports a drag coefficient

of 0.714 and a ballistic coefficient of 0.040 ib/ft 2 with 0.750 payload.

This parachute can be packaged into a 1.6 inch diameter cylinder with a
length of 5.5 inches.

4.2.6 NOL Wind Sensor Parachute.

Most of the parachutes so far described as conventional parachutes

have been used with sonde payloads, and ballistic coefficients have been

about 0.050 Ib/ft 2. In general, these systems have been adequate for obtain-

ing wind data to altitudes of about 55 kin. To obtain wind data at higher

altitudes NOL has developed a parachute--sphere combination with a theoretical
ballistic _:oefficient of about 0.010 ib/ft 2. The parachute has a 41 square

canopy of unmetalized 2-3/4 momme silk. The sphere is a 16-inch diameter

inflatable Mylar structure with internal radar corner reflectors. The sphere is

supported by the parachute shroud lines as shown in Figure 4.2-27. Eight

shroud lines of 27-pound test nylon cord are attached to the parachute similar

to the shroud llne attachment method used in the six-foot square chute. The
inflatable sphere is consh'ucted of two layers of 0.5-mil mylar, back-to-back.

An aluminized mylar corner reflector is rigged inside the sphere. The sphere

is self-inflated on ejection by two cubic inches of entrapped air. in addition,
the chute carries inflation aids in the form of two self-lnflated tubes formed

from 0.5-rail mylar, 38 inches long by 1.5 inches in diameter, The tubes are

attached to the chute across the diagonals with heat-sealing tape.

A considerable saving in weight (i.e. 50%) over the conventional

metalized canopy is made by using the 16-inch inflatable sphere with corner

reflector in lieu of silvering the canopy. The theoretical weight-to-drag/
cross sectional area ratio of the balloon-chute is 0.01 Ib/ft 2-, compared with

0.04 Ib/ft 2 for the 71-inch square chute and approximately 0.05 Ib/ft 2 for

the Arcas chute. Comparative descent rates at 60 kms are 61 m/see (200 ft/sec)

for the W = 0.01 chute, 122 m/sec (400 ft/sec) for the 71-inch chute, and

over 151 m/sec (460 ft/sec) for the Arcas chute. These descent rates are based

on ejection from 69 kilometers (225,000 feet). It must be pointed out, however,

that the flight test results for the balloon-parachute combination have averaged
a ballistic coefficient of 0.020 Ib/ft 2 instead of the theoretical value, it is

expected that improper deployment, i.e., twisted shroud lines, is the problem.
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FIGURE 4.2-27 NOL WIND SENSOR PARACHUTE
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4.3 Parachutes with Geometry Porosity.

4.3.1 General.

Most of the conventional parachutes utilize fabric canopies with
the porosity of the canopy material permitting a stabilizing flow during

descent. The pore size, however, is quite small and when it approaches
the mean free path of the molecules of air in the high altitudes, the

effective porosity of the fabric is reduced to a negligible value. Although
this fabric has a large degree of porosity in the lower altitudes, it is

essentially non-permeable at high altitudes. These parachutes oscillate
rather severely from deployment down to about 80,000 feet where the

fabric porosity and damping become effective, in an attempt to achieve
more stability in the high altitudest various experimenters have devised

parachute shapes which offer air flow through sections of the canopy that
have been cut out from the conventional shape, in general, an improve-
ment in stability has resulted from these efforts1 and in some cases reduced

descent rates have been achieved. This is most likely due to more efficient

use of the canopy surfaces. A review of the designs incorporating file

canopy cut--out modifications on geometric porosityras this is calledris
presented in the next sections.

4.3.2 Disk-Gap-Band Parachute.

Various models and sizes of the Disk-Gap-Band parachute have been

developed and tested by the G. T. Schjeldahl Company for NASA Langley
Research Center. The configuration of this parachute design is shown in

Figure 4.3-1. The geometric porosity of this design is in the formation of

a gap between the top disk and the side band positions of the canopy. An
inflatable torroidal ring is attached to the inner surface of the band for

positive deployment.

A 16.6 foot diameter DGB parachute has been designed for use with
the Arcas. This design has a total canopy area (S.) of 216 ft 2 and a drag

coefficient of 0.50 based upon total canopy area. Parachute weight is 1.7

pounds. With a payload weight of 3.30 Ibs. the ballistic coefficient is 0.050
lb/ft 2. The parachute canopy is constructed of two major parts designated as

the disk and the band. The disk, which is a flat circular sheet, forms the

central part of the canopy; and the band, which is cylindrical in shape, extends

down from the outer edge of the disk and forms the lower portion or skirt of the
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canopy. The disk and the band are separated to provide a geometric open-

ing designated as the gap, The area relationships of the canopy are as
fol lows:

Disk Area = 52,4% of total area

Gap Area 12.4% of total area

Band Area = 35.2% of total area

The torus inflation aid is constructed of 4-inch diameter tublar sections. The
torus has a major diameter of 11-feet and is attached to the inside surface

of the band portion of the canopy at each of the twenty suspension line tapes.

Three (3) Saran wrapped water soaked blotters are located equally spaced
inside the torus and each has sufficient water to pressurize the torus. Each

torus is pressure tested to assure leak-proof construction before installation
into the parachute canopy.

The DGB parachute systems are equipped with a miniature ball
bearing swivel located between the confluence point of the parachute

suspension lines and the payload lanyard. This swivel allows for differential

rotation rate decays. Clevis type hardware is provided for attachment of the

suspension lines to the swivel and the swivel to the payload lanyard. The
lanyard is 24-inches in length.

The parachutes are provided packed in deployment bags fabricated

of cotton canvas and nylon webbings. The deployment bags are of such
size as to fit firmly but easily into the standard Arcas rocket canister.

The deployment bag is provided with a permanently attached strip
of material having elastic loops which hold the suspension lines in place

and allows the suspension lines to deploy only from the payload end of the

holding strip. This arrangement assures an orderly deployment of the
suspension lines and assists in preventing problems of line entanglement.

The parachute deployment bag is equipped with two (2) 1-3/4 inch wide

nylon webbings which retain the parachute canopy in the deployment bag

until the last loop of the suspension lines pull out and unlatches the restraint

webbings. This system assures that the suspension lines are deployed full
length before the canopy is released.

The deployment bag attachment lanyard is provided with five sewn-ln
loops to absorb the shock of stopping the bag and restrained canopy while
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the suspension lines are deploying. The Arcas DGB parachute dimensions
are as follows:

Nominal Diameter 16.6 ft,

Number of suspension lines 20

Length of suspension lines 18 ft.

Torus cross section diameter 4 _n.

Torus major diameter 11 ft.

Attachment lanyard length 24 in.

Miniature swivel 1-1/2 in. long by 3,/4 in. dla.

The disk and band portions of the canopy are fabricated of a dacron-

thread reinforced metallzed mylar film material designated as G. T. Schjeidahl
material X-821. This mylar film is of 1,/4 mii thickness and is 100 percent

metalized for radar reflectivity. The dacron reinforcement threads carry the

stress loads and provide ripstop characteristics. The X-821 material is joined

by mylar tapes which are also reinforced by dacron threads. This same tape

is used as suspension line tape to join the band to the disk portion oF the

canopy,

The suspension lines are 85 pound test coreless nylon line. Each
suspension line is continuous through the confluence point and is tied off at

each end to a suspension line tape at the edge of the canopy. The twenty
18-foot long suspension lines are actually formed from ten lines, each 36-feet
long.

The torus is constructed of 1/2 rail clear mylar film and is joined to

the canopy by dacron reinforced mylar tapes. The attachment tapes are sewn

to the canopy in addition to being adhesive bonded.

The payload lanyard and the deployment bag_ shock-attenuating lanyard

are both constructed of 1500 lb. test nylon webbing.
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The deployment bag is constructed of cotton canvas to reduce damage

resulting from hot sparks emitting from the separation charge. Nylon webb-

ings are used for the attachment loop and the canopy restraint straps. Nylon

tape is used to edge cover flaps of the deployment bag. Rubber bands mounted
in a dacron mylar tape are used to hold the folded suspension lines in place

in the deployment bag.

A scaled-down version of the Arcas DGB parachute design has been

flight tested with the Loki Dart system. The results have been poor because
of deployment problems which are most likely spin rate related.

In the course of the development flight tests for the DGB parachuter

it was found that the deployment from a spinning missile caused shroud line

tangling and canopy entanglement. Therefore, the parachute was packed in

a special deployment bag designed with canopy restraint straps, suspension llne

holders and a shock attenuating attachment lanyard. The most important factor

to be considered for any parachute deployment method is assurance that
suspension lines are kept in tension at all times during line and canopy deploy-

ment. To accomplish this, the deployment bag was redesigned by placing one

and three--quarter inch wide canopy restraining straps inside the bag, and by

attaching the suspension line holding strip to the deployment bag. This

accomplished three things: 1) attaching the suspension line holding strip to

the deployment bag assured that the lines deployed from the j_ayload attach-
ment end only; 2) use of the deployment of the last loop of the suspension

lines as the activating mechanism for release of the canopy assured against

premature release; and 3) restraint of the canopy until the suspension lines
were fully deployed assured that the canopy did not eject from the deploy-

ment bag until the suspension lines were stretched full length and under

tension. The modified deployment bag is shown in Figure 4.3-2 and the

sequence of deployment events is presented in Figure 4.3-3. With this

system, reliable deployment has been obtained as high as high as 232,000
feet.

The above deployment technique has certainly been an improvement

in the state-of-the-art for deploying meteorological rocketsonde parachutes.

Other significant improvements developed during the DGB development program

have been the use of a positive inflation aid and on improvement in stability.

The DGB parachute system is equipped with a water vapor pressurized tarus

inflation aid, to provide instantaneous and full opening of the parachute

canopy immediately after deployment. The canopy design uses geometric porosity
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as a means of achieving stability so that stability characterlstics will not

vary with the altitude of operation. Wind tunnel tests indicate that the DGB

parachute is stable at approximately 6-degrees angle of attack. Several
rocket flight tests have been conducted using on board camera and long

range ground-based cameras to check stability in actual operation at high

altitudes and indications are that inflight stability is as good or better than

predicted by the wind tunnel tests. Absence of periodic oscillation in

telemetry signal strength and radar return signal records is also an indication

of in-flight stability.

4.3°3 Cross Patch Parachute.

The cross patch or plus parachute if formed by crossing two rectangular

canopy sections in the shape of a cross and joining the intersecting areas.
The shroud lines are attached to the ends of each cross member as shown in

Figure 4.3-4. NOL has fabricated and flight tested a 35-foot cross patch

parac!_te for use with the Arcas system. Design parameters for this parachute

are presented in Table 4-6.

During flight tests, this parachute exhibited a much slower descent
rate than the regular Arcas 15-foot Gentex parachute. At 200,000 feet the

cross patch parachute descent velocity was 275 ft/sec, while the regular

Arcas 15 foot parachute falls at 460 ft/sec. The cross patch, however, showed
an oscillation in descent velocity with a 10,000 foot period and a 25 ft/sec

amplitude at 200t000 feet. This pattern is a characteristic of breathing in-

stability. Typical fall rate results are shown in Figure 4.3-5. It appears that

an inflation aid, such as an inflatable torus would be required for high altitude
opening and breathing stabillty. Although this would detract from the

theoretical ballistic coefficient to some degree, the resulting fall rates should

still be quite good. The simplicity of design and fabrication for the cross

patch parachute should make it quite inexpensive.

4.3.4 Annular Ring Parachute.

For solid fabric parachute designs the hemispherical shape seems to

create the greatest drag per unit of projected area. Since the drag coefficient

of a circular disk, C D = 1.15, is not significantly reduced by cutting a hole
in its center up to a diameter ratio of twenty-five percent, it may be advisable

to consider a hemispherical design with an aperture cut in the crown to reduce
the magnitude of parachute gliding and oscillating. A vent hole in the center
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FIGURE 4o3-4 CROSS PATCH PARACHUTE
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TABLE4-6

ARCASCROSSPATCHPARACHUTEDESIGN PARAMETERS

Canopymaterial 2-3,//4morainesilk

PanelLength

PanelWidth

FabricArea

Fabric Density

FabricWeight

ShroudLine and Fittings Weight

Total ParachuteWeight

PayloadWeight

Total Weight

CD (210 ft,/sec @ 180,000 ft)

CD (180 ft,/sec @ 170,000 ft)

Ballistic Coefficient

35 ft.

9 ft.

549 ft. 2

2.23 x 10-3 ib,/ft2

1.40 Ib

1.75 Ib

3.15 lb.

4.60 lb.

7.75 ib

0.464

0.447

0.026 Ib,/ft 2
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o$_the canopy provides a flow of air into the normally turbulent flow above
the crown. This short circuits the collapsing air stream and increases the

parachute stability. As long as the aperture diameter is kept below 25

percent of the flying diameter, the stability of the parachute should be
significantly improved with no reduction in the drag coefficient or drag

based upon fabric area. Although the drag decreases as the diameter of

the center hole increases beyond 25 percent, the drag coefficient based upon
the area of the resulting ring, hence fabric area, increases and reaches a

theoretical limiting value of 1.98 at a diameter ratio of 1.0. Figure 4.3-6
presents experimental data on the drag coefficients of annular flat plates for

increasing center hole diameter ratios.

The theoretical drag coefficient data indicates a maximum drag

coefficient based on fabric area occurs for an infinitely large inside and

outside ring diameter, i.e., a hoop with an infinitely large diameter.
This design is impractical since shroud line loads would increase severely as

the diameter of the parachute increases and the chute would col lapse.

Although the center hole concept may not be considered as within the state-

of-the-art for high altitude rocketsonde parachute designs at the present
time, it might be considered for this application after suitable flight test

results under a special parachute evaluation program.

Parachutes based upon this center hole concept as shown in Figure 4.3-7

are called annular ring parachutes. These designs are promising although
they would require a positive inflation aid for the rocketsonde application.

To our knowledge there has not been any meteorological flights conducted
with this design.

4.3.5 Miscellaneous Geometric Porosity Designs.

There have been various other parachute designs with geometric porosity

proposed for high altitude meteorological rockets which have not as yet been

successfully flight tested. These designs include the wagon wheel and the
ring-sail parachutes as shown in Figures 4.3-8 and 4.3-9. It is expected that

most of these parachutes would require an inflation aid, and the advantages

over the previously discussed designs is not obvious.
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FIGURE 4..3-7 ANNULAR RING PARACHUTE DESIGN
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FIGURE 4,,3-8 WAGON WHEEL PARACHUTE
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FIGURE 4.3-9 RING SAIL PARACHUTE
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The vortex-ring parachute is based upon a rather unique concept.
The drag coefficient of a conventional flat--circular parachute is about 0.75

while that of a ribbon parachute generally averages around 0.50 to 0.55.

The parachute that holds the record so far as drag coefficient is concerned

is the vartex-rlng parachute. The canopy of the vortex-ring is divided into

four separate panels which are tilted in flight in such a way that the para-
chute behaves like a four-bladed propeller -- the panels deflect the air-

stream and cause the whole canopy to whirl. The turbulence that creates

drag also creates instability unless it is controlled and balanced. The

vortex--ring canopy takes advantage of this. The drag coefficient can be

as high as 2.00t and the oscillations are usually below five degrees. It
is necessary to have a precision swivel between the payload and the canopy.

The swivel and the natural, complexity of the canopy add to the cost and

weight with the result thai the vortex-ring chute is used only for specialized

applications.

Early flight tests of the Arcas rocket included some flights of the
vortex-ring parachute. In all cases, the vortex-ring parachute failed to

deploy and streamed to impact. It will probably be necessary to construct

the canopy panels so that they can be inflatable structures.
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4.4 Stokes Flow Ribbon Mesh Parachute.

4.4.1 General.

The Stokes flow ribbon mesh parachute with inflatable struts appears
to be a most promising subsonic decelerator to altitudes of 100 km. Wind

measurement analysis of this system was described in Section 3.2.9. The

canopy mesh is constructed from fine filaments or ribbons and the spaces
between these elements creates geometric porosity which is conducive to

stability. The small filament diameter or ribbon width takes advantage of the

Stokes flow region of low Reynolds number, Re1 and creates high viscous

drag. For Re less than one1 the drag coefficient is inversely proportional

to Re; and hence, the smaller the filament diameter, the greater the drag
coefficient. Both the theory developed by Astro Research Corporation
and vacuum chamber tests conducted by NASA-Langley indicate that ballistic
coefficients can be achieved which are much less than 0.010 Ib/ft 2. Theory

indicates that without a payload this design could descendas slowly as 400

meters per second at 100 km. Packaging techniques, inflatable braces, and

radar cross-section are factors which require further investigation.

The Stokes flow parachute design offers the primary advantage of a

reasonably slow descent rate for high altitudes. A secondary advantage is
that the drag coefficient decreases during descent to the lower altitudes so

that the terminal velocity does not slow down with decreasing altitude as
much as for more conventional designs. Since there is a large amount of

geometric porosity, even for high altitude operation_ stability characteristics

are significantly improved and severe oscillating and tumbling at high

altitudes should be eliminated. Deployment of the Stokes flow design requires
inflatable struts or braces which contain an inflation medium. Since para-

chute packaging volume is the primary limiting factor for small meteorological

rockets, the drag coefficient per unit packaging volume becomes a most

important factor. The Stokes flow parachute should be superior over all other
descent devices considered in this respect. However, shroud line tangling

may be a problem which must be solved since deployment will most likely be

from a spinning missile.
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4.4• 2 Theoretical.

pul
For very low Reynolds number, Re = _ _t , the drag on an

object is approximately inversely proportional to the Reynolds number as
indi cated by

D = ki_lu --" A p u
T

k2

where C D = _ for Re < 1

R e

Symbols:

Re Reynolds Number

pul

/z

k i

CDii

A

Air density

Air viscosity

Free stream velocity

Characteristic length, i.e., length of
an object in the direction of flow

Constants related to object shape and size

Drag coefficient referenced to object i
and reference area j

Area projected normal to flow.
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For small Reynolds numbers viscous effects predominate and the
resulting drag is due to the fluid deformation and friction rather than

pressure differentials. Experimental data have been taken and corrections

have been made to Stokes law by Oseen, Wieselsherger and Prandtl for
the viscous drag on an infinite single cylinder, and the resulting C D vs Re

is plotted in Figure 4.4-1.

It can be seen that extremely high drag coefficients are obtained

when Reynolds numbers become small, i.e., for small diameter fibers or
thin ribbons.

When a series of single fibers or small elements are combined to

form a fish-net or grid geometry, actuator disc theory of fluid dynamics

can be used to estimate the overall drag coefficient of the network. The

network drag coefficient varies with the Reynolds number and the solidity

ratio, E, which is the ratio of the frontal area of the network, A, and

the frontal area of all the fiber, a, as E -- a/A. For a particular value
of E, the network drag coefficient approaches that of a flat plat, i.e.,

CDA = 1, as the solidity ratio is reduced. A typical plot of drag coeffic-
ient vs Reynolds number is presented in Figure 4.4-2. This figure indicates

that a parachute can be constructed from small elements with an 80%

porosity (E = 0.20), and the drag coefficient is the same as for a solid

canopy for Re below 0.8. Furthermore, as this system descends to lower

altitudes, i.e., high Re values, the drag coefficient decreases so fall
rates do not decrease as much as for conventional parachutes with con-

stant drag coefficients.

4.4.3 Proposed Parachute Designs.

The concept of the Stokes flow ribbon mesh parachute is shown in

Figure 4.4-3. The parachute consists of a square canopy deployed and

rigidized by an x-shaped bracing system fixed diagonally into the square
net. There are two straight inflated thin walled brace tubes, each with

the length of a full diagonalt one fixed above the network and one below

it. The four sectional network sails between adjacent brace legs are

designed such as to provide upward bent conical surface when in operation.

The braces also provide the attachment point for the suspension lines for
the payload. The network or canopy is composed of a square angled net

made from aluminized mylar tapes approximately O. lO0-inch wide and

O.O0025-inch thick. The braces consist of O.O0025-inch thick mylar tubes,
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and the suspension lines are nylon monofilaments with an 0.005-inch dia-

meter for the dart application and an 0.010-inch diameter for the Arcas

application•

Three parachute designs have been proposed by Astro Research

Corporation for application as follows:

•

2.

3.

Dartsonde Parachute

Dart Wind Drift Target
Arcasonde Parachute

The main design parameters are presented in ?able 4-7.

Various methods have been proposed for pressurization of the

braces such as pressurized gas containers and liquid freon. However,
we would suggest the use of isopentane alcohol as used in the Robin

inflatable sphere applications. This material is easy to seal in a closed

container and has proven to be quite reliable in numerous flight tests.

Inflatable structures with isopentane routinely collapse at about 120,000

feet altitudes. This self collapsing feature is desirable for this application

to speed descent rates at the lower altitudes.

4.4.4 Proposed Performance.

The flight performances for the three proposed parachute designs

are presented in Figures 4.4-4 through 4°4-6. The full lines represent the

descents of the fully deployed canopies• The dotted lines are estimates
of the descent rate after brace support tubes collapse. The dartdrifter

design remains subsonic almost up to 100 km (330,000 ft.)• For higher

altitude subsonic operation, thinner materials than the 0•00025-1nch mylar

are required• The total descent times for the three designs are as follows:

1• Dartsonde 34 minutes

2• Dartdrifter 93 minutes

3. Arcasonde 25 minutes

4.4.5 Test Data.

Chamber tests of the Stokes flow parachute concept have been con-

ducted by NASA-Langley by dropping models of various solidity ratios in
high altitude simulation environments. The major chamber test variables
are listed as follows:
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TABLE4-7

PROPOSED PARACHUTE DESIGN PARAMETERS

Application

Canopy Side Length

Brace Tube Radius

Length of Suspension

Canopy Weight

Brades Weight

Suspension Weight

Payload Weight

TOTAL WE! GHT

Operating Altitudes

Design Point

Packaging Volume

Dartsonde Dartdri fer
Parachute Parach ute

3.58 m 3.58 m

18.10-3 m 14.10-3m

7.6m

0.318 N 0.318 N

0.110 N 0.08 N

0.012 N

3.330 N

3.770 N 0.398 N

270 K' - 70K !

82.4 km -

21.3 km

80 fps@ 150K' -
24.4 m/s @ 45.8 km

13.75 in 3 16.1 in 3

2.25 x 10-4m 3 2.64 x 10-4m 3

Arcasonde

Parachute

10.4 m

37. I 0-3m

22.1 m

2.35 N

0.58 N

0.13N

31.10 N

34.16 N

200 K' to 0

61 km toO

200 fps @ 200 K'

61 raps@61 km

182.5 in 3
29.8 x 10"4m 3
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Simulated Altitudes 100-, 125-, 150-, 165-x 103 ft.

Solidity Ratiosr E 0.20, 0.10, 0.05

Reynolds Numbers, Re 1.6 to 18.1

Mylar Ribbon Width 0.I00 in

Mylar Ribbon Thickness 0.00025 in

Grid Spacing I, 2, 4 in.

The canopy size was a 3-foot square, and the drag reference area was

9 square feet. However, the slack ribbon mesh balloons upward and inward

between the braces during flight to reduce the projected flying area to 6.25

square feet. A summary of the test results is presented in Table 4-8. The
resulting drag coefficient data is plotted against Reynolds number in

Figure 4.4-7 and compared with the theoretical curves.

The experimental drag coefficients compare favorably with the

theoretical values, and for the lower Reynolds numbers are considerably

greater. This is most likely due to the added structural areas in the con-
structed models such as the bracing struts and taped edges of the canopies.

The 0.20 solidity ratio design resulted in the greatest drag coefficient,
since the other designs did not reach a Reynolds number low enough for

them to approach the flat plate drag coefficient1 C D = I. The ballistic

coefficient data, W/CDA I for these tests are presented along with the
proposed Dartdrifter theoretical values in Table 4-9 for a solidity ratio of

E = 0.20. Although the experimental drag coefficient for E = 0.20

agrees extremely well with the theoretical, the ballistic coefficient is more

than twice as great. This is caused by the fabricated model having a weight-
to-area ratio of 2.4 times that estimated for the proposed model. No doubt

the estimated weight is quite optimistic, but since the chamber model is a

good deal smaller in size, it no doubt suffers a relative weight penalty.

4.4.6 Summary.

The Stokes flow ribbon mesh parachute appears to offer significant

advantages over the more conventional designs, especially for high altitude

(100 km) operation. The main advantage is a much greater drag per unit

weight and per unit packaging volume. Other advantages are stability and
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TABLE 4-8

SUMMARYOF TESTRESULTSAND MODELWEIGHTS
FORMODELSOF DIFFERENTSOLIDITY

Drag
Coefficient

Reynolds Model Terminal Equivalent
Number Weight Velocity Altitude

(ibs.) (ft/sec) (ft)

•370

•517

•722
•983

0 2 Solidity

10.41 .010715 13.65

4.73 .010715 21.05
2.58 .010715 28.00

1.60 .011458 35.65

991100
12 , 800
]45,400

163,400

0.1 Solidity

•2OO
• 306

.305

.534

.736

• 733

11.68 •0095745 19.36
5.83 . 0095745 25.81

5.83 .0095745 25.92

2.83 .0095745 30.77

1. 69 .009 5745 37.65

1. 68 .0095745 37.88

103, 300

124,600
124, 8OO

145,400

163, 400

163, 600

0.05 Solidity

.0896

.213

.210

.337

.576

18.12 .0078540 23.76

6.32 .0078540 28.00
6.36 .0078540 28.29

3.23 .0078540 35.12

1.76 .0078540 38.70

99, 100

124, 600

124, 800

145, 400

163, 600
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a variable drag coefficient which permits more rapid descent rates at the
lower altitudes than constant drag coefficient systems. Smaller ribbon

widths might be utilized to obtain reduced Reynolds numbers so that flat

plate drag values may be approached with the solidity ratios below 0.20,

In this way even slower descents in the high altitudes may be possible.
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4.5 Ram-Air Decelerators.

4.5.1 General.

The general principle of the ram-air decelerators is to capture an
inflation pressure from the flowing air stream to positively and reliably inflate

the structure. An inlet is employed to achieve stagnation or total pressure

within the inflatable structure. This internal pressure is the sum of the

ambient air pressure and the dynamic pressure and is directed noi'mal to the
inside surface of the structure. Although the external pressures tending to

collapse the structure are also composed of both ambient and dynamic

components, the dynamic component is generally applied obliquely over
most of the external surface of the structure, hence the internal pressure

forces will always be greater and inflation is assured. Two advantages of

this technique are that a separate self-inflation system is not required and
the ratio between internal and external pressure is more constant at the

various altitudes during descent. This permits the use of a minimum thick-

ness and weight canopy.

4,5.2 Ballute Principle.

The Goodyear Aerospace Corporation pioneered in the development

of the Ballute in a series of steps which evolved as follows:

1. During experiments to decelerate, stabilize and

recover payloads at high altitudes and supersonic

velocities, drag was attained by towing a pressurized

sphere behind the recoverable payload. Although

drag was achieved, the sphere was violently unstable
in the subsonic and transonic velocity regimes.

, To stabilize the sphere an inflated torus called a

burble fence was added to ensure flow separation
at a constant station. The burble fence progressed

from the original size of three percent of the sphere

diameter to about 25 percent as is employed in some
of the current Ballute designs.
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. Ram-air inflation was used instead of canned

gas pressurization.

o isotensoid theory of pressure membrane design was
employed to permit minimum thickness films to be

used. This is made possible by designing the

structure so that membrane stresses are nearly equal
in all directions over the entire Bailute surface.

A significant advantage of the Bailute is that is has relatively small inflation

inlets and takes a few seconds to inflate. Thus opening stresses for both the

structure and the payload are minimized. A typical Ballute is shown in

Figure 4.5-1. The major portion of the drag results from negative base
pressure rather than from direct frontal loads. This is indicated in

Figure 4.5-2. The center of pressure is, therefore, located quite a bit

aft and stability is enhanced. Historically, the burble fence design has trans-

itioned from a toroldal type, to a hexagonal and more recently to a square

type to improve stability and fabrication simplicity. An improvement in
descent rates has recently been achieved by increasing the included angle

at the leading apex of the Ballute to increase pressure drag.

4.5.3 Arcasonde Ballute.

The most recent ballute configuration tested on the Arcasonde system

has a 14-ft diameter with a 10--percent burble fence, as shown in Figure 4.5-3.

The body of the ballute is constructed of 12 gores of 1/2-roll mylar. The
seams are butt and tape construction. Six gores are aluminized to provide

the necessary radar trackability. The burble fence also is made of l/2-mil

mylar and is attached by lap seams and tape. Meridian straps that transmit
drag load to the instrument are flat woven nylon lacing stock attached to

the center of each gore with 1/2-rail mylar tape. The inlet assembly consists

of 12 beryllium-copper leaf springs mounted on a swivel plate. Specifications
for the Arcasonde Ballute are shown in Table 4-10.

Unlike a parachute, the Ballute is an impermeable pressure vessel

with the only opening a relatively small ram-air inlet. To prevent bursting
at deployment from expansion of air trapped within the packaged unit, a

perforated canister was developed for the Areas to permit bleeding

off this residual air prior to deployment. Early versions of the Arcasonde

Ballute used 1/4-mil mylar but were found to be unreliable as a majority of
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Burble Fence

Burble-Fence Inflation Ports

Aluminized
Gore

iii!iiii!iiiiiiiiiiiiiiiiiiiiiiiii

G ore
Seams

Meridian
Clear Gore

RAM-Air Inlet

(Springs and Swivel)

Meteorologi cal Instrument

FIGURE 4o5-1 BALLUTE CONFIGURATION (TYPICAL)
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FIGURE 4.5-2 BALLUTE DRAG FORCE DISTRIBUTION
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FIGURE 4.5-3 TYPICAL BALLUTE
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TABLE4-I0

ARCASONDEBALLUTESPECIFICATIONS

Specification

Type BALLUTE

Fence Type

Material type

Material gage

Suspension system

Inlet assembly

Swivel assembly

Canister assembly

BALLUTF weight

Swivel assembly weight

Total Weight

BALLUTE diameter

BALLUTE volume

Inlet area

Frontal area

Packing density

Arcasonde

12 gores - 80 - degree angle

6 sides

Mylar-clear--alum

0.00050 in.

(12) 50 in. straps

12 springs - 11.2 diameter

Mounted on needle bearings

Perforated

1.89 Jb

0.84 Ib

2.73 ib

14ft

878.03 cuft

110 sq ft

169.7 sq ft

25.7 pcf
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theseunits failed structurally at deployment. Reliability wassubsequently
improvedby the useof the heavier 1/2-rail mylar, but descentrateswere
slightly faster than the standardArcas Gentex parachute. Thecurrent
unit is 14-feet in diameterand hasa ballistic coefficient of 0.060 Ib/ft 2.
However, telemetry signal dropoutshave essentially beeneliminated with
this design, although descentratesare not satisfactorily slow.

4.5.4 Dartsonde Statute.

A

Loki Dart

the U. So

Ball ute.

small 7-foot Bailute-type decelerator has been developed for the

system. This decelerator has been designated as the Starute by
Air Force and is essentially a scaled down version of the Arcas

However, with the lightweight Datasonde instrument as the pay-

load, the Starute shows a significant improvement in descent velocity with
a ballistic coefficient of 0.030 Ib/ft 2. In addition the deployment reliability

has been excellent, and the stability has essentially eliminated all of the

telemetry signal dropouts. Figure 4.5-4 presents an illustration of the Loki

Starute. A comparison of typical telemetry records from a regular parachute

flight and a Loki Starute flight is presented in Figure 4.5-5. Loki Starute

specifications are presented in Table 4-11. A larger 12-foot Starute is

being developed under an AFCRL program to be used with the Instrumented

Super Loki Dart system to obtain even slower descent rates in the higher

altitudes to 75 km for improved rocketsonde wind and temperature measure-
ments.

4.5.5 High Speed Ballutes.

Both the Arcasonde and Dartsonde Bailutes have been designed for

medium to low speed subsonic decents from altitudes of about 200,000 feet
down. The geometries of these designs will most likely have to be changed

for higher altitude and higher speed operation to obtain optimum performance.

The leading apex angle and the separation distance between payload and

Ballute become important drag determining factors in the higher speed regimes.
In subsonic flow the pressures and drag coefficients decrease slightly with

increased separation distance. At supersonic speeds a discontinuous variation

in pressure profile and drag coefficient is obtained by varying the separation
distance. At close distances the Ballute causes divergence of the forebody

(payload) wake, and the resulting pressures and drags are low. As the Ballute

is moved aft, the forebody wake converges and pressures and drag increase.
A separation distance of at least 4 forebody diameters is required to realize

maximum drag in the low supersonic flow regimes. Wind tunnel measurements
from Mach 1.57 to Mach 4.65 indicate that included apex angles should be
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LOKI PARACHUTE FLIGHT LOKI STARUTE FLIGHT

b--_ --..-.+ _

I

--foo

FIGURE 4.5-5 TYPICAL TELEMETRY RECORDS FROM PARACHUTE FLIGHT AND A
LOKI STARUTE FLIGHT
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TABLE 4-1 !

DARTSONDE STARUTE SPECIFICATIONS

Specification

Type BALLUTE

Fence type

Material type

Material gage

BALLUTE weight

Swivel assembly weight

Total Weight

BALLUTE diameter

Flying area

Dartsonde

8 gore

4 sides

Mylar-clear-alum

0.00025 in

0.316 Ibs

0.026 Ibs

0.342 Ibs

7 ft

49 sq ft

- 97 -



_0 ° to 90 ° to achieve maximum drag, The Ballute may be useful in

meteorological rocket applications to altitudes significantly above
200,000 feet, but descent velocities will most likely be in the transonic

and supersonic regimes at altitudes approaching 300,000 feet.

4.5.6 Biconical Decelerator.

The Naval Ordnance Laboratories are currently developing a
ram-air inflated biconical decelerator for high altitude meteorological

applications. This decelerator is in the form of two inverted truncated

cones of differing apex angles as shown in Figure 4°5-6° This design
increases the base area and hence the base drag for a given amount of

canopy material as compared with the Ballute° Since in the subsonic

flow regime a major portion of the Ballute drag is due to base pressurer
the biconical geometry capitalizes on this Fact and should be more efficient

than the Ballute. The basic shape should be inherently stable, and the

flow separation should be tripped consistently at the top edge.
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FIGURE 4.5-6 N.OoL. BICONICAL DECELERATOR

- 99 -



4.6 Summary.

A comparison of the drag efficiency of the various decelerators

for which flight test data are available may be made by comparing the

ballistic coefficients of the decelerators alone without payloads as follows:

Decelerator

Arcas Gentex Parachute

Loki 7.6' irvin Parachute

NOL 6' Square Parachute

Arcas D-G-B Parachute

Arcas Cross Patch Parachute

Dartsonde Statute

Stokes Flow Ribbon Mesh

Parachute (Theoretical)

Bal i istic Coeffi ci ent

(lb/ft 2)

0.024

0.013

O.0O8

0.016

0.013

0.009

0.001

It appears that the only decelerator which has a chance of maintain-
ing subsonic descent velocities to altitudes as high as 100 km is the Stokes

flow ribbon mesh parachute. The ram-air inflated decelerators may prove
useful to the high altitudes if transonic and supersonic velocities are

permissible with the given sensor system.

- 100 -



.

TELEMETRY AND TRACKING

5.1 General.

Telemetry and tracking have not proven to be a problem for the

60 km rocketsonde flights since the equipment in current use at almost all

of the missile ranges has been sufficiently reliable and accurate for this

application. The tracking accuracy requirements for wind and altitude

determination and the telemetry accuracy requirements for the temperature

data are not particularly stringent. The rockets.ride decelerators offer

targets of high radar cross--section and are easy to track - once acquired.

Chaff clouds offer large radar targets and are simple to acquire and track

for at least 50,000 feet of descent before they disperse into clusters and
the radar starts searching for the high spots within the cloud.

The only significant problem experienced with data acquisition from

rocketsonde flights has been an occasional late acquistion of either radar

track of the decelerator or telemetry reception of the temperature data.

The dart vehicles offer a relatively small radar target going into apogee,
and radar with less capability than the AN/FPS-16 will probably lose

track until the payload deploys. Although the radar signal returns from

the deployed decelerator is very good, acquisition may be a problem, due
to the narrow beam width of tracking radars, unless an uptrack is maintained.

With experienced operators this has not been a problem, and generally only

a thousand or so feet of data are lost due to later radar acquisition. The

1680 mHz telemetry signal is generally weaker during the uptrack because

of antenna pattern nulls toward the rear of the vehicle. Sometimes the signal

is lost during uptrack, and a late acquisition of the temperature data after

deployment occurs. Most of the experienced operators acquire the GMD
track within a few seconds after deployment. This generally does not cause

a loss of temperature data since the thermistor is still in the process of cooling

to atmospheric temperature during this time period.

For the more specialized high altitude experiments data acquisition

becomes a more significant problem. Passive falling sphere experiments require
precision in the radar data - the equivalent of the FPS-16 quality. In fact,
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if a morepreciseradar is used, the data accuracy would be better and the
altitude of usefuldata could be extendedupward. Also, without a radar
uptrack of the vehicle, acquisition of the sphere could be a problem.
Accelerometer falling spheres require rather precise telemetry accuracy,

and so far have used IRIG channels. The pitot probe requires rather precise

telemetry accuracy and tracking data. The vehicle velocity enters into

the data reduction equations as does the telemetered ram pressure information.

However, the Denpro system discussed in Section 3.5 used GMD-2 telemetry

and tracking data with reasonably good results. In this application, tele-

metry modulation rates were increased to 1,000 pps and the GMD-2 velocity

and altitude data compared favorably with FPS-16 radar data. The grenade

experiments require quite specialized ground-base data acquistion equipment
as described in Section 3.6. Many of the other high-altitude experiments

require a greater frequency response in the telemetry modulation and the

standard 20 to 200 rps AM of the GMD systems is not adequate. In these

cases FM may be used with GMD system or pulse rates may be increased.
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5.2 Radar.

5.2.1 General.

There are a number of radars which are currently in use at the various
missile ranges for various specialized purposes such as surveillance and range
safety, acquisition, beacon tracking, skin tracking and deep space probe
tracking. These radars represent various stages in the state-of-the-art in
radar development and operate in various frequency bands as shown below:

RADAR FREQUENCY BANDS

Band Center Frequency
(mHz)

L 1,300

S 2,700

C 5, 500

X 9,000

The L-band systemsare generally used for surveillance and have not
been found adequate to track meteorological rockets. The X-, S- and C-

band radars have been the most useful for meteorological rocketapplications.
The X-band M-33 modified (by WSMR) is a mobile unit which has been used
to track meteorological payloads at remote sites, but is incapable of uptrack-
ing the vehicles. The S-band SCR-584 Mod 2 radar has been used extensively
and is adequate to skin track the Arcas to about 130,000 ft but cannot track

the Lokl Dart. This radar is certainly adequate to track rocketsonde payloads.
The C-band FPS-16 is the most used and most desirable of the commonly available
radars. This radar is capable of tracking the Loki Dart thru apogee and the
precision is good enough to reduce passive falling sphere density data to 2%
accuracy at 90 km. The FPS-16 is also capable of tracking a 2-1nch diameter
50-1nch long dart (Viper Dart System) to an altitude of about 430,000 feet.

More accurate and powerful radars than the FPS-16 exist, but they are located
at a limited number of sites and are not generally available for meteorological
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soundings. Doppler radars have been found useful in the development
of meteorological rocket vehicles, but the range limitations of the common

sets restrict their use from tracking the payloads.

5.2.2 Radar Descriptions.

A summary of the technical characteristics of typical radar systems

is presented as follows:

5.2.2.1 Radar Set AN/SPS-12.

Radar Set AN/SPS-12 is a medium_ange surveillance radar

equipment designed to detect aircraft and surface vessels. Target range and
bearing data are obtained for presentation on associated ppi units. Radar
Set AN/SPS-12 transmits and receives pulses of r-f energy in the frequency

range of 1250 to 1350 mc (L band).

