science + technology news

Page 1 of 1,21412345678910last

Two drones see through walls in 3D using WiFi signals

Researchers use commercially available equipment including tiny Raspberry Pi computer
June 21, 2017

Transmit and receive drones scenario (credit: Chitra R. Karanam and Uasamin Mostofi/ACM)

Researchers at the University of California Santa Barbara have demonstrated the first three-dimensional imaging of objects through walls using an ordinary wireless signal.

Applications could include emergency search-and-rescue, archaeological discovery, and structural monitoring, according to the researchers. Other applications could include military and law-enforcement surveillance.

Calculating 3D images from WiFi signals

In the research, two octo-copters (drones) took off and flew outside… read more

Crystal ‘domain walls’ may lead to tinier electronic devices

June 19, 2017

Domain Walls is pictured (credit: Queen's University Belfast)

Queen’s University Belfast physicists have discovered a radical new way to modify the conductivity (ease of electron flow) of electronic circuits — reducing the size of future devices.

The two latest KurzweilAI articles on graphene cited faster/lower-power performance and device-compatibility features. This new research takes another approach: Altering the properties of a crystal to eliminate the need for multiple circuits in devices.

Reconfigurable nanocircuitryread more

New chemical method could revolutionize graphene use in electronics

June 16, 2017

Adding a molecular structure containing chromium, carbon, and oxygen atoms retains graphene's conductive properties. The metal atom (silver, in this experiment) to be bonded are then added to the oxygen atom on top. (credit: Songwei Che et al./Nano Letters)

University of Illinois at Chicago scientists have solved a fundamental problem that has held back the use of wonder material graphene in a wide variety of electronics applications.

When graphene is bonded (attached) to metal atoms (such as molybdenum) in devices such as solar cells, graphene’s superior conduction properties degrade.

The solution: Instead of adding molecules directly to the individual carbon atoms of graphene, the new… read more

Graphene-based computer would be 1,000 times faster than silicon-based, use 100th the power

June 15, 2017

Magnetoresistive GNR ft

A future graphene-based transistor using spintronics could lead to tinier computers that are a thousand times faster and use a hundredth of the power of silicon-based computers.

The radical transistor concept, created by a team of researchers at Northwestern University, The University of Texas at Dallas, University of Illinois at Urbana-Champaign, and University of Central Florida, is explained this month in an open-accessread more

High-speed light-based systems could replace supercomputers for certain ‘deep learning’ calculations

Low power requirements for photons (instead of electrons) may make deep learning more practical in future self-driving cars and mobile consumer devices
June 14, 2017

Optical Interference Unit ft

A team of researchers at MIT and elsewhere has developed a new approach to deep learning systems — using light instead of electricity, which they say could vastly improve the speed and efficiency of certain deep-learning computations.

Deep-learning systems are based on artificial neural networks that mimic the way the brain learns from an accumulation of examples. They can enable technologies such as face-… read more

A noninvasive method for deep-brain stimulation for brain disorders

Could make deep-brain stimulation less risky, less expensive, and more available to patients and researchers
June 11, 2017

External electrical waves excite an area in the mouse hippocampus, shown in bright green. (credit: Nir Grossman, Ph.D., Suhasa B. Kodandaramaiah, Ph.D., and Andrii Rudenko, Ph.D.)

MIT researchers and associates have come up with a breakthrough method of remotely stimulating regions deep within the brain, replacing the invasive surgery now required for implanting electrodes for Parkinson’s and other brain disorders.

The new method could make deep-brain stimulation for brain disorders less expensive, more accessible to patients, and less risky (avoiding brain hemorrhage and infection).

Working with mice, the researchers applied two high-frequency electrical currents… read more

Researchers decipher how faces are encoded in the brain

Only 205 neurons required per face; findings also have artificial intelligence applications
June 9, 2017

actual vs predicted face ft

In a paper published (open access) June 1 in the journal Cell, researchers report that they have cracked the code for facial identity in the primate brain.

“We’ve discovered that this code is extremely simple,” says senior author Doris Tsao, a professor of biology and biological engineering at the California Institute of Technology and senior author. “We can now reconstruct a face that a monkey… read more

Playing a musical instrument could help restore brain health, research suggests

June 8, 2017

Tibetan singing bowls were used to help uncover why playing a musical instrument can protect brain health. (credit: Baycrest Health Sciences)

A study by neuroscientists at Toronto-based Baycrest Rotman Research Institute and Stanford University involving playing a musical instrument suggests ways to improve brain rehabilitation methods.

