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Abstract— In this paper, we present a novel approach for
mapping periodically moving visual features with a monocuér
camera. Our target application is the estimation of moving
surfaces during minimally invasive surgery for the purposeof
aiding in the guidance of surgical tools. Our approach uses
a bank of Kalman filters to estimate FFT parameters that
encode the periodic motion of visually detected features. or
ensure convergent estimation for this highly nonlinear prdlem,
we have developed an iterative update procedure that treats
the Kalman filter measurement update step as an optimization
problem. Unlike existing solutions that rely on stereo visin,
our approach estimates periodic motion with a single moving Fig. 1. A conceptual depiction of a robot using parallax tartgulate the
camera. With an experiment involving a beating heart phantan,  location of a sensed feature.
we have shown that our approach is able to successfully estate
the periodic motion of visual features.

|. INTRODUCTION In this paper, we are presenting a solution for the mapping

Minimally i . MIS) has b h i of periodically moving visual features with a monocular
d inima ty |rt1\;a3|ve surger% (t % a.st l.eetrll N ct)wn _lcfcamera. This is a new contribution beyond existing soltion
reduce patient trauma and shorten hospitalization stays. that require stereo vision [5]-[7]. Mapping 3D information

impact of MIS has bee_n widespread and hz_;\s |_m_proved Ioatlevr\}|tth monocular vision is possible because a moving camera
care, but when operating through a small incision, a surge

e L2 : W view features from different vantage points, explgitin

Ioges the "bird's eye view that.he or she_ls accustomed t arallax, see Fig. 1. Due to the nonlinearity of this mapping
with opeln surgery.chhlils_, for gwdancehdurlnfglg MIS, surgeo ?isk, the conventionally adopted extended Kalman filter
must ;e yCon me |c(:ja llmagmg(,j suc afs uorosicopﬁ/ [1](EKF) is susceptible to divergence. To avoid these issues, w
MRl .[ 1. CT [3.]’. an _utrasoun [4.]' _Un o_rtunate Y, t eseadopt the iterated extended Kalman filter (IEKF) and encode
imaging modalities either have a limited field-of-view, a%he motion of visually tracked features with FFT parameters

incompatible ‘.N'th robots, or emit prlolonge.d rad|at!on. The main contribution of this work is the introduction of
An alternative approach to surgical guidance is model-

basedimage-guided surgenyWith image-guidance, patient a new_ap_proach for est_|mat|ng physiological motion dunpg

o . image-guided interventions. We note that we are solving
specific surface models representing the anatomy are gen- . i :

: Lt : . a mapping problem, and not a full-fledged simultaneous

erated using preoperative imaging (typically CT or IVIRI)'IocaIization and mapping problem, due to the fact that

Then, in real-time during an operation, a computer gen- '

. L . - fficient localization methods exist for surgical toolse(w
erated 3D rendered visualization displays the position o 9 (

; : . . ' assume that an electromagnetic or optical tracking salutio
magnetically or optically tracked surgical devices reatio ; ;
i ) . racks the camera pose). We believe that our mapping method
the anatomy. The advantage of image-guidance is that the

cdn have an impact on the accuracy and efficacy of minimally
surgeon can rotate the 3D rendered models on the compuifer_ . . : .
. . . nvasive surgery, especially in the case of robotic systems
screen to gain a better spatial understanding of where the
tool or robot is located with respect to an anatomical target Il. BACKGROUND

Thus far, image-guidance solutions have been limited tR

the use of static 3D anatomical models despite the fact that ) ; ) )
the anatomy is dynamic due to physiological motion. We !mage-guided surgery involves tracking a surgical tool and
believe that a new image-guidance solution is needed th@gistering its pose to preoperative images in order tolayer

can estimate the periodic motion of nearby organ surfacésdepiction of 'Fhe tool on the rendered preoperative mode!s.
in order to better represent the true state of an operatidif’ €xample, in [8], Cleary et. al. use an electromagnetic
during minimally invasive surgery. The research challeisge (EM) tracker to guide a tool and register its position with
to create a convergent filtering algorithm that can acclyrate"®SPect to preoperative images. Ensite NavX (St. Jude Medi-

estimate parameters that define the physiological motion. ¢&l: St. Paul, MN, USA) and Carto XP/CartoMerge (Biosense
Webster, Diamond Bar, CA, USA) are commercial exam-
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of complex physiological motion.