Radar Set AN/SPS-12 requires three-phase, 60-cycle, 440

volt input power at approximately 6000 watts. The circuits in all units

(except the radar modulator high-voltage-supply circuit) operate from

single-phase, 60-cycle, 115-volt power supplied by the power distribution
transformer, which is connected across two lines of the three-phase 440--volt

input. The technical characteristics of Radar Set AN/SPS-12 are given in
Table 5-1.

5.2.2.2 Radar Sets AN/MPS-19.

Radar Sets AN/MPS-19 are modified, mobile units used for

acquisition and weather observation. Table 5-2 lists the characteristics of

the unit used for acquisition and Figure 5.2-1 is a block diagram of the

AN/MPS-19 equipment. The AN/MPS-19 provides data outputs in the following
forms:

1. Synchro voltages representing slant range and
azimuth and elevation angles.

. Potentiometer voltages representing slant range
and sine and cosine functions of azimuth and

elevation angles.

3. Precision digital data representing slant range

and azimuth and elevation angles.
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TransmittingSystem
Frequency
Transmitter
Peakr-f power
Pulserate
Pulselength
Modulator type
R-f Iines

Antenna System

Type
Beam width

Polarization

Azimuth slew rate

Range Data
Maximum range

Minimum range

Range indicators

Receiving System

Antenna coupllng

I-f frequency
I-f bandwidth

Local osc freq control
Receiver mds

Sweep ranges

Data Readout

One A scope and up to six ppl

Sweep expander

1250 to 1350 mc

Tunable magnetron
500 kw

300 or 600 pps variable :k5%

4 Hsec at 300 pps, 1 I_sec at 600 pps

Hydrogen-fii led thyratron
Wavegulde (3-1/4 by 6-1/2 inches)

Cosecant-squared reflector

3 ° horizontal; 30 ° vertical
Vertical

2-1/2 to 15 rpm, or manual

200 miles

400 yards

4_ 20, 80 miles at ±0.5%, 200

TR & atr cavities, crystal mixer, stc
30 mc

0.5 mc at 300 ppst 2 mc at 600 pps
Arc
-100 dbm

400 to 8000 yards, 1 to 20 miles,

4 to 80 miles, and 4 to 200 miles

1000 yards per inch up to 80-mile range

TABLE 5-1 Radar Set AN/SPS-12, Technical Characteristics

- 105 -



Transmitting System

Frequency range

Peak power

Average power

Output power tube
Pulse width

Prf

Receiving System

I-f frequency
Bandwidth

Oynamic range

Noise figure

Sensltlvit 7

Antenna System
Diameter
Beam width

R-f transmission llne

Power capabll ity

Antenna System (Continued)
Vswr

Line loss, receiving

Azimuth coverage

Elevation coverage

Ranging System

Maximum range

Minimum range
Maximum tracking rate
Maximum slew rate

2700 to 2900 mc

500 kw

164 w (single pulse), 492 w (triple

pulse)

Magnetron
0.8 IJsec

300 to 2000 cps; beacon 410 cps

30 mc

3 mc

80 db
4db

108 db

8 ft (parabolic)

3° (half power)

Rectangular wavegulde
500 kw

2 db

3 db

360 °

-15 ° to 89.5 °

360, 000 yards

500-1000 yards

28, 000 yards/second

25, 000 yards/second

System Facts

Accuracy

System Power
Load

Azimuth, 1 mil

Elevation, 1 mil

3 phase, 110 volt, 12 kw (util)

3 phase, 208 volt, 10 kw (oper)

TABLE 5-2 RADAR SET AN/MPS-19, TECHNICAL CHARACTERISTICS
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PULSE I
AIR LINK TRANSMITTER
SYSTEM PULSE 2 SYSTEM

CODER GATE I

MOOULATOR TRIGGER

400KYD SWEEP GATE r

32KYD. SWEEP GATE ._

AUTOMATIC
RANGE TRACKING

SYSTEM

R-F

SYSTEM

BEACON AFC GATE

STC GATE

RANGE INDICATING
SYSTEM

MEG VIDEO

AGC TRACKING GATES

FIXED 82KC PULSES
m

PPI TRIGGER

66 USEC GATE

2 KYD BRIGHTENER

PPI TRACKING GATE

I'°cIE

F-t'_ ''_ !.....
J VIDEO F_

[ MAPPING SYSTEM ] FF w

_PPI TRIGGER

RANGE RATE / RAMGE

SLANT RANGE COMPUTER

AIR LINK CONTROL PANEL

FIGURE 5.2-1 Radar Set AN/MPS-19, Block Diagram
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5.2.2.3 Mod (11) Radar.

The Mod II Radar, is an extensively modified and rehabilitat-

ed SCR-584 Radar. Mod II is an automatic angle and range tracking radar

designed to provide the following:

1. Synchro voltages representing slant range and
azimuth and elevation angles.

. Potentiometer voltages representing slant range
and sine and cosine functions of azimuth and

elevation angles.

3. Precision digital data representing slant range

and azimuth and elevation angles.

Improvements over the SCR-584 radar include: dual local

oscillators for skin and beacon tracking, A-scope range presentation, inter-

mediate servo system for smoothing purposes, tunable S-band magnetron,

output power attenuation_ traveling wave tube r-f amplification in the

receiving system_ multipulse and coding capability, nutating antenna feed
to allow vertical or horizontal polarization, waveguide transmission line,

and pulse repetition frequency selection.

In general, the Mod II provides recorded metric data for

range users, real-time position data for range safety or guidance, and target

acquisition data for other ground instrumentation equipment.

Table 5-3 list the technical characteristics of the system.

5.2.2.4 Radar Set AN/FPS-16.

The AN/FPS-16, is a C-band, high precision, monopulse

tracking radar. The accuracy of the AN/FPS-16 is such that the position data

obtained from point-source targets has azimuth and elevation angular errors

of less than 0.1 rail rms and range errors of less than 5 yards rms with a signal-
to-nolse ratio of 20 db or greater. The AN/FPS-16 provides data outputs in

the following forms:
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TABLE 5-3 MOD !1 Radar, Technical Characteristics

Transmitting System

Frequency range
Transmitter

Peak r-f power

Average power
Pulse width
Prf

Pulse shape

Modulator type

Receiving System

I-f frequency

Sensitivity

Noise figure
Bandwidth

Type

Antenna coupling

Antenna System

Type

Focal length
Beam crossover

Gain

Beam width
Drive

Side lobe location

2650 - 2850 mc

Tunable magnetron
250 kw

0.5kw

0.75 IJsec

205, 341, 366, 410, 467, 569, 682,

732, 852, 1024, 1280, and 1707cps
Square

High vacuum

30 mc

-102 dbm

7.5 db

2 mc

Superheterodyne

R-f amplifier into slngle-ended crystal

10-foot parabolic
35.6 inches

80% or 50%

37 db

2.5 °

2/4 hp in each axis

1st, 4.12°; 2nd, 6.22 °
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TABLE 5-3 MOD il Radar, Technical Characteristics (Continued)

Antenna System (Continued)
R-f transmission line

Type of feed

Type of scan

Scan frequency
Polarization

Ranging System

Maximum range

Minimum range

Maximum tracking rate
Maximum slew rate

Master oscillator frequency
Range tracking

Skin track range

Tracking gates

System Facts

Synchro inputs
Tracking rates

Slewing range

Range accuracy

Range indicators

0 ther presentation

System Data Readout
Timing Box

Cursor scale camera

Rectangular waveguide with transition
to rigid 7/8-inch coaxial at azimuth

rotary joint
Nutating
Conical

30 cps
Vertical-clrcular-horizontal

768, 000 yards, beacon track

500 yards
8000 yards/second (automatic)

20, 000 yards/second (manual)
82 kc

Manual, rate aided, and automatic

65 statute miles, 1-square-meter target
12, 0.5 mil/second

Azimuth, 1:1; elevation, 1:1
20°/second, azimuth; 8°/second,

elevation

20°/second, azimuth; 20°/second,
elevation

20, 000 yards/second, range

:1:10 yards
3 A-scopes; 2000 yards, 32, 000 yards,

full -tracked ranges

Ppi

One 35-mm camera photographs the

following: range timing, camera

pulses from radar cameras, sync
pulses from programmer, and signal

tone from programmer
Azimuth and elevation cursor scales on

antenna mount photographed with
35-ram Mitchell camera similar to

that on MPS-19; resolution +0.2 rail
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TABLE 5-3 MOD I! Radar, Technical Characteristics (Continued)

System Data Readout (Continued)

Scope camera

Boresight camera

Digital readout

System Power
Load

System Data Output

Azimuth, potentiometer type
Number of turns

Wiper resistance
Brush load required

Resistance/quadrant

Elevation, potentiometer type
Number of turns

Wiper resistance
Brush load required

Resistance/quadrant

Range, potentiometer
Number of turns

klnearity
Brush load

Resistance

Wiper resistance

2000-yard J-scope photographed with
35-mm Mitchell camera

40-inch focal length (35-mm Mitchell

camera)

Azlmuth_ elevatlon_ range_ and tlmlng

recorded on 1/2-1nch magnetic tape

3 phase, 110 voib 12 kw

Sine-cosine

1

10 kilohms

0.25 m

15 kilohms

S ine-coslne
1

10 kilohms

0.25 m

15 kilohms

192, 000 and 384 w000 yards
10

O.O2%
0.25 kilohm

20 kilohms

10 kilohms
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1. Synchro voltages representing slant range
and azimuth and elevation angles.

. Potentlometer voltages representing slant

range and sine and cosine functions of

azimuth and elevation angles.

3. Precision digital data representing slant

range and azimuth and elevation angles.

The AN/FPS-16 radar also provides real-time, present-
position analog data for range safety use.

Table 5-4 lists the technical characteristics of the system.
All random errors listed in the table are referenced to beacon operations.

In skin tracking, increased angular dispersion will result from either target

glint, when the angular physical dimensions of the target exceed the
resolutions of the radar, or from thermal noise at small signal-to-noise ratios.

According to the beam width of the radar, listed angle tracking performance

is expected to be maintained down to elevation angles of approximately 0.5 °.
At smaller elevation angles, tracking errors of increasing magnitude will
occur and can be corrected only by means of boresight camera data.

5.2.2.5 Radar Set AN/FPQ-11.

These radars, based on the MPS-19 design, have been recon-

figured to improve and extend tracking capability by the addition of 14 ft.
diameter parabolic antennas; precision torque drive pedestals; new receiving

systems; wide range gate; a selectable 0.25 us pulse; auxiliary track system
and digital data encoders and by complete replacement of the antenna
positioning system.

The technical characteristics are presented in Table 5-5.

5.2.2.6 AN/MPS 504 Surveillance Radar.

This radar provides continuous surveillance to a maximum

ground range of 200,000 yards. It is used for range safety and as an aid in

recovery missions. The technical characteristics are presented in Table 5-6.
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TABLE 5-4 RadarSetAN/FPS-16, Technical Characteristics

Transmitting System

Frequency range

Peak power

Average power

Output power tube
Pulse widths

Prf

Frequency accuracy

Pulse shape
Modulator

Normal operating power

Receiving System

Type

High power: 5480 4-30 mc

Low power: 5480 to 5825 mc
1 megw (fixed)
1.7kw

Magnetron

0.25, 0.5, and 1 Msec

142, 341, 394, 366, 467, 569, 682,

732, 853, 1024, 1280, and 1364 cps
4-1.5 mc

Square

High-vacuum type

250 to 300 kw with tunable magnetron;

750 to 900 kw with fixed magnetron

Superheterodyne
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TABLE 5-4 Radar Set AN/FPS-16, Technical Characteristics (Continued)

Receiving System (Continued)

I-f frequency

Sensitivity
Noise figure
Bandwidth

Dynamic range

I-f noise figure

Ranging System

Maximum range

Minimum range
Maximum tracking rate
Maximum slew rate

Bandwidth (maximum)
Acceleration

Master oscillator frequency

Oscillator stability

Range accuracy
Tracking gates

Target designation

Range tracking

Tracking noise

Dispersion

Antenna System

Type
Feed

Focal length
Beam crossover
Gain

Beam width

Polarization

Tracking point
Drive

Antenna temperature
Side lobe location

Capture area

30 mc

-99 dbm

11 db

1.8 and 8 mc (narrow-wide)
-93 db with stc

6 db

I, 000, 000 yards
500 yards

10, 000 yards/second

40, 000 yards/second

10 cps
4000 yards/second 2
82 kc

l in 106
:1:5yards

0.5, 1, 1.5 Hsec
Manual or automatic modes

Manual, rate aided, or automatic

Angle std deviation, O. 1 mll

Range std deviation, 1.5 yards

12-foot parabolic reflector

4-horn monopulse
48.4 inches

0 db

43 db

1.2 °, r-f axis to 1/2 power point,
horizontal and vertical

Vertical, horizontal, circular

Center of main lobe (no crossover point)

Azimuth: two 2-hp motors

Elevation: one 2-hp motor

40°K above 50 ° elevation (dark sky)
1.72 ° (1st)

2.62 ° (2nd)

7.88 square meters
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TABLE 5-4 RadarSet AN/FPS-16, Technical Characteristics(Continued)

Antenna System (Continued)

Type of scan
R-f transmission line

Line loss receiving

Line loss transmitting

System Facts

Azimuth coverage

Elevation coverage

Range accuracy
Serial readout rate

Granularity
Pulse duration

Rise time

Tracking rates

Slewing rates

Accelerations

Bearing accuracy

Range on 1 square meter

Random noise errors in output
data

Systematic errors

System Data Readout
Data box

Range scope

Monopulse

Rectangular wavegulde
1.3 db
2.3 db

360 °

-10 ° to 190° (tracking -10 ° to 85 °)

:k5 yards

100 lops maximum

±1 yard

0.2 _ec minimum
1.0 _ec maximum

0.1 vsec

Azimuth: 42°/second
Elevation: 22.5°/second

Range: 10, 000 yards/second
Azimuth: 45°/second

Elevation: 22.5°/second

Azimuth: 45°/second

Elevation: 24°/second

Range: 40, 000 yards/second
Azimuth: 0.1 rail

Elevation: 0.1 roll

272, 000 yards

Slant range: O'R 1.5 yards

Azimuth and elevation: (TA, o"E O. 1 rail
Zero setting errors: :bO.7 to 2.0 yards

Drift errors due to external beacon delay
variations estimated to be less than

100 feet

Total mechanical errors: 0.04 roll rms

35-rnm Mitchell camera for the follow-

ing: azimuth and elevation synchro

dials, timing lights, sync pulses,
and signal tone

35-ram Mitchell camera photographs
i i
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TABLE 5-4 Radar Set AN/FPS-16, Technical Characteristics (Continued)

System Data Readout (Continued)

Range scope (Continued)

Nixie readout

Pedestal cursor dial

Ungated video

Consolidated recorder

Sanborn recorder

Magnetic tape system

System Power
Load

2000-yard segment of range and

72, 000 yards synchro
35-mm pulse-operated flight research

camera: azimuth, elevation, and

range; timing; model number; and

radar mode of operation

Azimuth: 35-mm flight research camera
Elevation: 35-mm flight research

camera

Boresight: 80-inch EFL lens with 35-mm
research camera

Tektronix scope, 2000-yard segment of

range, 35-mm flight research camera

Agc, WWV, range timing, radar timing,

radar camera shutter pulse, CHU
Four channels; can record any four of

the following: agc, 2000-yard range

synchro output, timing, sync pulse,

WWV, CHU, azimuth and elevation

error, and range error signals

Records binary output of range, azimuth,
timing, azimuth error, and elevation

error

3 phase, 120/208 volt, 100 kva
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Table 5-5 Radar Set AN/FPQ-11, Technical Characteristics

Transmitting System

Frequency
Peak Power

Normal operating power

Pulse repetition frequency
Pulse width

Pulse shape

Coding capabi li b'
Modulator

RF lines

Line loss

Antenna System

Type
Drive

Feed

Gain
Polarization

Beam width

Tracking point
Sidelobes

Azimuth coverage

Elevation coverage

Angular tracking accuracy
Slew rates

Range System

Maximum range
Minimum range

Skln Track range

Range accuracy

Master oscl I lator frequency
Osci I lator stability

Tracking gate

Maximum range track rate

2, 700 - 2,900 MHz tunable
500 kW minimum

550 - 850 kW

Both Radar & Beacon 410, 512, 585 pps

0.25ps, 0.8ps, selectable

Square

1 to 3 pulses
Soft tube

Rectangular waveguide
Less than 1 dB

Parabolic 14 ft diameter

dc torque motors

Conical scan, (30 Hz)
39 dB

Vertical or horizontal, or RH circular

or LH circular (remotely selectable)

1.8 ° axis to half power points

50% or 80% (manually selected prior to test)
At least 20 dB down from Main lobe

Plus or minus 360 °

-1.5 to 181.5 °

0.15 mils

Greater than 40°/sec in both axis

1,999, 500 yards, Veriort system

300 yards in narrow pulse
50 nmi on 6" sphere

0.01% (same as the MPS-19 accuracy)
81.946,427 kHz
2.5 x 103

0.3 Ms
16, 000 yd/s
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Fable 5-5 Radar Set AN/FPQ-11, Technical Characteristics (contln0ed)

Range System (continued)

Range slew rate

Range tracki ng

Target acquisition

Receiving System

Frequency

Type

Antenna coupling

Noise figure
Minimum discernible

signal (MDS)
Bandwidth

IF

Image rejection

Range indicators

Transmitter

Frequency
Power

Pulse width

Repetition rate

Type output tube

Type modulator

Recovery ti me

Delay

40,000 yd/s/s

Manual, automatic, rate aided

MPS-19 radar, MK-51 optical tracker,

infrared tracker, CCTV and other

FPQ-11 radar°

2,650 -- 2,950 MHz

S uperh eterodyne

Parametric amplifier (1 5 MHz bandwidth)
Better than 2 dB

With parametric amplifier - 115 dBm

Without parametric amplifier - 102 dBm

5o6MHz, 2,>6MHz (selectable with pulse

width)
25 MHz

20 dB down or gi-eat_r by SSB mixer

Three 5 in A-scopes, single sweep, as

follows: Total range according to PRF

approximatd y 365, 000 yards, 32, 000

sentatlonr triple sweepr 2,000 yd

segment of range including target pre-

sentation, the three sweeps displaying

beacon video, radar video and summed
video.

2700 - 2950 MHz

150 W (minimum)

0.5 plus or minus 0o1 )_s
1-2000 pps

Triode cavity
Solid State

Less than 50 ps

2 Hs nominal
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Table 5-5 RadarSetAN/FPQ-11, Technical Characteristics(continued)

Power Supply

Primary power source

Primary power input
Internal power source

Mechanical

Size

Form

Weight
Pressurization

Environmental

Temperature
Vibration

Shock

Acceleration

6.9 Vdc plus or minus 10%

Approximately 9 W
5 HR-1 Yardney Silvercels, life

approximately 60 min.

25.5 in3

3 & 3/4 x 3 x 2 & 1/4 in excluding

mounting flange
Less than 2 Ib

15 psi

-20 to 70 ° C

5-2000 c,/s at 10g, 3 min sweep

100g all planes

80g all planes
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Table 5-6 Radar Set AN/MPS-504, Technical Characteristics

Transmitti ng System

Frequency
Peak Power

Normal operating power

Pulse repetition frequency
Pulse width

Pulse shape
Modulator
RF lines

Antenna System

Type
Beam width azimuth

Beam width elevation

Range System

Maximum range

Minimum range

Range accuracy

Receiver System

Type

Minimum discernible signal
Bandwidth

Range indicator

Azimuth coverage

Elevation coverage

2700 - 2900 MHz

500 kW minimum

600 kW

410 pps

2 Us
Square
Soft tube

Rectangular waveguide and rigid
coaxial cable

Half parabolic cylindrical reflector
2°

15°

200, 000 yds

2, 000 yds
plus or minus 1,000 yds

Superheterodyne
-97 dB

1.2 MHz

PPI scope, provided with 3 sweep
ranges, 50, 000, 100,000 and 200,000

yds.
360 °

-3 to 45 ° dependent of the mechanical
tilt of the antenna
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5.2.2.7 NASA Long-Range, S-Band (SPANDAR).

The NASA Long-Range, S-Bandt located on the Wallops

Mainland area directly opposite Wallops lslancb is a high-powered, conical-

scant tracking radar. The radar employs a 60-foot parabolic reflector on a

95-foot mount. Features of the radar include: at least 5 megawatts peak

powert parametric amplifier in the receiving system, a digital data system,

a doppler systemt and a 5000-mile range for beacon tracking. The estimated

skin-tracking range for a 1-square-meter target is approximately 600 statute
miles. Table 5-7 lists the technical characteristics of the radar.

The NASA Long-Range SPANDAR provides data outputs in
the following forms:

1. Synchro voltages representing slant range and
azimuth and elevation angles.

. Potentiometer voltages representing slant range
and sine and cosine functions of azimuth and

elevation angles.

3. Precision digital data representing slant range and
azimuth and elevation angles.

5.2.2.8 Radar Set AN/F PQ-6.

The AN/FPQ-6 is a pulse radar capable of nonambiguous

range measurements of targets at ranges up to 32,000 nautical miles.

Features of the AN/FPQ-6 system include: built-in

acquisition features in the ranging equipment; an auxiliary nonreferenced

range system (AUXTRACK); a C-scope with video integrator to erAanee

long-range target acquisition; rapid slewing circuits with added tracking

features; and four A-scopes displaying range increments.

The transmitter is convertible to doppler measurements,

pulse compression, and other more elaborate coherent transmitter-receiver

techniques. The transmitter frequency synthesizer and multiplier may be used

with minor variations to drive r-f output stages covering other r-f frequency
bands, such as kt S or X bands.
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Transmitting System

Frequency
Transmitter

Peak r-f power

Average power
Pulse rate

Pulse length
Prf

Frequency stability

Frequency resolution
Pulse shape

Antenna System

Type of reflector
Focal length
Beam crossover
Gain

Beam width

Weight
Drive

2700 to 2900 mc

H igh-power kl ystron

5 megawatts
10 kw

256 to 390 pps (in 4 steps)

1, 2, and 5 IJsec
256, 303, 328, and 390 cps

1 part in 106 per month
5 parts in 109 per day
1 mc

Square

60-foot parabolic reflector

25 feet 1/2 inch
1.5 clb

52.8 db

0.39 °

84 tons (antenna & tower top)

Two 32 hp in each axis

TABLE 5-7 SPANDAR, Technical Characteristics
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TABLE 5-7 SPANDARtTechnical Characteristics(Continued)

Antenna System
Antenna temperature
Side lobe location
Side lobe height
Null depth
Typeof feed
Typeof scan
Scan frequency
Polarization
R-f transmissioniire
Vswr
Line loss receiving

Line loss transmitting

Receiving System

Frequency range

Receiver type

I-f frequency

Image re jection

Sens itivity
Noise figure
Bandwidth

Low-noise device

Dynamic range

Ranging System

Maximum range

Minimum range

Maximum tracking rate
Maximum slew rate

Master oscillator frequency

Range accuracy

Tracking gates
Data bits

Serial readout rate

Granularity
Digital "1"

Digital "0"

30°K (dark sky)
1st 0.68°; 2nd 1.04 °
13 clb down
16.8 db

Rotating circular horn
Conical

30 cps
Circular, vertical, horizontal

Rectangular wavegu|de
1.18

0.8 db

2 db

2600 to 2900 mc

GE FPS-6B

30 mc

18 db down PAR

-116 dbm

3 db

1.3 mc - 650 kc

Parametric

-117 db

10, 000, 000 yards
1000 yards

1O, 000 yards/second

40, 000 to 500, 000 yards/second
82 kc

4-25 yards

6 & 18 _ec
2O

50 pulses/second

:!:10 yards
-3 vdc
-11 vdc
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TABLE 5-7 SPANDAR, Technical Characteristics (Continued)

System Facts
Tracking rates

Slewing rates

Accelerations

Accuracy

Azimuth coverage
Elevation coverage
Elevation travel

Capture area

System Power
Load

Azimuth: 6°/second
Elevation: 6°/second

Range: 10, 000 yards/second
Azimuth: 15°/second

Elevation: 15°/second

Range: 500, 000 to 40, 000 yards/second
Azimuth: 7°/second 2

Elevation: 9°/second 2
Azimuth: 4-1 m|l

Elevation: 4-1 mll

Range: +25 yards
360 °
0° to 90 °

-15 ° to 90 °

1261.78 square feet

3 phase, 208/440 vac, 500 amp
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Theantennamounthasthe following capabilities: precise
data takeoffs; high and low servoresponsebandwidthcapability, with high
gain acrossthe variable range; high torquesto counteract wind forcesand
achieve high accelerations; hydrostatic bearing in azimuth and phasedball
bearingsin elevation to provide tracking smoothnessat extremely low and
high angular velocities; and stability with thermal changes. Table 5-8 lists
the technical characteristics of this radar system.

The AN/FPQ-6 provides data outputs in the following forms:

1. Synchro voltages representing slant range
and azimuth and elevation angles.

. Potentiometer voltages representing slant
range and sine and cosine functions of

azimuth and elevation angles.

3. Precision digital data representing slant

range and azimuth and elevation angles.

5.2.2.9 Veloclmeter, Model 10A, Doppler Radar.

The Velocimeter, Model 10A, is a mobile doppler radar
which generates a contlnuous-wave radio-frequency signal that is radiated

from a directional transmitting antenna. The part of this transmitted signal
that strikes a target is reflected back to a directional receiving antenna.

If the target is stationary, the frequency to the reflected signal is identical

with that of the transmitted signal. If the object is moving toward or away
from the antenna, the frequency of the reflected signal is increased or

decreased, respectively. The amount of the frequency shift, which is
proportional to the radial speed (V) of the moving target, is known as the

doppler frequency. This mobile doppler radar has an output power of 125
watts.

The Model 10A Velocimeter uses an audio beat frequency to
determine test vehicle velocity. Its average useful range is about 50 to 100

thousand feet. The audio output is recorded on magnetic tape along with the

timing and control signals. Each cycle of the audio frequency represents

0.1864 feet/second; readings are to the nearest one-fourth cycle in the data

reduction process. The radar operates at about 2640 mc and requires two

operators: one for azimuth and one for elevation control. After visual sight-
ing is no longer possible, the operators use tracking radar data in a "bug-

matching" process to follow the desired target.
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TABLE 5-8 RadarSet AN/FPQ-6, Technical Characteristics

TransmittingSystem
Frequencyrange
Frequencystabil ity
Peakpower
Averagepower
Output powertube
Powerprogramming
Pulsewidths
Prf

Coding capability
Frequencyresolution

Receiver System

Tuning range

I-f frequency

Image re jectlon

Sensitivity
Noise figure
Bandwidth

Dynamic range

Antenna System

Type
Focal length
Beam crossover

Gain
Beam width

Drive

Antenna temperature
Side lobe height

Null depth

Capture area
Elevation coverage

Gear ratio
Backlash

klnearlty

5400 to 5900 mc

1 in 108/hr

2.5 to 3 megw
4.8 kw

Klystron
-30 db

0.25, 0.5, 1, and 2.5 i_sec

160, 640, 341, 1280, 1707,

285, and 366 cps
Yes

243 kc in steps

142, 233,

5370 to 5930 mc

30 mc

40 db

-110 dbm

8 db

1.2 1.6

-110 db with programming

29-ft Cassegrainian parabola
8 ft

0 db

51 db

0.4 °

Hydraulic motors (two -37.5 hp)

26 °K, dark sky
20 db down

35 db (minimum)

14.88 square meters
-2 ° to 182 °

720:1

0.005 mil

0.09 mil (rms)
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TABLE 5-8 Radar Set AN/FPQ-6, Technical Characteristics (Continued)

I

Antenna System (Continued)

Azimuth coverage
Gear ratio
Backlash

Slip rings

Angle noise

Feed system:
Type of feed

Type of scan
Polarization

R-f transmission line

Line loss receiving

Line loss transmitting

Ranging System
Maximum range

Maximum tracking rate
Maximum slew rate

Velocity memory

Velocity lag
Bandwidth (maximum)
Acceleration

Master oscillator frequency

Oscillator stability

Acquisition data accuracy

Range accuracy

Tracking gates
Data bits

Serial readout rate

Granularity
Digital "1"

Digital "0"
Pulse duration

Rise time

System Facts

Tracking rates

360 ° continuous

650:1

0.005 mil

Video: 16 to 60 cps to 50 mc
If: 6 to 25 mc to 50 mc

0.03 mll (rms) servo

S-horn.

Monopulse
Vertical or circular

Rectangular wavegulcle
2.3 db

3.5 db

32, 000 nautical miles (nonambiguous)

20, 000 yards/second

240, 000 yards/second

99%/5 seconds

0..555 cps/nmi/second

19 cps
100, 000 yards/second 2 (10, 000 g' s)

5 mc
I in 107

:!:5 nautical miles

yards
0.25, 0.5, 1, and 2.4 psec

25 binary

50 kc/second

2 yards
8 _2 volts

0 volt

1 :L-O.15 pse_c

0.3 psec

Azimuth: 28°/second

Elevation: 28°/second
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TABLE 5-8 Radar Set AN/FPQ-6, Technical Characteristics (_Continued)

Ranging System (Continued)

System Facts (Continued)

Slewing rates

Accelerations

Accuracy

Range on 1 square meter,

corner reflector, 1 meter

side length
Scan modes

System Data
Analog outputs

Digital outputs:
Bits

Granularity

System Power
Load

Range: 20, 000 yards/second
Azimuth: 28°/second

Elevation: 28°/second

Range: 240, 000 yards/second
Azimuth: 20°/second z
Elevation: 20a/second 2

Range: 10,000 g's
Azimuth: _-0.05 mll

Elevation: _-0.05 mll

Range: _ yards
800 nautical miles

Circle, spiral, raster, rectangular

Same as AN/FPS-16

Azimuth: 20

Elevation: 20

Range: 25
Azimuth: 0.0122 mil

Elevation: 0.0122 mll

Range: 2 yards

208 volts, industrial, 239.1 kva

208 volts, critical, 107.6 kva
480 volts, industrial, 98.8 kva

480 volts, critical, 50 kva
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Figure 5.2-2 is a block diagram of the Model 10A
Veiocimeter. Table 5-9 lists the technical characteristics of the radar.

5.2.3 Radar Application to Rocketsonde Systems.

Several types of radars are used extensively for tracking meteorological

rocket systems. They are the mobile systems M-33 (X-band), Ab_/MPA-12
(X-band), and AN/MPQ-18 (S-band), and the stationary system AN/FPS-16

(C-band). The major characteristics of these radar systems are given in

Table 5-10. Currently the FPS-16 radar system is the one mast suitable for

hacking meteorological rockets, in that it can skin-track the rocket during
its flight and then immediately track the payload at the time of its expulsion
from the rocket.

Most of the high-performance range radars are fixed emplacements

and are too expensive ($1-3 million) to establish at remote meteorological
rocket sites. To make available a low-cast mobile tracking radar for remote

sites, the Army personnel at WSMR have developed modifications to surplus

M-33 mobile gun-laying radars for tracking meteorological rocket payloads.

As the slew rate and sensitivity of this radar do not permit skin tracking of

the rocket during ascent, thses radars have been slaved to the GMD telemetry

tracking systems to aid in acquisition. Other modifications to make the M-33
more suited to meteorological rocket work include the extension of the

effective plotting board range to 100,000 yards, and the installation of a
10-foot parabolic reflector antenna to increase radar sensitivity over that

available with the original lens system.

A usable passive wind sensor or rocketsonde deflector must provide
adequate radar signal return to be tracked with the available radar to a

slant range of at least 100,000 yards. Consequently, the parachutes are

coated with a metallic substance for radar reflectivity. As a measure of the

radar efficiency of the sensors, AGC voltages are recorded against slant

ranges. The voltages are calibrated to decibels above the minimum discern-

able signal (MDS). The results from the FPS-16 tracks of Arcas 15-foot
parachutes is presented in Figure 5.2-3. The efficiency of the 8-foot Loki

parachute is illustrated in Figure 5.2-4. The radars used with the Loki para-
chute were MPQ-12 and MPQ-18 units from White Sands Missile Range.

For comparative purposes, the results of an S-band corner reflector track are
included. The corner reflector track was a standard ML 307/ap aluminum

foll reflector carried aloft by a 1200 gram balloon. It is apparent that both
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TABLE 5-9 Model 10A Velocimeter, Technical Characteristics

Frequency

Range
Antenna beamwidth

Flat response
Power output

Noise figure
I-f bandwidth

Doppler output

2640 mc

50, 000 to 100, 000 feet

4.5 ° between half-power points

Up to 11,000 feet/second (8000 mph)

200 watts peak, 125 nominal
12 db

200 kc

3 watts into 500-ohm load

Lowest frequency, 1000 cps; velocity
= 186 feet/second

Highest frequency, 60, 000 cps;

velocity = 11, 160 feet/second
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parachutes can be tracked to 100, 000 yards slant range and are adequate
reflectors for the available radar. Using the above recordings and the

radar range equation it appears that the 15-foot and 8-foot parachutes
provide effective targets of 45 meters 2 and 9 meters 2 respectively.

Signal strength recordings made during chaff tracks at WSMR are

presented in Figures 5.2-5 and 5.2-6. Signal return is undoubtedly a

function of dispersion due to the additional parameters, time and wind
structure, as well as slant range. To approximate the effects of time and

wind structure, the variation with slant range was removed. This was

accomplished by treating the target as a solid sphere. Although it would

be supposed that the signal level would always decrease with time, plots

of signal strength vs time contain instances of the reverse (Figure 5.2-7).

This is attributed to a probable shift of the radar to a different "patch"
of chaff in the target arear that is, one with a stronger return. Another

possible explanation is a redistribution of chaff so that a greater signal
return was evidenced for a time. However, both of these mechanisms which

serve to enhance signal return should provide only temporary stimulus.
Generally, the signal should and does deteriorate with time (range being

constant). It has been the experience at WSMR that most chaff tracks

were terminated within 30 minutes after deployment due to signal deteriora-

tion resulting from chaff dispersion.

There has been some question regarding the effect of chaff wave

length and radar polarization on signal return. No presentable recordings
were made during these tests but there is definite evidence from observed

signal return at the radar that it is not necessary to match chaff dipole and

radar wave length exactly. X-band chaff can be tracked with S-band radar

with only an approximate 10-percent loss in signal return compared with

S-band chaff signal return. Similar results were obtained when X and C-band

radar were used with S-band chaff. Polarization appears interchangeable
since similar signal levels were observed on a single parcel of chaff whether

circular, horizontal, or vertical polarization was applied. It might be

inferred then, that as the chaff falls, it is randomly oriented with respect
to the radar.
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5.3 Telemetry.

5.3.1 General.

The four basic kinds of telemetry which have been used with meteoro-

logical rocket systems have been the 216 mHz to 235 mHz standard IRIG

telemetry, the 1680 mHz AN/GMD-(x), the 403 mHz AN/SMQ - (x) and

the specialized 38 mHz DOVAP tracking telemetry. Considering present

equipment, the advantages of the IRIG telemetry over th GMD and SMQ
types is a better modulation frequency response, multichannel potential,

and an inherently stable crystal-controlled transmitter frequency. The dis-

advantages, however, far outweigh the above advantages. Current IRIG

telemetry payloads are too costly ($1,000 for a one channel sonde) for

routine use. Although the components could be miniaturized, current

components are too large for the small dart diameters. The antenna lengths
for the 200 mHz range of transmitter frequencies are too long for small

rocket systems, and the systems are not set up for tracking the vehicle, i.e.,

radar is required. Perhaps the greatest disadvantage is that the IRIG systems

do not operate at the assigned meteorological frequencies of 403 mHz and
1680 mHz. The DOVAP system offers the advantage of obtaining tracking

data, but has all of the other disadvantages discussed above.

The SMQ system offers the advantages of a small lighter weight
instrument for the rocketsonde application because the modulation duty cycle

is more efficient than for the GMD types. Also, an omnidirectional ground-
based receiver is used so that a vehicle track does not have to be maintained.

The SMQ receiver is smaller, less complex and lower in cost ($3500) than

the GMD receiving system. It also requires less maintenance. However,
radar is required with the SMQ system to obtain tracking data.

The GMD system is currently the most appealing among the various

telemetry systems because the instruments can be made small enough for even
the small darts, and tracking data can be obtained with the AN/GMD- (2-4)

systems. Since the GMD operates at the meteorological frequency bands,

meteorological rocket operations can be conducted as a complete weather

station function. Since radar is not required with the GMD - (2-4) systems,

remote sites can be established with minimum cost and complexity. The cost of

the ground equipment is not prohibitive ($35,000 for GMD-1, $65,000 for

GMD-2), and the complete payload instruments should be from $200 to $400.

A GMD-2 system has been used to successfully track a pitot probe experiment

(Denpro) during vehicle ascent, and the tracking data compared favorably with
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the FPS-16radar results. Forprobeapplications the modulationpulserate
will probably have to be increasedas it was for the abovepitot probe
(from 200 ppsto 1000pps)for better data accuracy and frequencyresponse
or FM modulationcan be used.

5.3.2 IRIG Telemetry Systems.

IRI G telemetry systems currently operate at carrier frequencies between

216 mHz and 235 mHz with the newer systems to operate in the 2200 mHz to
2300 mHz band. In the FM-FM or FM-PM system1 various methods are used to

enable the r-f carrier to carry more than one signal. Eighteen different

channel frequencies can be applied to modulate the r-f carrier_ they may be
applied either one at a time or, under the proper circumstances, all at once.

These 18 frequencies are subordinate carrier frequencies, called subcarrier

frequencies. Subcarrier frequencies are in turn frequency-modulated by a

source of information. The width of Channel 1 as set by the standards is

30 cycles above or below the center frequency of 400 cycles. The value of
30 cycles is determined by the standards, which call for a deviation of ± 7.5%

of the center frequency.

To keep the lowest signal-to-noise ratio, a modulation index (deviation

ratio) of five was chosen. This is shown in Channel 1 by dividing the 30-

cycle deviation by 5 and finding 6, which represents the frequency, in cycles

per second, at which applied information can modulate Subcarrier Channel I.
A modulation index lower than Five may be used at the expense of the signal-

to-noise ratio. A modulation index of unity (1) would permit all 30 cycles

of information to be passed. However, the signal-to-noise ratio would be

low, severely handicapping the resultant output signal. In addition to possible

distortion, another difficulty with a modulation index of unity, where the full
deviation would be used, is the probability of the information of each channel

overlapping, producing "cross talk". Figure 5.3-1 shows how the bandwidths

increase with increasing channel frequency. For full details of the complete
channel frequencies, deviation limits, and standard information-carrying

capabilities of all channels, see Table 5-11. As the frequency of each succeed-

ing channel increases, the frequency by which the channel may be modulated

increases. The modulating frequency of Channel 1 is six cycles, that of

Channel 18 is 1050 cycles. Thus Channel 18 may be used to convey information
changing at a maximum rate of 1050 cycles. Slow variations in information

are applied to the lower-frequency channels. To allow the subcarrier channel

- 140 -



Iii:.i"" T.H_E.J_OWE_RSUBCARRIEXBANDSARENARROWER

FIGURE 5.3-1 IRIG F/vV'FM Telemeter Subcarrier Bands

- 141 -



Band

TABLE 5-I I

IRIG FM/FM TELEMETER SUBCARRIER BANDS

-7.5% C enter Freq. +7.5%

I 370 400 430
2 518 560 602
3 675 73O 785

4 888 960 I, 032
5* 1,202 11300 1,398
6* 1,572 1,700 1,828
7* 2r 127 2, 300 2, 473
8* 2, 775 3, 000 3, 225
9* 3, 607 3, 900 4, 193
10 * 4,995 5,400 5, 805
11 * 6,799 7,350 7,901
12 * 9, 712 10,500 11,288
13 * 13,412 14,500 15,588
14 20,350 221000 23r 650
15 27, 750 30,000 32t 250
16 37, 000 40,000 43, 000
17 48, 562 52, 500 56,438
18 64, 750 70• 000 75• 250
19 86,025 93• 000 99,975
20 114• 700 124, 000 133• 300
21 156• 625 165• 000 177• 375

A _

B
C*
D
E*

F
G
H

NOTE:

Intelligence, cps
MI =1 MI =5

30 6
4O 8
55 11
70 14

100 20
125 25
175 35
255 45
300 60
400 80
550 110
800 160

1• 100 220
1• 650 330
2• 250 450
3, 000 600
3• 950 790
5• 250 1• 050
6•975 1,395
9,300 1• 960

12, 375 2• 475

-15% Center Freq. +I 5%

18
25
34
44
59

79
105
140

700 22, 000 25, 300

500 30,000 34, 500
000 40• 000 46, 000
620 52, 500 60• 380

,500 70, 000 80, 500

,050 93• 000 106• 950
,400 124• 000 142, 600
250 165, 000 189, 750

3• 300 660
4• 500 900
6• 000 1• 200
8• 000 1• 600

10• 500 2• 100
13, 950 2, 790
18, 600 3• 720
24, 750 4• 950

USE OF OPTIONAL BANDS

Band A may be employed by omitting Band 13, 15 and B.
Band B may be employed by omitting Band 14, 15• A and C.
Band C may be employed by omitting Band 15, 17• B and D.
Band D may be employed by omitting Band 16• 18• C and E.