In the study, published in the Journal of Neuroscience on May 24, 2017, the researchers asked young adults to listen to sounds from an unfamiliar musical instrument (a Tibetan singing bowl). Half of the subjects (the experimental group) were then… read more

33 blood-cancer patients have dramatic clinical remission with new T-cell therapy

June 7, 2017

Killer T-cells surround a cancer cell (credit: NIH)

Chinese doctors have reported success with a new type of immunotherapy for multiple myeloma*, a blood cancer: 33 out of 35 patients in a clinical trial had clinical remission within two months.

The researchers used a type of T cell called “chimeric antigen receptor (CAR) T.”** In a phase I clinical trial in China, the patient’s own T cells were collected, genetically reprogrammed in a lab, and injected back into the patient. The reprogramming involved inserting an artificially designed gene… read more

How to design and build your own robot

Simplified interactive design tool will let you select 3D-printed parts and off-the-shelf components
June 5, 2017

DIY robot ft

Carnegie Mellon University (CMU) Robotics Institute researchers have developed a simplified interactive design tool that lets you design and make your own customized legged or wheeled robot, using a mix of 3D-printed parts and off-the-shelf components.

The current process of creating new robotic systems is challenging, time-consuming, and resource-intensive. So the CMU researchers have created a visual design tool with a simple drag-and-drop interface that lets you… read more

Are you ready for pop-up, shape-shifting food? Just add water.

Gelatin sheets that transform into edible 3D shapes when dunked in water could save food shipping costs. And they're fun.
June 3, 2017

These pasta shapes were caused by immersing a 2-D flat film into water. (credit: Michael Indresano Photography)

Researchers at MIT’s Tangible Media Group are exploring ways to make your dining experience interactive and fun, with food that can transform its shape by just adding water.

Think of it as edible origami or culinary performance art — flat sheets of gelatin and starch that instantly sprout into three-dimensional structures, such as macaroni and rotini, or the shape of a flower.

But the researchers suggest… read more

VR glove powered by soft robotics provides missing sense of touch

June 2, 2017

Prototype of haptic VR glove, using soft robotic “muscles” to provide realistic tactile feedback for VR users (credit: Jacobs School of Engineering/UC San Diego)

Engineers at UC San Diego have designed a light, flexible glove with soft robotic muscles that provide realistic tactile feedback for virtual reality (VR) experiences.

Currently, VR tactile-feedback user interfaces are bulky, uncomfortable to wear and clumsy, and they simply vibrate when a user touches a virtual surface or object.

“This is a first prototype, but it is surprisingly effective,” said Michael Tolley, a mechanical engineering… read more

Common antioxidant could slow symptoms of aging in human skin

May 31, 2017

These cross-section images show three-dimensional human skin models made of living skin cells. Untreated model skin (left panel) shows a thinner dermis layer (black arrow) compared with model skin treated with the antioxidant methylene blue (right panel). A new study suggests that methylene blue could slow or reverse dermal thinning (a sign of aging) and a number of other symptoms of aging in human skin. (credit: Zheng-Mei Xiong/University of Maryland)

University of Maryland (UMD) researchers have found evidence that a common, inexpensive, and safe antioxidant chemical called methylene blue could slow the aging of human skin, based on tests in cultured human skin cells and simulated skin tissue.

“The effects we are seeing are not temporary. Methylene blue appears to make fundamental, long-term changes to skin cells,” said Kan Cao, senior author on the study and an associate… read more

New antibiotic could eliminate the global threat of antibiotic-resistant infections

May 31, 2017

Modified vancomycin antibiotic (credit: Akinori Okano et al./PNAS)

Scientists at The Scripps Research Institute (TSRI) have discovered a way to structurally modify the antibiotic called vancomycin to make an already-powerful version of the antibiotic even more potent — an advance that could eliminate the threat of antibiotic-resistant infections for years to come.

“Doctors could use this modified form of vancomycin without fear of resistance emerging,” said Dale Boger, co-chair of TSRI’s Department of… read more

Alpha Go defeats world’s top Go player. What’s next?

May 28, 2017

Game 3 of The Ultimate Go Challenge

What does the research team behind AlphaGo do next after winning the three-game match Saturday (May 27) against Ke Jie — the world’s top Go player — at the Future of Go Summit in Wuzhen, China?

“Throw their energy into the next set of grand challenges, developing advanced general algorithms that could one day help scientists as they tackle some of our most complex problems, such as… read more

Page 1 of 1,21412345678910last
close and return to Home