B. Monocular Feature Mapping |

The monocular simultaneous localization and mapping | | |
(SLAM) problem deals with the mapping of visual features
with a single camera while localizing a robot. The key tok -0 5 10 15 20 25 30 35 40 45
monocular SLAM is that by sensing a feature from different \/\//\(f/
vantage points, the location of features in the world can be ' )
mapped via triangulation, see Fig. 1. When approached fromy. 2. A depiction of a periodic signal with varying cyclengths. The
a probabilistic standpoint, monocular SLAM is a challemgin iﬂdexfn represents the tph%-:'e ilnégé CUfc[em C)(;Cg fansl the Oveéaltl time-h

H H P 1tor an experiment. e la 1, C2, an 3 correspon 0 eac
problem due to the nonlinearity of the camera measuremegﬁe iodic cycle of the experiment.
model [9]. There have been many solutions to counteract the
nonlinearity issues of monocular SLAM [10]-[12] including
our own solution presented in [9], [13] that uses an itegativ 1. M ONOCULAR PERIODIC FEATURE MAPPING
algorithm to perform the measurement update step, which is : - :

. : To perform monocular mapping of periodically moving
motivated by the work presented in [14]. These monocular. o
. . visually detected features, we have developed a filtering
SLAM approaches are concerned with the mapping of stat%c . )
features rather than dvnamic surface motion ramework that encodes motion with FFT parameters. The
problem formulation and our solution are described below.
4 ' blem formulation and lut described bel

C. Filtering for Surgery

. A

There has recently been a number of filtering algorithms o ) )
that have been introduced for surgical estimation. For exam 1he following is a list of the assumptions that we are
ple, Grasa et. al. [15] use an endoscope to perform SLAM fépaking for our periodic motion filtering algorithm. We
MIS. The authors rely on the use of an EKF with undelayeg€lieve these are reasonable assumptions due to the fact tha
initialization of visual landmarks. Similarly, in [16], ¢n they do notimpose significant restrictions and because ther
authors use a fiberscope with a proximally mounted CCBre ways to relax these assumptions with future work.
camera to recover camera motion and 3D scene informa- oq. The pose of the camera is known.

tion during minimally invasive surgery. In [17], the autkor A2: The camera projection models are known

estimate the pose of a stereoscope while simultaneously A3: The signal period phase and duration is known
estimating the 3D positions of visually detected features ' '

during MIS. These papers have only focused on the mapping'Ve are making assumptiohl because we have chosen
of static features for surgical estimation despite the fieed 0 focus primarily on the mapping aspect of this estimation

motion-enabled solution that accounts for surface movemefroblem. In addition, we believal is a safe assumption to
make because accurate techniques exist to separately track

D. Periodic Motion Estimation the pose a surgical device (e.g. EM and optical trackers).
One example of periodic motion estimation in the context We believe that assumptioA2 is a safe assumption
of surgery is the work presented in [5]. The authors intr@ducbecause a calibration procedure can be performed prior to
an algorithm that performs stereo-vision based SLAM withira surgical intervention to determine the camera-specific in
the body while accounting for periodic motion. But unliketrinsic and extrinsic parameters for a fixed-zoom camera. Fo
the approach that we are presenting, the work in [5] do&sur experiments we use the Matlab calibration toolbox [19].