Band E may be employed by omitting Band 17• 19• D and F.
Band F may be employed by omitting Band 18• 20• E and G.

Band G may be employed by omitting Band 19• 21 F and H.
Band H may be employed by omitting Band 20 and G.

Bands 20• 21• G and H are to be used on 1435-1535 & 2200-2300

megacycle systems only.
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to carry higher information frequencies, the deviation limits of a subcarrier

channel may be increased. Doubling the deviation doubles the frequency
of information that can be handled by a channej_ As a result, the last
five channels, 14 through 18, may be used witffan increased value of 15%

deviation limits. For identification, these channels are labeled A through
E.

The synchronizing information is detected on the ground and assures

that the information is recovered in the proper sequence. This means that the

pulse representing information channel No. 1 always follows the synchroniz-
ing pulse and the pulse preceding the synchronizing information is the last
information channel.

The subcarrier oscillator is a low-frequency oscillator that conveys
the information gathered by the transducer. The frequencies vary from an

audio frequency of 400 cycles to as high as 70,000 cycles. The subcarrier

frequency is then applied to modulate a high-frequency R-F transmitter.

The IRIG subcarrier frequencies can carry varying degrees of intelligence,
depending upon the frequency of the channel selected. The higher the

channel frequency the higher the frequency of the information it can carry.
The information reproduced by the transducer at the point being measured

may vary from zero to a maximum of 2100 cycles. This varying information
is used to modulate the subcarrier oscillator. The type of modulation used

may be Amplitude Modulation (AM), Phase Modulation (PM), or Frequency
Modulation (FM). Frequency modulation of the subcarrier oscillator is

most frequently used at present.

A subcarrier oscillator requires that the modulations vary the frequency
linearly. It must have high stability, low drift, and low distortion. Since

space and weight are important considerations, simple basic circuits are often
used. To aid in achieving these goals, high-grade, close-tolerance com-

ponents are used throughout the equipment. Various methods may be used to

check frequency drift. The simplest is to remove, for an instant, the input

to the subcarrier oscillator. It then oscillates at a known specific frequency.
Another method is to apply a calibrating voltage to the subcarrier oscillator to

produce a known specific frequency. There are three types of oscillator
circuits in general use as subcarrier oscillators:
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|. Inductance-capacitance

. Resistance-capacitance phase - shift

3. Multivibrator

The inductance of an L-C tank circuit is often the coil winding of

an inductive-type transducer. An R-C phase-shift oscillator may use the

varying resistance-type transducer part of the phase-shifting network.
Multivibrator oscillators are generally Free-running, with their frequency

varied by variations in their bias caused by the output of a resistive-type
transducer.

The output frequency of a voltage-controlled subcarrier oscillator

may be varied so that an increase in the applied signal either causes an

increase or a decrease in the output frequency. The value of input voltage
required to achieve _: 7.5% frequency swing, or +- 15% frequency swing,

varies with each manufacturer. An average value is from 3 to 5 volts. The

input voltage may be unipolar, such as zero to + 5 volts, or zero to -5 volts.

Or it may be bipolar, such as zero to + 2.5 volts.

In summary, the subcarrier oscillator is a self-contained oscillator

that has as its center frequency any one of the 18 IRIG standard values.
The subcarrier oscillator is modulated by the varying output of a transducer,

most often by FM.

The output of the subcarrier oscillators is used to modulate the r-f
transmitter. The form of modulation used for the r-f transmitter is usually

frequency modulation or phase modulation. Crystal-control led phase

modulation is more prominent. The r-f carrier frequency used is in the 216

to 235 megacycle band assigned for telemetry use.

The PDM-FM or PDM-PM system enables the r-f signal carrier to

carry more than one information channel. This is accomplished by dividing
the time the carrier is on the air into known amounts, each amount represent-

ing a different channel of information. The information is converted to a

value of time, then the r-f carrier is turned on to transmit a pulse of energy

for the length of time representing the value of the information. As shown in

Figure 5.3-2, a pulse duration of 90 microseconds ( _ sec) represents a
minimum-information reading; a pulse duration of 700 ( _ sec) represents a
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maximum-information reading. For example, 90_ sec might represent a
minimum-information level of the output of an instrument. The 700_ sec
might represent a maximum-information level.

These pulses of information are sent in specific numbers, 900 per

second. This could represent 43 information channels sampled 20 times per
second. Two additional channels are transmitted with no information to

identify the beginning and end of each group of information.

One problem in having the output of two or more subcarrier oscillators
simultaneously modulating the r-f transmitter is cross modulation, or cross

talk. This results essentially from harmonics of some of the lower-frequency

subcarrier oscillators missing with the primary frequencies of the high fre-

quency subcarrier oscillators. Harmonics are generated in nonlinear circuits,
or circuits in which overloading causes operation in a nonlinear region. To

prevent format| on of harmonic frequencies, linear mixing networks are used
at the output of the subcarrier oscillators. These are sometimes called harmonic

suppression filters.

To keep an equal signal-to-noise ratio output for all subcarrier oscillators,
the high-frequency subcarrier oscillators must deviate the transmitter more than

the lower-frequency subcarrier oscillators. The transmitter frequency deviation

of the lower-frequency subcarrier oscillators is kept to a minimum to reduce

the effects of cross talk and other porblems.

The operating range of the transmitter is to a large degree determined
by three factors_

1. Transmitter power

. Receiving and transmitting antenna gain

o Receiver sensitivi ty

The power output of a transmitter averages 3 watts, giving an approx-

imate range of 50 miles under line-of-sight conditions° To obtain higher

power, the transmitter is used to drive a high--power r-f amplifier. R-f
amplifiers average 40 to 50 watts of output, increasing the range of transmission.
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The problems encountered in constructing r-f transmitters are the same as

those found in constructing all previously discussed telemetering equip-

ment; compactness, ruggedness and dependability• R-f transmitters pose
the additional problem of heat generated in the transmitters. Forced-

air cooling has been used from some circuits, other immerse the entire

unit in oil for better heat dissipation. Shock is an especially serious threat
of the r-f transmitter because a slight movement of some of the tuned-

circuit elements causes undesired modulation of the output, producing an

erroneous signal. Frequency drift is held to a minimum by the use of
high-quality components and other techniques, especially crystal control.

The transmit r-f power requires an antenna, which must be efficient

to make the most of the small power output of the transmitter. An efficient

antenna is not difficult to produce under ordinary circumstances. However,
on a missile moving at supersonic speed, it is quite a problem. Since the

missile may be spinning about its longitudinal axis, the antenna must radiate

in all directions. This may also be accomplished by having more than one

antenna. In addition, the sudden acceleration and high temperatures

involved require that the antenna be of sturdy construction and correct
materials. To keep the missile as streamlined as possible, the antenna cannot

be a bulky unit that would alter the missile's shape.

These problems often result in a compromise in the type of antenna
used. The most popular types are:

• The airframe is the radiator.

• Carefully located stubs or wires are used as the radiator•

. A projecting portion of the vehicle, such as a fin, is

electrically isolated by a notch and used as a radiator.

. Slot antennas, mounted flush with the skin of the

vehicle, are used as a radiator.

o A resonant cavity is used to isolate a portion of the
vehicles for excitation as a radiator.
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Use of the entire airframe as the radiator is shown in Figure 5.3-3A.

A spike placed in the nose cone of the vehicle is a simple form of stub

antenna, Figure 5.3-3B. The length of the spike and its use are largely

determined by the length of the vehicle. A notch cut through a projecting

part of the vehicle, such as a fin, produces a surface suitable for radiation

(Figure 5.3-3C). (When necessary, the notch is filled with a solid dielectric
material). A slot antenna (Figure 5.3-3D) may be mounted flush with the

skin of the vehicle. The radiation pattern of this type of antenna is quite

similar to that of a dipole and reflector. A fifth method, shown in Figure
5.3-3E, utilizes a resonant cavity to isolate the outer skin surface of the
forward section from the rest of the rocket. The outer skin surface of the

isolated portion is utilized as a radiator.

Typical PDM/FM Telemetry:

PDM (Pulse Duration Modulation) telemetry systems are used when

a strictly time division multiplex system is capable of meeting the bulk of
telemetering requirements. Compared to the subcarrier channels system,

the PDM/FM facilities permit the use of a relatively large number of

channels, but only at lower frequencies. Figure 5.3-4 is a block diagram

of the PDM/FM system.

Typical FM/FM Telemetry:

The FM/FM telemetry system is a frequency division, multiplex

type device. Subcarriers of different frequencies modulate an r-f carrier
and the subcarriers are frequency modulated by the intelligence. The

channel capabilities of the system can be increased by using the commutation
method to modulate the carrier frequency with combinations of the sub-

carrier frequencies. Subcarrier frequencies for FM/FM telemetry are selected
from a chart compiled by the Inter-Range Instrumentation Group (IRIG).

Figure 5.3-5 is a block diagram of the FM/FM telemetry system.

Typical FM/AM Telemetry:

The FM/AM telemetry system is a frequency-modulated-subcarrier,

amplltude-modulated-carrier type facility. Sixteen converters, each of a
specified frequency, receive and convert data for the individual channels

of the tape recorder. Channels 1 through 14 are converted to 5 kc; channels
15 and 16 are converted to 10 kc. The converted channels are then recorded

on separate tracks of tape recorder. Figure 5.3-6 is a block diagram that is

representative of FM/AM systems.
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Typical X-Band Telemetry:

Figure 5.3-7 illustrates the X-band telemetry receiving system in
simplified block diagram form. Table 5-12 list the characteristics of this

system.

5.3.3 DOVAP Telemetry Tracking System.

The DOVAP system functions as a combined telemetry and tracking

system. A 38.031-mc transmitter located at the launch site emits a CW

signal that is received by the rocket, and by each of four widely spread

DOVAP stations. A DOVAP transponder in the rocket doubles the frequency
of the received signal and ret_ns_ts to the DOVAP stations. At each
DOVAP station the 38.031 -mc signal from the launch site transmitter is

received, doubled in frequency, and mixed with the signal from the rocket.
The frequency difference between the two signals results in an audio fre-

quency doppler signal whose frequency is proportional to the time rate

of change of the transmitter-rocket-receiver path-length. Tape recordings
of the doppler signal, along with precision timing are made at each DOVAP

station. At the DOVAP Master Station, simultaneous recordings of the

doppler signals from each DOVAP station are made, along with recordings

of DOVAP telemetry. Accurate trajectories can be obtained from the
doppler data.

The telemetry receiving stations consist of amplitude modulated

recelverss discriminators, mulfichannel magnetic oscillographs, and

magnetic tape recorders. Circularly polarized helical antennas, fixed in
both elevation and azimuth are used with the receivers.

The rocket-borne DOVAP telemetry subcarrier oscillator consists of

a single channel frequency modulated positive grid balanced multivibrator
having a center frequency of 30 kc/s, and a frequency deviation of plus or

minus 40% of center frequency for an input signal level of from zero to plus

five volts. Negative voltage excursions of the subcarrier oscillator key the

transponder radio frequency carrier off for one half the period of the sub-

carrier frequency. The telemeter is an integral component of the DOVAP
transponder.

A representative DOVAP telemetry record is shown in Figure 5.3-8.
Typical shroud-type DOVAP antenna radiation patterns, are shown in Figures

5.3-9 and 5.3-10. The nearly omnl-directional pattern in the plane of the

loop is an important feature of these antennas.
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FIGURE5.3-7 X-Band Telemetry Receiving System, Block Diagram
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TABLE5-12\X-Band Telemetry System Characteristics

Receiver

Frequency range

Sensitivity
Noise figure
I-f bandwidth
Modulation

Recording System

Tape recorder
Recorder channels

Display

Detected video
PDM raster

Single PDM channel

Antenna

Type

Radiating element
Beamwidth
Gain

Polarization

Azimuth scan

Elevation scan

Maximum tracking rate

8500 to 9600 mc

-95 dbm

Approximately 9 db
10 mc

PDM/AM

100-kc response

PPM, PDM, azimuth angle error,

elevation angle error, AGC voltage,

timing and voice

Oscilloscope

Oscil Ioscope
Pulse-duration (interval counter)

Metal plate lens
Monopulse type, four feedhoms

Approximately 1.2 ° (6-clb points)
40 db

Horizontal, vertical linear, or circular
360 ° continuous

-10' to +180 °

40 ° per second (azimuth and elevation)
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FIGURE 5.3-9

Pattern and Polarization in Plane of Loop

SHROUD - TYPE DOVAP ANTENNA RADIATION PATTERN
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Pattern in Plane Perpendicular to Plane of Loop Polarization in Plane of Loop

FIGURE 5.3-10 SHROUD - TYPE DOVAP ANTENNA RADIATION PATTERN
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5.3.4 AN/GMD - (x) Telemet W and Tracking Systems.

5.3.4.1 General.

The AN/GMD - (x) ground-station equipment has been

developed and standardized for radiosonde data acquisition. The AN/GMD-1,

which is common at many of the military weather stations, not only receives
the meteorological data but tracks the airborne transmitter in azimuth and

elevation angles. For radiosonde measurements altitude is determined from

the pressure measurement with this equipment. This technique is not
accurate enough at rocketsonde altitudes and radar must be used. The

AN/GMD-2 performs the same functions as the GMD-1 with the addition

of the capability of measuring slant range. The feature is quite important
for the rocket use since it eliminates the need for radar tracking. The azimuth

and elevation slewing rates of these equipments are not fast enough to uptrack

the rocket systems from lift off with most of the existing missile range site

geometries. However, intercept methods of acquisition soon after lift off
have been routinely employed with a large degree of success. The AN/GMD-4

has been developed to upgrade the GMD-2 system by employing coarse rang-

ing to eliminate the slant range ambiguity problem and to provide automatic

data processing of the received meteorological data. The GMD systern._

appear to be adequate for meteorological rocket work. if a faster data trans-

mission response is required for advanced probe applications, the modulation
rates can be increased or FM may be employed. Both of these techniques

have been used. The tracking accuracies appear to be adequate for most

meteorological rocket applications as a rather good agreement has been
obtained with AN/FPS-16 radar tracking data.

The design philosophy of the GMD equipment has been to

minimize the cost of the airborne instrumentation. Since approximately 400,

000 radiosondes are flown each year, it has been quite important to keep as

much of the required complexity and cost of the telemetry systems as possible

in the ground station equipment. Therefore, the airborne instruments or

sondes are fairly simple to design and mininal cost. This advantage has to

some degree been passed on to the current rocketsonde instruments for they

basically are copies of the equivalent radiosondes as far as the electronic

circuitry is concerned.
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For the next few years at least the GMD system appears
to offer the greatest advantages in routine meteorological rocket applications

because the ground equipment is standard weather station equipment,
telemetry is accomplished at the assigned meteorological frequencies, the

payload instrumentation is simple and low in cost and tracking data can be

obtained so that the requirement for radar tracking can be eliminated.

5.3.4.2 Ground-Station Equipment.

The GMD ground-statlon equipment consists of either the

AN/GMD-1, the AN/GMD-2 or the AN/GMD-4 as described in the

foliowi ng sections.

5.3.4.2.1 Rawin Set AN/GMD-1 •

The Rawin Set AN/GMD-1, together with its

associated equipment1 has been the standard ground equipment for tracking
of balloon-borne atmospheric probes since 1949. This transportable radio
direction finder was designed to track automatically a balloon-borne radio-

sonde transmitter (frequency range 1660-1700 mc). Its major units include

a parabolic antenna with a pylon scanner assembly, a pedestal which supplies

support and rotation machinery for the antenna in elevation and azimuth, an
antenna control which energizes and controls the tracking machinery, and

a receiver which detects and amplifies both the data signal and the tracking

error signal from the scanner.

No modifications of the basic AN/GMD-1 are

necessary to permit its use in tracking the Arcas-borne meteorological instru-
ments in current use. At several sites receiver sensitivity has been increased

15 decibels through the use of a tunnel dlobe or parametric pre-ampllfier to

permit tracking of the dart instruments. The elevation slew rate is sufficient
to follow the Arcas sounding rocket from launch to apogee when the tracking

site is located approximately one-half mile from the launching pad. The dart
instruments can likewise be tracked shortly after launch since their velocity in

the first 151000 feet is too great for tracking from the launch site.

The Recorder AN/TMQ-5 is the standard data

recording device supplied with the AN/GMD-1 system and is used for the

recording of temperature information from the rocket-borne transmitter. The
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demodulatorstage converts the data pulse frequency (0-200 pps) to a DC
level which is recorded on 10-inch chart paper usually at a rate of one

inch per minute with an accuracy of +- . 5 cycles per second.

The GMD-l"ground equipment consists of a

tracking dish antenna and receiver unit, a control recorder unit and a
TMQ-5 chart recorder as shown in Figures 5.3-11 and 5.3-1 2. Other

versions of the system contain various au_dliar._, equipment such as ranging
transmitter and various automatic data equipment.

The antenna and receiver unit consists of a

seven foot diameter dish1 mounted on a pedestal which contains the

receiver and antenna motor controls. The dish may be operated in either

automatic or manual track mode locally at the pedestal or from controls

on the recorder, which is usually remote from the pedestal. The antenna

system consists of a parabolic reflector, an eccentric cup which is rotated

by a drive motor and hollow drive shaft, a dipole antenna, and a trans-
mission line. The rocketsonde transmitter transmits a pulse-modulated

radio-frequency signal (1680 Mc). The antenna lobe (received signal

intensity pattern) rotates slowly. When the rocketsonde is in line with
the electrical axis of the antenna reflector, the signal intensity of the

dipole has a constant value; when the rocketsonde drifts to a point off
the electrical axis of the antenna reflector, the intensity of the signal at

the dipole varies with the rotation of the eccentric cup. Some of the
radio-frequency energy from the transmitter is received by the parabolic
reflector and reflected to the dipole antenna. As a result, the amplitude

of the radio-frequency signal at the dipole takes the shape of a modulated
sinusoidal wave. The relative phase and amplitude of the sinusoidal mod-

ulation is indicative of the angular distance of the rocketsonde transmitter
from the axis of the antenna.

In the receiving system, the modulated wave

is beat against the output of the local oscillator to produce a 30 Mc inter-

mediate frequency which retains the pulse modulation and amplitude varia-

tions. The intermediate-frequency signal is then amplified and detected
and the demodulated signal (30 cycles/sec sine wave and pulses) is passed

to the antenna positioning system and to the meteorological data transmission

system. The receiving system also contains an automatic frequency control

(AFC) circuit to maintain a constant 30 Mc intermediate frequency and a
service meter for checking various currents and voltages present in the Rawin

set.
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The antenna positioning system receives the

detected sinusoidal signal from the receiving system. It rejects the pulse

modulation and then amplifies and compares the sinusoidal content with
two reference voltages from the reference voltage generators. These

reference voltages correspond to the elevation and azimuth components of

the position of the antenna axis. This results in two dc voltages, one for

elevation and one for azimuth. The magnitude and polarities of these

voltages are indicative of the magnitude a._d direction of the angular diff-

erence of the radiosonde with respect to the electrical axis of the antenna.
The azimuth error voltage is applied to the azimuth drive to position the

antenna reflector in azimuth. The elevation error voltage is applied to the

elevation drive to position the antenna reflector in elevation. Sincethe

position of the rocketsonde is constantly changing, the azimuth and eleva-
tion drives are constantly positioning the antenna reflector to track the
rocketsonde. Error voltages can also be introduced so as to track the rocket-

sonde manually.

The elevation and azimuth angles of the antenna

are indicated and recorded by the Rawin set and are recorded at successive
instants of time.

The receiver covers a band from 1655 mc to

1705 mc and will operate in either AM or FM mode. AM mode is utilized by

the current dart system. The modulation type, when viewed from the carrier,

is PDM-AM in that the intelligence is impressed upon the carrier in the
form of negative pulses of sufficient magnitude to exceed 100% AM and hence

terminate the carrier for the duration of each pulse. The repetition of the

carrier terminating pulses contains the data. This technique results in pulses
of carrier frequency energy of varying duration as a function of the data

transmitted. The incoming signal is mixed with the local oscillation frequency

in a wave guide, and a 30 mc IF is detected in the receiver which reconstructs

the chain of pulses originally impressed upon the carrier. These pulses are
then differentiated, and the resulting positive pulse from the trailing edge

is used to trigger a multivibrator which results in a train of pulses of very

constant amplitude and duration. These pulses are fed into a self-balancing

servosystem which positions a pen on a strip chart recorder. The recorder pin

is displaced as a function of pulse repetition frequency and can accommodate

rates up to 200 pps. Various auxiliary amplifier systems have been used to
enhance the incoming signal and, of these, the parametric amplifier seems to

be the most satisfactory.
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The meteorologicaldata transmission system

receives the detected signal from the receiving system. It then rejects the

sinusoidai modulation for antenna positioning, shapes and amplifies the

meteorological pulses and passes them to the meteorological recorder. The

meteorological recorder (which is not an integral part of the Rawin set) con-

verts the pulses, whose rate is determined by the sensor resistance, into a

graphical representation of sensor resistance as a function of time. More
detailed information concerning this receiving system can be found in the
technical manual concerning the receiver (Rawin Set AN/GMD/1A).

The meteorological recorder AN/TMQ-5 is

used in conjunction with the AN/GMD-1 and AN/GMD-2 receivers. A

block diagram of the recorder is shown in Figure 5.3-13. The variable-

rate pulses from the receiver are fed to the frequency converter of the
recorder which converts them to a dc voltage. The value of the dc voltage

at any instant is proportional to the pulse frequency which created it. This
dc voltage excites a servo system that positions a pen whose displacement

from its zero position on a calibrated chart is again proportional to the pulse

frequency which in turn was determined by the value of the temperature
sensor resistance in the rocketsonde.

Detailed information concerning the meteorological

recorder can be found in the technical manual (Radiosonde Recorder AN/TMQ-5")

concerning the recorder. Specifications for the AN/GMD-I'are presented
in Table 5-13.

5.3.4.2.2 Rawln Set AN/GMD-2.

The GMD-2 is essentially the same as the GMD-1

with the addition of a slant range determination system. In fact a number of
GMD-1 sets have been converted to GMD-2 sets by adding a 403 mHz trans-

mitter and a ranging modulation discriminator. A block diagram of the

AN/GMD-2 is presented in Figure 5.3-14. The essential difference between

this and the GMD-1 system is the addition of 403 mHz transmitted signal

containing an 81.94 kHz sine-wave modulation to the airborne instrument.
The airborne instrument contains a 403 mHz receiver which accepts the ground-

station transmitted ranging signal, detects the 81.94 kHz modulation and fre-

quency modulates the airborne 1680 mHz transmitter at the 81.94 kHz rate.
Thus the airborne instrument operates as a transponder in addition to a data tele-

metry transmitter. The meteorological data is AM pulse modulated as in the case

of the GMD-1 system.
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TABLE 5-13

AN/GMD - I SPECIFICATIONS

R-F System

Scanning
Antenna
Reflector

Spinner motor

Spinner generator

Conical

Dipole
Parabolic

! nduction

2 phase, self-excited; 15 volts, 30 cps

Receiving System

Type
Normal frequency

Intermediate frequency
Frequency control
Local oscillator

Local oscillator

frequency
I nput impedance
Data

Modulation
Bandwidth

Superheterodyne
1680 mc
30 mc

AFC or manual

Tube type

1650 mc

50 ohms

Error signal
FM or PM
0.8 mc or 2.5 mc

Antenna Positioning System

Tracking
Drive motors

Tachometer generators

Automatic, local manual, remote manual

60 volts dc, 1.4 amperes, 1/20 hp at

500 rpm
2.1 volts dc at 100 rpm

Position Indicating and recording S/stem

Synchro transmitters

Synchro receivers

Recording
Printer motor

Type IV, single phase, self-synchronous;
115 volts_ 60 cps

Type V_ single phase_ self-synchronous;

115 volts, 60 cps

Tape (digital imprint)

Synchronous type; 115 volts, 60 cps
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When the ranging signal is received at the

ground-equipment, the 81.94 kHz modulation is detected and its phase is

compared with the transmitted signal to determine the time for a round trip,
i.e., from the ground station to the sonde and back to the ground station.

One complete phase shift of the ranging modulation is equivalent to 4,000

yards, therefore, a slant range of 2, 000 yards.

The GMD-2 system is currently in operation at
a limited number of locations with both balloon sondes and rocket sondes.

The main disadvantage with the system is that the range data can be ambiguous
if the signal is lost for an appreciable period of time. The ranging modulation

places the sonde range within a range of 2,000 yards but does not indicate

which 2,000 yard increment it is unless an accurate count of completed phase
shifts is made from a known point in space or launch. A coarse ranging pro-
vision can be added to the GMD-2 as a modification. This coarse ranging

modulation determines the slant range with an accuracy sufficient to determine

the 2, 000 yard increment. The regular ranging modulation is then used to
determine the accurate slant range.

The wind error from GMD-2 data is a function

of the slant range and averaging period. Typical wind erros are presented in

Figure 5.3-15.

5.3.4.2.3 Rawin Set AN/GMD-4.

The GMD-4 is essentially the same as the GMD-2

with the addition of a coarse ranging facility and automatic data processing
for both the tracking data and the meteorological data. A simplified block

diagram is presented in Figure 5.3-16. When signal dropouts or temporary
loss of signal from the airborne instrument occur, the ranging modulation is

momentarily interrupted and then started again. The time of arrival of the

reinstated signal places the slant range data into the proper 2, 000 yard
increment and the normal 81.94 kHz modulation is used for the required

accurate determination. Range rate data recording is also improved over the

original GMD-2.

5.3.4.2.4 NASA Radiosonde ADP System.

A number of schemes for automatic and semi-

automatic processing of radiosonde data have been devised with varying degrees
of success. An operational automatic data processing system was developed for

use with the AN/GMD-2 Rawln Set. This system was supplied by the Bendix
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Friez Instrument Division to NASA/MSFC and installed at the Huntsville

facility in September 1963. The system was designed with a number of

functional systems utilizing standard "off-the-shelf" meteorological

equipment. These items required only minor modifications, in some cases,

to provide system interface. The remaining units which were wholly des-
igned and fabricated at Bendix Friez include the tracking data Digitizer,
the Converter-Detector and the ControI-Decommutator. The later two

units contain the logic and control circuits essential for automation of

the met data. A data processor commands a printing summary punch to
produce punch cards as desired.

The AN/AMQ-9 radiosonde unit is utilized

with the following telemetry modifications:

1. A special commutator designed to

include 1/2-second reference s_mer_t preceding each temperature and
each humidity segment. These reference identifiers clearly indicate a

change from one sensor to the next, so that close or equal signal ratios

are not confused, and that noise or signal dropouts are not mistaken for
frequency changes.

2. Since the slant range is desired in

meters, the ranging modulation frequency of the sonde is changed from

81.94 kHz. Modifications of the Rawin set transmitter and comparator

are necessary to be compatible with the frequency change, and the data

processor is used to handle the printout, the visual indication and the
monitoring of slant range data obtained from the Rawin set.

The difficulty in recognizing the reference

frequency is the spread of 40 pulses per second allowed by the specification
and the fact that zero humidity can produce a pulse rate just 15 pulses per

second below the actual reference frequency. To attempt to recognize

reference as any frequency above 170 pulses per second would erroneously

detect a zero percent humidity frequency (175 pps) of a radiosonde having
a reference frequency of 190 pulses per second. To eliminate this difficulty,

the automatic data processor stores and updates the reference frequency

continuously during the flight. The reference frequency can then be automatically

detected as that frequency within 10 cycles per second of the stored reference.
This scheme will be workable for all normal shifts in the radiosonde blocking
oscillator.
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The measurement of the temperature and
humidity data is made in the voltage realm with 0.905 volts correspond-

ing to 190 cycles per second. The linear conversion to voltage is

accomplished in the Converter-Detector unit. Referring to the block

diagram in Figure 5.3-17, the output of the frequency to DC voltage

converter is connected to the signal loss detector, the "reference detector,

and the A to D Converter. The A to D Converter is a digital voltmeter-
ratiometer with front panel decimal display. This unit measures the

reference frequency (voltage), the temperature ratio, and the humidity
ratio. The "signal loss detector" will actuate if the frequency falls below

10 cps (0.047 VDC) for more than one half second. The "reference

detector" will actuate if the incoming frequency is within 10 cps of the
stored reference frequency.

The tracking of the radiosonde commutator

is accomplished by a stepping switch. Each time the "reference detector"

is actuated, the stepping switch is advanced. The stepping switch "home"

position corresponds to the reference segment of the commutator with the

remaining five positions corresponding to the temperature and humidity

segments. The stepping switch therefore keeps the synchronism with the
radiosonde commutator. When the "reference detector" is actuated longer

than 1.5 second (as it is during the 3.9 second reference frequency trans-

mission) the stepping switch will "home" unless it is already in the "home"

position. A word description of the sequence of events, starting with the
reference frequency, will show the signal flow through the simplified block

diagram. The reference detector actuates for 3.9 seconds and immediately

advances the stepping switch to "home" from the last temperature position.
After 1.5 seconds, the "home detector" generates a home command which will

reestablish synchronism if the stepping switch had fallen out of step. After

2.2 seconds total delay, a measure command is sent to the A to D Converter.

The mode command of the A to D Converter is connected through the stepping

switch to the VOLTS mode. The DC input (reference frequency) is measured;

the decimal output is converted to binary ceded decimal (BCD), and appears

at the BCD-to-Analog Converter input. Within 0.33 second after the A to D
Converter receives its measure command, it generates an end-of-measure

command which goes through the "signal loss detector," the stepping switch,

the "reference quality: circuit, and the "reference detector". The command
then causes the BCD-to-Analeg Converter to store the data appearing at its

input. The "reference quality" circuit will inhibit storage of the reference

frequency if it is more than 5 cps below the previously stored reference. This

guards against storing the reference frequency during even a slight signal

dropout.
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There is no reference identifier preceding

or following the reference data transmission. The stepping switch advances

to the first temperature position after 3.2 seconds total delay (by means of
a circuit not shown on the simplified block diagram). At 2.2 seconds later

than the advance of the stepping switch, a measure command is sent to the
A to D Converter to measure the incoming temperature frequency (voltage).

Now the A to D Converter mode command is switched to "ratio" to measure

the DC input as a ratio of the reference voltage from the BCD to analog
converter, within 0.33 seconds after the A to D Converter receives its

measure command it generates and end of measure command which goes through

the "signal loss detector", and the stepping switch to the Temperature and

Humidity Translator Storage. The command causes the output of the A to D
Converter to be stored in the temperature section of the Temperature and

Humidity Translator Storage.

The stepping switch is advanced to the next,

or humidity, position when the first reference identifier actuates the
"reference detector". At 2.2 seconds after the stepping switch is advanced
a measure command is sent to the A to D Converter. This time the store

command appears on the "store H" line of the Temperature and Humidity
Translator Storage unit. The stepping switch is advanced each time a ref-
erence identifier is received until the long reference frequency is received

when the entire sequence described above is repeated.

In case one reference identifier is not received

due to a signal dropout the ControI-Decummutator contains an auxiliary advance

circuit which will advance the stepping switch. No measure command will be

generated since the "reference detector" will not have actuated. Synchroniza-

tion of the stepping switch with the radiosonde commutator is maintained, and

the temperature or humidity information punched out on the IBM card is the

previously stored data.

The azimuth, elevation, and slant range data

from the pedestal are in the form of synchro--signals. By means of a selector
switch on the Control Decummutator front panel, the operator switches to the

desired pedestal and control recorder. Reed relays within the GMD Junction
box connect the Data Processor to the synchro-signals. In the Digitizer, the

synchro signals position digital encoders and frontal panel indicators by means
of servo-motor drives. The digital outputs are stored in their respective Trans-

lator Storage units on command from the Timer. Azimuth, elevation and slant

range data are stored simultaneously to be punched out on the card identified

with the proper elapsed time.
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The ADP system is designed to give the
operator the ability to observe the output in printed form on the IBM cards,

to observe the meteorological data on the A to D Converter, and to

observe the azimuth, elevation and slant range data. The printed card can

be compared with AN/TMQ-5 record _c ensure that the meteorological data

are being processed properly. In the event that the IBM 526 printing
summary punch would hang up due to a damaged card or some other reasont

the raw data will be available from three paper records. The azimuth

and elevation angles are printed (with time) by the C-577 Control

Recorder. The slant range and elapsed time are printed by the Auxiliary

Slant Range Printer, and the meteorological data are recorded by the
AN,/TMQ-5 Meteorological Recorder.

5.3.4.3 Rocketsonde Instrumentation.

Although twenty-three rocketsonde instruments are listed

in the "Data Report, Meteorological Rocket Network Firings, World Data

Center A", (see Table 5-14), only five of these instruments are currently
used on an operational basis. Four of these five instruments are used with

GMD equipment and are described in the following section.

5.3.4.3.1 Stratospheric Temperature Sonde (STS-1)

The STS-! instrument in Figure 5.3-1 8 has been

developed for the Arcas by Ballard, et. ai.t at WSMR as an improved version
of the Delta I for operation with the AN/GMD-1 ground-station. The

improvements have included the reduction of power in the measuring circuit,

the use of a thin-film MylQ thermistor mount and a better matching of the
sensor input resistance calibration of the sonde with the thermistor calibration

to achieve better accuracy over the full temperature range. A circuit diagram
of the STS-1 is presented in Figure 5.3-19. The temperature data measurement

circuit consists of a current amplifier transistor which feeds the amplified
thermistor current into a unijunction relaxation oscillator to form data or ref-

erence pulses at a rate depending upon sensor or reference resistance. The
pulses are fed to a buffer amplified transistor which AM modulates to cut off

a standard pencil triode 1680 mHz cavity-oscillator radiosonde transmitter

tube. A solid-state switching circuit and a relay are employed to switch to

and from the temperature sensor and reference resistor.
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TABLE 5-14

ROCKETSONDE INSTRUMENTS

I NSTRUMENT STATUS

Delta

DMQ -6

Gamma

Borg -Warner
Gamma !1
Arcasonde

PMR II

Arcasonde IA *

Resistance Wire
Metrosonde

Servo-mech Sonde (SMI)
Arcasonde iI-A

DMQ-9 *

Arcasoncle il
Datasonde *

Delta (T. F.)

Stratospheric Temp. Sonde (STS)*
Mini Loki (S.T.S.M.L.)
Echosonde
Solid State Arcasonde

Hasp WOX I-A *

Hasp WOX 3-A

Obsolete
Obsolete

Obsolete

Obsolete

Obsolete

Obsolete
Obsolete

Operational in Arcas (USAF)
British Skua

Obsolete
Obsolete

Experimental

Operational in Arcas (USAF)
Obsolete

Operational in Loki Dart (USAF, USA, USN)
Obsolete

Operational in Arcas (WSMR)
Obsolete
Obsolete

Developmental

Operational (USN)
Obsolete

Note: * Operational Instruments
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FIGURE5.3-18 Stratospheric Temperature Sonde STS-1
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The transmitter oscillates at a nominal fre-

quency of 1680 megacycles and generates approximately 500 milliwatts

of power at a plate voltage of 120 volts. This gives an extreme range of
approximately 160 km for small quadrant elevation angles when the trans-

mitter is used in conjunction with the Rawin receivers AN/GMD-1 and
AN/GMD-2. The antenna is a brass dipole above a copper, conically

shaped ground plane and serves to match the tube impedance to that of
the antenna.

5.3.4.3.2 Arcasonde - 1A.

The Arcasonde-lA as shown in Figure 5.3-20

has been developed by Atlantic Research Corporation for use with the Arcas

rocket as an AN/GMD-1 type instrument. This instrument includes a thin-

film Mylar therm|stor mount, a replaceable dry-cell power pack, a block-

ing oscillator data circuit and an electronic commutator. The Arcasonde-lA

telemetry package consists of an integral-cavity-oscillator transmitter,
operating in the 1660-1700 mHz band, modulated by a blocking-oscillator-

type pulse generator at rates between 10 and 205 pulses per second. An

electronic commutator provides a reference pulse rate of six seconds duration
after each 20 secnnds of thermistor dwell. The instrument is modular in

designing; complete functional units can be interchanged or replaced in the
field.

The instrument components are shown in

Figure 5.3-21 and a simplified block diagram is presented in Figure 5.3-22.

Arcasonde 1A specifications are presented in Table 5-15.

5.3.4.3.3. AN/DMQ-9.

The DMQ-9 instrument, as shown in Figure 5.3-23,

has been developed by USAF-CRL for use with the Arcas rocket as a GMD-2

type transponder instrument.

The basic instrument package is a 3.3 Ib instru-

ment which consists of a 403 megacycle self-quenching super-regenerative

receiver, a 1680 megacycle radiosonde transmitter, receiving and transmitt-

ing antenna assemblies, motor actuated sensor switches, electronic circuitry

to properly modulate the transmitted carrier and a battery power supply.

The 403 megacycle receiving antenna system is

located directly above the power supply module. Four 1/2 inch wide steel

strips making up the receiving elements are eyeleted to a glass epoxy disc
and retained in a folded position by the nose cone. After the nose cone is
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FIGURE 5.3-20 ARCASONDE 1A Instrument & Nose Cone
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1. Base

2. Screw

3. Battery Housing

4. Screw

5. Battery Pack

6. Spacer

7. Transmitter Encapsulated

8. Thermistor

FIGURE 5.3-21

ARCASONDE 1A Instrument Components
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TABLE 5-15

ARCASONDE - 1A SPECIFICATIONS

Height

Maximum Diameter

Weight

Transmitter Type

Frequency

Modulation

Power Output

Antenna

Temperature Sensor

Power Supply

Battery Life

29.6 cm (11.66 in)

1 1.1 cm (4.38 in)

2.04 kg (4.5 Ib)

Pulse-modulated

cavity osci I lator

1660-1700 mH z

10 - 205 pps

300 mW

Helical Slot

10-mil coated bead thermistor

Dry battery pack

3 Hours (at 20o C)
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SENSOR MouNTING PLATE

SENSOR SCANNIN6 UNIT

ETCHED CIRCUIT
1680 MC ANTENNA

ELECTRONIC MODULES

BATTERY PACK

)OWER SUPPLY MODULE

_00 MC ANTENNA
ELEMENTS

FIGURE 5.3-23 AN/DMQ-9 Rocket Instrument Package
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discarded at apogee, these elements open to a position normal to the

longitudinal axis of the package. The battery pack is clamped against

the receiving antenna deck. Access is provided to the battery area by

removing the two screws by which the battery holder is attached to and
forms an integral part of the structure.

The next section of the package consists of
three modules: the 1680 megacycle cavity oscillator (encapsulated in

foam plastic), the self-quenching super-regenerative receiver, and the

blocking oscillator and 81.94 kc slant ranging signal amplifiers. The

last two modules are shielded against r.f. interference. The lower disc

to which these modules are attached comprises the etched circuit 1680

megacycle dipole antenna.

A scanning switch subassembly, consisting

of a motor driven cam that actuates two snap-action switches, is located

immediately above the electronic modules. The motor shaft rotates at
3 rpm and the four lobe cam is of such design as to alternately switch between

reference and temperature with a dwell of approximately 4.5 seconds on

either, plus and "off" time of approximately 0.5 second preceding each

switching operation.

A sensor mounting plate is located at the forward

end ot: the instrument package to accommodate a plug-in type sensor
assembly.

The electronic circuitry consists of a 403 mHz
self-quenching super-regeneratlve receiver which receives and detects the

81.94 kHz amplitude modulated carrier from the Rawin Set AN/GMD-2

transmitter. The 81.94 kHz signal is in turn retransmltted on a 1680 mHz

carrier (FM) to the Rawin Set where phase comparison of the outboard and
incoming modulation permits direct measurement of slant range. Switch-

ing between the meteorological sensor and reference resistor is accomplished

with cam actuated snap-action switches and the signals derived therefrom

are used to frequency modulate the 1680 mHz transmitter at a rate of
approximately 20 to 200 cycles per second. Power for the sonde is obtained

from a silver oxide-zinc battery pack in conjunction with a DC to DC
converter.

A block diagram of the circuit shown in

Figure 5.3-24. Figure 5.3-25 is a schematic diagram of all the components
inEicated in the following detailed description.
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Self-Quenching Super-regeneratlve Receiver.

The 403 mHz signal received by the sonde is
inductively coupled from the antenna to the input tank of the super-reg-

enerative detector Q 1. Trimmer capacitor C2 is the only adjustment

necessary to tune the receiver to the specific operating frequency of the
Rawin Set transmitter. The quench voltage, a saw-tooth signal approx-

imately two to three volts in amplitude at the collector of Q 1 and having
a frequency of approximately 400 kHzt is generated within the detector

stage itself. This frequency is determined principally by C5 and the

distributed parameters of the circuit. The effect of the quench signal is
to alternately drive the detector into and out of self-oscillatlon.

The initial portion of the self-oscillating

condition may be considered a sampling period at which time the amplitude
of the 81.94 kHz modulation on the 403 mHz carrier influences the per-

formance of the stage during the remainder of that particular quench cycle.
Thus, over a number of quench cycles the collector current of the super-

regenerative detector consists of components at the modulation frequency
(81.94 kHz), the quench frequency (400 kHz) and the carrier frequency
*403 mHz). These latter two frequencies are appreciably attenuated

from the desired 81.94 kHz signal by means of components L2 and C8, and
L5 and C10 respectively.

81.94 kHz Amplifiers and Modulator.

The super-regeneratlve detector is followed with
an amplifier, Q2, having an output tank, C12 and L6, tuned to resonance

at 81.94 kHz. The overall gain of this stage is approximately 15. A portion

of the 81.94 kHz signal appearing across the tank is tapped off and luther

amplified by a factor of approximately 10 in Q3. No further amplification
takes place through Q4 which serves as an impedance matching element
between Q3 and the _ransmitter modulator QS.

The modulator, an emitter follower is parallel
with cathode resistor R17 of the 1680 mHz cavity oscillator, changes the
effective cathode bias of the r.f. oscillator as a function of the 81.94 kHz

signal. As a resultt the oscillator produces a frequency modulated carrier

having a deviation of approximately 175 kHz for the 81.94 kHz ranging
signal at threshold 403 mHz input to the sonde receiver.
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Blocking Oscillator.

The blocking oscillator, Q7, is a transistorized

(2N2905A PNP silicon epitaxial), relaxation oscillator which utilized half of
the primary windings of transformer T1 for feedback. The other half of the

primary is connected to the 1.5 volt supply. The combination of low supply
voltage and high reference resistance, R22, in the sensor loop, results in

a maximum power dissipation in the temperature measuring thermistor of

approximately 6 microwatts. Reference frequency is a function of the

inductance of the transformer, the reference resistor and capacitor C19.
If required, padding capacitor C20 is added to give _ reference frequency

of approximately 190 cycles per second.

Buffer stage Q6, connected as an emitter

follower isolates the blocking oscillator from 1680 mHz oscillator. The out-

put of this stage, approximately 0.75 volts peak negative pulses about 85
microseconds wide, is applied to the grid of the transmitter to shift the

carrier frequency at the repetition rate generated by the blocking oscillator.

1680 mHz Transmitter.

The 1680 mHz transmitter V1 is, with the

exception of a sub-minlature coax cable fitting for the antenna output jack

a standard 6562 single tuned cavity oscillator as used in other radiosonde
applications. Grid resistor R18 is selected to give a plate current of

approximately 30 ma. The transmitter is frequency modulated by both the
81.94 kHz ranging signal and meteorological intelligence as described

above. To prevent environmental factors from affecting the transmitter,

such as severe frequency shifts or complete failure, the tube is potted

in a foam-in-place resin.

Power Supply.

The primary power source for the instrument consists

of four Eagle-Picher type 1515 silver oxide-zinc cells that will provide approx-

imately three hours of operation. A freshly activated battery pack has an initial

output voltage of about 7 volts which decreases to 6 volts after the first few
minutes of use. The full 6 volts potential is used for the transmitter filament,

the switching motor and as the input to a DC-DC converter. A 1.5 volt connect-

ion feeds the blocking oscillator. A two-pole, double-throw power switch is

provided.
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The DC-DC converter suppliesthe operating
voltages for the remainder of circuitry. Oscillation of the transistorized

converter is initiated by starting resistor R23 in the otherwise symmetrical

configuration. The frequency of oscillation is approximately 1 kHz as

transistors Q8 and Q9 alternate operation in an on-off condition. Feed-

back is provided by the base to emitter transformer windings. The square
wave voltage produced by this circuit is stepped up by the transformer and

the output is rectified by the full wave bridge consisting of CR1, CR2, CR3

and CR4. Final filtering by C25, R26 and C26 provides a substantially

rlpple-free plate supply of approximately 118 volts which is used for the
transmitter directly and also as the source from which zener diode VR 1 pro-

vides a nominal 10 volt supply for the receiver, 81.94 kHz amplifiers and

buffer stages. Filter components k7_ C28 and C29, mounted on the rear of
the receiver case_ attenuate DC-DC converter noise on the 10 volt line.

To improve the stability of the receiver and to

assure satisfactory operation of the super-regenerative detector stage with
normal variations in circuit parameters, the supply voltage to the receiver

was increased from 6 volts to approximately 10 volts prior to the final

series of flight tests. The higher voltage was obtained with a zener diode

voltage regulator circuit operating from the nominal 115 volt B+ generated
by the DC-DC converter.

Antennas.

The receiving antenna is a configuration of

four, half wavelength elements spaced 90 degrees apart on the mounting

board. These elements feed half wavelength segments of sub-miniature

coaxial cable in such a manner as to produce the equivalent effect of

two mutually perpendicular dipole antennas.

The transmitting antenna is an etched circuit,
centerfed dipole made up of two 152° segments of copper - one on each side

of the base material. A length of sub-minlature coaxial cable connects the

radiating elements to the 1680 mHz oscillator.

- 191 -



5.3,,4.3.4 Datasonde.

The Datasonde as shown in Figure 5.3-26 is
a miniature 1680 mHz instrument which has been designed for the Loki Dart
and is operationally used with the GMD-1.

The instrument is 13 ounces in weight, 11.1
inches in length and 1o1 inch in diameter, with the antenna at the forward

end and the sensor at the aft end. The electronic system and batteries are
enclosed in a thin phenollc-flberglass tube, and all voids are filled with an

encapsulation compound. The electronics are solld-state except for the
standard pencil tube triode cavity oscillator transmitter tube used for

1680 mHz radiosondes. The data modulation circuit consists of a unijunction

relaxation oscillator. The power supply consists of a rechargeable nickel-

cadmium battery and a DC-DC converter. Solid-state switching circuits

are employed for switching between data and reference channels°

The Datasonde employs the thin film mylar
loop thermistor mount which has been developed by Space Data Corporation

specifically for this instrument° A rather unique feature of the Datasonde

design is that the antenna of the instrument energizes the nose tip of the
dart to obtain an uptrack signal during vehicle ascent°

Flight tests of the Datasonde instrument have

been conducted by USAF-CRL to determine the telemetry accuracy. Pre-
cision resistors were flown instead of the thermistor. The telemetered

resistance values were compared with the laboratory values to determine

that the telemetered accuracy was within the equivalent of +- 0°5 ° K
over approximately ten flight test units° This error estimate includes errors

in the ground-equlpment and in the reading of the AN/TMQ-5 recorder
chart.

5.3.4.4 Miscellaneous Instruments.

The Arcasonde-2B transponder instrument has been devel-

oped by Atlantic Research Corporation for use with the Arcas rocket and the

GMD-2. It is essentially similar to the AN/DMQ-9 which the Air Force
has standardized.

The Arcasonde-2B telemetry package consists of a 403 mHz

receiver to detect the AN/GMD-2 range signal and an integral-cavity-
oscillator transmitter operating in the 1660-1700 mHz band. The transmitter

is modulated by a blocklng-oscillator-type pulse generator at rates from

10 to 205 pulses per second° An electronic timer alternately samples a
stable reference resistor and the thermistor, with dwell times of six seconds

on each° A blanking circuit prevents pulsed data from modulating the
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FIGURE 5.3-26 DATASONDE INSTRUMENT CONFIGURATION
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transmitter for 0.5 seconds after each reterence or 0ata sample, permitting
use of the instrument with automatic data-handling equipment. The

instrument is modular in design; complete functional units can be inter-

changed or replaced in the field. The specifications are presented in
Table 5-16.

To the best of our knowledge the Arcasonde-2B _s not

being used operationally since the Air Force has standardized and is using
the AN/DMQ-9.

The Arcasonde 3 transponder instrument is shown in Figure

5.3-27. It was incorporated with the Denpro system to telemeter sensor

information from the ascending probe and to obtain a track without the need

for radar support. The Arcasonde 3 telemetry package is designed to
function during the ascent of the Arcas sounding rocket vehicle. Transmitt-

ing in the 1660-1700 mHz band of the standard meteorological telemetry

receivers, the package can process input from both variable voltage and

variable resistance sensing elements. Pulse repet[tion rates from 100 to

1000 pps provide higher resolution than the standard GMD sondes in tele-

metered data. Optional features include a 403 mHz receiver for slant
range measurement with the AN/GMD-2 Rawin set and a timing unit to

allow sequential sampling of several sensors. The Arcasonde 3 package

was designed to fit into the parachute canister of the standard ARCAS rocket
vehicle. Receiver antennas are stowed flush with the rocket's external

surface during the high-dray port|on of the flight and extended at a 45 °

angle in the upper atmosphere. The package is modular in design with

printed circuit intermodular connection. Complete functional units can
be interchanged or added in the field. External jacks allow use of a ground

power supply for prelaunch testing and standby. A block diagram is pre-

sented in Figure 5.3-28 and specifications in Table 5-17.

Resistance wire sondes have been flown by the British on

the Skua rocket and by the Japanese (Echo-sonde) on the MT-135 rocket.
Very little information is available on these sondes except that they tele-

meter at the 1680 mHz carrier frequency and are about the size of the

Arcasonde-lA. These sondes employ resistance wire instead of a thermistor

as the temperature sensor. Since the change in resistance of the wire with

temperature is very small, rather expensive preamplifiers (by American

standards) must be employed to boost the sensor signals from the microvoh
region to volts in order to modulate the telemetry transmitter.
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TABLE 5-16

ARCASONDE- 2BSPECIFICATIONS

Height

MaximumDiameter

Weight

TransmitterType

Frequency

Modulation

PowerOutput

Antenna

ReceiverType

Frequency

RFSensitivity

Antenna

TemperatureSensor

PowerSupply

Battery Life

29.6 cm (1 1.66 in)

11.1 cm (4.38 in)

2.04 kg (4.5 Ib)

Frequency - modulated
cavity oscillator

1660 - 1700 mH z

10 - 205 pps

300 mW

Helical slot

Super-regenerative
detector, self quenched

400 - 406 mHz

50 mV

Dipole

10-mil coated bead thermistor

Dry battery pack

2 Hours (at 20° C)
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FIGURE 5.3-27 Arcasonde 3
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TABLE 5-17

ARCASONDE 3 SPECIFICATIONS

Height

Diameter

Weight (including optional
receiver)

Transmitter Type

31.1 cm (12.25 in)

11.4 cm (4.5 in)

2.95 kg (6.5 Ib)

Frequency - modulated

cavity oscillator

Frequency

Modulation

Power Output

Antenna

Receiver (Optional) Type

Frequency

RF Sensitivity

Power Supply

1660-1700 mHz

100 - 1000 pps

300 mW

Two quarter-wave dipoles

Super-regenerative detector,

separately quenched

400 - 406 mHz

50 mV

20 siiver-zlnc cells, 28 VDC

- 198 -



5.3.5 AN/SMQ-1 Telemetry Systems.

5.3.5.1 General.

The AN/SMQ-1 systems operate at a carrier frequency of

403 mHz and employ pulse rate modulation as do the GMD systems.

However, instead of pulsing the transmitter off as in the GMD systems,

the modulation pulses the transmitter on through a pulse transformer thereby

eliminating the DC-DC converter of the GMD sonde systems. More important,

however, is the fact that the typical duty cycle of the pulses is from about
0.2 to 2.0%. Therefore, the SMQ airborne systems are turned on and

radiating only 0.2 to 2.0% of the time while the GMD systems are turned

on and radiating about 99.8 to 98.0% of the time during the relatively long

dwells between pulses. This means that the SMQ sondes can be made smaller

and lighter than the GMD sondes. This is a distinct advantage for improving

the ballistic coefficient of the rocketsonde decelerator systems, since in

addition to a decrease in weight more payload volume is made available to
the decelerator. Another advantage is that for a given signal strength at

the receiver site and a given slant ranger the required power radiated from

the sonde is considerably less for the 403 mHz carrier than for the 1680 mHz
carrier. Also the SMQ ground-based receiver system does not require a

tracking antenna and is much simpler to maintain and is considerably lower

in cost. The only disadvantage of the SMQ systems is that they do not

track and require radar support for altitude and wind data.

5.3.5.2 Ground-Station Equipment.

The ground-station equipment consists of the Navy developed
AN/SMQ-1 Radiosonde Receptor or the smaller transistorized version of this

set developed by the U. S. Weather Bureau.

Radiosonde Receptor AN/SMQ-1 is a receiving and recording

device operating in the frequency range of 390 to 410 mHz. The receptor

is employed in a HASP Iil system to receive and record upper atmospheric
temperature data from the HASP Radiosonde Set WOX-1A. The components

of the receptor are the antenna, receiver, recorder, power supply, electrical

cabinet and a paper table.

The antenna is approximately 1-1/2 feet high and is designed

to operate effeclently over a frequency range of 390 to 410 mHz. One hundred
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feet of coaxial cable is supplied with each antenna. One end of the cable
is fitted with a male plug for connection to the antenna input jacks; the

other end is connected to the top rear corner of the electrical cabinet by

four type N connectors on the cabinet. PMR has developed a helical

antenna for use with rocket system for a higher antenna gain.

The receiver is designed for receiving the radiosonde pulse

modulated radio frequency signals on a continuously variable tuning range
of 390 to 410 mHz. The receiver amplifies1 demodulates and converts the

signals to d.c. voltage. The magnitude of the d.c. voltage appearing at

the receiver output is directly proportional to, and varies in exact accordance
with, the received signal pulse repetition rate. A loudspeaker for aural

monitoring and an oscilloscope for visual monitoring are included in the

receiver circuitry. All operating controls, the loudspeaker, and the oscillo-

scope are located on the receiver front panel. A coaxial type antenna

switch is located on the back of the receiver front panel. The control for

this switch is on the front panel. It permits selection of four antenna inputs

and provides means for grounding the receiver antenna input. The d.c.

output of the receiver is fed to the recorder.

The recorder displays the data from the receiver on roll chart

paper. The voltage output from the receiver is applied to a servo-drive motorr
which actuates an ink pen through a system of shafts, gears and a pulley wire.

The ink pen records data on moving chart paper which is driven over three

paper rolls by a chart drive motor. The chart paper is graduated in 100

divisions across the paper. Readings on the chart usually correspond to

half the pulse rate of the RF signals in pulses per second (pps) from the radio-
sonde.

The power supply operates from a 115-volt, 60-cycle, a.c.
source and supplies all of the voltage requirements for the receiver and

recorder. Power and heater on-off switches and associated pilot temperature
indicators and blown fuze indicators are recessed in the upper center of the

front panel.

The electrical cabinet is a shock mounted, drip proof, metal

structure provided with space heaters and sliding drawers. The top drawer
contains the receiver; the middle drawer contains the recorder, and the bottom

drawer contains the power supply.
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The radiosonde signal received by the receptor consists

of pulses of 403 mHz radio frequency energy. The frequency of repetition

of these pulses is dependent on meteorological conditions. Each pulse is

approximately 250 to 275 microseconds in duration and the pulse repetition

frequency may vary from 10 to 200 pulses per second. The received signal
pulses will generally be a series of pulses at one audio rate followed by

a series at a different audio rate. Each series of pulses will cause the

receptor to print on the chart in a position determined by the audio rate of

that particular series of pulses.

The received pulsed signals are fed from an antenna through

the signal selector switch to the R.F. section which contains an R.F. amplifier,
mixer and local oscillator. The oulput of the R.F. Section is fed to the I.F.

strip which consists of five stages of I.F. amplification. The second and

third stages of amplification are available to adjust receiver gain while the
fifth stage acts as a first ilmlter. The I. F. output is fed to the detector

section consisting of a llmiter and a discriminator. The discriminator is

used as a slope detector and its output in the form of negative d-c pulses is
fed into the audio section.

The audio section contains a pulse amplifier, clipper and

a pulse shaper. Thls section amplifies and shapes the input signal and

eliminates noise to form a strong consistent trigger pulse to the frequency
meter section which follows. In addition, the output of the pulse amplifier

is fed as the observed signal to the vertical amplifier in the video monitor
circuit.

The frequency meter section converts the pulsed signals in-
to varying d.c. voltages to control the servo system in the recorder. It also

provides signals for the audio and video monitors. This section consists of

a trigger gate, a multlvlbrator, a ringing and damping circuit, a pulse
generator, filter and attenuator in the order mentioned. As the signal pro-

gresses through the trigger gate and multivibrator, it is further stabilized.

The muitivlbrator output energizes a ringing circuit which is damped after

each first half cycle providing strong trigger pulses to the pulse generator.
The pulses are accurately formed by the pulse generator and its associated

delay llne and fed into a Iowpass filter which converts them into a positive

d.c. voltage proportional to the repetliton rate. The d.c. output is fed
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into an attenuator which provides a means of accurately calibrating
the signal to the recorder.

Video and audio monitoring are provided as a means

of tuning and maintaining proper receiver gain. The audio signal is

picked up from the muitivibrator output, while video signals are obtained

from the multivibrator in the frequency meter section, and from the pulse

amplifier in the audio section.

The recorder section consists of comparator circuits, a

60 cycle servo amplifier and a pen drive servo system to which a poten-

tiometer is connected, feeding back a reference signal to the comparator.

The varying d-e output from the receiver is combined with the reference
signal from the potentiometer. The resultant is amplified and fed to the

servo motor as a directional signal moving the pen to a position proport-

ional to the pulse rate of the received signal. Limit stops prevent over-
travel of the pen. A two-speed chart drive system allows a selection of

chartpaper feed.

The power supply provides the necessary voltages for all
signal and control circuits. This unit provides regulated and unregulated

6.3v a-c for filaments, +400 volt unregulated, regulated and unregulated

270v d-e, regulated +150 v d-e and -430 v. d-c unregulated supplies.
In addition, all 115 v. a-c supplies are controlled by the main power switch

in the power supply. A block diagram of the AN/SMQ-1 is presented in

Figure 5.3-29.

5.3.5.3 Rocketsonde Instrumentation.

The WOX-1A has been developed and standardized by the

U. S. Navy for use with the HASP III (Loki Dart type) rocket and the
AN/SMQ-1 ground-based receiver.

The radiosonde, externally is cylindrically shaped, approx-

imately 11 inches Iongt 1.4 inches in diameter and weighs 22 ounces. In

ejection, as the payload package leave the body, a spring-loaded button
on the radiosonde body is released to start the radiosonde operation. After

ejection, the payload package opens to release the parachute by the action

of two flat springs placed between the staves and insulation strips inside
the staves. The staves, piston and closure plug separate from one another

and from the parachute-radiosonde payload, leaving the parachute free to

open with the aid of the radiosonde's weight.
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The radiosonde collects and transmits temperature data
to a ground or shipboard Radiosonde Receptor AN/SMQ-1. The major

components of the radiosonde, shown diagrammatically in Figure 5.3-30

are a 6 volt nlckel-cadmlum battery, a temperature sensor, a transistor-
ized modulating circuit and a transmitter which telemeters on a 403 mHz

frequency. The transmitter is coupled to an antenna wire which is also
a connecting llne from the radiosonde to the non-radiating riser of the

parachute, in addition to the antenna wire itself, the steel case of the

radiosonde is used as a part of the antenna.

The battery of the radiosonde powers the radiosonde

operation. Prior to iaunchlngl the battery is slow-charged for a six-
hour period. A closure plug in the forward end of the body is fitted with

a removable screw to provide access to the connector for battery charging.

The temperature sensor of the radiosonde is a bead ther-

mistor, through which a current is passed. The transmitter transmits a
pulse modulated radio frequency signal whose pulse rate is dependent on

the resistance of the thermistor and, therefore, the atmospheric tempera-
ture.

The pulse rate transmitted depends not only on resistance

of the thermistor, but also on changes in the operation of the radiosonde

components due to atmospheric temperature and a depletion in battery

voltage. To correct for the irregularities, a reference resistor of accurate-

ly known resistance is put in the radiosonde on a circuit separate from the
thermistor circuit. Signals, called reference signals, from the known

resistor circuit are transmitted for two-second intervals alternately with

temperature data signals from the thermistor circuit, which are transmitted
for four-second intervals. These alternating signals are received and

recorded on rolled chart paper by a radiosonde receptor. Combining the

two signals eliminates consideration of the adverse effects of temperature

and voltage loss.

The Radiosonde Set WOX-1A is comprised of essentially

four electronic functioning blocks; namely, a commutator, an analog to

frequency converter, a drlver-modulator stage and a UHF transmitter-
antenna section. Due to the severe environments encountered during flight

and also the limited volume available for both the electronic circuitry

and the power supply, semiconductors were used for all the active circuit

components except for the transmitter. A schematic is presented in

Figure 5.3-31.
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The two channel commutator circuit in the WOX-1A

system is an asymmetrical flee-running multivibrator that samples the air

temperature sensor for a period of four seconds, then subsequently samples

a fixed precision reference resistor for a period of two seconds. The time

sharing sequence was selected to obtain a maximum sampling of the
temperature altitude profile with a minimum loss due to sampling the
reference.

The subsequent functioning block consists of the amplify-

ing stages and transmitter modulator. The modulator is designed to

deliver 3.0 ampere pulses at 5.0 volts which represents 15.0 watts of

pulsed power. This capability required an amplifier section with a power

gain of approximately 35 db. The blocking oscillator was designed to

delivery 3.0 volts into a 2000 ohm load. The value of 2000 ohms was
sufficiently high so that its reflected impedance into the blocking

oscillator circuit during the pulse did not affect the repetition rate.

The first stage, Q6, is essentially an emitter follower having a minimum

current gain of approximately 10. An output current of the order of 15 ma

is realized from an input current of 1.5 ma. The collector voltage remains
constant at 1.5 volts during the pulse. The second amplification stage,

Q7, provides a minimum gain of 10 resulting in a base drive to the
modulator, Q8 of 150 ma. The 10 ohm resistor, R18, in the collector of

the second stage limits the current below the maximum dissipation of the

2N597. The 100-ohm resistor, R17, in the base circuit of the modulator and

diode 1N93, CR4, in the emitter leg provides DC stabilization and prevents

thermal runaway. The I N93 was selected on the basis of its current carrying

capacity of 3.0 amps during the pulse. With 150 ma into the base of the
modulator and a minimum beta of 20 the collector current is of the order

of 3.0 amps. During saturation the maximum voltage across the pulse trans-

former is approximately five volts; the remaining voltage is distributed
across diode CR4 and the collector to emitter junction of 2N670. The
diode in the emitter circuit of the modulator insures cutoff at high temp-

eratures thereby preventing thermal runaway. The 2N670 also has a
specially designed heat sink, which is also an aid to prevent thermal

instability.

The pulse modulating transformer, which was designed at the Naval

Ordnance Laboratory, has special characteristics that were not available

in commercial types. The magnetic core is grain oriented silicon steel

with a relatively high maximum flux density. The prirna_ and secondary
ore wound on the magnetic toroid such that the leakage inductance is

extremely small. The wire size was selected so that the resistance lasses
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are equal in each winding. The core size and the wire stacking make

maximum utilization of the geometric volume available in the package.

The inner diameter of the complete wound torold was required to accept
the 2N670 transistor and heat sink. The tertiary winding is used to reset

the core so that the entire change in flux can be realized. This results
in a more efficient and smaller size transformer. The current use for

resetting the core is the filament current for the transmitter tube. The

modulator stage is capable of delivering 3.0 ampere pulses of current

at 5.0 volts. The B+ pulses appearing at the plate of the transmitter are
in the order of 240 volts at 40 ma.

The transmitter uses a Colpitts type oscillator capable

of delivering 3.0 watts of peak power at 403 mHz. The oscillation tube

is a UHF triode, type 5718. The oscillator circuit utilizes the inter-
electrode capacity for positive feedback from plate to grid. The

oscillator frequency is adjusted by a vernier capacitor across the printed

circuit coil. The tuned inductance is a printed copper coll on Rexolite

dielectric. This material is superior for low loss qualities and is ideal
as a dielectric for high frequency-circuits. The oscillator is completely

shielded in a copper case which minimizes radiation other than via the

antenna. The shield also serves to "fix" the stray distributed capacitance

and inductance parameters for better frequency predictability.

The R.F. power for the triode is directly coupled to a

center-fed fullwave antenna. The antenna is asymmetrical; one-half

is a stainless steel cylinder which houses the transmitter and telemet_/
circulb while the other is a thin stranded copper wire of one-half

wavelength. The thin wire also acts as a supporting cable attached at

the upper end to the parachute. This asymmetrical antenna itself is not

a simple geometric configuration, consequently the impedances and

current distributions are difficult to solve analytically. Approximations
to the exact impedance equations were made in order to obtain results

that could be used in resolving the antenna parameters and matching

network. The final antenna parameters were adjusted empirically to
yield optimum R. F. power radiation in free space.

Although initial procurement quantities of the WOX-1A

were unreliable in flight performance, a change from germanium to silicon

transistors improved the conditioning temperature capability of the
instrument. Recent production units have demonstrated sufficient reliability
to consider the system as operatlonal.
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Design limitations of the WOX-1A have led to funding

by NOL for the development of an advanced version which is called the
WOX--4A. Design goals for this new instrument are for a smaller diameter

(1.1 inches), a shorter instrument length (6 inches), a lighter weight

(6 ounces) and a thin-film mylar thermistor mount. The original WOX-1A
must be flown in a 1-5/8 inch diameter dart which does not achieve

adequate altitude. The new instrument will fit into the 1-3/8 inch dia-

meter Navy chaff darts. The shorter length of the new unit will permit

more space for the rocketsonde decelerator, and the lighter weight will
improve the ballistic coefficient of the descent system for slower fall

rates. The older WOX-1A uses a rather heavy thermistor fiber mounting

structure which voids the temperature measurements above 150, 000 feet.

The new thln-fiim mounts should upgrade the temperature measurements
to the current state-of-the-art.

5.3.6 Advanced Concept-Motorola Study.

5.3.6.1 General.

Motorola Inc., has been funded by AFCRL to conduct a

design study for an advanced meteorological telemetry and tracking system for

both radiosondes and rocketsondes. The purpose of developing an Advanced
Meteorological Sounding System (AMSS) is to update the present system

with particular emphasis on improved reliability, decreased operating casts

and increased accuracies. As opposed to the present ground based meteoro-
logical tracking system, the AMSS provides a smaller and lighter radio-

sonde, improved ranging and telemetry accuracies, higher data rates
including a continuous data channel, unambiguous ranging to 580 kilo-

meters, digitized output data and a solid state design throughout.

The objective of the AJ_SS was to develop a ground based
meteorological sounding system which would effectively use modern design

techniques in the gathering of accurate meteorological data. The system

evaluation did not include any study of the meteorological sensors, air-
borne vehicles (balloons or rockets) or final data processing equipment.

In selecting a system configuration the following guidelines were used:

. The system design should favor techniques
which reduce operating complexity and
minimize maintenance and technical

obsolescence. Design mechanization should
include maximum utilizaffon of solid state

and integrated circuits.
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. The design should emphasize simplifi-

cation of the flight expendable radiosonde

and make use of techniques which would

reduce cost, weight and power consumption.

. The ground equipment should be designed

with adequate performance margins to

achieve long life and maximum reliability.

. The system performance should exceed that

presently available from the existing AN/
GMD-2 system.

in keeping with the program objectives a study was con-

ducted to develop a system which would reflect as many of the current design
capabilities as possible. During the initial stages of the program a number

of trade studies were made in an attempt to arrive at the optimum system
configuration. At the conclusion of this synthesis and analysis period

certain portions of the system were implemented. This included both the

radiosonde and ground equipment, and after a laboratory evaluation a

number of balloon borne flight tests were made. These tests were primarily

concerned with the range and telemetry functions in which overall system
performance was demonstrated. Although a number of configurations are
possible, that which was selected is shown in a simplified block diagram

in Figure 5.3-32. Some of the more significant system characteristics are

shown in Table 5-18 and although this table may briefly describe the

proposed system, it is of interest to compare this with the systems that
are currently operating in the field. This is done in Table 5-19 in which

the AMSS is compared to the present AN/AMQ-9. These two systems

differ in a number of areas but probably the most noticeable is in the radio-
sonde configuration and ranging system.

The primary measurement parameters are slant range,

antenna angle data, time and four telemetry channels. The telemetry data
may consist of temperature, humidity, pressure or whatever is desired.

From the above raw data suitable processing will allow computation of such

meteorological information as winds aloft, altitude, temperature and
humidity profiles, air densities, refraction indices and so forth.
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TABLE 5,-18

ADVANCED SYSTEM CHARACTERISTICS

Maximum Slant Range

Uplink Frequency

Uplink Power

Uplink Data

Uplink Modulation Form

Radiosonde Receiver Type

Radiosonde Output Power

Radiosonde Transmitter

Type

Downlink Data

Downlink Modulation
Form

Ground Receiver Type

System Acquisition Time

Information

Range Resol ution

Ranging System

Tel emetr/Resol ution

Output Data Form

300 km

400 - 406 mHz

30 Watts

Range

FM at Index of 0.7

Superheterodyne

35 Milliwatts

Crystal Multiplier

Range and Telemetry

PM

Phase Locked

10 sec

Time

Antenna Pointing Angles
Slant Range

Telemetry - 3 Time Shared Chan
I Continuous Chart

5 Ft. Unambiguous to 580 km

BI-Phase PRN

0.02% of Full Scale

Punched Tape
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I tern - 

TABLE 5-19 

AN/AMQ-9 VS. AMSS COMPARISON 

~ Sonde Receiver Sensitivity 
Sonde Receiver Type 
Sonde Receiver Selectivity 
Sonde Transmit Power 
Sonde Trniisrntt F;qinCf 

d 

Sonde Frequency Stability 
%. Downlink Modulation Form 
F' Ranging System 
i. Allowable Range Error (sonde) 

UnambCguow Runge 
Range Resobton 

5 Rawe Extr Construction 
; Telemetry Form 
8 Talemetry Channels 

< Frame Rate 
t Commutator Censtructlon 

. Sonde Power Requirements 
i 
1 
1 

\ 

Sonde Weight 

1 

t 
i 

i 

1 

i 
I 

AN/AMQ-9 

5OcV or -73 DBM @ 50 ohms 
Super =regenerative 
3 OB Bandwidth: 60 mHz 
300 Mil l iwat ts  
Tux=b!t 16!5!2-!700 E!=! 2 

f 4 m H z  
FM 
81.94 ktiz Tone 
560 feet 
115 Milets 
3 feet 
E lectro-MechanScal 
Blocking Osci Ilakv 
Two Time Shared 

One per 20 seconds 
Mechanical 
625 gram less Battay 
7.58 Watb 
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AMSS 

96 DBM 
Superheterodyne 
IF Bandwidth: 300 kHz 
35 Milliwatts 
Crystal Selection 
From 1668-1693 mHz 
? 75 kHz 
PM 
64 kHz@PN 
f 100 feet 
365 Miles 
5 feet 
E I ectronic 
Two Subcarrion 
One Continuous 
Three Time Shared 
One per second 
Solid State 
705 grams less Battery 
3.4 Watts 
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The uplink signal consists of a 403 mHz carrier which
is frequency modulated with a PRN ranging signal. The maximum transmit

power is 30 watts in which the actual level is controlled by the receiver

AGC. Such a coarse control limits the signal range over which the trans-

ponder must operate and this in turn aids in decreasing the group delay

variations within the radiosonde. The transmitter output is fed to the
antenna system, which radiates the signal to the radiosonde. The trans-

ponder, operating as a superheterodyne receiver, converts the 403 mHz

received carrier to a 17 mHz IF. This is then applied to a standard dis-

criminator which detects the range signals and PM modulates the down-

link carrier. In addition to the ranging signal, two telemetry subcarriers
are also modulated on the down link carrier. One of these subcarriers

is used to transmit continuous telemetry channel data while the other sub-

carrier contains time shared telemetry information. The down llnk carrier
operates at a nominal 1680 mHz and 35 miiliwattSo

At the ground terminal this signal is received and auto-

tracked by the antenna system. The sum channel signal is fed to the Phase

Locked Receiver which is a double conversion, superheterodyne receiver

with intermediate frequencies of 50 mHz and 10 mHz. The receiver then
demodulates the input signal and provides baseband range information to

the Range Extractor and subcarrier telemetry information to the Telemetry
Extractor. The slant range is obtained by measuring the time delay between

the transmission of the range code and reception of this same code signal.

The elapsed time is computed in a Timer Interval Counter which allows range
resolution measurements of 4.9 feet. The output range data is then digitally

recorded and transferred to the data processor. The telemetry information
is generated in the transponder through appropriate sensors and is received

at the ground station in the same manner as the range signal. However, in

the Telemetry Extractor the process is somewhat different in that the detector

is an FM discriminator in which the output amplitude is a measure of the

sensor condition. The analog output data is then applied to a digital
voltmeter which converts the analog information to a digital format and

transfers this data to the Data Processor. The Data Processor then accepts,
converts and stores tracking data, meteorological data and time data .obtained

during the flight of a radiosonde and produces a punched paper tape output

suitable for transmission over standard teletype lines.

in measuring slant range there are a number of methods

which will accomplish this purpose. The three outstanding systems are a

radar range measuring system, a PN (pseudo noise) ranging system and a
tone ranging system. All three systems have been used extensively in various
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phasesof the space program. The advantage of the radar system is the

simplicity of the radiosonde since a passive corner reflector may be
substituted for the receiver in the radiosonde. The principal disadvantage

of such a system is the high transmit power.required at the ground stations.

If radar systems are available for such use then it is desirable to take
advantage of this condition. However, where such is not the case a

range system using tones or PN is more desirable. For the AMSS system a

PN ranging system was selected. As opposed to the tone system an PN

ranging provides considerable jamming immunity, and far distant ranging,
extremely low frequencies are not required. In reality the system selected

is a hybrid PN ranging system which utilizes a resolution range tone and

a short PN sequence for ambiguity resolution. Although the code used

here is much simpler than that used in many space programs, the operation
is much the same. Far examplet referring to Figure 5.3-33 a 64 kHz

sine wave is bi-phase modulated at an 8 kiloblt rate. That is, after each

eight (8) cycles of the 64 kHz range tone a decision is made as to whether

to change the phase by 180° or leave the slnewave undisturbed. The

code format which makes such a decision is commonly a PN sequence.

That is, its spectrum resembles noise to the extent that the code length
will allow such a representation. Then by measuring the time delay between

the transmission and reception of the code sequence a measure of range

may be obtained. The AMSS code length is 31 bits which corresponds to

an unambiguous range of 580 kilometers and a further description of the

range extraction process is described in the subsystem section.

The telemetry requirements are to provide four channels
of data with one channel being continuous and the other three time shared.
The maximum data rate on each time shared channel is one reading per

channel per second. The modulation technique is shown in Figure 5.3-34
where the reference channel width is three times that of any information
channel and the measurement data is contained in the amplitude of the

information channel relative to the reference channel. Requirements on

the subcarrier VCO_s are those of extreme llnearity (better than 0.1%),

good stability (both long and short term) and the units must be economical

throw-away components. Such units are now practical and played a key

role in establishing this method as the telemetry format.
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5.3.6.2 Ground Equipment.

The block diagram of the proposed advanced sounding
system, as shown in Figure 3.5-32, consists of several major elements
described as follows:

1. VHF Transmitter.

The ground transmitter is a solid state unit operating

at a crystal controlled nominal frequency of 403 mHz. The output power

level varies between 5 milliwatts and 30 wafts and is controlled by the
receiver AGC. Over this output level the transmitter must demonstrate
less than + 10 nanoseconds group delay variation and for overall operat-

ing conditions, the group delay stability should be better than +- 20
nanoseconds. The transmitter is FM modulated with the 64 kHzO PN

ranging data and the output is supplied to the ground antenna system.

2. Ground Antenna.

The ground antenna system consists of a transmit antenna

operation at 403 mHz and a receive antenna operating at 1680 mHz. The

transmit function associated with the ground antenna does not pose any

significant design problems as the required gain is only 3 db. This is
not true in the case of the receive function where there are cl number of

conflicting requirements.

3. Auto-Track Receiver.

The ground receiver is a phase lock tracking receiver

which is used to track the downlink RF carrier and to convert the range
and telemetry data to baseband. In addition to the abover the receiver

must also provide signals proportional to the antenna pointing error which

are in turn used to drive the antenna servo system. The receiver design to

perform these functions is a double conversion superheterodyne receiver

with 50 mHz and 10 mHz IF frequencies. The receiver will automatically

acquire the carrier signal and the acquisition will not be affected by the

presence of the telemetry sldebands. Coherent AGC is used to maintain

the IF signal to the phase detector constant so that loop bandwidth is not
affected by signal level.
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4. Telemetry Extractor.

The purpose of the telemeff 7 extractor is to develop out-
put signals which are proportional to the sensor resistance values in the

radiosonde. A block diagram of such a circuit is shown in Figure 5.3-35.

The baseband input consists of two subcarriers which have

been frequency modulated with the telemetry data. The extraction system
consists basically of a low frequency FM receiver which detects the sub-

carrier and provides a multiplexed output signal (a cw signal in the case of

the continuous channel). This signal is applied to a phase locked loop
which serves to detect the

sync drives logic circuitry
properly decommutate the

to calibrate the telemetry

bit sync of the multiplexed signal. This bit

to derive frame sync as well as gate signals to

multiplexed input and derive correction signals
data.

The band pass filters have a bandwidth of 520 Hz (2 _ L)

such that the signal-to-noise input into the discriminator will be above

threshold under all expected condition and the phase lock loop band-

width used for sync purposes is 2.0 Hz (2 B L).