not use fast Fourier transform (FFT) parameters to encodeWe are making assumptioA3 because we believe it is
motion and instead only accounts for a single sinusoid#asible to create a system that inputs an EKG signal (in
offset in terms of depth (the dimension orthogonal to théhe case of cardiac motion) to track the phase of the cardiac
camera). This means that their approach does not accowgtle. In the case of respiratory motion, it may be possible t
for the complex motion that can occur when organs defornereate a system that tracks the patient’s chest displademen
In the work by Richa et. al. in [6], [7], a thin-plate We assume the duration of the period of the signal can be
spline model is used to to track visually detected peridljica determined by observing the duration of the previous cycle.
moving features in the camera images of a stereo camera. o
The way that our method extends the work by Richa eB- Periodic Signals
al. is that we are performing monocular estimation rather Due to physiological motion, features in the body are
than stereo estimation. Thus, we believe that our approantoving in a periodic manner. In Fig. 2, we provide an
is preferable for surgical scopes that are equipped with example of a periodically moving signal from cardiac data
single camera sensor. This also means that our approach mihstt has varying cycle lengths. This is the type of signat tha
deal with the nonlinear filtering issues common to monocaould be unknown at the start of an experiment and that we
ular problems (resolving depth through parallax). Anothewould like to estimate with our filtering algorithm for each
example of periodic motion estimation is presented in [18kartesian coordinater( y, andz) of a moving feature. For
in which Bachta et. al. investigate the use of amplitudéhis discussion, we can assume that the example in Fig. 2
modulation to predict periodic heart motion. corresponds to the-coordinate of a single moving feature.

. Assumptions



Real state vector as follows,

] . . . Xp = [ zpc ypc zpc f.0 £, £ }

This state vector includes the DC terms of the periodic mo-
tion (zpc, ypeo, andzpe), and three vectors containing the

R1 ° R2 R3 R4 FFT parameters (as discussed above), which are represented
| | | | | | | | | | by (f;, f,, andf.). We note that our discussion of Fig. 3
0 2 4 6 8 10 12 14 16 18 is simply an example: thus, the number of FFT parameters
included in the state vector may be chosen by the user.
Imag . -
D. Filter Prediction Step
I The position of a feature at any given point in time,
! o . . — I 1 according to our Kalman filter formulation, is completely
determined by the state vectay, along with the phase of
RS R6 R7 the periodic cycle. For this reason, despite the fact thereth
is inherent motion in the position of a feature, there is no
0 2 4 6 & 10 12 14 16 1% “motion” of the state vector parameters. Thus, we can define

the Kalman filter prediction step as follows,
Fig. 3. A depiction of the FFT of a periodic signal. Theal component
is shown (top) and th@naginary component is shown (bottom). X1 = [(Xk) = Xp.

The implication of this is that our filtering algorithm is gnl

L . . . . dependent upon the implementation of a Kalman measure-
The variation in the signal period, during an experimen b P P

may be caused by a varying heart rate or breathing rate. é‘grent update step (the prediction step is simply ignored).

example, the signal in Fig. 2 has a much long@grcycle in IV. I TERATIVE UPDATE FORPERIODIC ESTIMATION
comparison toC'y andCs. In Fig. 2, the index: represents |y sec. 111, we discussed how our Kalman filter formula-
the phase in the current periodic cycle ands the overall tion seeks to estimate a state vector (one per visually tietec
time-step for an experiment. Thus, camera measurements fdgtre) that includes FFT parameters for reconstructieg t
acquired asynchronously with respect to the phase of thfotion. To review, the main idea is to estimate a Kalman
cycle. This does not complicate the problem due to the fagtate vector that is initially unknown by applying camera
that the phase of the periodic cycle is known (assumptioghservations. Then, when the parameters of the FFT are
A3), and thus we can associate a measurement to & phasgecurately estimated by the Kalman filter for a given feature

its spatial motion can be recovered by computing the inverse
o _ _ FFT for each cartesian component, (y, and z). In this
To map the periodic motion of visually detected featuressection, we will present our iterative Kalman measurement