The telemetry extractor is completely automatic and does
not require prior calibration of manual checks throughout a radiosonde

flight. The circuitry has been designed such that the digital circuits and

operational amplifiers are utilized wherever possible. In this way the
telemetry extractor is readily adapted to present day integrated circuits,

5. Range Extractor.

The purpose of the range extractor is to develop an out-

_ut signal which is a measure of the slant range to the transponder. The
range extractor will measure relative phase shifts between the transmitter

and received range signals with the total range being displayed as the

timer interval between a start and stop pulse. The ranging system
selected was a PN ranging system in which the Range Extractor is shown
in Figure 5.3-36. The input signal is a 64 kHz sine wave which has been

bi-phase modulated with a 31 bit PN code. The bit rate is 8 kbits/sec.

Operation of the range extractor is such that after acquisition the Word

Detector provides an output pulse at some pre-set code condition. This

- 219 -



R3

8,_POD _
- PASS

IER

ZERO

IE

SYNC

R1 = R2 = R3

A4 cO _ 2 5 SEC

I_ c 1 H:

L_ ,_ZERO SYNC

RETS_NC RS,RI=R6

• CHANtSYNC RS=R 9

" CHAN 7SYNC ROC;=25SEC
CHAN 3 SYNC

CHAN4SYNC R?

8 L 520 He

_JAS_ HAN[) INPU] C|

R6 R8 6 L fHz

8t_ ,NC

3_

8 L _ I H_

CHANIS_C

¢_A_ 1

BL • 1 H1

CHAN 2 $Y_C

_C_AN 2

B L _ 1HZ

C_AN 3 $Vhm

_C_AN 3

B L = 1HZ

FIGURE 5.3-35 TELEMETRY EXTRACTOR, BLOCK DIAGRAM

¢;4 Kilt Oi'N

• = .

64OPN

I'ODE I (X)P

fJ;4 KIll • 8 KHz

64 KHz

I

FIGURE 5.3-36 RANGE SIGNAL DEMODULATOR, BLOCK DIAGRAM

RANGE

STOP

- 220 -



is then fed to a logic function which simply creates an output pulse at the
first 64 kHz zero crossing after reception of an input from the Word

Detector. This output is termed the stop pulse which terminates the count

in a time interval counter. Initiation of the counter is done by means
of the start pulse which is generated in an identical manner to the stop

pulse except the acquisition and tracking functions are not required. As

can be seen the demodulator consists of a code loop and a tone loop.

Operation of these two loops is as follows:

1. The ground tracking receiver locks to the

input RF carrier after which

2. The PN generator in the code loop is precessed

in time at a rate of about 10 PN bits per second.

. When the PN sequence of the demodulator approaches

that in the modulator a coherent 64 kHz signal appears

at the input to the phase detector in the tone loop.
This is shown in the correlation function of Figure

5.3-37. When the tone loop locks to the 64 kHz

signal the lock indicator stops the PN precessing
and indicates lock.

. The code loops which has a correlation function as
shown in Figure 5.3-38 will then drive itself so

as to null out the 64 kHz component. Thus when

the code loop has driven the PN generator to this
state the 64 kHz signal to the tone loop will be
maxi mum.

As can be seen, once the acquisition process has been

completed the operation of the system is identical to a tone ranging system
except that ambiguities have been resolved by means of a PN code instead

of the addition of tones. The tone loop bandwidth (2PL) is 2 Hz and acqui-

sition time of the system is based on the code search time. Since the code

is precessed at a rate of 10 bits/sec, and the code length is 31 bits, the

maximum acquisition time is 3.1 seconds. Zero setting of the range is

straight-forward. Coarse range is set in by merely establishing the word
detector input state which will allow resolution to within one bit. The

fine resolution is obtained by increasing or de_easing the delay in the
stop pulse output.
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6. Range Modulation Generator.

The purpose of the range modulation generator is to

generate the ranging signals which are furnished to the ground trans-

mitter and the range extractor. The ranging signal consists of a
64 kHz resolution tone and ambiguity tones of 8 kHz, 1 kHz and
250 kHz which ore coherent with the resolution tone or else the PN

signal to resolve the ambiguities of the 64 kHz resolution tone.

7. Timing.

The time is provided by a digital clock in the Time

Interval Counter and may be designed to furnish local or elapsed time

in digital form for use by the Range Modulation Generator. This time

data is also applied to the Data Processor for analysis and recording

purposes.

8. Data Processor and Monitor.

This contains all ground equipment controls for acquisition,

tracking, monitoring and recording the performance of the system. The

data processor provides a display of time, slant range, azimuth and eleva-
tion angles and telemetry. It also provides a punched paper tape on which

all pertinent data is recorded in teletype code format.

5.3.6.3 Radlosonde.

The radiosonde is designed to perform two functions. As

a transponder, it must receive the up-llnk range signals, demodulate them,
and retransmit them to enable the determination of slant range. As a

telemetry transmitter, it must accept the outputs of the meteorological sensors,
condition them and transmit them along with calibration information to

the ground station.

It would be desirable to have a single transponder design

for both balloon and rocket launch applications, but the comparatively

high packaging costs which are inherent in the rocket environment ore an

unnecessary restriction on the balloon sonde and, therefore, in order to
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reduce per unit costs of the high volume balloon application, a less
rigorous mechanical design is used for the balloon.

A block diagram of the radiosonde is shown in Figure
5.3-39 and a list of performance characteristics is shown in Table 5-20.

The transponder uses a narrow band FM superheterodyne receiver and a
phase modulated transmitter in which the received frequency modulated
ranging information is translated to the downlink transmitted signal°
The transponder signal levelsr gains and bandwidths are based on the

use of an inexpensive quartz crystal in the transponder. This quartz
crystal, located in the transmitter voltage controlled oscillator, is
the source of the receiver local oscillator signal and the transmitter downllnk

signal. The quartz crystal pays its way by permitting a reduction in the
downlink transmitter output power to only 35 milliwatts while operating
at slant ranges up to 300 kilometers_ This power level allows a substantial
savings in battery cost, weight and packaging costs. As can be seen the

functional block diagram of the radiosonde does not present any startling

or new innovations and the real significance of the design is the develop-
ment of a radiosonde unit which will economically provide the required
outputs. Some of the more important features of the low cost design are:

1o Use of crystal oscillator as described above

2_ Use of highly accurate and economical VCO_s

for the telemetry subcarilerso See Figure
5.3-34.

3_ Design of a transponder with low group delay
variations over the operating environment°

4. Use of transistorized front end to provide system
noise figures less than 7_5 db_

Q Use of a stripline filter in the final X4 output
stage to improve reproducibility and eliminate
tuning controls.

6g Use of low cost switching gates to provide the
necessary channel isolation in an accurate

PAM telemetry system_

7_ Use of foam packaging to provide a shock
resistant, thermally insulated, lightweight
design.

8. Design which will allow modular addition or
elimination of functions within the radiosonde_
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TABLE 5-20

AMSS RADIOSONDE CHARACTERISTICS

RECEIVER

Input Frequency

Type
Input Signal Level
Input Signal Level w,/o Damage

Noise Figure

IF Bandwidth (2 flLO)

Video Bandwidth (/_LO)

TRANSMITTER

Output Frequency

Output Power
Local Oscillator Output

Subcarrier Deviation Linearity
Gate Switch Impedances

Gate Oscillator Frequency

Gate Oscillator Stability

GROUP DELAY VARIATION

For a 64 kHz Tone the Maximum

Group Delay Variation within

the Radiosonde over the Operat-

ing Temperature, Signal Level
and Time

WEIGHT

Electronics

Total Package including

Battery

Modulation Type

Deviation kinearity

400-406 mHz

Superheterodyne FM Receiver
-96 to-56 DBM

-6 DBM

8 DB Maximum

470 kHz
125 kHz

1680 mHz Nominal
1660-1700 mHz Band

35 Milliwatts

0 DBM

0.1% of Best Straight Line
On - Less than 500 ohms

Off - Greater than 500 megohms
12 Hz
+ 10%

+ 270 Nanoseconds

Less than 2 Ibs.

Less than 4 Ibs.

PM

+ 20% of Best Straight Time
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TABLE 5-20 AMSSRADIOSONDECHARACTERISTICS- continued -

FREQ UE NCY STABI L! I"Y

Short Term

Long Term (8 Hours)

TELEMETRY

Channels

Frame Rate

Subcorrier Frequencies
Continuous Channel

Multiplexed Channel
Subcarrier Deviation

LIFE

Operati ng

Storage

OPERATi NG ENVIRONMENT

Temperature

Humidity
Altitude

Shock (Rocket Launch)

Acceleration

1 Part in 109

6 Parts in 105

1 Continuous and 3 Time Shored

One (1) per second

10.5 kHz

7.35 kHz

+- 125 Hz Maximum

4 Hours

1 Year

-70 ° C to +70 ° C

To 100% with Condensation
To 200 Kilometers

100 G's of 11 Milliseconds

Duration in each Major Axis
200 G's
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ROCKET VEHICLES

6.1 General.

Of the various kinds of launch vehicles and modes of propulsion,

so far the only type which has proven to be practical for routine meteoro-
logical soundings is the solid-propellant sounding rocket. Gun-launched

projectiles have successfully carried chemical trail and chaff payloads to

the higher altitudes, but their payload diameter and acceleration loads
have restricted their use to these payloads. Also the overall cost of the

gun-launched projectile firings appears not to be competitive with the

booster dart rocket vehicles. Gun-launched telemetry systems have not
been used for meteorological applications, and in fact, their feasibility

in general has not been proven. Other methods of propulsion such as

liquid-propellant rockets, hybrid solids, ramjets and ducted rockets
appear to be too costly and complex without any significant advantage

over the solid-propellant rockets.

The solid-propellant sounding rockets for meteorological applica-
tions can be categorized as either single stage, booster dart or two stage

vehicles. Each of these types has its own advantages and disadvantages.

A selection among the various vehicle types for a particular mission can

only be made after the sensor instrumentation, telemetry and measurement

altitude region have been determined.

For the larger sounding rockets which carry all kinds of large and

heavy scientific equipment payloads, some using agencies rate the vehicles

on a cost and performance index, such as vehicle cost per pound of net

payload per mile of altitude. Some have tried to apply such an index to
the meteorological rockets, where it would have no significance at all.

When considering a meteorological rocket system, the important parameters

are the meteorological measurements to be made, their range of altitude
and their cost. Thus, the first consideration should be selection of the

sensor, its accuracy and the altitude range of the measurements. Next,

one must decide upon the telemetry instrumentation to be used and whether

or not to employ a rocketsonde decelerator. Only after the payload and
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desiredaltitude range have been determined, can a reasonable choice

of vehicle be made. The efficiency of the vehicle in carrying arbitrary

pounds of weight to arbitrary altitudes is not important. The important
factor is the ability of the vehicle to carry the required payload to the
required altitude at the minimum cost. In addition, there are a number

of secondary factors in the choice of a vehicle for the meteorological
rocket application. A listing of factors which might be considered in

the choice of a rocket vehicle for a typical meteorological rocket system
is as follows:

]. Performance.

The vehicle must be able to carry the required
measurement payload to the required altitude or

it is worthless for the application.

2. Cost.

Since meteorological rockets are used for routine

soundings, cost is perhaps the most important factor.

1 Wind Sensitivity and Dispersion.

Since meteorological rockets are used on an

operational basis, essentially all over the world,

they must be capable of being launched under the

most severe wind conditions. Wind sensitivity and

the resulting impact dispersion must be kept to a
reasonable minimum so that launches will not have

to be cancelled due to weather conditions. Dis-

persion factors other than wind sensitivity are about
the same for the various rocket designs, and the

resulting impact dispersions (minus wind effects) are

primarily a function of apogee altitude.

. Reliability.

Reliability is a term often used to rate potential
vehicles, but is meaningless without a great deal of

flight data. What designer does not design far 100%

reliability? For vehicles which have not been
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thorough ly fl igh t-tested, esti mates of re liabi I ity

are fictions. Many people like to assign a higher
reliability to single-stage vehicles than to two-

stage vehicles on a statistical basis, yet there are

technical factors, such as aerodynamic heating,
dyna mi c pressure and pi tch-rol ! resonance probl ems,

which may more severely affect the slngle-stage

vehicle. There have been many two-stage vehicles
which have flown more reliably in a two-stage con-

figuration, i.e., Nike-Cajun, Nike-Apache,

Nike-Hydac, Nike-Tomahawk. Even with a great
deal of flight testing and operational usage, reliability

can be a variable parameter. It took the Arcas system

about four years and three-thousand flights to achieve

a 90% reliability. Then after two years of continued
success, the reliability fell to a farily low level.

Reliability is difficult, or impossible, to assess with

sufficient accuracy for a new design and has been

quite variable for the designs in use.

. Operational Capability.

A meteorological rocket should be capable of being

handled and launched by a crew of two people with-

out the necessity for elaborate handling equipment.

The system should be relatively simple to operate
under adverse weather conditions, for world-wide

launchings may be required for remote sites by relative-

ly inexperienced personnel. Conditioning temperature

limits should be as wide as possible for compatibility

with extreme geographic regions from the tropics to
the Arctic.

. F Ii ght Ch arac teri stics.

Flight characteristics such as a aerodynamic heating

vibration, acceleration, attitude stability and roll

rate have occasionally been used to rate vehicles.
However, if the intended payload will adequately

function under the given level of each of these factors,

what further consideration is required.'?
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7. Safety Characteristics.

Most of the solid propellants used in current motors

(except double base propellants) are quite safe to
handle and ship so there is little choice among them.

Payload separation device initiators are perhaps a

greater safety hazard, depending upon their design.

. Telemetry and Tracking Potential.

Rocketborne telemetry instrumentation is considered

as part of the payload for meteorological rockets and,
therefore, is included in Item 1. However, if track-

ing telemetry is employed, a fast moving vehicle may
be more difficult to acquire and track than a slow one.

This is also true for radar tracking and here a small

vehicle may be more difficult to radar track than a
large one. These factors should be considered in

evaluating a new design.

. Versatility.

Vehicle or rocket motor versatility has occasionally
been used as a rating factor for meteorological rockets

in the past. Thus, people have sought a rocket which

would perform for a 100 km requirement as well as a

60 km requirement or for a temperature measurement

and as well as an ozone measurement. In many cases
this versatility criteria is self-defeating from an

economic standpoint because it implies that the vehicle
system or the rocket motor is overdesigned for one of

the mission requirements. Generally this is the require-
ment for the greater number of flights. For instance, an

Arcas-type vehicle might be chosen because it is capable

of carrying a fairly bulky ozonesonde instrument and can

also be used for routine temperature and wind measure-

ments. However, the requirements for wind and tempera-

ture measurements might be for three thousand flights per
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year. The Arcas-type vehicle might cost three times

as much as a dart vehicle which can only carry the

wind and temperature measuring payloads. The obvious

economic choice would be to use the larger more costly
rocket for the one hundred ozone flights and the smaller
lower cost rocket for the three-thousand wind and

temperature flights. The same argument holds for altitude
versatility consideration. A much greater quantity of

60 km flights are required than 100 km flights. Therefore,

why pay a great deal more for the 60 km data by using
the 100 km vehicle to obtain it, when the data could be
obtained with a smaller lower cost vehicle?

Before a vehicle can be chosen for a meteorological rocket system

application, the payload requirements of weight, diameter and length must

be determined. Also, payload interfacing requirements, such as the need

for telemetry antennas, should be studied.

A fairly wide variety of sounding rocket vehicles are currently avail-

able for the meteorological rocket applications. In fact, additional vehicles

are being developed each year. The adaptation of these vehicles, or at

least the design concepts, to a given payload - altitude requirement can

now be a straight-forward engineering development. The development of
frangible, consumable or destructable vehicles to eliminate or reduce the

falling mass hazard will at the current time require a state-of-the-art
advancement.
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6.2 Historical Review.

Over the past eight years there have been many studies and attempts
to produce a meteorological rocket which could be used for routine soundings

to 65 km altitudes. A review of the meteorological rocket vehicle develop-

ment attempts is presented in Table 6-1. it is interesting to note that only

the Arcas and Loki-type systems are currently being used for routine sound-
ings to 65 km.

The Loki type vehicles employ a high-thrust short-duration booster

rocket with a non-propulsive dart payload stage. These vehicles offer con-

siderable advantage in operational simplicity, low wind sensitivity and
dispersion and low production cost. A disadvantage, however, has been a

restriction for some instrumented payloads because of the relatively high

boost accelerations and limited payload diameter and volume.

The Arcas vehicle was designed to accommodate a relatively large

payload diameter, weight and volume in a low acceleration environment.

However, because of its long burning time, the Arcas has proven to be

quite wind-sensltive. Wind-sensitivity and dispersion in combination with

a relatively high cost for Arcas have been major disadvantages for its use

in routine operations.

The past several years have seen a number of attempts to develop

more suitable meteorological vehicles, but to date, none have yielded

operational systems. The Army Ballistic Research Laboratory and the

Canadian Armament Research and Development Establishment have experi-
mented with atmospheric probes launched from 5-inch, 7-inch and 16-inch

guns. The acceleration of 16,000 g and upwards associated with this

technique make difficult their use with state-of-the-art type meteorological

instruments - especially the sensors. Two Navy sponsored programs were

directed toward development of single-stage vehicles with substantial pay-
load capacity which would be less wind-sensitlve and less expensive than

the Arcas. Both used relatively long burning time (9 to 12 seconds) internal

burning solld-propellant grains in an attempt to compromise between high

accelerations and low-launching velocity. One of these vehicles, the

Aeolus, has severe reliability problems and was canceled. The Raven

proved to be unstable with payloads of less than 20 pounds. This vehicle

will reach only about 160,000 feet from sea level with this minimum pay-

load weight. Both of these vehicles appear to be a move in the proper
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direction, but it seems that the developers underestimated the aerodynamic

design requirements. The Atmos is a third Arcas-type vehicle which has

proved to be unreliable. Two other efforts,' the AG-32 ramjet and the

Stratos solid-propellant steam-powered system, both directed toward a

low-cost vehicle_ have not proven practical.

The British, Canadians, Germans and French have all been active

in the meteorological rocket area, but the only operating vehicle designed

for the 65 kilometer range to come from these efforts to date is the British

Skua. This Arcas-type vehicle is sllghtly larger in diameter and length
than Arcas and uses a recoverable booster to increase launching velocity.

Cost data is not available to us, but it appears to be a very expensive

system. The Japanese have developed an Arcas-t'/pe vehicle, the MT-135
which is about twice the size of Arcas and reaches the same altitude.

From a survey of current vehicle programs, it appears that efforts to

compromise between Arcas and booster-dart type vehicles have not met with

significant success, in most instances, the developers appear to have under-

estimated the aerodynamic propulsion and structural design requirements for
these vehicles.

in 1965 NASA-LRC awarded a contract to North American Aviation,

Inc. to conduct a study to define a state-of-the-art rocket vehicle which is

suitable for synoptic meteorological soundings. The apogee altitude chosen

for this study was 65 km, and the various rocket vehicle design studied were
a single stage, a booster dart, a dual-thrust single stage, and a two stage

configuration. All designs employed solid-propellant rocket motors. An

Arcas-type 4.5 inch diameter single stage vehicle was found to be optimum
after consideration of a number of factors such as reliability, versatility

and cost. The burning time was reduced from the Arcas value of 29 seconds

to 19 seconds to reduce the wind sensitivity. Howeverr the propellant grain
weight was even less than that of the Arcas and so was the total impulse even

though quite a highvalue of specific impulse (248.5 seconds) was used in the

calculations. The trajectory calculations appear to be quite optimistic in

view of the increased drag losses due to the reduction in burning time, and

the specific impulse value appears to be higher than obtainable with current
state-of-the-art low cost rocket motors.

A major factor in the choice of the single-stage vehicle was versatitlit_

in the payload-carrying capacity. Measurements of wind, temperature, press-
ure, density and ozone concentration were cited as being desirable on a single
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flight. This led to the assumption that it would be desirable to retain a

significant amount of instrument package installation flexibility in the

design of the payload compartment to incorporate future sensors. Models
of existing Arcas telemetry packages, i.e., AN/DMQ-9, were also used

for payload size requirements. Aside from the problem of over-estimating

the performance of this vehicle, it now appears that the requirement for

versltility in payload volume is a false requirement for the routine meteoro-
logical rocket.

In 1965 the Atlantic Research Corporation completed a study for
USAF-CRL to investigate the optimum meteorological sounding rocket

configurations from among off-the-shelf rocket motors for missions to 100 km,

150 km and 200 kin. Single stage, booster dart and two-stage vehicles

were synthesised from among sixty-five available solld-propeilant rocket

motors to determine the optimum vehicles for the missions as defined below:.

Mission Apogee

Weight Diameter Altitude

(Ibs) (in) (km)

A 15 2-5 100

B 15 2-5 150

C I 0 4.5-6 200

D 20 6 200

Although 225 vehicle combinations were found which would meet

the specific performances, these systems were further evaluated by con-
sideration of the factors as follows:

Reliability
Payload Diameter Versatility

All-Weather Launch Capability

Handling Requirements

Safety
Acceleration Loads

Aerodynamic Heating
Temperature Limitations
Cost
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The results of the study indicated that single stage vehicles are

not useful for light weight meteoroioglcal payloads such as specified for

the study. This is because fairly large motors must be used for the high
altitude performance and these large motors would require ballast in the

payload section for adequate stability. Oversize payloads or ballast

weight were not allowed under the ground rules of the study. These
restrictions have had a significant effect on the study results. Booster

dart vehicles did not rate high in the study because of the payload
diameter limitations imposed by the study and the value rating scheme

which was used. Although twenty-one booster dart vehicles qualified on
performance basis, they were severely down-rated on grounds of having

small available payload diameters, large motor sizes and handling. The

two-stage vehicles were scored as the first twenty desirable vehicles

for each of the four-performance classes. Thus1 the study results would

indicate that for the meteorological rocket requirements above 100 kin,
two-stage vehicles are probably the best overall choice. The proposed
best choices are tabulated in Table 6-2.

It is interesting to note that the Arcas appears as the second stage
for the first four vehicles of categories A and B, and for the first nine

vehicles of category C. Loki second stages rate almost equal to Arcas

for category A and appear to also be desireable for category B requirements.
The larger diameter requirement of category C dictates the use of the Hopi IV

in place of the Loki. Very few successful candidates were found for

category D (6-inch diameter minimum payload to 200 kin) and even those
few had low value scores. These vehicles were all quite a bit large and

more expensive than the current concept of a meteorological rocket would
allow.

As with previous studies of optimum meteorological rockets, this

ARC study has suffered from too generalized payload requirements, rather

arbitrary ground-rules_ and a quite subjective value judgement scoring
system. A meteorological rocket which is to be used frequently should be

designed for the exact measurement instrumentation to obtain the required

data throughout the required altitude region at the lowest possible cost.

There is much too great a difference between a two-inch and five-inch

diameter payload for them to be considered in the same category. The

study ground-rules of not permitting ballast or over-slzed payloads (larger
diameter payload than the final stage rocket motor) are unrealistic limita-

tlons which arbitrarily restrict the number of possible vehicle combinations.
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TABLE 6-2

SUMMARY OF ARC ROCKET STUDY

CLASS

Payload
P/L Dia.
Altitude

15_ibs.

2to 5in.
100 km

®
15 ibs.

2 to 5 in.

M=3.5 at 100 (150) km

RANK ROCKETS SCORE ROC KETS SCORE

1 Judi-Arcas

2 Hasp II - Arcas
3 Falcon-M58-Arcas

4 Z uni-Arcas
5 Judi-Judi
6 N PP Boost-Arcas

7 Judi-Hasp
8 Falcon-M58-Judi

9 Hasp-Has p
10 Sup. Falcon-Arcas
11 Falcon M58-Hasp
12 Hasp-Jucli

13 Spar. 111-6B Side 1-A
14 Spar. Sus-Side 1-(:
15 Falcon M58-Side 1-(3

16 Spar 111-6B-Zunl
17 Zuni-Judl
18 Deacon-Side I-A

19 Hopi Ill-Side 1-A
20 Falcon-Gar II-SI-C
25 Zuni-Side I-C

30 Judi-Hopl II
40 NOTS-Boost-Arcas

First
Dart #42 Hawk-Dualt.

Sec.

Dart //48 Hopi IV

Third

Dart //58 Gar 9

Last
Rated _ 104 Terrier-Arcas

Vehicle Boost Boost

83.9
81.8
81.4

76.2
73.5
72.8
72.4

72.4
72.2
71.8
71.2

71.0
70.4
68.5
68.2

67.2
67. I
66.7
Aero
66.0
64.6
63.7
62.0

61.8

60.5

58.0

40.2

Spar. Sust-Arcas 78.6
Side 1-A Arcos 76.3

Aero i. Sled-Arcos 75.4
Mauler-Arcas 72.4

Spc=r111-6B-Side 1-C 72.1
Falcon Gar II-Arcas 71.4
Side 1-C-Side 1-(3 69.0

Arcas Boost-Hopi IV 68.4
Cherokee-Side 1-C 67.9

Spar. Sust-Jud| 66.8
Hopl Ill-Side. I-C 66.4
Aeron.Sled-Side 1-C 66.3

Spar. Sust-H asp 66.3
Side. 1A-Judi 66.0

Hopi II-Side 1-C 65.7
Hopl IV-Side 1-C 65.4
Side 1A-Hasp 65.1
Yuma 1 -Side 1-C 64.1

Aeroj. SlecI-Judi 63.8
NPP Boost-Hopi IV 63.0
AeroB. Boost-Side 1-C 61.9
Deacon-Side 1-C 60.0

Upstart-Side 1A (Bo) 58.0

//62 Black Brant 10" 49.4

//67 Recruit 43.6

_68 Lance 40.3

//69 Terrier-Dart 34.7
MK-I 2 Boost
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TABLE 6-2

SUMMARY OF ARC ROCKET STUDY - continued -

CLASS

Payload
P/L Dia.
Altitude

10_lbs.

4.5 to 6.0 in.

200 km

®
20 Ibs.

6.0 to 12 in.

200 km

RANK ROCKETS SCORE ROCKETS SCORE

1 Spar. Sust-Arcas

2 Spar. 111-68-Arcas

3 Aeroj-Sled-Arcas
4 Cherokee-Arcas

5 Mauler-Arcas

6 Vuma 1-Arcas

7 H opi II -Arcas
8 Side, 1C-Arcas

9 Hopi 1--(2 Arcas

10 Spar. Sust.-Hopi IV
11 Aerob Boost-Areas

12 Deacon-Arcas

13 Falcon M58-Hopi IV

14 Mauler-Hopi IV
15 Genie MD-1 -Arcas

16 Cherokee-Hopi II

17 Mauler-Hopi II

18 Builpup-Arcas
19 Lacrosse-Side IIC

20 Apache-Side 1-C

25 Spar. Sust-Hopi II
30 Gar 9-Side 1-C

40 Bullpop-Hopi III

First

Dart _37 Tomahawk 406

Sec,

Dart #43 Black Brant (17")

Last

Rated #45 Black/Brant (10")

Vehicle (HVAR)

71.5

70.9

68.2
68.1

68.0

66.9

66.8

65.5

64.8

63.2
62.2

61.0

61.0

59.8

59.5

59.1

58.2

57.8

57.6

57.4

59.7

55.5

48.6

50.2

43.0

31.8

Javel. Ill-Viper 2B

Recruit-Viper 1B
Yardbird-Kiva 1

Genie MD-1-Kiva 1

Hawk Dual-Deacon

Javel. Ill-Deacon
Lacrosse-Kiva 1

#7 Lacrosse-Kiva 1

51.4

48.8

48.2

47.4

47.0

45.0

44.7

44.7

- 240 -



Value judgements concerning the tradeoff of merit points for such factors

as aerodynamic heating, maximum dynamic pressure, propellant safety,
vehicle reliability and maximum acceleration are almost completely sub-

jective. These factors may not be at all pertinent depending in many cases

upon the specific payload. In general, vehicle reliability estimates are
worthless for vehicles yet to be developed, if a particular vehicle and pay-

load can withstand a certain dynamic pressure and aerodynamic heating,
there is no value advantage in reducing these factors. Either the system

performs or it does not. The validity of the final results of this study can

be questioned on the basis for determining the relative importances among

the various rating factors.

in spite of the shortcomings of the study, there is presented a good
deal of detailed information which is quite useful for future planning of

rocket vehicles. Some of the performance data, however, are not very
accurate and should not be considered as valid without some further check-

ing. For instance, the Viper 2B-Dart (2.0 inch diameter) is shown as

achieving an apogee of only 3.50, 000 feet, while subsequent flight tests
of this same vehicle resulted in apogees as high as 435,000 feet.

The Arcas has been the primary meteorological rocket network and

60 km support vehicle for the last six years. Although the systems reliability

started out at a relatively low level, it gradually improved over the years
to a level of about ninety percent. However, over the past year or so this

reliability level has suffered somewhat.

At the current time, it appears that the Arcas is being phased out

as the primary 60 km meteorological rocket infavor of the instrumented
Loki Dart vehicle. This Loki Dart system has been qualified and standard-

ized by the Air Force as the Meteorological Probe PWN-8B. The Lokl

Dart system with a ram-air decelerator (Starute) and a 1680 mHz temperature

measuring payload (Datasonde) currently is 42 percent of the Arcas-Arcasonde

cost and this figure has been obtained at fairly modest production rates.
Increased production requirements should reduce this cost ratio to approximately

one-third. An additional advantage of the Loki system is a reduction of the

wind sensitivity from a value of 1.20 nm/knot for the Arcas to a value of
0.32 nm/knot for the dart.

Lokl Dart vehicles have been used for years to dispense chaff for

routine wind data. Current Loki Dart chaff systems are routinely dispensing

chaff to altitudes of 250,000 feet from sea level launch sites and 280,000

feet from WSMR. A high energy Loki motor was developed two years ago by
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Space Data for the Army to obtain chaff winds to 2801000 feet from sea

level sites. The Hopi Dart and Cajun Dart vehicles were developed for

NASA-MSFC to obtain winds to 90 km with chaff payloads from Cape

Kennedy in support of the Saturn. Just this year the Super koki vehicle

has been developed to obtain winds to 90 km with chaff payloads from
Cape Kennedy in support of the Saturn. The Super Loki vehicle has been

developed for NASA-MSFC to replace the Hopi Dart and Cajun Dart with

a lower cost system for the high altitude chaff winds requirement. An

instrumented dart for the Super 1.oki is currently being developed to obtain

winds and temperatures to a higher altitude than the capability of the
current PWN-8B system.

Instrumented payloads for the higher altitude measurements have

historically been flown with the larger geophysical rockets such as the

Aerobee-1501 the Nike Cajun, the Nike Apac he and others. A significant
break-through a few years ago was the development of the Sparrow Arcas for

soundings to about 4751000 feet with moderate size (4.5-inch diameter)

and moderate weight (16-1b) payloads. Other versions of the boosted Arcas
have been developed for altitudes between 200,000 feet and 475r000 feet.

The Viper Dart has just recently been developed for carrying the

Robin passive inflatable sphere to an altitude of 125 km. Further develop-

ment efforts are currently being expended to increase the Viper Dart altitude

to 140 kin. The dart has a 2-inch diameterr weighs 29.5 pounds and has a
payload volume of 46 cubic inches.
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6.3 Current Vehicle Systems.

6.3.1 General.

Although there have been a number of attempts to develop optimized

meteorological rockets over the past few years, the only ones currently being
used on a routine, synoptic basis are the Arcas and the Loki Dart. Since

reliable instrumentation has been developed for the Loki vehicle, it is

currently replacing the more expensive and wind-sensitive Arcas for the

majority of the Meteorological Rocket Network and routine support launch-
ings. Thus, the Arcas is gradually being relegated to the less frequent

research soundings where the versltility in payload diameter is required.

Until a GMD-2 transponder-type telemetry instrument is developed for

the Lokl system, however, the Arcas will still be used routinely with
the AN/DMQ-9 transponder sonde at the few locations requiring a GMD-2

track. For routine measurements above 65 km the Super Lokl and the Viper

Dart are currently being employed to measure chaff winds and falling sphere
densities and winds respectively. The various boosted Arcas vehicles

available have had limited use, generally for special research payloads.

The various Nike boosted vehicles have been used for large research pay-

loads, and are too large and costly to be considered seriously for routine
meteorological sounds. The two foreign meteorological rockets, Skua 1,

(British) and MT-135 (Japanese), are basically Arcas-type vehicles which

appear to have no particular advantage over the Arcas. A summary of the

current meteorological rocket vehicles is presented in Figure 6.3-1 and
Table 6-3.

Although the monthly Data Report on Meteorological Rocket Network

Firings lists twenty-six meteorological rocket types, most of these vehicles

are either obsolete or redundant. All of the Lokl typevehicles of Table 6-4
are essentially the same, and the only operational version of the instrumented

Loki is the PWN-8B. The obsolete vehicles from the Data Report are listed

in Table 6-5. More detailed information on the currently active vehicles are
presented in the sections which follow.
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TABLE 6-4

LOKI DART VEHICLES

JUDI

LOKI I

ROCKSONDE 200 (Obsolete)

HASP I

HASP II

HASP III

TALLY HI (Obsolete)

LOKI DART

PWN-8B
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TABLE 6-5

OBSOLETEVEHICLES

LOKI I

JUDI

ROCKSONDE 200

HASP I

METROC

BOOSTED METROC

DEACON ARROW

ARCHER

RAVEN

HOPI DART

TALLY HI

HASP III

SIROCCO

CAJUN
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6.3.2 Arcas.

Sucha great deal of information hasbeenpublishedconcerning
the Arcas, that to include a detailed description here would be painfully
redundant. Therefore, only a brief descriptionwill be given.

TheArcassoundingrocket is an unguidedvehicle with a diameter
of 4.5 inches and is designed to carry payloads of 12 pounds or less to
heights in excess of 200,000 feet when launched from sea level. Four

fixed fins stabilize the vehicle during flight. A pyrotechnic separation
device is included to separate the payload from the missile at peak

altitude. The rocket is designed for launching from a specifically
designed closed-breech launcher to reduce its inherent wind-sensitivity
to a somewhat tolerable level.

A cross-section of the Arcas rocket vehicle is shown in Figure 6.3-2.

The rocket is 4.5 inches in diameter, 90.9 inches long and weighs 77 pounds

when provided with a nominal 12-pound payload. The high performance

rocket motor is powered by an end-burning solid-propellant grain, generating

a 336-pound thrust for approximately 30 seconds. The application of long-

burning propellants is advantageous because acceleration is experienced

over a long period of time, peak g-loadlng is minimized and more efficient

conversion of thrust to vehicle velocity is realized based on the greater
percentage of thrust time in a more rarefield region of the atmosphere.

The Arcas has a cylindrical parachute container threaded to the
head cap of the motor case. The parachute is packaged in to this section

and the forward head closure of the parachute compartment is secured with

three shear pins. The barrel section of the plastic nose cone slides inside
the forward end of the parachute container. The active payload is secured

to a metal instrumentation base plate which is secured, in turn, to a center

stud bolt by means of a lock-nut. The nose cone may be secured to the

instrumentation base plate by set screws, or, if nose cone jettison is desired,

by six steel balls which fall away upon expulsion of the parachute-payload
combination. The steel-ball separation device permits exposure of sensing

elements to the atmosphere during descent of the payload.
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A gas-generator separation device mounted in the head cap of the

rocket motor functions at apogee, separating the parachute and instrumenta-

tion section from the rocket motor. This separation device incorporates a
pyrotechnic delay column which is activated at termination of the propellant

burn phase, providing a 130-second function period from rocket lift-off
to payload separation. The gas-generator, acting on the after closure of

the parachute container, expels the parachute, instrumentation and nose
cone from the burned-out motor by piston-type action.

The Arcas nose cone (Figure 6.3-3) provides a volume of 140 cubic
inches for instrumentation. An additional 150 cubic inches of volume can

be utilized if the parachute is not required, or, for every large payloads,

as many as 127 cubic inches can be obtained by extending the parachute

cylinder or cylindrical section of the nose cone. in the nominal active
payload configuration section, the nose cone, instrumentation, base plate,

parachute container, and associated components weigh four pounds. The

parachute weighs an additional 2.3 pounds, making the gross component

weight 6.3 pounds and permitting up to 5.7 pounds active payload weight
for the nominal configuration. By use of an extended payload section and

parachute container, payloads up to 20 pounds can be accommodated.

The Arcas Robin balloon is a variation of the basic Arcas rocket

system design. The payload consists of a 1-meter-diameter mylar balloon

bearing an internal corner reflector for passive radar tracking purposes.

The balloon weighs 0.3 pound and is inflated by chemical action upon

expulsion from the rocket at apogee. In the Robin configuration, the para-

chute container is eliminated, and the nose cone is attached directly to the
motor case by means of a threaded adaptor sleeve. The Robin rocket vehicle

is 80.8 inches long and the total weight is 72.5 pounds, including ballast

required to maintain vehicle stability brought about by the extremely light

balloon payload. Separation of the Robin balloon is accomplished by means

of the standard Arcas separation device.

Major Arcas parameters are listed in Table 6-6.

The rocket motor (Figure 6.3-4) contains an end-burning charge of

plastisol type solid propellant. The motor case consists of a one-plece steel
outer casing with an insulator liner. The nozzle structure is a tapered

graphite insert supported by the tapered after-end of the case. A steel

retaining ring, welded to the head end of the case, is used to secure the
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TABLE 6--6

ARCAS

ROCKET SYSTEM DIM ENSIONS

PARAMETER

Length ( in.)
Overall 90.9

Rocket motor 60.8

Parachute container 12.0

Nose cone 18.1

Diameter ( in. ) 4.5

Fin span (in.) 13.0

Fin area(4fins) (in. 2) 94

Interval volume ( in. 3 )
Parachute container 140
Nose cone 170

Nominal weight (Ibs.)
Total vehicle 70.5
Motor burnout 29.5

Nose cone 1.5

Parachute container (loaded) 4.0
Rocket motor 65.0

* Does not include instrument package and instrument base, which total 4 to

6.5 Ibs. depending on the type of rocketsonde payload.
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1 NOZZLE INSERT
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3 INSULATING LINER
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FIGURE 6.3.-4 CROSS-SECTIONAL DIAGRAM OF THE ARCAS MOTOR
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motor head closure and also provided a threaded joint for attachment

of the payload sections. The motor is delivered completely assembled

and cannot be disassembled in the field. Nominal performance character-
istics of the motor are shown in Table 6-7.

A pyrotechnic device is used for payload separation and is an

integral part of the motor head closure. This device contains a delay

column of pyrotechnic material that burns for 100 seconds. It is ignited
as combustion of the propellant nears completion after approximately 28

seconds. This delay column in turn ignites a gas-generating charge, which

separates the payload from the expended rocket motor at a relative velocity
of 50 feet per second with a maximum acceleration of less than 50 g's.

The igniter is packaged separately for shipment and is installed

through the nozzle of the rocket just prior to firing. It employs an electric-

ally activated squib and five grams of pyrotechnic booster compound. The
parachute container assembly, including parachute, is provided as a sealed
unit and cannot be disassembled in the field. It is coupled to the motor

case by connecting a lanyard to an attachment hole in the case head
c I osure,

The major components of the Arcas are shown in Figure 6.3-5.

A closed breech launcher is normally used for launching the Arcas

rocket. The major components of the launcher as shown in Figure 6.3-6
are a 20-foot tube to guide the vehicle during initial acceleration, a free-

volume cylinder to retain the exhaust gases, and a base assembly constructed

to permit azimuth and elevation angle settings. Access to the launcher for

loading is provided by a hinged breech plate on the bottom of the free-

volume cylinder. The breech plate is equipped with a connector for the

firing line and the igniter leads.

In operation as indicated in Figure 6.3-7 the free-volume cylinder

entraps the exhaust gases of the burning rocket motor. These gases exert

pressure on a piston attached to the nozzle end of the rocket vehicle,
accelerating the vehicle up the launching tube. The rocket is centered and

supported in the tube during launching by four plastic spacers that fall away
from the rocket along with the piston as the rocket leaves the tube.
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TABLE6.7
ARCASROCKEI MOTOR PERFORMANCE CHARACTERISTICS

CHARA CTERI STI CS TEMPERATURE (o F ) NORMAL VALUE

Average thrust ( Ibs ) - 10

+70

+110

268
336

385

Burning time ( se¢ ) - 10

+70

+110

35.4

29.0
24.8

Average pressure ( psi ) - 10
+ 70

+110

_5

1020

11_

TOTAL IMPULSE (Ib - sec)
9089
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FIGURE 6.3-6 MAJOR COMPONENTS OF THE CLOSED-BREECH ARCAS LAUNCHER
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FIGURE 6.3-7 PrincipLe of Operation of the Arcas Closed-Breech Launcher
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If desired, an auxiliary gas generator which is incorporated into

the free-volume cylinder may be used. This will increase the launching

velocity over that obtainable with the basic launching system. The gas
generator contains a propellant charge that generates additional gas

pressure into the cylinder. The generator is fired mechanically by gas

pressure from the launcher transmitted through a high temperature, high

pressure hose. The U. S. Navy at PMR has recently developed a com-

pressed air system to be used in conjunction with the Arcas launcher to
accomplish the same objective.

Utilization of the gas generator technique results in an increase

of the Arcas rocket launch velocity. In the cctse of the rocket-sonde

system the increase is from 150 feet per second to 230 feet per second.
This has the effect of reducing the Arcas wind sensitivity slightly.

Typical Arcas flight performance values are shown in Table 6-8
for 88° and 84° launch elevations for both the Robin and Arcasonde

configurations, with and without the launcher gas generator.

6.3.3 Loki.

The kokl meteorological rocket sounding system is designed to measure

temperature and wind velocity as functions of altitude to a height of 65 km.

A sketch of the Loki rocket system is shown in Figure 6.3-8.

The rocket is launched from a helical-railed launcher. The vehicle,

consisting of a rocket motor and payload-bearing dart_ is propelled to

a motor burnout hight of 5, 000 feet where the dart is separated from the
rocket motor. The dart then follows a ballistic trajectory to a peak height

where the payload is expelled from the dart. The payload consisting of

the temperature sensing device and small radio-frequency transmitter then
descends on a radar-reflective parachute or other decelerator.

Other payloads commonly employed in the koki system are radar-

reflective chaff dipoles and radar-reflective parachutes for the determination

of wind velocity while radar-reflective inflatable spheres have been utilized

for the determination of stratospheric air density and winds.

The rocket vehicle is comprised of two stages, the booster motor and

the unpowered dart which contains the payload. The Loki motor is an internal-

burning type which provides an average thrust of 890 kilograms for a period of
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TABLE 6-8

FLIGHT PERFORMANCE CHARACTERISTICS OF THE ARCAS SYSTEMS

FOR 88° AND 84 ° LAUNCH ANGLES

STANDARD LAUNCH

Max. altitude (ft)
Time to max, altitude (sec)

Max velocity (fps)
Altitude at burnout (ft)

Launch velocity (fps)
Acceleration at launch (g)

ROCKETSONDE (12 Ibs) ROBIN (8 Ibs)

88 ° QE 84 ° O.E 8,8° QE_ 84°QE

197,000 181,000 232,000 21 5,000
124 120 135 130

3, 440 3,420 3,760 3,740
51,000 50,000 56,000 54,000
150 150 160 160

33 33 36 36

GAS GENERATOR LAUNCH

Max. altitude (ft)
Time to max. altitude (sec)

Max. velocity (fps)
Altitude at burnout (ft)

Launch velocity (fps)
Acceleration at launch (g)

ROCKETSONDE (12 Ibs) ROBIN (8 Ibs)

88° qE 84° RE 88° (_E

21 O, 000 198,000 247,000 232, 000
128 125 139 134

3520 3510 3860 3830

53, 000 52,000 57,000 55,000
230 230 250 250

90 90 94 94
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2 secondsthusproducinga rocket velocity of 1500meters/secat an
altitude of 1500meters. At this point the motor is separated from
the dart which then follows a ballistic trajectory to an altitude of 65

km. At this altitude, and approximately 110 seconds after launch time,

the payload is ejected by an explosive charge, the ejection time being

determined by means of a pyro-delay fuze which is activated at the time
of rocket launch.

The dimensions of the Loki rocket system are shown in Figure 6.3-9

while Table 6-9 lists the principal physical characteristics of the rocket

and Figure 6.3-10 shows a cross-sectional view of the various components

which comprise the dart payload for the determination of temperature and

wind velocity in the stratosphere.

The balloon dart carries an inflatable plastic balloon as the sensing
device. The balloon contains a corner-reflector radar target and is ejected

from the dart at an altitude of 65 km to form a sphere one meter in diameter.

The sphere is tracked by radar as it descends through the atmosphere. From
the radar determination of balloon position as a function of time, air density

and wind velocity are determined as functions of altitude. The data

reduction techniques utilized for the determination of these parameters are

contained in the bibliography of this manual.

The chaff dart carries radar-reflective dipoles as the sensing elements.

The dipoles are ejected from the chart in the neighborhood of 65 km. The

tracking of the chaff cloud by a ground-based radar system serves to determine

the position of the chaff at successive time intervals. From the radar deter-

mination of the cloud position as a function of time, stratospheric wind

velocity is determined as a function of altitude.

Two types of chaff are commonly utilized. Copper chaff 1.27 x 10-2cm
in diameter is used for the determination of wind velocity at altitudes between

65 and 15 km. At 15 km the copper chaff fails to provide an adequate target

for the tracking radar because of the excessive dispersion of the chaff dipoles

forming the chaff cloud. Nylon chaff 8.8 x 10-3cm in diameter has been used
to determine wind velocities at altitudes from 85 to 60 kin.

The Meteorological Probe PWN-8B (Instrumented Loki Dart) has been

developed, qualified and successfully flight tested for final standardization
by the U. S. Air Force to make available a low cost meteorological sound-

ing rocket system for operational use. The major components of the probe
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TABLE 6-9

PRINCIPAL CHARACTERISTICS OF THE LOKI SOUNDING ROCKET

CHARACTERISTICS NUMBERICAL VALUE

Length (meters)

Overall 2.62
Rocket motor 1.53

Dart (Temperature - wind) 1.09

Diameter (cm)

Rocket motor 7.60

Dart (Temperature-Wind) 3.80

Fin Span (cm)

Rocket motor 13.00

Dart 7.60

Fin Area (cm 2)

Rocket motor

Dart 54.4

Nominal Weight (kg)

Total vehicle (launch) 15.0
Motor case 2.6

Dart 4.1

Propel lant 8.3

Total vehicle (burnout) 6.7

Average thrust (kg) 890

Burning time (sec) 1.8

Total impulse (kg-sec) 1550
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system include a small solid-propellant rocket motor, a non-propulsive
dart which contains the payload, a launcher and a ground-based test

set. The system has been designed for launches at remote sites as well

as at established missile ranges. Atmospheric temperature and wind data

are obtained with this probe to an altitude of 200,000 feet.

The major components of the Meteorological Probe PWN-8B con-

sist of the following:

Rocket Motor SR 71-AD-1 Rocket Motor

Igniter Assembly

Ogive, Instrumentation Group
A/A 37U-26

Dart Body
Dart Tail

Launcher, Meteorological Probe

LAU-66/A

Launcher

Test Set, Ogive Instrumentation

Group TTU-273/E

Test Set

Each of these components has undergone environmental and performance

testing, and each component was used in the qualification flight tests.

All of these components have been designed to withstand both storage
and operation temperature extremes from -40 ° F to + 140 ° F. The rocket

motor nas been qualified to MIL-R-MIL-STD-810. The test set has been

designed and qualified in accordance with MIL-21200, Class 2 and
MIL-STD-108.

The design of the vehicle system incorporates an improved Loki
rocket motor and a 1.437 inch diameter dart. The dart design is similar

to that which was developed under the CRL Contract No. AF 19(628)-4164

for a Loki Instrumented Dart System. Figure 6.3-11 presents a photograph

of the vehicle system. Figure 6.3-12 is a dimensioned sketch of the

vehicle config uration.

The dart system design is indicated in Figure 6.3-13. The tail
assembly consists of the booster coupling receiver, tail fins, firing line

umbilical receptors1 pyrotechnic time delay and expulsion charge. The
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FIGURE 6.3-1 1 PHOTO OF INSTRUMENTED DART SYSTEM 
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parachute-sonde payload resides inside two sets of split staves which

transmit the ejection piston load directly to the nose cone or ,give
during expulsion. The staves are also used the sliding the payload

into the dart body during assembly and out from the dart body during

ejection. Both the dart body and the staves contain a payload

umbilical hole for external power and calibration. The staves are
lined with an asbestos paper to reduce the heat transfer from the

dart body into the payload• The staves are split to permit deployment
of the parachute and instrument with minimum interference• The nose

cone or ,give is shear-pinned to the dart body so that during expulsion,

the ,give separates from the dartr leaving the front end of the dart

body open for payload ejection. The ,give has a drilled hole down the
center for the sonde antenna to make contact. The ,give is isolated

from the dart body by means of an electrical insulator. Thus, the ,give
acts as an active antenna while the dart body forms the ground plane.

The operation sequence of the proposed booster-dart vehicle

system is as follows:

•

2.

3•

,

.

,

.

8.

•

Rocket motor and dart time delay ignition.

Initial vehicle motion disengages dart umbilicals.

Vehicle travels up through helical rail launcher

which imparts spin or roll to the vehicle•
Vehicle exits the launcher at 180 ft./sec, with a

spin rate of 13 rps• Spin rate at launch is necessary
to reduce effects of thrust misalignment on vehicle

dispersion.
Booster rocket burns out at 1.91 sec. at 4, 750 ft.

and 5, 120 ft./sec. Spin rate has decreased to

10 rps.

Dart separates, spins up to 50 rps and coasts to

apogee.
Pyrotechnic delay train ignites expulsion charge.

Ejection piston transmits load through packaging
staves to ,give where retaining pins are sheared.

Ejection piston expels payload, staves and ,give
as indicated in Figure 6.3-14.

The rocket motor design is specified by USAF Drawing Number

67D57300 and is an improved version of the koki motor. The total

impulse of the present design is increased by 316 pounds-seconds by
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increasing the specific impulse and weight of propellant. This has been
done to assure that the minimum apogee altitude specification at an

effective launch angle of 80 ° of 200,000 feet will be satisfied.

A summary of the major design characteristics of the SR 71-AD-1
rocket motor is presented in Table 6-10 along with similar data for the

Loki II and HASP type motors. The differences in hardware design between
the SR 71-AD-1 and these motors is summarized in Table 6-11. These

improvements in the design and performance of the rocket motor have
significantly improved both altitude performance and flight reliability

of the system. The rocket motor is specified by MIL-R-83064 (USAF)

Model Specification, Rocket Motor SR 71-AD-1.

The total impulse of the SR 71-AD-1 rocket motor is 4076 pound-
seconds, which is significantly higher than the Loki II and HASP Mark 32

Mod O motor impulses of 3,760 pound-seconds. This has been accomplished

by increasing the propellant specific impulse from 223 seconds to 231 seconds
and the propellant weight from 16.88 Ib to 18.25 lb. The increase in

propellant weight is due to a high volumetric loading rather than the use

of a higher density propellant. The port volume of the SR 71-AD-1 motor
is reduced from the Mark 32 Mod O design, and the nose piece is not

loaded with propellant. The nozzle throat area is also increased to give

a higher thrust at a lower chamber pressure than the Mark 32 Mod O design.
The steel ring at the nozzle end of the Mark 32 Mod O is replaced with a

rubber boot to reduce the problem of motor wall-burn throughs at the

junction of the forward end of the nozzle and the motor wall.

A comparison of the ballistic performance between the SR 71-AD-1
motor and the Loki II or HASP motors is presented in Table 6-12.

Rocket Motor Hardware Design.

The SR 71-AD-1 rocket motor major hardware components consist
of the forward closure, the motor tube, the nozzle assembly, the fins, the
forward boot and the aft boot.
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TABLE 6-10

ROCKETMOTORMAJOR DESIGN CHARACTERISTICSSUMMARY

Design Characteristics SR 71 -AD-I

Loki il & Mark 32

M od 0 HASP Types

Length (in) 66.06 66.06

Diameter (in) 3.126 3.126

Wall Thickness (in) 0.061 0.061

Weights:

Case (ib) 4.39 4.39
Nozzle (Ib) 0.81 1.52

Liner (lb) 0.60 0.50

Propellant (lb) 18.25 16.88

Total (Ib) 24.05 23.29

Motor Mass Fraction

Burning Time (Sec.)

Action Time (Sec.)

0.76 0.73

1.86 1.86

2.04 1.97

Chamber Pressure:

Maximum (psi)

Average (psl)

1,447 1,500

979 1,340

Total Impulse at Sea Level (Ib.--sec) 4,076

Propellant Specific Impulse (sec) 231
Throat Area (in 2) 1.41

3, 760
223

0.983

Expansion Ratio

Grain Port Diameter (Tapered) (in)

5.44

I. 30-I .00

6.05

1.58-1.00
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TABLE 6-I I

HARDWARE DESIGN
CHARACTERISTICS COMPARISON

Hardware Design

Motor Case

Nozzle

Nozzle - Motor Case

Junction Protector

Nose Piece Loading

Forward End Seal

SR 71-AD-1

Same

Recessed 0.81 lb

"O" Ring Seal

Rubber Boot

Loki II &

Mark 32 Mod 0

Same

Not Recessed

Steel Sleeve

Steel Sleeve

None Propel lant

Rubber Boot Rubber

TABLE 6-12

ROCKET MOTOR BALLISTIC PERFORMANCE COMPARISON NOMINAL

80 ° F CONDITIONS

SR 71 -AD-1

Total I repulse (Ib.sec) 4,076

Action Time (sec) 2.04

Maximum Thrust (Ib-ft) 2,902

Average Thrust (Ib-ft) 2, 033

Speci fi c I repulse (sec) 231

Loki II & Mark 32

Mod 0 HASP Types

3,760

1.97

2, 380

2, 020

223
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LOKI LAUNCHER

General.

Loki type vehicles have been launched utilizing several different

types of launchers such as the standard helical-rail tube, a zero-length
launcher, a rail launcher with no spin and a five-inch gun launcher.

Of these techniquest the most successful has been the helical-rail tube

because of its inherent capabilities to induce the spin rate to the vehicle
prior to the time it is released for free flight. The helical--rail launch

tube was developed for the original Loki anti-aircraft dart system to

reduce dispersion far greater aiming accui'acy. This launch technique
has been used for the Loki-Dart meteorological rockets for a number of

years up to the present time with excellent success in restricting dart

impacts to relatively small regions - a significant advantage of the Lokl-
Dart system. The LAU-66/A launcher has been designed to a helical-

rail identical in function to the original Loki helical-rail launch tube.

Vehicle Dispersion Considerations.

During the original Loki 1 system development program at JPL,

firings were made using both spiral--rail launch tubes and straight rails.
Also, long (14 feet) and a short (7 feet) spiral-rail launch tubes were

compared. The results of a number of firings with each launch system are
summarized below:.

Helical Straight Helical

Launcher Type Rails Rails Rails

Launcher Length (ft.) 14

Launch Velocity (ft/sec) 359

Launch Spin Rate (rps) 18.1

14 7
362 244

0 12.7

Average Wind Effect (mil/mph) 1.3

Dispersion w/wind (5 mph) 6.6

Dispersion w/wind (5 mph) 7.3

1.3 1.0

22.8 7.2

-- 7.4

For a hlgh-acceleration, high-velocity system such as the PWN-8B
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Probe vehicle the effect of wind at launch and during flight upon impact
dispersion is relatively insignificant. This fact leaves the vehicle airframe

and, especially, thrust misalignment as the next major sources of impact
dispersion. The dispersion resulting from these mlsalignment factors can

be significantly reduced by imparting spin to the vehicle, before they can
alter the course of the rocket vehicle. A critical period for a vehicle

with no spin at launch is just as the vehicle leaves the constraints of the

launcher. The thrust misalignment vector operates immediately upon

launch to turn the vehicle into a new heading without the benefits of any

appreciable aerodynamic restoring forces to resist the moment generated
by the thrust misalignment. Hence, a new heading is taken before the

vehicle has a chance to build up sufficient spin, by means of canted fins,
to vector out the misalignment effects.

Firings using the conventional hellcal-rails had less than one-thlrd

of the dispersion experienced with the straight no-spin rail. It was con-

cluded by JPL that the initial spin imparted to the vehicle by the helical-
rail launchers strongly reduces the dispersion. The average wind effect

does not seem to be influenced significantly by either straight or spiral tall
designs or launcher length changes, at least from 7 feet to 14 feet. Dis-

persion does not seem to be particularly influenced by launcher rail length
for variations of the above magnitude.

Launcher Design.

General.

The LAU-66/A Launcher has been designed as a helical-rail launcher

of moderate length, i.e., 10 Feet long, to maintain trajectory and impact

dispersion at a low value. Increasing launcher length beyond 10 feet does

not significantly reduce either the average wind effect or dispersion, but

makes a more cumbersome and costly launcher. Since the basic vehicle

dispersion for the probe system is so small, i.e., 7.0 mils, accuracy in
launcher settings, launcher rigidity and launcher straightness (lack of
bowing) become limiting factors in making possible a minimum trajectory

and impact dispersion. These factors, in addition to the practical aspects

of cost, mobility and environmental fidelity, have been the main design

goals for the LAU-66/A launcher.

Requirements.

As discussed abovet it is necessary to provide a rigid structure to

support the launch tube to limit the dispersion, in addition to providing
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the rigid structurefor the launch tube, the other design goals for the
launcher has been:

.

2.

3.

.

.

.

.

8.

.

Adjustable in elevation to :1:1/4 degree.

Adjustable in azimuth to _ 1/2 degree.

Allow the launch rails to be supported in such a

way that one man can easily elevate the rails into
the launch position or move the rails into the

horizontal position.
Provide elevation and azimuth locking mechanisms

which are easily locked and unlocked.
Provide a motor retainer stop which is easy to
actuate and will withstand the rocket blast of the

motor at launch.
Provide access for the umbilical connector to the

instrument.

Provide junction boxes for the firing lines.
The basic design shall be such that it can be

assembled in the field with two people without

auxiliary lifting equipment. This has been

accomplished by using a component type construct-
ion and limiting the weight of each component to

not more than 240 pounds.
Azimuth and elevation indicators are an inherent

part of the launcher.

Description.

The Launcher, Meteorological Probe LAU-66/A (Figure 6.3-15)

consists of four major components: base, pedestal assembly, support assembly,
and the rali assembly. The launcher base supports the pedestal assembly,

which in turn supports the support assembly to which the rail assembly is

secured. The rail assembly supports the Meteorological Probe PWN-SB

during launch operations and imparts a stabilizing spin of approximately

10 revolutions per second to the probe as it travels out of the launcher
into free flight. Launch elevation angles are set with the support assembly.

Launch azimuth angles are set with the pedestal assembly. Electrical firing

circuitry for the PWN-8B and the appropriate connectors are provided as
part of the support assembly and pedestal assembly. Major dimensions of

the launcher are presented in Figure 6.3-16.
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FIGURE 6.3-15 R O C K E T  L A U N C H E R  L A U - 6 6 / A  
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Launcher Base.

The launcher base is a heavy steel plate which anchors the pedestal

assembly to the concrete launch pad.

Pedestal Assembly.

The pedestal assembly consists of a fixed outer cylinder with an
azimuth angle setting plate. The fixed cylinder and a rotating inner

cylinder with an azimuth angle setting plate. The fixed cylinder consists
of a heavy-wall aluminum cylinder with flanges at both ends. The bottom

flange is bolted to the launcher base in a fixed position. The upper flange

supports the rotating azimuth plate which is welded to the inner rotating

cylinder. A junction box is supplied as part of the fixed cylinder to
accept the blockhouse firing llne connector and also the wiring harness
connector from the support assembly. The inner rotating cylinder consists

of a heavy-wall aluminum cylinder, welded to the azimuth angle setting

plate. The top end of the inner cylinder is fitted with a yoke for attach-

ment of the support assembly.

Support Assembly,

The support assembly consists of an aluminum "! °' - beam for the

launch rall support, two elevation bearings, and slde-plate aluminum
bracketry for attachment of the support assembly to the pedestal assembly

elevation angle setting lock. Attachment fixtures for the rail assembly
are located fore and aft on the aluminum "1" -beam. The two bearing

subassemblies are included for the primary attachment to the pedestal

assembly. Firing line wiring harness, associated junction boxes and
electrical connectors are included as part of the support assembly.

Rail Assembly.

The rall assembly consists of five identical aluminum cast rail
sections which have been bolted together to form a ten foot long 4--rail

assembly. The four rails are equally spaced and form a continuous helix

throughout the length of the launch rall assembly. Approximately one-
third of a revolution is completed by the rails from the breech end to the
muzzle end. The edges of the rails are stepped to support the probe by

the dart fins and the rocket motor bourrelet.
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6.3.4 Skua.

The Skua is 226 cm (89 in) long, 13.1 cm (5.15 in) diameter and

weighs 37.5 kg (82 1/2 Ib). The rocket motor case is manufactured from
100 t/in 2 steel and is filled with a moderate specific impulse end burning

case-bonded solid propellant, The rocket is fitting with four fins and,

in the parachute role, the nose cone is made of glass fibre. Separation

of the payload compartment is obtained by means of a thermal switch which

operates at the end of motor burning and a time switch which may be pre-

set to achieve the required separation height. These switches close the
firing curcuit to another small solid propellant motor which ejects the

payload compartment clear of the rocketwith a relative velocity of
14 m/sec (45 ft/sec).

The boost arrangement is recoverable. It separates from the main

rocket at an altitude of 15 m (50 it) and descends by parachute. The

boost motor can then be returned for refilling and the boost support structure

can be cleaned, inspected and re--assembled for the next firing. It has
been found that 85% of the boost and boost support structure can be re-

used after each firing.

A payload space of 8, 200 cu cm (500 cu in) is available and pay-
loads of up to 6 kg (13 lb) may be accommodated. The standard equipment

is a British (Irving) radar reflecting parachute of 4.6 m (1 _ {t) diameter

and a sonde transmitter capable of transmitting at 28 m/cs.

Skua has operated successfully from a launch site at South Uist
in the Hebrides, and it is in service with the British Meteorological Office.

Performance.

The Skua can reach an altitude of 90 km (295, 000 ft) with a pay-

load of 1.8 kg (4 lb) using a 85 ° launch. This performance is attained

using a 0.2 second boost system giving a launch velocity of 100 m/sec
(328 ff/sec). Without the boost the altitude is approximately 66 km

(210,000 ft) for the same payload.

Using the standard boost and launching techniques i.e., correction
for the ballistic winds, the dispersion of impact paints due to wind lies
within a circle of 5.3 kilometers radius for 1 m/sec (3.3 miles for 3 ff/sec)

error in ballistic wind for a 72 km (236,000 ft) altitude.
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The curves of Figure 6.3-17 illustrate the rocket altitude capabilities
against payload, time and range. The Skua major characteristics are pre-
sented in Table 6-13.

Launch System.

The high speed launch system consists basically of a 3-part 54 cm

(21 in) diameter tube mounted on an ordinary commercial vehicle for

maximum mobility. The tube is elevated hydraulically and accurate adjust-
ment is carried out by a manual screw acting on the diagonal stays. Azimuth

adjustments are obtained by altering the direction in which the vehicle is

pointing and a sighting bar is placed below the driver's position. It has
been found that azimuth accuracies of 1/2 ° can be obtained and elevation

accuracies of 1/10 °.

Loading is carried out by lowering the tube to an angle of 15° and

inserting the complete rocket and boost assembly with the aid of special
loading rods.

6.3.5 MT-135.

The MT-135 is the Japanese version of the Arcas. The MT-135 is
longer, larger in diameter and weighs almost twice as much as Arcas. The

burning time is appreciably shorter, the thrust level is greater and the

altitude performance is slightly less than that of the Arcas. A comparison

of the major characteristics is presented in Table 6-14.

6.3.6 Super Loki-Chaff Dart.

The Super koki Dart meteorological rocket system has been developed

for NASA - Marshall Space Flight Center to obtain hlgh-altltude (85 km) wind

data with a low cost rocket vehicle and a radar-reflective chaff payload.

The Super Loki Dart consists of a scale-up of the older Loki Dart system,which

has been in use for many years to gather wind data to altitudes up to 65 km.
The Super Loki Dart two-stage vehicle consists of a high-impulse solid-pro-

pellant rocket motor as the first stage, and a non-propulslve dart which

contains the chaff payload as the second stage.
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TABLE 6-I 3

SKUA- GENERALSPECIFICATIONS

ROCKET (with parachute and sonde)

Overall length with motor
Diameter

Weight including filled motor

All burnt weight

Payload weight

Payload volume
Peak Altitude (for 10 Ib payload)
Burn-out altitude (approximately)

Launch velocity
Initial acceleration (max)

Flight acceleration (max)

Boost breakaway altitude

226 cm (89 in)

13.1 cm (5.15 in)

37.5 kg (82 I/2 Ib)
14.3 kg (31 1//2 Ib)

4.5 kg (10 Ib)
8,200 cu cm (500 cu in)

70 km (230,000 feet)

15 km (48, 000 feet)
100 m//sec (328 ft//sec)

57 g

12g
15 m (50 ft)

PAYLOAD

Parachute

(Irving Type)
Transmitter

Type
Frequency

4.6 m (15 ft) dia
Met Office Rocket
Sonde Mk 1

Met 56,000

28 m/cs

LAU N CH ER

Length

Vehicle Type
Weight (vehicle and launcher)
Launch tube length

Max launch angle range

6.5 m (21 ft)
Bedford RL

5, 084 kg (5 ton)

9.8 m (32 ft)
Unrestricted
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TABLE6-14

JAPANESE MT-135 VS ARCAS

Total Length

Diameter

Total Weight

Payload Weight

Burn Time

Average Thrust

Max Velocity

Apogee
(80 ° launch amle)

MT- 135

3.2m

13.9 cm

68 kg

10 kg

10.5 sec

825 kg

1370 m/sec

55 km

ARCAS

2.3m

11.4 cm

35 kg

5.4 kg

29 sec

155 kg

1050 m/sec

61 km
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Altitudes as high as 125 km have been obtained with this vehicle

system during the development flight tests at White Sands Missile Range,
Altitudes to 110 km were achieved for flights from sea level launch sites.

A helical-rail launcher has been developed to impart spin or roll to the
vehicle prior to release in order to minimize impact dispersion and

associated range safety problems.

The basic Super Loki rocket motor can be used to propel larger

diameter instrumented dart systems to altitudes on the order of 85 km to
upgrade the atmospheric temperature profile measurements currently being

conducted by the standard-size Loki.

The Super Loki Dart as shown in Figure 6.3-18 is a two-stage sound-
ing vehicle consisting of a solid-propellant Super Loki rocket motor as the

first stage and a non-propulsive dart containing the payload as the second
stage. A dimensional sketch of the vehicle is shown in Figure 6.3-19.

This vehicle is essentially a scaled-up version of the standard Loki Dart
vehicle as indicated in Figure 6.3-20.

The Super Loki rocket motor consists of an aluminum case with an

internal burning cast-in-the-case solid propellant. Major design character-

istics of the rocket motor are presented in Table 6-15. An aluminum inter-

stage coupling structure is located at the head end of the rocket motor,
The propellant fuel is a polysulfide polymer and the oxidizer is ammonium

perchlorate. The igniter consists of two parallel 1 watt/1 ampere no-fire
squibs and an appropriate ignition charge. The igniter is separable from
the motor and is installed at the launch site. A cross-sectlon view of the

Super Loki rocket motor with the igniter installed is shown in Figure 6,3-21.

The high altitude chaff dart for the Super Lokl system consists of a
steel cylindrical body with a steel ogive and an aluminum tail piece. The

cylindrical body contains the chaff payload which is packaged into split

steel staves. The ogive is retained at the forward end of body with shear-

screws which are sheared during payload expulsion out from the forward end

of the dart. The tail piece contains an electrlcally-actuated 145-second

pyrotechnic time delay and a small payload ejection charge. Four steel

fins are roll-pinned into the dart tall for flight stability. The aft end of

the dart tall is boattailed to reduce aerodynamic drag and to be used to
mate the dart to the booster. A cross--section view of the chaff dart is

shown in Figure 6.3-22. Major chaff dart characteristics are presented
in Table 6-16.

The payload consists of 0.0127 mm (0.5 mil) "S"-band aluminumized-

mylar chaff.
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FIGURE6.3-18 SUPER LOKI VEHICLE CONFIGURATION
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100 KM HIGH ALTITUDE CHAFF DART

4.8 In2 Per Fin (4 Ea)

SUPER LOKI M

I

10.0 In2 Per Fin (4 Ea)

1

FIGURE6.3-19 SUPER LOKI CHAFF DART VEHICLE CONFIGURATION
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TABLE 6-15

SUPER LOKI ROCKET MOTOR

DESIGN CHARACTERISTICS SUMMARY

Length (inches)
Diameter (inches)

Weights:
Inert Motor With Interstage (kg)

Propel lant (kg)

Total (kg)

Motor Mass Fraction

Burning Tir,_e (seconds)

Chamber Pressure:

Maximum (Atmospheres)

Average (Atmospheres)

Thrust at Sea Level:

Maximum (kg)

Average (kg)

Total Impulse at Sea Level (nt-sec)

Specific Impulse at Sea Level

78

4

5.26 (11.6 ib)

16.87 (37.2 Ib)
22.14 (48.8 ib)

0.76

2.0

I00.02 (1470 PSig)
83.69 (1230 PSig)

2608.20 (5750 Ib)
2018.52 (4450 Ib)

3.96 (8900 Ib-sec)

239

TABLE 6-16

SUPER LOKI CHAFF DART DESIGN CHARACTERISTICS

Length

Diameter

Weight

Payload Volume

122.33 cm (48.16 inches)

4.13 cm (1.625 inches)

6.12 kg (13.5 pounds)

491.61 cm 3 (30 inches 3)
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The Super Loki Launcher consists of four helical rails which complete

approximately one-third of a revolution throughout the launch rail length.

The launch rail assembly as shown in Figure 6.3-23 consists of six cast
aluminum sections which are bolted together to form a continuous 4.39 m

(12 feet) length. The edges of the rails are stepped to support the vehicle

by the dart fins and the rocket motor nozzle ring. The outside diameter

of the launch tall assembly is 26.04 cm (10-1/4 inches).

The purpose of the launch rail is to impart an 8.5 rps spin to the

vehicle by constraining the dart fins to a helical path during their _ravel
along the launch rails. The aft end of the motor h'avels for 4.39 meter

(12 feet) prior to its release from the launcher.

The Super Loki Launch Rail Assembly can be mounted to any suitable

launcher base by means of forward and aft mounting brackets. A launcher

base specifically designed for this rail is shown in Figure 6.3-24.

Trajectories for the Super Loki are presented in Figure 6.3-25 for
various launch angles from sea level. A nominal trajectory summary is

presented in Table 6-17. i
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J

FIGURE6.3-24. TYPICAL BASE FOR SUPER LOKI LAUNCH RAIL
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TABLE 6-17

NOMI NAL TRAJECTORY SUMMARY

SUPER LOKI DART, 80° Q.E. SEA LEVEL LAUNCH

Burnout Altitude (m)

Burnout Range (m)

Burnout Time (sec)

Apogee Altitude (m)

Apogee Range (m)

Apogee Time (sec)

Impact Range (m)

Impact Time (sec)

BOOSTER

1577.6 m (5,176 ft)

298.1 m (978 ft)

2.1

2318.9 m (7,608 ft)

446.2 m (1,464 ft)

6.1

462.4 m (1,517 ft)

108

DART

1577.6 m (5,176 ft)

298.1 m(978 ft)

2.1

113.4 km (372,000 ft)

41.8 km (137, 000 ft)

6.1

83.8 km (275, 000 ft)

3O9
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6.3.7 Viper Dart.

The Viper Dart Robin Meteorological Rocket System has been

developed to obtain high altitude density and wind data by utilizing

the Robin inflatable sphere as a sensing device. The system consists
of a rocket motor, an unpowered dart and the Robin inflatable sphere.

Flight tests of the system provided density, temperature1 pressure and
wind data from an altitude of about 90 kilometers to an altitude of

approximately 40 kilometers or less.

During the flight test phases of the initial development program,

reliable performance was obtained to 125 km with a slightly longer and

heavier dart than originally contemplated. This was due to the added

requirement for extra volume for a tracking aid. Although higher
altitudes were obtained for smaller and lighter weight darts1 the larger

dart design was chosen as final for the initial development program.

The 125 km Viper-Dart vehicle consists of a Viper solid-propellant
rocket motor as the first stage and an inert dart as the second stage.

Figure 6.3-26 presents the vehicle configuration. The dart weight has

been optimized to produce a high ballistic coefficlent for efficient

coasting to the desired apogee altitude. The dart diameter of 2.00-
inches has been chosen as a tradeoff among factors of altitude performance_

flight stability_ payload packaging and thermal protection for the pay-
load. The dart employs an aft-end boattail for interstage coupling, for

housing the dart igniter leads and to reduce base drag during coasting-
dart flight. The interstage has been designed as a tradeoff between

shallow angles to reduce drag and larger angles which reduce weight.

Launch lugs are located on fore and aft regions of the booster to mate
the vehicle with the launch rail.

The dart design is shown in Figure 6.3-27. The dart has a relative-

ly long length-to-dlameter ratio with a high fineness-ratio ogive. A boat-

tall structure aft of the fins is employed to reduce base drag and provide a

convenient means of interstaging. The dart is designed to have a gross

weight of 29.5 Ibs. which gives reliable performance when used with the

Viper Rocket motor. The basic dart diameter is 2.000-inches and the
length is 58.0 inches.
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The payload ejection system is made up of two components, i.e.,

the pyrotechnic time delay and the expulsion charge. The pyrotechnic

time delay is ignited at launch at the same time the booster motor is
ignited. After the time delay has burned for a specified time, ignition

from the time delay is provided to the expulsion charge. The expulsion

charge consists of 5 grams of boron potassium nitrate pellets. Upon

ignition these pellets generate a high pressure behind the piston which

forces the ejection piston forward. The first motion of the ejection piston
forces a hollow metering pin into the Robin sphere inflatable capsule.

Further forward motion picks up the outer piston, which transmits a force to

the oglve to shear the shear-screws which hold the ogive in place. In

this way, the sphere package and the ogive are ejected. At this point
in the ejection sequence, the piston is stopped at the forward end of

the dart by a swagging which prevents any of the burning boron potassium
nitrate pellets or hot exhaust gases from contacting the sphere. The

staves around the sphere are allowed to separate after ejection; thus

allowing the sphere to expand and inflate. The dart ogive contains the

tracking beacon.

The interstage is an aluminum coupling structure between the
booster and the dart, which also forms an aerodynamic fairing from the

dart diameter to the booster diameter. The interstage is connected to the

booster through a threaded connection at the forward end of the booster.

The interstage structure is thereby attached to the booster for the entire
flight duration. Internal surfaces of the interstage are machined to

accept the boat-tail of the dart at a point close to the motor and at another
point at the forward end of the interstage. Longitudinal force, exerted

from the dart when the system is accelerating, is absorbed at the end of
the boat-tail and at the forward end of the booster. Because of the severe

aerodynamic heating environment during boost, the interstage is coated
with a O.030-inch thickness of an ablative coating for thermal protection.

The rocket motor and flight hardware are shown in Figure 6.3-28.

The Viper is a 3.52 KS 8500 solld-propellant rocket motor adaptable

for sounding vehicle propulsion, sled propulsion and other uses. The motor

case is a cylindrical rolled and welded tube with hemispherical ends of

heat-treated chrome molybdenum steel, with a minimum yield point of

165,000 psi, and with nominal dimensions of 6.5 inches outside diameter

and 107-1nches in length. The nozzle is an assembly of carbon steel with

a graphite insert. The propellant is polysulphide/ammanium perchlorate,
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case-bonded type.

The nominal weight of the complete rocket motor is 191.68

pounds. The nominal weight of the rocket motor components are as
foi lows:

Metal Case 31.00

Head Cap 2.13
Nozzle 7.25

Liner 2.05

Insulation 0.50

Propellant 148.75

Ibs

Total 191.68 ibs.

The nominal total impulse at sea level is 31,830.3 lb/sec for a nominal
total time of 3.52 seconds. The vehicle component weights are presented

in Table 6-18. A nominal performance summary is presented in Table

6-19 with a typical trajectory in Figure 6.3-29.

The Viper Dart Robin is currently being used for routine wind

and density measurements at Cape Kennedy, WSMR and PMR in its
present 125 km version. At the same time a further development program

is being pursued by AFCRL to increase the altitude of this system to 140 km.

6.3.8 Cajun Dart.

The Cajun Dart vehicle was developed by Space Data Corporation

for the Aero-Astrodynamics Laboratory of George C. Marshall Space Flight
Center to measure winds in the altitude range from 70 to 90 kilometers.

The Cajun Dart chaff rocket is a two stage dart type sounding rocket

vehicle. In the launch configuration the vehicle has a gross weight of

about 200 pounds and an overall length of 13 feet. Figure 6.3-30 shows
the vehicle with the basic dimensions and weights. The first stage of the

Cajun Dart is the Cajun rocket motor, Mad III, manufactured by Thlokol
Chemical Corporation, Elkton, Maryland. The Cajun motor is 102 inches

long and has a principle diameter of 6.5 inches. The motor less flight

hardware weighs 168 pounds with 118.5 pounds of propellant. The nominal

burning time of 2.8 seconds, yields total impulse of 25,250 pounds seconds,

yields a burnout velocity of slightly over 5000 feet per second at an altitude

of 7, 000 feet. At Cajun burnout, separation of the Dart from the Cajun

booster is accomplished by allowing the aerodynamic drag differential
between the bmster and Dart to physically separate the two (2) stages.
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TABLE 6-I 8

VIPER-DART WEIGHT TABLE

Vehicle Launch Weight

Vehicle Burnout Weight

Dart Coast Weight

Component Weight Breakdown:

Dart

Interstage
Booster Fins
Booster Motor

Case 31.00
H ead 2.13
Nozzle 7.25
Miscellaneous 2.55

Propellant 148.75

234.18 lb.

85.33 lb.

29.50 lb.

29.50 Ibs.
3.50
9.50

191.68
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TABLE 6-19

NOMINAL PERFORMANCE SUMMARY

Vehicle Name

Booster - Stage i

Dart Weight/Diameter

Launcher Setting (Nominal)

Time Altitude Range

Event (Sec) (feet) (feet)

Viper Dart

Viper
29.5 Ibs/2.00 in
80.0o Q .E.

Velocity

(Ft/Second)

Stage i

Ignition 0

Burnout (Separation) 3.10

Booster Apogee 10.9

Booster Impact 178.5

Stage 2

Dart Apogee

Dart Impact

0

8,500

18,000

0

162 405, 179

323 0

0

1553

3, 500

3620

152, 547

305, 140

0

5934

22

97

950

4,600

The payload is deployed at dart apogee (162 seconds).
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After separation the Dart continues to coast to payload ejection.

The Dart 1-3/4 inches in diameter, weighs 17 pounds and is

51.7 inches long. The dart is a non-thrusting stage functioning only

as a low drag payload housing. The nose of the Dart is designed to

have a hypersonic optimum shape, keeping the aerodynamic drag to a
minimum. The aft end of the Dart has been boat-tailed, forming the

interstaging surfaces as well as reducing the base drag. These two (2)

factors along with the otherwise sleek shape of the Dart combine to

produce a very low drag rocket configuration. The payload housed
inside the Dart is 30 cubic inches of 0.5 rail, aluminized mylar, foil

chaff cut to S-band length.

Figure 6.3.31 is a cutaway drawing of the dart showing the
external dimensions as well as the internal configuration.

In order to make a system reliably measure winds from 90 kilo-

meters down, the nominal vehicle apogee must be above this altitude.

As shown in Figure 6.3.32, the nominal apogee point for the Cajun
Dart is 93 kilometers altitude, 37 kilometers range at a time of 140

seconds, when fired at an 80 degree elevation angle. This will keep

the apogee of all flights above 90 kilometers even with the normal

vehicle dispersion.

When the Dart has reached its apogee, the payload is ejected.

This expulsion is accomplished by the use of 145 second pyrotechnic
time delay housed in the Dart tail and initiated at launch. At 145

seconds the time delay ignites a 5 gram expulsion charge which ejects

the Dart nose cone and the chaff payload by forcing a piston the full
length of the Dart. The chaff is then free to drift with the winds as
it falls.

The Cajun Dart has been used by NASA at Cape Kennedy for

routine measurement of high altitude winds but is currently being replaced

by the lower cost Super Loki.
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FIGURE6.3-32 CAJUN-DART ALTITUDE VS. RANGE, 80 ° Q.E.
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6.3.9 Boosted Arcas. (See Figure 6.3-33)

There are various versions of the boosted Arcas in limited use

today as indicated in Table 6-20. The Arcas is used as a second stage
in these configurations and the payload capacity is as follows.

Payload Weight

Payload Diameter

Payload Length, Nominal
Payload Volume, Nominal

10-30 Ib

4.25 in
26 in.

305 in.

The performance of the boosted Arcas vehicles depends upon the
booster used. A brief description of each of the boosted Arcas con-

figurations is presented in paragraphs which follow.

The booster is an Atlantic Research 0.8-KS-2700 rocket motor.

Power for ignition of both stages is provided by a ground source, a motion

switch firing the sustainer igniter after positive ignition. An optional

sustainer igniter incorporating a 2-second delay is also available. Fin

assemblies are preset to provide a roll rate of approximately 25 ms at
burnout.

The vehicle is launched from the standard ARCAS rocket launcher

with the breech door open. Assembly and launch preparation requires no

special handling equipment and can be accomplished by a two-man crew.

VEHICLE DATA

First-State Motor

MARC 14AI

Nominal performance rating
Principal diameter

Overall length

Igniter: Type
Recommended firing current

0.8-KS-2700

10.2 cm (4.0 in)

71.6 cm (28.2 in)

Pyrotechnic

3.5-5 amp
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PAYLOAD

HV
ARCAS

46.0 CM
(18.1 IN)

i
29.2 CM
(11..' IN)

323.1 CM
(127.2 IN)

154.2 CM
(60.7 iN)

11.4 CM
(4.5 iN)

MARC
14A1

BOOSTER

33.0 CM
(13.0 IN)

10.2 CM T(4.0 IN)

71.6 CM
(28.2 IN)

FIGURE6.3-33 BOOSTED ARCAS VEHICLE CONFIGURATION
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Second-Stage Motor

MARC 2B] ARCAS

Nominal performance rating 29-KS-324

Principal diameter 11.4 cm (4.5 in)

Overall length 154.2 cm (60.7 in)

Igniter: Type-Pyrotechnic (optional 2-second delay squib)

Recommended firing current 5 amp

Weights (less payload)

Gross launch weight

First-stage burnout
Second-stage ignition

Second-stage burnout

46.3 kg (102.0 Ib)

41.3 kg (91.0 Ib)
30.1 kg (66.4 Ib)

10.6 kg (23.3 Ib)

Sidewinder Arcas. (See Figure 6.3-34)

Originally developed by the Naval Missile Center, under the

sponsorship of Air Force Cambridge Research Laboratories, the Sidewinder-
ARCAS vehicle used propulsive stages which are proven, qualified rocket

motors. Staging is accomplished by a bayonet-type interstage adapter that

provides structural rigidity during boost, but permits drag-induced stage

separation. Fin assemblies are preset to provide approximate spin rates
of 7 to 20 rps at second stage burnout.

The launch system is a 15 Foot long rail assembly designed for mount-

ing on an adjustable-boom launcher of the type available at most launch

sites. Assembly and launch preparation require no special handling equip-

ment and can be accomplished by a two-man crew.

Power for ignition of both stages is provided by a ground source,

a motion switch completing the second-stage firing circuit only after

positive booster ignition. A delay squib in the second stage igniter allows 2
seconds of coasting flight between booster burnout and second stage ignition.
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PAYLOAD

t
,16.0 C.M

(18.1 IN)

29.20,t
(!1.51N)

HV ARCAS 157.5 CM
(62.0 IN)

II.4 CM
(4.5 iN)

433 CM
(170.5 IN)

12.7 CH
iN)

190.5 C.M
(75.0 JN)

FIGURE6.3-34

45.7 CM
( 18.0 IN)

SIDEWINDER ARCAS VEHICLE CONFIGURATION
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SIDEWINDER ARCAS

VEHICLE DATA

First-Stage Motor

MK 17 Sidewinder 1A

Nominal performance rating

Principal diameter
Overall length

Igniter: Type
Recommended firing current

2.14-ES-3972

12.7 cm (5.0 in)

190.5 cm (75.0 in)

Pyrotechnic

3 amp

Second-Stage Motor

MARC 2C1 HV ARCAS

Nominal performance rating 29-KS-324

Principal diameter 11.4 cm (4.5 in)
Overall length 157.5 cm (62.0 in)

Igniter: Type - Pyrotechnic (with 4-second delay squib)
Recommended firing current 7 amp

Weights (less payload)

Gross launch weight
First-stage burnout

Second-stage ignition

Second-stage burnout

75.5 kg (166.3 Ib)

55.6 kg (122.5 Ib)

30.6 kg (67.5 Ib)

11.1 kg (24.4 Ib)

Sparrow Arcas. (See Figure 6.3-35)

Developed originally For the Pacific Missile Range Density Probe

(DENPRO) program, the Sparrow-HV ARCAS uses propulsive stages which

are proven, qualified rocket motors. Staging is accomplished by a bayonet-
type interstage adapter that provides structural rigidity during boost, but

permits drag-induced stage separation. Fin assemblies are preset to provide

approximate spin rate of 8 to 20 rps at second-stage burnout.

The launch system is a 15-foot long rail assembly designed for

mounting on an adjustable-boom launcher of the type available at most

launch sites. Assembly and launch preparation require no special handling

equipment and can be accomplished by a two-man crew.
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PAYLOAD

HY
ARCAS

157.5 CM
(62.0 IN)

384 C._
(151.1 IN)

11.4 CM
(4.5 iN)

SPARROWC8

20.3 CM T
131.6 CM
(51.8 IN)

81.3 CM
(32.0 IN)

FIGURE 6.3-35 SPARROW ARCAS VEHICLE CONFIGURATION
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Power for ignition of both stages is provided by a ground source,

a motion switch completing the second-stage firing curcuit only after

positive booster ignition. A delay squib in the second-stage igniter
allows 6 seconds of coasting flight between booster burnout and second

stage ignition.

VEHICLE DATA

First-Stage Motor

MK 6 Mod 3 Sparrow C-8

Principal diameter

Overall length

Igniter: Type
Recommended firing current

20.3 cm (8.0 in)
131.6 cm (51.8 in)

Glow plug

30 amp

Second-Stage Motor

MARC 2C1 HV ARCAS

Nominal performance rating 29-KS-324
Principal diameter 11.4 cm (4.5 in)

Overall length 157.5 cm (62.0 in)

Igniter: Type - Pyrotechnic (with 8-second delay squib)
Recommended firing current 7 amp

Weights (less payload)

Gross launch weight
Second-stage ignition

Second-stage burnout

93.5 kg (206.0 Ib)

30.6 kg (67.5 lb)

11.1 kg (24.4 Ib)

Boosted Arcas II. (See Figure 6.3-36)

The Boosted Arcas II uses a booster employing an internal burning
propellant grain and an Arcas motor case. This booster was developed by

Atlantic Research Corporation specifically for this vehicle and has had a
limited flight test history.

Staging is accomplished by a bayonet-type interstage adapter that

provides a rigid structure during boost, but permits drag-lnduced stage

separation.
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46.O O4
(18.1 IN)

_._ 04

111. SIN)

404 C3_
(159.0 IN)

163.6 CM
(64.4 IN)

FIGURE 6.3-36 BOOSTED ARCAS !1 VEHICLE CONFIGURATION

- 319 -



Power for ignition of both stages is provided by a ground sourcet
a position s_vit_h completing the second-stage ignition circuit only after

positive booster ignition. A delay squib in the second-stage igniter allows
4.5 seconds of coasting flight between booster burnout and second stage

ignition.

The vehicle is designed for launching from the standard ARCAS

rocket launcher with open breech door or from a 15 foot long rail.

Assembly and launch preparation can be accomplished by a two-man
crew,

VEHICLE DATA

First-Stage Motor

MARC 42A1 Booster

Nominal performance rating

Principal diameter
Overall length

Igniter: Type - Pyrogen, 1-watb 1-amp squib

Recommended firing current

3.0-KS -2740

11.4 cm (4.5 in)
163.6 cm (64.4 in)

7 amp

Second-Stage Motor

MARC 2C1 HV ARCAS

Nominal performance rating 29-KS-324

Principal diameter 11.4 cm (4.5 in)

Overall length 157.5 cm (62.0 in)

Igniter: Type - Pyrotechnic (with 8.0 second delay squib)

Recommended firing current 7 amp

Weights (less payload)

Gross launch weight

First-stage burnout

Second-Stage ignition

Second-Stage burnout

61.4 kg (135.3 Ib)

45.4 kg (100.0 Ib)

30.6 kg (67.5 Ib)

11.1 kg (24.4 Ib)
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6.3.10 NikeVehicles,

There are a number of Nike-boosted sounding rockets which are

used for geophysical research. Although these vehicles are too large

and too expensive for serious consideration as routine meteorological

rockets, they are briefly described here for sake of completeness. A

summary of the Nike-boosted vehicles is presented in Table 6-21. These
vehicles are designed to carry large payloads (greater than 50 Ibs) to
altitudes between 100 km and 300 kin. Each uses the Nike M5 rocket

motor as the first-stage. This motor has a diameter of 16.5 inches, a

length of 135.5 inches and weighs 1342 Ibs. This motor alone requires

significant handling equipment and could hardly be considered for
routine meteorological operations.
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6.4 Development Systems.

6.4.1 General.

There are a number of meteorological rocket vehicle develop-

ment programs which are currently being pursued. These programs
range from rather modest efforts such as improving the Viper Dart per-

formance to the state-of-the-art development of fragible boosters. A

brief description of the current meteorological rocket vehicle develop-

ment programs is presented in the sections which follow.

6.4.2 Improved Viper Dart.

The Viper Dart is currently being modified to improve the

apogee altitude performance from 125 km to 140 kin. This is being
accomplished under an &FCRL program by using a propellant with a

higher specific impulse than the standard Viper. Techniques of stabiliz-

ing the booster after burnout are also being investigated to reduce the

problem of booster impact dispersion.

6.4.3 Super Loki Instrumented Dart.

The Super Loki vehicle is being modified by incorporating a

large diameter (2.1 inch) dart to extend the standard rocketsonde temp-
erature and wind measurements upward as high as 75 km. This program

is sponsored jointly by AFCR1 and NASA-MSFC. The large diameter
dart will permit the incorporation of a large Starute decelerator, a

GMD-2 transponder instrument and more room for advanced sensors.
The cost of this vehicle should not be significantly greater than for the
standard Lokl vehicle.

The development of a 2.1 inch diameter instrument dart for the

Super Loki system is a follow-on to the chaff dart system development
to improve the altitude and measurement capability of current instrumented

systems. An 85 km apogee is achievable with the proposed instrumented

dart systemt and the payload volume is more than double that of the

current instrumented dart systems. This increased volume can be used for

additional sensors, a transponder/telemetry sonde, and most important, an

increased-size parachute to obtain significantly slower descent rates of the
sonde during the measurement period. Temperature and wind measurement

errors of current systems are functions of the square of the descent velocltyt
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and a significant improvement in measurement accuracy can accrue by
reducing the parachute descent rate, The cost of this instrument dart

system should not be significantly greater than the current instrumented
dart systems.

The proposed Super Loki Instrumented Dart system consists oF the

Super koki rocket motor and a 2.1 inch diameter dart. The dart is des-
igned to contain a maximum diameter parachute to extend the altitude

and improve the accuracy of wind and temperature measurements. Per-

formance of this system is as follows:

Launch Angle
Dart Weight

Apogee Altitude

Apogee Range

Apogee Time

Burnout Velocity
Maximum Acceleration

85°

14 lb (6°35 kg)
85 km

15 km

132 sec

Mach 5.4

102 g

A nominal trajectory is plotted in Figure 6.4-1 o

The 2.1 inch diameter instrumented dart contains a payload volume

of 55 cubic inches. This is more than twice the payload volume of the
1.437 inch diameter (3°65 cm) instrumented dart which is currently being

used. Either a 1680 mc/GMD-(x) or a 403 mc/SMQ-1 sonde can be

used with the proposed dart depending upon ground-station _quipment,
Descent rates of the sonde system can be slowed to 230 fps (70.1 m,/sec) at

61 km with a Super Loki system (W/CDA - 0.015 Ib/ft 2 or 0°073 kg/m
Advantages of the Super koki Instrumented Dart over the current Loki

Instrumented Dart are presented in Table 6-22°

An inflatable falling sphere payload has been procured by the Army
personnel at White Sands Missile Range for use with the existing chaff dart

design. Since altitudes of 125 km were obtained at White Sands_ reasonably

good density data may be derived with the Robin falling sphere payload to
altitudes below 90 km with the Super Loki. Since the apogee altitude for

a sea level launch will only be about 113 km_ the falling sphere density

data may be restricted to a maximum altitude of 85 km for sea level sites,

6°4°4 Destructible Arcas.

A destructible or fragmentible Arcas has been developed under a

previous AFCRL contract by incorporating explosive charges with a fiber-
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TABLE 6-22

COMPARISON OF THE SUPER IOKI

INSTRUMENTED DART SYSTEM

WITH THE CURRENT

INSTRUMENTED DART SYSTEM

Super Loki

System

Standard Loki

System

80°Q. E, Apogee Altitude

Dart Diameter

Payload Volume

Payload Volume Available
for Parachute

Parachute-Sonde Ballistic

Coefficienb W/CdA

Descent Rate at 61 km

Dart Ablative Coating

85 km

(278.9 k ft)

5.398 cm

(2.125 in)

901.3 cm 3

(55 cu in)

612.87 cm 3

(37.4 cu in)

0.073 kg/m 2

(0.015 Ib/ft z)

70.1 m/sec
(230 ft/sec)

Not Required

63 km

(206.7 k ft)

3.65 cm

(1.437 in)

3491.6 cm

(30 cu in)

262.19 cm 3

(16.0 cu in)

0. 146 kg/m 2

(0.030 Ib/ft 2)

100.6 m/sec 2

(330 ft/sec)

Required
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glassplastic rocket motor design. Sheet explosive 0.042-inches thick

was placed around the fiber-cjlass motor throughout its length in addition

to an explosive charge located behind the payload section at the for-
ward end of the rocket motor. After vehicle apogee and payload separa-

tion, the explosive charges were initiated and the remaining rocket was
fragmented into rather small pieces which had a sea level impact energies

on the order of 2.4 ff-lb (3.25 joules) maximum.

The vehicle contains an additional explosive charge between the

rocket motor head closure and payload which is initiated by a mechanical

timer unit at a timer predetermined and set prior to launch. Initiation

of this primary explosive charge subsequent to payload ejection results in
fragmentation of the forward section of the spent rocket motor assembly

and induces sympathetic detonation of the sheet explosive material on
the exterior of the motor case. Detonation energy of the sheet explosive

produces fragmentation of the motor case and fin assembly.

A description of the vehicle, is presented in Figure 6.4-2. Com-
parison of dimensional and weight data between the Frangible Arcas and

Arcas vehicles is presented in Table 6-23. A detailed weights breakdown

of the frangible vehicle, less payload, is shown in Table 6-24.

The primary mission of the frangible vehicle is deployment of a

payload at apogee, and subsequent self-induced fragmentation of the

vehicle to particle sizes of very low impact kinetic energies. In order to
ensure reliable fragmentation, the vehicle incorporates two independent

initiation systems. The primary initiator is a mechanical timer unit which
is armed at lift-off and started at rocket motor burnout. This unit is

designed to initiate fragmentation twenty seconds after payload ejection.
This time interval was selected to provide adequate clearance between

the payload and the spent rocket vehicle.

A redundant, pressure sensing unit is incorporated as an independent
unit. This secondary initiator is armed at a nominal altitude of 24.4 km

(80, 000 it) during vehicle ascent and initiates fragmentation at a nominal

altitude of 18.3 km (60,000 ft) during vehicle descent in the event of a

failure of the primary system. The overall mission profile is illustrated in

Figure 6.4-3.

A major objective and requirement of the program was the develop-

ment of an integral explosive fragmentation system. Initial fragmentation
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TABLE 6-23

FRANGIBLEARCASVEHICLEDIMENSION AND WEIGHTCOMPAJ_ISONS

FrangibleArcas
StandardArcas w/o Fragmenta-

tion System
Mod 0 Mod 3

cm in cm in

Frangible Arcas

with Fragmenta-

tion System
Mod 3

cm in

Dimensions

Nose Cone 45.9 18.1 45.9 18.1 45.9 18.1

Parachute Container 29.2 11.5 29.2 11.5 29.2 11.5

Rocket Mtr. Assy 154.0 60.7 164.0 64.5 176.5 69.5

Over-al I Length 229.1 90.3 239.1 94.1 251.6 99.1

Max. Body Diameter 11.4 4.5 11.9 4.7 12.2 4.8

Min. Body Diameter 11.4 4.5 11.2 4.4 11.4 4.5

Fin Span 33.0 13.0 33.0 13.0 33.0 13.0

Weights kg Ib kg Ib kg Ib

Loaded Motor Assy 30.0 66.4 28.4 62.7 31.0 68.4

Payload a 4.9 10.7 4.7 10.4 4.7 10.___4

Total Launch Wt. (Nom). 34.9 77.1 33.1 73.1 35.7 78.8

Vehicle Wt. at Mtr.

Burnout (Less Payload
Weight) 10.6 23.3 8.9 19.7 11.5 25.4

Note: a Includes parachute assembly, Arcasonde Instrument, nose cone and ballast.
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TABLE 6-24

DETAILED WEIGHT BREAKDOWN OF THE FRANGIBLE ARCAS VEHICLE (LESS PAYLOAD)

Component
Nominal Weight Nominal Weight
at Lift Off at Burnout

kg Ib kg ib

Motor Case Assembly 7.48 16.50

Fin Assembly 0.76 1.69
Fin Screws 0.01 0.03

Propellant Assembly a 19.40 42.70
Retaining Sleeve 0.68 1.49

Explosive Module Fwd Plate 0.14 0.32

Explosive Module Aft Plate 0.13 0.29
Push Rod 0.01 0.02

Mechanical Timer Assembly 0.32 0.70
Redundant Initiator 0.14 0.30

Primary Explosive Charge 0.94 2.06
Sheet Explosive Charge &

Overwrap 1.04 2.30

6.89 15.20

0.76 1.69

0.01 0.03

0.45 1.00
0.68 1.49

0.14 0.32

0.13 0.29

0.01 O.O2

0.32 0.70
0.14 0.30

0.94 2.06

1.04 2.30

31.05 68.40 11.51 25.40

Note: a Includes propellant, headplatet O-ring, dimple motor and inhibitor.
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tests incorporated a single modular shaped explosive charge in the for-
ward end of the rocket motor. These initial tests showed adequate
fragmentation of the forward and aft motor sections, but the center

portion was left intact, it was interesting to note how the spent motor

case acted as a shock tube and provided fragmentation of the nozzle/fin
section while leaving most of the tube intact. Additional tests showed

that the shape given the single explosive charge had no appreciable effect
on the fragmentation results. Hence, it was evident that additional

explosive material applied directly to the motor case was needed to

achieve the required degree of fragmentation.

Tests utilizing linear shaped charges also proved unsuccessful.
Although the motor case was sectioned at each location of the charge, the

resulting fragments were unacceptable with regard to the maximum impact

kinetic energy requirement. This could have been overcome by increasing

the number of linear shaped charge strips, but the resulting vehicle weight
would have been prohibitive.

Subsequent tests incorporating a primary explosive charge in the

forward section of the vehicle, in combination with 1.07 mm- (0.042 in)
thick sheet explosive material on the exterior of the motor case, were

successful. Fragmentation to particle sizes yielding impact kinetic energies

of 3.25 joules (2.4 ft/Ib) or less were achieved.

Only one flight test of the complete system was conducted, and

it was apparent that the destruct charges performed as a cloud of debris
was tracked by radar. The apogee altitude for this test was only about

128,000 feet and a considerably larger vehicle would be required to make

up for the addition weight and drag penalties created by the explosives

system. In spite of the low performance, the principle of the destructible
motor case was demonstrated with this program. However, the other
problem areas were brought to light.

The major objections to the fragmentation technique are the safety

aspects of ground-handllng a llve rocket motor which is surrounded by
Class A explosives. The danger of such a device is considerably greater

than for a rocket motor alone. In addition, if the explosives initiation
system ever failed to function, then the subsequent ground-impact would

surely cause a high-order explosion. Furthert even if the system functioned
satisfactorily, the nose cone itself presents a considerable falling mass hazard.
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In addiation, a tremendous number of full system flight tests would be

required, without a single failure, to adequately demonstrate an

order of reliability high enough for use over populated areas. For these
reasons, further efforts on this program have been terminated.

6.4.5 Consumable Rocket.

The U. S. Army Missile Command supported jointly by NASA-LRC
has been investigating the development feasibility of a consumable rocket.

The falling mass hazard safety criteria of a maximum particle kinetic energy

of 1 foot-pound (1.35 joules) and a particle size limitation of 0.1 pound

(45.3 grams) were adopted for this program. The proposed concept of the

consumable rocket is shown in Figure 6.4-4. After payload separation at

apogee, the motor case material is to be ignited so that it completely
burns to ashes before reaching the ground.

in the fall of 1965, on the basis of prior feasibility studies, a

decision was made to proceed with further development of the consumable

technique. Effort was directed toward improving the characteristics of

combustible case wall composites, based upon the following general

parameters in decreasing order of priority:

(1) Completeness of neutralization

(2) Safety in manufacturing and use

(3) High strength

(4) High autoignition temperature
(5) Low environmental degradation

(6) Least cost

Results of this study indicated two promising approaches to fabrica-

tion of consumable rocket cases -- use of a homogeneous composite, and

use of a sandwich composite. These composites were investigated at
Picatinny Arsenal beginning February 1966. Material composities were

fabricated in 2.54 by 7.62 cm plates, 15.24 cm diameter standard test

rings, 2.54 cm diameter by 10.16 cm cylinderst 7.62 diameter by 22.86 cm

cylinders and 7.62 cm diameter by 45.72 cm pressure bottles.

The homogeneous composite structure was a fi lament-wound type,
consisting of nitrocellulose fiber wound together w_ relnforc|ng Fiber in
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in an epoxy binder. Reinforcing fibers considered for use were E-glass,
Fortisan, HM-2 rayon, nylon and polypropylene. Samples of the

homogeneous composite using from 50 to 100% nitrocellulose fiber were

prepared and ignited at a simulated 61,000 meter altitude. The only

structure of this type which was adequately destroyed was the 100%
nitrocellulose/epoxy (6% of original weight). Other samples 2.54 cm

diameter by 7.62 cm long) were burned with the following percentages
of residue:

SAMPLE RESIDUE ( Wt. %)

73% NC/27% Fortisan 27

52% NC/48% Fortlsan 49

77% NC/23% Fiberglass 39

63% NC/37% Fiberglass 6O

73% NC/27% Nylon 32

40% NC/60% Nylon 56

The homogeneous composite remains a promising technique, whose

major improvement potential lies in improved tensile strength of the
nitrocellulose fiber.

The sandwich composite structure utilizes a pyrotechnic core "sand-

wiched" between alternate layers of filament-wound fiberglass or an
organic fiber in an epoxy binder. These composites were prepared in flat

specimens 2.54 cm by 10.16 cm, utilizing nitrocellulose paper, PETN

paper, double base propellants and pyrotechnics as core materials laminated

between 0.05 cm thick pieces of fiberglass-epoxy. Combustion tests at
61,000 meter simulated altitude showed the following results:

Nitrocellulose would ignite but would not

propagate.

PETN paper would not ignite.

Propellants lacked sufficient energy to

destroy the samples.

Pyrotechnics showed promise but needed

further development.
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A pyrotechnic core material was then developed by Picatinny
Arsenal especially for use in the sandwich composite. This core

develops about 1600 calories per gram with 5000 ° F flame temperature,

burns at 0.5 cm per second at 60,000 meters altitude, autoignites about

860°F, is insensitive to shock, and will not detonate explosively.

Pressure vessels, 7.62 cm diameter by 22.8 cm long, were fabricated in
the sandwich construction utilizing a filament wound 0.05 cm inner

layer of S-glass/epoxy, a 0. 152 cm pyrotechnic core, and a 0.05 cm

S-glass/epoxy outer layer. These vessels, with burst pressures of
280 kg/cm2r were essentially reduced to small pieces of weak fibers

when burned at a simulated 36.6 km altitude. A similar configuration
of Fortisan rayon with a room temperature burst pressure of 176 kg/cm 2
was reduced to ash when burned at 36.6 km simulated altitude.

The new pyrotechnic core in a sandwich construction surpasses

all other concepts studied to date for neutralization of the falling mass

hazards. A continuation of the program is aimed at optimizing the
sandwich construction, and designing a rocket motor case and fins for

static and flight demonstration tests.

The nozzle construction presents a special problem which must

also be included in the investigation. Data obtained in prior studies of

consumable rockets revealed that dispersion of the heat absorbed in the
nozzle section during the rocket motor thrust phase constitutes a threat

to the surrounding consumable components. Any addition of insulation,

however, is detrimental to efficient neutralization. A possible solution

to this problem is the disposal of the nozzle section shortly after motor
burnout. Means of accomplishing this includes (1) the use of a consuma-

ble nozzle section which is protected from erosion and heat for the

duration of thrust, but which autoignites shortly thereafter; or (2) the

use of a small detonable charge which breaks up the nozzle section with-

out damaging the motor case. Early investigation of these and possibly

other techniques is planned. Concepts will be developed and tested in
rocket exhaust environment.

6.4.6 Army RDT and E Rocket.

Development efforts are currently under way on a new RDT and E

rocket by the U. S. Army Missile Command. This rocket is a single-stage
vehicle of about the same size and shape as the Arcas. Burning time is
reduced, however, to about ten seconds, and it is doubtful that the desired
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apogeealtitude of 72 km will be achieved with the current design.
Design characteristics are listed in Table6-25.

The rocket motor consists of a resistance welded stainless steel

tube, ARMCO 21-6-9t with a 0.055-inch _ 0.004-inch wall and a

yield stress of 150 ksl. The head closure consists of stainless steel 301
1/4 H SS and is 0.109-inches thick. The nozzle retaining ring is

321 stainless steel. There is a graphite throat insert and a threaded

aluminum retaining ring. The motor insulation consists of 0.070-inch

thick RFB. The design chamber pressure of the motor is 3750 psi.

The propellant is acrylonitrlte-butadiene-sty_ene.

The vehicle fins are made from 0.063-inch thick stainless steel

and are resistance-welded to the motor case. A split parachute canister

of PUC plastic is used. This is interesting since a split parachute

canister was originally used with the Arcas. Lack of structural rigid-

ity caused vehicle breakup with the Arcas.

The design goal is for a production cost of $350 for the vehicle.

6.4.7 Kangaroo.

The Kangaroo Dart is a solid-propellant sounding rocket vehicle

which was developed by the Aeromechanics Branch of the Pacific Missile
Range. The Kangaroo concept consists of retaining a non-propulsive

dart containing the payload in an insulated canister inside the rocket

motor port during the boost phase of flight. This dart is expelled from

the rocket motor at burnout by a combination of motor chamber pressure

and drag deceleration of the booster. The dart then coasts to apogee,

and the booster remains stable throughout its low altitude trajectory to
impact.

The Kangaroo Dart two--stage vehicle employed a dart payload
housing which was submerged in the rocket motor to contain the dart

during propulsive flight. At motor burnout the dart is ejected by tail-

off chamber pressure and booster deceleration. The ejecting dart causes

the shear-pinned nose cone tip to be separated from the vehicle, and the

dart continues to eject through the aperature thus formed. The aft end of

the dart is tapered in order to receive a pick-up fins canister during dart
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TABLE 6-25

AMICOM RDT & E ROCKET DESIGN CHARACTERISTICS (MK 4 Mod !1)

Vehicle Performance

Altitude at apogee, 80 ° Q E (ft) 246, 760

Time to apogee (sec) ,/o

Velocity at burnout (ft/sec) 4700

Mach No. at burnout 4.67

Maximum Dynamic Pressure ib/ft 2 13, 789

Vehicle Physical Characterisitcs

Diameter (in) 4.875

Weight
Total (lb) 97.83

Burned (lb) 43.05

Discharge (ib) 54.78

Static Stability calibers
Nosecone

Fins

1.6

4-caliber tangent ogive

(0.250" thick plastic)

Number 4

Span (in) 12.83
Root 5.00

Sweep Angle (deg) 60

Dimensions and Performance Characteristics for Rocket Motor (MK 4 Mod II)

Diameter (in)

Propellant weight (Ib)

Motor weight (Ib)
Action time (sec)

Specific Impulse (sec)
Maximum pressure (psig)

Grain length (in)
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Table 6-25 AMICOM RDT & E Rocket Design Characteristics - continued -

Rocket Motor Weight Breakdown (Ib)

Motor Chamber 18° 28
Nozzle End Restricter 0° 13

Insulation 4.46

Nozzle 2.82

Propel lant 54.00

Motor Weight 79.69
Consumables 54.78

Burnout Weight 24.91

Vehicle Weight Breakdown (Ib)

Ogive 2.48

Sleeve (Steel) 0.36

Pedestal (Steel) 3.44

Separation Device 1.00
Parachute and Canister 4.55

Payload 3.00

Fins (Steel) 3.31
Motor 76.69

Vehicle launch 97.832

Discharge 54.780

Vehicle Burnout 43.052
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Table 6-25 AMICOM RDT & E Rocket Design Characteristics - continued -

Drag Coefficient Data

Mach No,

0

0.5

!.0

1.5

2.0

2.5

3.0

4.0

0

0

.250

.290

• 275

.250

• 230

• 200

Flight Velocity Profile

Flight
Time

(sec)

2.5

5.0

7.5

9.0
20.0

30.0

Velocity

.(ft/sec)

2250

3900
4600

4700

3550

3100
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ejection. A propellant delay charge is used at the aft end of the dart

canister housing to prevent initial motor chamber pressure from eject-
ing the dart at llft-off before vehicle acceleration becomes large

enough to retain the dart. A scale drawing of the vehicle assembly is

shown in Figure 6.4-5 and a vehicle weight breakdown is presented

in Table 6-26 for the Viper rocket motor configuration.

The advantages of the Kangaroo concept are the elimination of
the aerodynamic heating of the dart and payload during the early boost

phase and a shorter vehicle length than for the more standard two-stage

booster-dart configuration. Some of the dart payloads require an

ablative coating on the dart surface to reduce the aerodynamic heating

input. Dart separation problems have occasionally occurred and have

caused low flights. These problems have been traced to large bending
moments at the interstage coupling. The Kangaroo concept is an

attempt to avoid these problem areas.

The disadvantages of the Kangaroo concept are a severe perform-

ance penalty and high cost. The canister housing must be machined

and insulated to protect it from the motor chamber gases. In addition,

a nose cone assembly, a delay charge, a forward bulkhead and a pick-

up fin canister must be fabricated. All of these items add significant
cost and weight to the regular booster dart system.

6.4.8 Destructible Dart.

A proposed solution to the falling mass hazard problem has been
the use of a destructible dart constructed with Pyro Ceram - a Carning

Glass Works product. The proposal has been to fabricate the dart

structures with this material, use powdered lead as ballast and destruct

the entire assembly at apogee to release the payload. It is reported

that a concentrated point load will cause the Pyro Ceram material to

fracture into small granular particles no larger than 0.250-inch in

diameter. Table 6-27 presents a llst of the physical properties of this
material in fabricated form.

Although the Pyro Ceram material appears to be reasonably strong,
fabrication into a dart structure and the mechanical fidelity during sharp-

edged booster shocks may become significant problems. The material

does not appear to be inexpensive.
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TABLE 6-26

KANGAROO WEIGHT TABLE
|

Vehicle Launch Weight

Vehicle Burnout Weight

Dart Coast Weight

243.75 lb.

95.00

18.00

Component Weight Breakdown:

Dart

Head Adapter
Nose Cone

Dart Retaining Tube
Booster Fins

Booster Motor

Case
Head

Nozzle
Miscelianeous

Propel lant

18.00 lb.

24.07

10.00

31.00

2.13

7.25
2.55

48.75

243.75 lb.
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TABLE 6-27

CORNING GLASS WORKS PYRO CERAM PHYSICAL PROPERTIES

Density

Water Absorption

Porosi ty

Ave. Coeff. of Expansion (0-300°C)

Thermal Diffusivity (at 25°C)

Youngs Modulus

Compressive Strength

Poisson's Ratio

Shear Modulus

Bulk Modulus

Modulus of Rupture (Tumbler-Abraded)

Knoop Hardness (100 gm)

Loss Tangent (at 8.6 GHz)

Dietectric Constant (at 8.6 GHz)

Volume Resistivity (at 250 ° (2)

2.93 gm/cm 3

0.00%

0.00% Void Volume

90x 10-7,/° C

8.0xl0-3cm2/sec.

17.0x 106 psi

350x103 psi

0.22

7.0x 106 psl

10. lx106 psi

100x103 psi

640

7xi03

7

lx108 ohm-cm
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The proposed system includes a booster rocket which would
impact within a 1-mile radius of the launch site. This is a serious

limitation for iaunchings near populated areast since 2,000 acres of

land would be required to be cleared. Also to prove the reliability of

the system would take thousands of flight tests without a single failure.

This appears to be an expensive program.
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6o 5 Discussion°

6° 501 General.

Several topics dealing with meteorological rocket vehicles are

worthy of a brief discussion° These topics which concern vehicle per-

formance, wind-sensitlvity and impact dispersion are presented in the

fol lowing sections.

6o5°2 Vehicle Performance.

The performance of single stage vehicles is particularly sensitive

to burning time, For 65 km rockets a burning time of about 30 seconds
results in maximum altitude. For longer burning times, the vehicle

gravity turn causes the velocity vector to flatten out to a low flight

path angle and apogee altitude is reduced° For shorter burning times,
higher velocities are experienced in the lower high density regions of

the atmosphere, and the resulting drag losses degrade the altitude per-
formance. Thus, attempts to duplicate Arcas performance with short

burning time internal-knowlng rocket motor designs resulted in significant-

ly larger and heavier rockets than the Arcas. Since the wind-sensitivity
of a vehicle is a function of the burning time, a compromise should be

made between maximum performance and wlnd-sensltivity, A single stage
burning time between 10 and 20 seconds appears to be reasonable. This

range of burning time is not easy to obtain in a small diameter rocket
motor with a total impulse sufficient for the 65 km performance range.

Motor designs are quite restrictive and critical for the single stage

application.

The basic concept in the design of the booster dart vehicle is to

utilize a high performance rocket motor for the first stage and a non-

propulsive dart for the second stage to carry the meteorological payload

to apogee altitude. To take full advantage of this basic concept, it is

necessary to use a rocket motor with a relatively short burning time and
high mass ratio. The basic technical advantage of this system occures

by obtaining a high velocity in a short period of time and separating the

dart as early in the flight as possible. Since the dart has a comparatively

high weight-to-drag ratio as compared to the booster, this early separation

minimizes the energy lost to aerodynamic drag.
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The velocity at the end of booster burnout is dependent upon
the rocket motor mass fraction and specific impulse. However, when

allowance is made for both the dart and associated flight weight hard-

ware, the overall burnout weight of the system becomes of paramount

importance. If booster burnout time is kept to a short duration, i.e.,
one or two seconds, then the accumulated velocity of impulse lost to

drag during the boost phase will be relatively small. Booster diameter

and the resulting interstage design, i.e., cone angle and weight, also

have a relatively important influence on booster drag performance,

especially which rocket motor burning times are appreciably longer than

two seconds. In a similar manner, booster fin size is relatively import-
ant for relatively long burning time rocket motors. A careful trade-

off should be made between dart weight and booster fin size in order

to maintain an adequate static stability margin for the vehicle during

boost phase, and yet not penalized the booster burnout performance

wlth an excessively heavy dart.

Rocket motor design is not so critical for two-stage vehicles as it is
for either the single stage or booster dart vehicles. The booster or first-

stage need not have a particulary high value for mass fraction for it is

weighted down with the second-stage and payload anyhow. The thrust

level should be relatively high to provide an appreciable lift-off
acceleration. This is to reduce wind effects. Since the interstage coast

period can be selected by the vehicle designer, the burning tlme of the

second stage is not critical. Short burning time second stages can be

ignited at a higher altitude to reduce drag losses. Thus, there is a great

deal of latitude in rocket motor design for the two-stage vehicles. Since

short burning time rocket motors are generally less expensive to fabricate
then the long burning time motors, and have higher mass fractions (less

inert weight and insulation required) the obvious choice for a two stage

meteorological rocket would be a minimum cost short burning time boiler

plate booster and an improved mass fraction short burning time second
stage motor.

Although it is expected that the booster dart vehicles will dominate
the routine meteorological rocket applications to 140 km over the next

few years (because of low cost and low wind dispersion), there probably
will be a modest requirement for a single stage vehicle to replace the

Arcas for semi-routine ozone soundings. Such a vehicle should have an
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improved performance (carry a slightly larger diameter payload than
4.5 inches to about 75 km) and should be less expensive than the

Arcas. For payloads diameters larger than about 2 inches and altitudes

above 140 km the obvious choice is a two-stage vehicle. The 140 km

Viper Dart application is probably as far as the booster dart concept

can reasonably be used.

6.5.3 Vehicle Impact Dispersion.

Vehicle impact dispersion factors can be divided into wind effects
and non-wind effect factors. The wind effects can further be sub-divided

into random error and bias components. The wind effect bias can be

significantly reduced by current wind-weighing techniques which permit
off-setting the launch angles to correct for the wind. Since this procedure

is not perfect, there is a wind measurement effort and the wind velocity
changes with time there is a random wind effect which directly causes

dispersion. The greater the wind sensitivity for a vehlcle, the greater is

the random wind effect error and resulting impact dispersion.

For most vehicles random wind effects and thrust misalignment

cause a majority of the vehicle disperslon. By reducing or eliminating

these two causes of vehicle dispersion, quite small impact patterns can

be accompllshed. Essentially all sounding rockets are caused to roll or

spin about their longitudinal axis by employing fin incidence or cant.
This is done to cancel or vector out vehicle misalignment dispersions.

However, vehicle spin rates do not build up until an appreciable distance

is achieved from the launcher, and vehicle velocity has become appreciable.

In these cases the thrust mlsallgnment, just as the non-splnning vehicle
leaves the constraints of the launcher, diverts the course of the missile

and a significant dispersion occurs. If the missile were pre-spun before

leaving the launcher, this element of dispersion could be eliminated.

The Loki systems accomplished this by using helical rails. This is one
reason that the Loki dispersions are minlnal. To reduce the random wind

effects dispersion, the overall missile wind sensitivity must be reduced.

6°5.4 Vehicle Wind-Sensltivity.

Wind-sensltlvlty performance of the vehicle is a function of the

boost acceleration, which is related to rocket motor burning t|me, and

the relative magnitudes of the vehicle static stability margin and transverse

moment of inertia. Wind effects are slight for a very fast acceleration
and short burning time rocket motor. If the vehicle static margin at llft-off,
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and during the boost phase, is maintained at an adequately small value,
and tke moment of inertia about the pitch axis is large, wind effects

are slight. Although by increasing the launch velocity of a given vehicle

a reduction in wind sensitivity can be made, such a reduction may not
be great. The total time the vehicle is under propulsion is the main factor

contributing to the wind sensitivity of a vehicle in spite of the launch

velocity. Thus, Arcas wind sensitivity is not greatly reduced by employ-

ing the gas generator charge during the launch stroke or even by employ-
ing a booster rocket. Dual thrust vehicles will also be wind sensitive

as long as relatively long burning times are employed for sustained thrust

phase in spite of the increase in launch velocity. The only really
effective answer to reduce wind sensitivity is short burning times.

A comparison of the wind dispersion of short and long burning
time vehicles is presented in Table 6-28. it should be noted that the

wind-sensltive altitude ceiling is considerably higher for the long burn-

ing time vehicles. Since the higher altitude winds are generally much
stranger than the low altitude winds, the resultant ballistic wind will be

greater. Thus, the wind displacement differences between the short and
long burning are even greater than indicated.
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.

GUN PROBES

7.1 General.

Since 1961, high-performance • conventional guns have been

used to launch atmospheric probes. This development has been under-

taken by the U. S. Army Ballistic Research Laboratory (BRL) working

closely with McGill University Research Institute of Montreal, Canada
and NASA - Wallops Island, Virginia, under Project HARP (High

Altitude Research Project). Project HARP is devoted to the develop-

ment of high altitude gun launched rockets and projectilest the acquisi-

tion of engineering and scientific data on the upper atmosphere and the
critical vehicle-environment interactions. As part of this effort, 5-inch

guns have placed 25-pound projectiles at 250,000 feet, 7-inch guns have

placed 60-pound projectiles at 330,000 feet and 16-inch guns have

reached 590, 000 feet with 185-pound projectiles as indicated in

Figure 7.1-1o ChaFF, balloon, aluminized parachute and chemical

payloads have been successfully used while on-board telemetry units
are in an advanced state of development.

Although the major structural problems of high-'g' telemetry have

been solved for the most part, the reactions to high velocities encountered

in the lower realm of the atmosphere have hindered development of

instrumented payloads. This has included the more slowly accelerated gun-
boosted rocket vehicles of the 7-inch and 16-inch guns• developed to

carry payloads to extreme altitudes and possibly orbital missions.

Initial tests of a gun probe system began on the 5-inch gun at BRL

Aberdeen Proving Ground, Maryland, during June 1961. These tests,

conducted at the Edgewood Peninsula launch site were followed by the

installation of a 16-inch gun at Barbabos, W. I., and testing of the larger

gun probes began in January 1963. Since these original tests, installation

of the 5-inch gun as spread to sites at Wallops Island, Virginia; White
Sands, New Mexico; Barbabos; Fort Greely, Alaska; Highwater, Quebec;

and Yuma, Arizona. Additional 16-inch gun installation have included
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FIGURE 7.1-1 GUN PROBE PERFORMANCE SUMMARY
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facilities at Yuma and Highwater, the latter being a horizontal test
fire installation. Testing of the 7-inch gun probe was not initiated

until May of 1964, since surplus or worn out hardware of this new
gun were not available up to that time. The initial Wallops Island

Tests were followed by installation of the gun at White Sands with

additional facilities planned for other sites as the modern hardware
becomes available.

Most of the test previously conducted have developed ballistic

and design techniques for this entirely new field of technology so that

reliable, optimum performance could be substantiated. The many
problems encountered during the early phases of development showed

that it was a more complex undertaking than had previously been

anticipated. Significant engineering efforts solved may of the inherent

problems in gun launched probes and some scientific data have been

gathered. These successful probes are primarily wind profiles measured

by chaff, aluminized balloons and parachutes and by tri-rnethyl-aluminum
trials. A number of successful 250 mHz and 1750 mHz telemetry flights

have been made primarily with the slower, larger 16-inch projectiles

which carried various types of instrumented payloads. However, the

greatest success of gun launched projectiles has been TMA chemical

trial studies of the Sporadic E layer variations.

Generally, the gun probe may be considered in terms of two basic

vehicle classifications: the ballistic glide vehicle which receives its
thrust solely from the gun launch, and the rocket-assisted vehicle (des-

cribed in Section 7.5). In the case of ballistic glide projectiles, the

flight trajectroy is controlled by launch vector velocity and ballistic
coefficient. To obtain a high ballistic coefficient, high fineness ratio
milliles are utilized having large vehicle mass densities. To obtain a

high launch velocity, sabot launched sub-callber vehicles are used,
retaining a high ballistic coefficient after sabot separation. By an

increase in barrel length equal to 75 calibers, muzzle velocity is also

increased so that maximum gun performance and propellant efficient is

achieved. A further increase in muzzle velocity is realized when the

muzzle end is sealed with a thin plastic sheet and the barrel evacuated

of air. Larger bore diameter guns would increase the weight-to-drag

ratio and decrease acceleration loads but development of a larger gun

does not seem practical at the present state of gun probe development.
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7.2 5-Inch Gun Projectiles.

Initial development of a 5-inch HARP probe system utilized
a 120 mm, T-123 high performance tank gun, smooth-bored to 5.1
inches, muzzle extended to 33 feet and mounted on a 155 mm towed

vehicle carriage. The entire system is mounted on a 30-degree

inclined ramp to allow for near vertical firing. The missile and charge

are loaded into the tube separately. To achieve proper seating and

placement of the missile in the tube, the sabot quarters are backed with

plastic and are made slightly oversize, so that a special loading fixture

and hydraulic ram force loads the projectile at a peak force of 10 tons.

The flight vehicle is a subcaliber, fln-stabillzed projectile,
45-inches long, weighing 20-pounds a'nd has a maximum body diameter

of 2.6 inches as indicated in Figure 7.2-1. The fins are slightly smaller

than the gun barrel and are canted to induce a small spin rate. The

payload cavity, 1.8-inches in diameter by 7-inches deep, is located
in the forward body of the vehicle. Muzzle velocities in excess of

5,400 feet/sec and a load equivalent of 55,000 'g' occur at launch,
producing a ballistic glide to a maximum altitude of 250,000 feet.

Figure 7.2-2 illustrates the altitude vs range profile for various launch
angles at 4,000 feet launch elevation.

Payloads originally consisted of chaff or meteor projectiles
followed by testing of a 1750 mHz telemetry package with nose antenna.

These tests were unsuccessful and provided evidence of poor design, which

resulted in redesign of the entire system. This improved second generation

gun probe had increased performance and reduced aerodynamlc i nstabillty

as well as incorporated an advanced telemetry and antenna system.
Refinements of the Solistron(SOLId state klySTRON) transmitter were made

to eliminate the change in frequency due to excessive launch temperatures.

This included a reduction in size to 1-1rich long by !. 125-1nches in

diameter, permitting the use of ample thermal insulation and heat sinking.

However, temperature data showed that the package experiences temp-

eratures during the glide portion of the flight in the order of 300°C, high
enough to alter the electronic and mechanical characteristics of the antenna,

RF circuit and telemetry instrumentation. Changes in load impedance due

to excessive temperature caused deviations in frequency and power output.
This results in weakened signal strenght, high frequency drift, additional

RF noise and eventual signal dropout. Efforts are underway to overcome
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the problems of excessive aerodynamic heat transfer and temperature
effects.

in order to readily provide wind sensing probes for the 5-inch
gun, means to prevent tearing or burning of a parachute payload were

developed. These aluminized parachute vehicles have been providing

wind data to as high as 70 kilometers on an operational basis. Several

attempts have been made to reduce production costs, ammend the current

payload volume restructions and at the same time optimize vehicle per-
formance. However, a practical, improved probe system is under the

same basic physical restrictions inherent with .the gun probe techniq_se,
and therefore confined to limited design innovations.
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7.3 7-Inch Gun Projectiles.

The 7-inch system is essentially a scaled up version of the 5-inch

system with three times the payload capacity and with an altitude per-
formance of 350, 000 feet. The modern 175-mm M-113 gun is smooth-

bored, extended to 50-feet and placed in a highly modified T-76 double

recoil field mount. Interior ballistics have been a major problem with

this gun. Desired velocities are not always achieved at computed pressures

and erratic pressure variations occurred with larger charges.

The basic flight vehicle is 64-inches iongt 3.6-inches in diameter

and weigh: 60-pounds. The 7-inch diameter plastic sabot is again made

oversize and force loaded at 10 to 30 tons uslng a hydraulic jack as shown

in Figure 7.3-1. The vehicle achieves a muzzle velocity of 5400-feet/sec

at 35t000 'g'. A smaller, high performance missile has been developed

to reach 400,000 feet with a much smaller payload. This missile is 55-
inches long having a 3-inch diameter and weighs 40-pounds. Metal

parts behavior of this highly accelerated system have caused problems

during development.

Payloads have utilized the usual chaff and aluminized parachutes
to measure winds above 210,000 feet. Available payload volume is

125-cublc inches. Chemical payloads have been successfully used,

including a package of cesium nitrate with high explosives to generate
an observable cloud of electrons at 330, 000 feet. Also a Langmulr probe

instrumented payload has been tested. A full bore 7-inch rocket vehicle

has also been developed consisting of a 125 pound projectile with a fiber-

glass case and solid propellant rocket having pop-out fins. Launched at
muzzle velocities exceeding 4,000 feet//sec it should place a 20 pound

payload at 500,000 feet.
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7.4 16-Inch Gun Projectiles.

The 16-inch gun incoprorates the use of a Mark D barrel, smooth-
bored to 16.4 inches and elaborately modified to support a barrel exten-

sion to 119-feet, 5-inches. Weighing approximately 200-tons, it can be

elevated to 85 degrees in less than 8 minutes. Subcaliber, oversized
sabot launched vehicles are rammed into seating position with a maximum

force of 50 tons. The necessity for a fast burning, high pressure yield

propellant charge lead to the development of a spaced charge, multi-

point ignition technique which provides optimum efficients of the pro-
pellant charge, and is used in conjunction with the evacuated barrel

technique °

Various types of vehicles and payloads have been used from
Martlet 1 smoke and flash vehicles to Martlet 4 orbit potential rockets.

The Martley 2C, TMA loaded vehicle has been the system most utilized
because of it's simplicity and high performance. Details of its wind

measurement technique were discussed in Section 3.2.7.3. Weighing

185-pounds carrying a 25-pound payload, it can achieve apogees in
excess of 180 km. It is 55-inches long by 5.4 inches in diameter and
is accelerated to 15,000 'g' at a launch velocity of 7, 100 ft/sec.

Typical payload configurations are illustrated in Figure 7.4-1. Other

vehicles have been used to test various systems designs and payload
configurations with the more recent efforts projected toward gun-boosted

rockets. Active payloads using both 250 mHz and 1750 mHz telemetry
have been carried on a number of flights. Onboard sensors have included

magnetometers, sun-seekers_ pressure gages and Langmuir electron density

probes. However, difficulties in telemetry and antenna functions have

again been a problem_ and these devices must still be considered under

development.
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7.5 Gun-Boosted Rockets.

Full bore gun-boosted rockets theoretically possess excellent
performance while retaining a portion of the gun's economy and low

dispersion. Optimization of the gun-boosted system involves a trade-

off between the amount of kinetic energy imparted by the launcher

and the amount of chemical energy carried aboard, considering that

as the total launch weight is increased, launch velocity decreases.

As launch weight is decreased to obtain high muzzle velocity, the

ballistic coefficient becomes the dominant factor just as with the
ballistic glide missile. The optimum situation has been found to exist

when relatively large rockets are matched with intermediate gun

velocities; the gun performing as a reliable, retainable first stage for

the system.

Initial development of a gun launched rocket was the Martlet

3A vehicle. A subcaliber projectile weighing 153-pounds, it contains

a 57-pound case-bonded 6-inch nitrocellulose grain motor° Delay

ignited a 14-seconds after launch, the motor burns for 7-seconds carry-
ing a telemetry package weighing 50-pounds in a 46_8 cubic inch

payload section° Many problems relating to the effects of highly

accelerated motor propellants, telemetry packages and antenna designs

were studied as well as various internal ballistic concepts. Additional
types of vehicles were built for the 16-inch gun and one model was

built for the 7-inch gun, the Martlet 3E.

Development of a full bore 16-inch Martlet 3D vehice provide
a first stage for the Martlet 4 orbital vehicle which consisted of three

stages. Additional development of guidance control units and liquid
upper stages have continued efforts along these lines.

A subcaliber vehicle was also developed for extreme high altitude

performance or orbital potential with reduced complexity. This two stage
Martlet 2G-1 vehicle is 169-inches long by 11.4 inches in diameter and

has a total weight of 1,100 pounds.

All the gun-boosted rockets mentioned above are illustrated in

Figure 7o5-1o Additional gun launched systems, such as a Scramjet first

stage vehicle, have been proposed as further advancements of gun launch
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potentials. As further studies of high 'g' acceleration continue, utiliza-
tion of the gun-boosted rocket for high altitude missions may become

possible, although they may never become really practical in this

application.
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7.6 Meteorological Rocket vs Gun Probe Comparison.

Since the development of the gun launched projectiles has

demonstrated an additional means of gathering high atmospheric data,

comparison of this system with the meteorological rocket is necessary to

evaluate its essential performance. Table 7-1 presents a comparison
of gun-launched vehicles against operational meteorological rockets.

Another effective means of comparison would b_ to consider the major

aspects in catagorles of the advantages and disadvantages that gun

probes have in relation to rockets.

Advantages.

. Gun probes can achieve high accuracy in placing

a package at a desired point in space. This

performance can be achieved consistently without
regard to changing weather conditions.

. Minimal wind deviation and low dispersion provide
decreased range limitations and restructions. High

velocities insure accuracy of the ballistic trajectory

and decrease vehicle impact range.

. The economy of the inert payload or the first stage
substitution of the gun launched rocket is an

important consideration. The cost of propelling a

given weight to altitude is particularly interesting
for orbital insertion vehicles, but is not really

advantageous for meteorological applications. The

economy in reduced range area is worth consideration.

. Barrel confinement provides a reliable means of stabiliza-
tion and guidance through high Mach numbers, insuring

range safety at launch, and reducing complications
which are inherent to rocket launched vehicles.
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Disadvantages.

• Only those measurements which involve apparatus

that can be made resistant to high acceleration

stresses are possible. The extreme acceleration

loads produce an inflight elastic rebound phenomenon
which restricts the structural fabrication of utilized

hardware.

1 Payload volumes are restricted by the structural/

weight ratio required of the high density projectiles.

Additionally, high aerodynamic heating effects

limit sensors, telemetry and antenna designs and create

the greatest challenge in the development of instrumented

payloads.

• Since internal ballistics of the gun is a determining

factor of flight trajectory, its performance should

not vary from that computed for a particular launch•

However, this has not always been the case, since
variations have occurred from erratic internal propulsion.

i.e. The powder bags used are highly sensitive to

changes of temperature and humidity. Additionally,
various disturbances at the gun, such as blast, muzzle

whip and sabot separation, can impart linear and

angular momentum to the missile, causing an oscillatory

motion in the trajectory know as aerodynamic jump.

• Muzzle emergence and transition to free flight have

incurred further restrictions to vehicle design due to

the high Reynolds number, heat and drag experienced
at that time. The resultant noise intensity at firing

creates a high nuisance value for this system.

• Maintenance costs of the gun are high in comparison

to rocket launchers• Although basic propellant costs

per round are highly economical compared to rocket
fuels, initial cost of the gun is high• Considering
that the erosion ilfe of a 5-inch tube alone is limited

to 350 rounds with reboring necessary after 200 rounds,

operating costs average high per vehicle launch com-

pared with equivalent performance meteorological

rocket systems.
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Although there has been a great deal of discussion concerning

the relative merits of gun probe systems for meteorological soundings,
the gun probes appear to be more expensive and operationally more

cumbersome than for the lower cost meteorological rocket systems.

The gun probes are limited in payload diameter and volume. They

currently offer state-of-the-art development problems for sensor instru-

mentation. The gun projectiles are fairly expensive, and the overall

cost per launching does not compare favorably with the existing booster
dart vehicles when account is made for the emplacement, reboring and

launching costs. The gun probe systems may in the future be competitive

with the booster dart systems for simple payloads such as the passive

inflatable sphere if significant improvements are accomplished and a
large number of launchlngs are to be made from a given site. There

are no prevalent advantages for the gun-boosted rocket system in the

meteorological rocket field since the added complexity of firing a

rocket system from a gun is neither simple nor inexpensive°
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SUMMARY

The strongest overall meteorological rocket requirements are for
wind and temperature measurements throughout the rocketsonde region of

30 km to 60 km or slightly above. These measurements are currently
being made on a routine basis with the Arcas and the lower cost Loki

Dart rocketsonde systems. The bead thermistor measurements appear to

be adequate to 60 kmt and satisfactory soundings have been mode to

68 km by applying aerodynamic heating and radiation correction factors

to the raw temperature data. With a slower fall rate decelerator and
advanced thermistor sensor techniquest it appears that the low cost

rocketsonde technique with an immersion thermometry temperature measure-
ment is possible up to an altitude of about 75 km. An additional improve-

ment in the accuracy of the conversion of the measured temperature pro-

files into pressure and density profiles through the _ocketsonde regions may
be accomplished by the incorporation of a one-polnt pressure switch in
the rocketsonde instrument package. If this switch can be mode sufficiently

accurate at a low cost to measure 28 mb (80,000 feet) within an rms error

of 0.30 mbt this technique will be more accurate than using the hypsometer

radiosonde data which may differ significantly in space and time from the

rocketsonde run. A super Loki instrumented dart system with a large
decelerator is being developed jointly by AFCRL and NASA/MSFC to

accomplish the above extension of the current rocketsonde measurements.

This appears to be the lowest cost approach for routine measurements in

this altitude region.

The second most important requirement is for density and wind
measurements from rocketsonde altitudes to 100 km. Currently the most

promising system for this application is the Viper Dart vehicle with the

Robin inflatable falling sphere. Development flight tests by AFCRL and

the initial operational flight tests at Cape Kennedy and WSMR indicate
that reasonable densities and winds can be obtained to about 90 km with

this system. An AFCRL development program is underway to increase
this altitude to 100 km in the near future. As the Viper Dart Robin system

proves to be useful, costs can be significantly reduced by developing a

lower cost booster than the Viper rocket motor or by developing a two-

stage vehicle from two small low cost motors for this payload.
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The Robin payload is quite suitable as a meteorological

sensor because of its structural simplicity, low weight and volume

characteristics, ease of deployment and compatibility with various

vehicles and payloads, reliability and measurement accuracy, and
its relative economy as compared with other more complex, sophisticated

sensing systems.

A recent demonstration of the Robin sphere performance was in

support of the Apollo Ii launch at Cape Kennedy, Florida. The

support requirements of this particular mission necessitated a reliable

measurement of atmospheric parameters from surface to 90 km. As

part of this effort, the Viper Dart Robin vehicle was flown in conjunction
with the Loki Datasonde and the respecffve Rawinsonde observations.

The resulting data produced temperature, density, pressure and wind

profiles from the surface to 90 km with excellent agreement in the

overlap regions. These atmospheric parameters have an appreciable
effect on the Saturn V vehicle guidance and control functions during

its powered flight to 90 km. Figures 8.1-1 and 8.1-2 represent the

density profiles derived from these data. Figures 8.1-3 and 8.1-4 pre-

sent the wind profiles of these observations. It is interesting to note

the overlapping of all three wind profiles in Figure 8.1-4 since the
Rawinsonde utilized GMD-4 tracking and the others incorporated FPS-

16 tracking. Temperature profiles are illustrated in Figures 8.1-5 and
8.1-6.

The main disadvantage of the Robin passive sphere technique is

the requirement for a radar with the precision of the AN/FPS-16 or
better. During the Sparrow-Arcas Denpro program, it was found that

the tracking accuracy of the AN/GMD-2 compared favorably with the

AN/FPS-16 radar data in the slant range parameters. No doubt this
is due to the fact that the main tracking variable during vehicle ascent

is slant range, and the GMD-2 is fairly accurate in slant range deter-

mination. Therefore, there may be a requirement for a low cost pltot

probe system utilizing GMD-2 tracking and telemetry at sites where
adequate radars are not available. The vehicle for such a system should

consist of two low cost, relatively small rocket motors configured into

a two-stage vehicle with a final stage diameter from 3.0" to 4.0". The

vehicle apogee should be about 200 km in order to maintain sufficient

velocity through 100 km to assure accurate density data to this altitude.

Such a system should cost on the order of $2, 500 if the currently available

vibrating diaphram pressure gauge is found to be adequate. If wind data

were desired from this system an inflatable sphere could be ejected near
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the vehicle apogee, and the wind data could be retrieved with a less

precise radar than the FPS-16. If no radars were available at a particular
site, an extra large inflatable sphere could be deployed with a relative-

ly light-weight GMD-2 transponder. This system would be considerably

more expensive than the simple inflatable falling sphere experiment,

and this extra cost should be weighed against the necessity for obtaining

100 km wind and density data at sites without precision radar.

There appears to be an interest in a modest scale seml-synoptic

ozone network to an altitude of about 75 km. Typical ozone payloads

weigh about 35 pounds, and a reasonable diameter is about 5.5" to 6.5".

Although fairly large slgnal-stage vehicle has been proposed for this
appllcatlon, a better choice might be a low cost two-stage vehicle.

Currently such vehicles do not exist.

Electron density payloads are fairly small and lightweight. The

same two-stage vehicle proposed for the pitot probe system would be most

appropriate for electron density measurements to 200 km. Electron

density measurement systems should be amenable to fairly low cost

($2, 000) production.

For large numbers of launchings per year at a given site, a size-

able investment in the ground-based facilities may be justified on the

basis of reducing the expendable costs. For instance, if density is

required to 100 km at a site where there is no radar, the choice may be to
either construct an acceptable radar at the site, or to use a GMD-2

type system. With the radar, a low cost passive falling sphere system may

be used, whereas with the GMD-2, a more expensive pitot probe type

system may be required. The most economic choice would depend upon

the number of firings anticipated during the useable life (estimating

obsolescence) of the ground equipment. If the passive sphere system

should cost $1,300 and the pitot probe system cost $2, 300, then one

thousand flights would be required from the given site to amortize the
cost of a $1 M radar. Thus, the establishment of a realistic requirement

for the number of flights from a given launch site per year is quite
important for future design efforts.
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CORRECTIONS FOR METEOROLOGICAL ROCKET TEMPERATURE SOUNDINGS 

ON AN INDIVIDUAL BASIS 

By Robert M. Henry 

NASA Langley Research Center 

ABSTRACT 

Past studies have derived magnitudes of rocketsonde temperature errors  
from assumed atmospheric prof i les  and parachute t ra jector ies ;  the  present paper 
derives corrections using the actual t ra jectory and t;Le measured temperature 
prof i le .  
radiation, infrared radiation, e lectr ical  heating by the  measuring current and 
by radio-frequency radiation, and for thermal emission by t h e  thermistor and 
mount. 
such as the Arcasoncle IA sensor. 
large reductions i n  the magnitudes of the  corrections required. 
computing t h e  ventilation velocity t o  improve the  accuracy of the large aero- 
dynamic heating correction i s  presented. 

Corrections are derlved for aerodynamic heatmg, thermal. lag, solar 

Corrections are derived for a simple postmount and for  a thin-fi lm mount 
It is shown t h a t  the thin-film mount produces 

A method of 



CORRECTIONS FOR METEOROLOGICAL ROCKET T_4PERATURE SOUNDINGS

ON AN INDMDUAL BASIS

By Robert M. Henry*

INTRODUCTION

With any measuring system, there is always concern as to the measurement

errors of the system. These errors are of particular interest where meteorolog-

ical rocket systems are concerned because the errors generally increase with

altitude, and however much the systems are improved there is always a desire to

utilize data from still higher altitudes where the errors become increasingly

large.

A number of previous studies (for example, refs. i to 6) have considered

the problem of measurement errors of bead thermistors primarily by assuming

standard conditien[ and nominal trajectories and solving for the thermistor tem-

perature from an assumed atmospheric temperature profile. The present study

considers the inverse of this problem: given the time history of the thermistor

temperature, to fired the atmospheric temperature profile. This_ of course, is

uhe problem faced by the using meteorologist.

The purpose of this paper is to help extend the useful altitude range of

meteorologi:al rocket data by presenting a system of corrections based on the

actual conditions arid trajecto_, of the particular measuring system.

SYMBOLS

A

A] b.

C

C D

cp

G

h

J

area

albedo

heat capacity

drag coefficient

epeci[_ic heat of air at constant pressure

geom£trlc factor depending on shape and exposure

acceleration of gravity

coefficient of convective heat transfer for total area

solar constant

*Aerospace engineer.
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P 

k 

m 

r 

S 

T 

Teff 

v 
7 

w' 
vz 

wt 

WZ 
W 

X 

a 

B 
c 

0 

P 

coefficient of thermal conductivity 

mass of parachute plus payload 

recovery coefficient 

area of parachute 

temperature 

effective radiatiozi t ezarature of atmosphere 

ventilation velocity 

vector velocity of parachute 

vertical component of parachute velocity 

three-dimensional vector wind velocity 

electrical heating of thermistor due to measuring current and radio- i 
frequency radiation i 

vertical wind velocity z $ 

weighting factor 

length of lead wire 

absorptivity for radiation 

cross-sectional area of lead wire 

thermal emissivity 

Stefan-Boltzmann constant 

air density 

&bscripts: 

atm atmosphere 

f conductive thin film 

z long-wave (terrestrial) radiation 

m mount 

8 short-wave (solar) radiation 

t thenni stor 
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KEA_T-TRANSFER EQUATIONS

To determine the corrections to be applied to the temperature measurements,

it is necessary to evaluate the various heat-transfer mechanisms involved

between the environment and the measuring system and between different parts of

the measuring system.

The first relationship to be considered is the heat equation of the therm-

istor itself. This equation is a statement that the rate of increase in the

heat content of the thermistor is equal to the sum of the heat inputs:

v2= ht atm + rt --2Cp - T + astGstJ(l + Alb.) + _ztGztaTeff4

- Atetoqt 4 + W t + _-_X (Tm - Tt) (i)

The term on the left of the equation represents the net rate of addition of

heat. The first term on the right is the rate of heat transfer by conduction 3

and includes the aerodynamic heating [rtV2/2Cp). The sum of Tatm + rtV2/2c p

is called the recovery temperature, and represents the temperature of the atmo-

sphere in actual contact with the surface of the thermistor.

The remaining terms represent, respectively, solar heating, infrared

heating, thermal emission by the thermistor, electrical heating (by the measuring

current and by the radio-frequency radiation from the transmitter antenna) and

heat conduction through the lead wires from the mount.

The expression for heat conduction given here (2_k_/X) assumes a uniform

gradient of temperature along the wire. This is appropriate if the heat trans-

fer between wire and environment is small, the temperature lapse rate is not

changing rapidly, and the system has recovered from any large initial tempera-

ture differences at deployment. It is not appropriate for systems having long

lead wires, and may also be inappropriate for a short period of time immediately

after deployment if the initial temperatures of the system components are

greatly different from their respective recovery temperatures.

Heat-Transfer Equation for Thin Film

The widely used Arcasonde IA (ref. 5) and also a number of more recent

designs developed by, for example, White Sands Missile Range, Metrophysics,

Inc., and Thiokol's Astro-Met Division utilize a short lead wire plus a metal-

lic thin film deposited on a plastic thin-film substrate in the electrical path

of the measuring current. The original purpose of this arrangement was to

achieve thermal isolation of the thermistor from the telemetry package. How-

ever, it is found that the large &rea of thin film in addition to providing
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thermal isolation serves as a very effective heat exchanger with the atmosphere.

In fact_ the heat transfer from the film, conducted through the lead wires,

dominates the transfer processes of the thermistor.

The heat-transfer equation of the thin film can be expressed by an equa-

tion similar to that for the thermistor:

Cf _ = hf atm + rf _p - T + _sfGsfJ(l + Alb. ) + _zfGzfOTeff 4

- AfcfcTf 4 + 2-_xk(Tt - Tf) (2)

which differs from equation (i) principally in the change of subscripts. The

geometric factors in the radiation terms are different 3 and there is strong

dependence on the solar angle. The electrical heating is expected to be negli-

gible and is omitted. The conduction term is the negative of the conduction

term in equation (i) with Tm = Tf.

CORRECTION EQUATIONS

Equations (i) and (2) provide a basis for not only evaluating the various

errors in the film-wire-bead system_ but also for correcting them using the con-

ditions of the actual flight rather than nominal corrections.

Correction Equation for Bead

If the temperature of the bead thermistor T t and_ consequently, its

derivative is a known function of time, equation (i) can be solved for the

atmospheric temperature Tat m by simple algebraic manipulation. The resulting

correction equation

V2 et dT t
Tat m = Tt - rt- + --

2Cp ht dt

Gst_stJ(l + Alb.)

_ __ AtcteTt 4
Wt + _ 2k_(Tm - Tt)

ht ht Xht

Gzt_lteTeff 4

h t ht

(3)

gives the atmospheric temperature as the sum of the thermistor temperature plus

a series of correction terms which may be called, respectively, the aerodynamic

heating correction, lag correction_ solar-radiation correction, long-wave-

radiation correc_ion_ electrical heating correction, and conduction correction.
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Actual evaluation of the corrections is complicatedby difficulties and

uncertainties in the determination of some of the correction parameters. In

the altitude range of interest, the bead experiences transition from continuum

flow to slip flow and from slip flow to free molecule flow. This affects the

determination of both the convective heat-transfer coefficient ht and the

recovery coefficient rt. The geometric factors Gst and G_t are affected

by deviations of the actual beads from the nominal diameters and from the

nominal spherical shape. The solar and long-wave absorptivities and emissivi-

ties _st and _Zt and the emissivity et may vary with age and exposure to

a contaminated atmosphere. While variations in the solar constant J may be

neglected, the value of the albedo Alb. will vary over a wide range depending

on cloud cover, snow cover, vegetation, and at costal locations, on the solar

angle. The effective radiating temperature of the atmosphere Tef f varies with

latitude and season and also with cloud cover. As a result, it will be diffi-

cult to make radiation corrections with a high percentage of accuracy and

reflective coatings or radiation shields are needed to keep the magnitude of

these corrections small.

Finally, the conduction correction requires a knowledge of the mount tem-

perature Tm which in the case of the thin-film mount is the film temperature

Tf. This can be found from the heat equation of the film, equation (2). In

order to obtain closed form solutions, it is _ecessary to make a suitable

approximation for the quadratic term AtetoTf_. This may be done by using the

first two terms of the Maclaurin series expansion of Tf 4

Tf 4 _Tt 4 + 4Tt3(T f - Tt) (4)

This linear approximation will be very accurate at the temperature encountered

by the meteorological rocket, producing an error of around 1.O percent for a

30 ° difference between Tf and Tt.

With the substitution of equation (4) into equation (3), equation (3) can

be solved for (Tf - Tt). If the resulting value is substituted into equa-

tion (2) and the result solved for the atmospheric temperature, a system cor-

rection equation results:

Tat m = Tt +

V 2 dTt _

-htrt _ + _t d--_ - GstmstJ(l + Alb.) - Gltc_itTeff - Wt + AtetoTt 4

i_(2kS/X)
ht +

hf + 2kp/X + 4A_f_2t 3

hf + 2k_/X + 4AfcfoTt3 L hTrf + Cf _ - SsfmsfJ(1 + AI_.) - G_f_zfOTeff h + AfcfeT

+ (5)
hf(2k_/X)

ht +

hf + 2k_/X + 4Af_foTt 5
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in which the unknown film temperature Tf has been eliminated. The time deriv-

ative of the film temperature_ which still appears, can be assumed t0be approx-

imately equal to the derivative of the thermistor temperature except for a brief

period immediately after deployment where a step change in temperature may pro-

duce a temporarily large difference.

It can be seen from equation (5) that the expansion of the conduction term

has also changed the aerodynamic, lag_ radiation_ and emission terms. In each

case the denominator h t has been replaced by the expression

ht +

hf + 2kG/X + 4AfefoTt3

which can be regarded as a system convective heat-transfer coefficient. The

behavior of the system can be understood better by considering the corresponding

terms in the first and second fractions. It can be seen that each term -

aerodynamic heating, lag, radiation, etc. - is the sum of the term for the bead

plus the corresponding term for the film multiplied by a weighting factor

2k_/x
wf = (6)

hf + 2k_/X + 4Afcf_Tt3

which is, approximately_ the ratio of the conduction 2k_/X to the total ther-

mal dissipation hf + 2k6/X + 4AfcfoTt3. The denominator - the system convec-

tive heat-transfer coefficient - is a similar weighted sum of the thermistor
and film heat-transfer coefficient

hsystem = ht + wfhf (7)

Thus, equation (5) can be rewritten

Tat m = T t -

dT t dTf

+ wf_fhtr t + wfhfrf V2 Ct dt d7
+

ht + wfhf 2Cp h t + wfhf

+ Gst_st + WfGsf_sf J(l + Alb.) - GZt_Zt + wfGzf_Zf Teff 4

ht + wfhf h t + wfhf

Wt Atct+_Afe f

ht + wfhf ht + wfhf
_t 4 (8)
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I n  equation (8) the  aerodynamic, lag, radiation, e lec t r ica l ,  and emission cor- 
rections q,pear as separate terms, &fined f o r  the  t o t a l  film-wire-bead system. 
There i s  no separate ccuduction term, since t h e  length of t h e  conductive film 
st r ip  i s  great enough t o  effectively i x l a t e  the film-wire-bead system from the 
paylozd structure. 

Equation (8) is  completely general (except f o r  omission of convection and 
radiation of the lead wires) and gives solutions f o r  Eitmospherfc temperature i n  
terms of measurable values. Solutions can a l so  be found when the  radiation and 
convection terms f o r  the wire are included (ref. 7). However, while these more 
complete equations are suitable for computer reduction of the sounding data, 
they are lengthy and cumbersome. 
clearly i l lust ra ted by the ~ r y  close approximation of equation ( 8 ) .  Notice 
that the  evbluation of equation (8) does not require knowledge of a "time 
constant," and there  is no t i m e  dependence beyond the  necessity for eval-uating 
the t h e i d s t o r  teiqperat-ue derivetive. 
applied t o  any portion of the tanperature t race  where the derivative can be 
evaluated. 

I 

The behavior of the aensor system i s  more 

Tnus, t h e  correction equation can be 

The behavior of the sensor system over cer ta in  portions of the al t i tude 
range of in te res t  can be i l lus t ra ted  even more clearly by considering some 
limiting cases of equation (8). 

High-Altitude Case 

One limiting case of interest  is the case where the  film convective trans- 
f e r  coefficient is very small compared to  the conductlon factor (hf << 2kg/X). 
This condition is approached with increasing a l t i t ude  and would be approfimated 
a t  100 lun or above. In  this case, equation (8) approaches 

( 9 )  

Equation (9) shows that the bead-wire-film system approaches the  behavior of a 
pure thin-film sensor a t  the higher altitudes. It should be noted that at  the 
alt!.tudes where t h i s  equation applies hf will be sufficiently small that none 
of the indicated correction terms can be safely neglected, although wi th  fore- 
seeable parachute developments the aerodynamic heating correction is expected 
t o  be the  tern of greatest  importance. Equation (9 )  indicates that thermistor 
temperatures can be reedily corrected a t  higher a l t i tudes  and that the major 
obstacle t o  the use of present sensor systemti at higher a l t i tudes  is the 
development of sat isfactory parachutes or other decelerators for use at these 
alt€tud,s, 
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Lower Altitude Case 

Another 1i.rnitir.g case of interest is the case where the conduction factor 

T h i s  condition is approximated at altitudes below about 70 La. 
is very small ccjmpared with the film convective transfer coefficient 
(2kp/X << hf). 
In this iower altitude case equation-(8) approaches : 

ht + 2kf3/X ht + 2kP/X 

. 4 W t 4  + 

. ht +-2k$jC 

In this case the system heat-transfer coefficient becomes ht + 2kP/X. 
that the numeretors of the lag, radiation, electrical, and emission terms are 
the same as in the simple thermistor correction equation (3) ,  that is, the 
eeme as for a Gimple thermally isolated thermistor. 
tents is substantially reduced in magnitude by the increased denominator. 
the 60- to 70-km range, decreases with altitude to values an order of 
nagnitude below %kS/X, with correepondiug reduction in the lag, radiation, 
electrical heating, and emission corrections. The aerodynamic heating correc- 
tion is reduced slightly, primarily because the film (whose recovery coeffi- 
cient is heavily weighted) is in the continuum flow regime at these altitudes, 
with e recovery coefficient. of about 0.9 compared to about 1.1 for the bead 
thermistor which ie in the slip-flow regime. 
trical heating, and atdssion corrections are on the order of tenths of a degree, 
the Lag  correction I s  on the order of a degree, and the aerodynamic heating 
correction is on the order of tens of degrees. 
a nominal traJectory, but deviations f r o m  nominal always result in increases. ) 

Notice 

As a result, each of these 
In 

ht 

As a result, the radiation, elec- 

(It le about loo K at 65 lun for 

Computation of Ventilation Velocity 

Since it appears that the aerodynemic heating 16 the most important cor- 
rectian at all altitudes, it is important to determine this correction with the 
greatest accuracy which is feasible, In evaluating the aerodynamic heating it 
has frequently been aosumed that the ventilation velocity V can be approxi- 
mated by the magnitude of the verticalvelociQ Vz. However, this assumption 
is valid only if the vertical velocity approximates the terminal velocity, and 
previous study (ref. 8) shows that, for the range of ballistic coefficients of 
current parachutes, terminal velocity ie not closely approached until below 
60 Irm. It is thus deslrable to obtain a better representation of the ventila- 
tion velocity. 

The Casired ventilation velocity V is the magnitude of the vector difier- 
ence between the parachute velocity and the velocity of the at;mosphere 
17 - $1. The equations of motion do not provide a unique solution for  this 

- 3 0 8 -  



value from tracking data unless an assumption is made regarding one component 
o f  t he  velocity of the atmosphere. 
however, by neglecting the vertical  wind velocity i n  comparison w l t h  the ver- 
t i c a l  component of parachute velocfty. 
parachute (the drag equation) is given by 

I A very good approximation can be found, 

The equation of vert ical  motion for the 

If' the  approximation that 
solved fo r  the ventilation 

Vz Vz - Wz i s  made, then equation (11) can be 
velocity : 

which can be evaluated from known or measured quantities. 
derivative of the position must be determined, precise tracking is needed; 
radar tape data rather than plotboard data should be used, 

Since the second 

The approxlmstion i n  equation (12) will eenerally be very good throughout 
the region of the atmosphere of interest. 
short t i m e  a f te r  apogee when the parachute does not posseas appreciable verti- 

It obviously wlU not apply for a 

cal velocity. 

Correctione t o  rocketeonde temperature profiles for serodynamic heating, 
therms1 lag, eolar radiation, Infrared radiation, e lec t r ica l  heating by the 
measuring current and by radio-frequency r a a t i o n ,  and for thennal emisaion 
can be made for current thin-f i lm mount designs as well as for  eimple post 
mounting, and can be made for  the 8 C t W  conditions and parachute tradectory of 
the individual  sounding. 

The accuracy of' the  aerodynamic heating correctlon, which is the largest 
correction, can be improved by using the calculated ventilation velocity instead 
of the vertical velocity. 

The use of a thin-film mount, which serves a8 a heat exchanger between 
atmosphere and thermistor results i n  great reductlon of all the  corrections 
except the aerodymnlc heating correction. 

The aerodynamic heating correction is reduced eomewhat by the  thin-film 
I 

I 
mount because tranaltlons t o  s u p  flow and t o  free molecule flow occur st 
higher altitudes. 
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Because the corrections are substantial, especially at the higher alti-

tudes, the accuracy of the sounding at the higher altitudes depends strongly

on the accuracy of the corrections.

Additional research is needed to determine accurate values of the param-

eters used in the corrections, particularly the convective heat-transfer coef-

ficients and recovery coefficients over the range of atmospheric conditions

and flow regimes encountered.
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