Kalman filter mapping algorithm. The parameters that we

are using to encode the motion of visual features are faé¢ Monocular Measurement Model
Fourier transform (FFT) parameters. In Fig. 3, the FFT is The monocular measurement model of a point feature with
shown that corresponds to one period of the signal in Fig. A. cartesian4, y, z) representation can be written as follows,
The FFT is comprised of a real part that is symmetric and an
. . ) . ) : atanZy — yr,x — xR)
imaginary part that is odd-symmetric, assuming real sgnal h(xy)= 5 3\ |
By looking at the example FFT in Fig. 3, it is apparent atan2z — zg, \/(z — 2r)? + (y — yr)?)
which parameters capture the motion of the underlyinwhere(zg,yr,zr) is the position of the robot or camera in
signal. From the real part, we include the parameters withithe world. This models the mapping of a feature position to
regionsR1 and R2 in our Kalman filter state vector. Like- the feature bearing-angles relative to the coordinatedram
wise, from the imaginary part, we include the parametethe camera. We note that an alternate model that could be
within regionR5 in our Kalman filter state vector. In Fig. 3, used without significantly changing the method iscay, z)
the parameter within regioR1 represents the DC or zero- projection to the pixel locationu( v) in the camera image.
frequency component of the FFT. This parameter defines theThe measurement model of the Kalman filter computes
mean of the motion path for whatever coordinate this signéihe expected bearing-angle measurements given a state vec-
corresponds toz, y, or z). It is worth noting that the regions tor x;. To implement the measurement function given our
R3, R4, R6, andR7 are not included in the Kalman state unconventional Kalman state vector with FFT parameters, we
vector. This is because the coefficients are either nedgigibmust first reconstruct, fromy, the full FFT that corresponds
or redundant due to the inherent symmetry of the FFT.  to the periodic motion of the feature. This involves filling i
Based on the above analysis of the FFT for typicateros for the elements of the FFT that we chose not to encode
physiological motion, we can formulate the Kalman filterin the filter and it involves using the known redundancy of

C. Kalman Filter State Vector

1)
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Fig. 4. Experiment | involves a beating heart simulation(djy feature initialization is shown, in (b), the result lfo#/n after the estimation of features
has converged, in (c), an example cycle is shown upon iziiébn, and in (d), the same cycle is shown after the algarisuccessfully mapped the
periodic motion.

Experiment | - Feature Position Error

. : ‘ ‘ ‘ 7 ture motion by using the inverse FFT. Then, we can extract

the specific £, y, z) position of the feature by knowing the
phase in the cycle corresponding to the measurement,

x = FNF.,) , x=x[n

y = F1F,), y=yn

z = F 'F,), z=zn]
The measurement function can then be computed using the
monocular measurement mode(x;) from Eq. 1, except,

Fig. 5. Experiment I: the error between the estimated mosiof a moving  fOr our definition of the Kalman state vector, the terms

feature vs ground truth. For static estimation (red), thienege diverges. For extracted from the inverse FFT are used in place of the
our dynamic solution (blue), the algorithm successfullypméne motion. directly estimateds, y, z) parameters

L f | I
180 200 220 240 260 280
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B. Iterative Measurement Update
the FFT to fill in the additional missing parameters. In other 14 conventional extended Kalman filter (EKF) measure-
words, with only a few of the FFT parameters represented i .t update is the most widely used method for applying

the estimated Kalman state vector, we can almost completelysqr 'measurements to correct a Kalman filter state es-
reconstruct the FFT. The significance of this is that we cafiate Unfortunately, as we have shown in our previous
maintain a Iovv_ dimensic_mality for thg filtering task. We_ will work [9], the EKF is susceptible to a diverging state estenat
use the following equations to signify the regonstructlcbn %hen applied to monocular mapping problems. To prevent
the FFT that corresponds to the feature motion, divergence, we have developed an iterative measurement

F, = ReconstrucFFT(f,,zpc), update method. Based on the underlying objective of the
Kalman filter to maximize the posterior probability, we can
optimize the following cost function,

!
<
|

ReconstrucFFT(f,, ypc),

F. = ReconstrucFFT(f,, zpc).

N . N Tr—1 A
. Xl = argmin|(xy — Xgp—1) P Xp — Xplp—1) +
After reconstructing the FFT for each component ¢, " & [0k = Rpe1)" Py Ok = Ragi—1)

andz), we can compute the time-domain signal for the fea- (z1, — h(x)) TR (21 — h(xz))],



Fig. 6. Experiment II: a photo of the calibration setup iswhan (a), which includes a laparoscope with a camera and anetiagtracking system. In
(b), the rubber heart phantom is shown with acquired tradkatlres, and in (c), a second image is shown after the canasranoved significantly.

path around the moving cardiac model and we simulated the

/ Surface detection of visual features, with known data association,
/ on all sides of the beating heart. For each bearing-angle
measurement that was simulated, artificial noise was added.

Motion Paths / / At the start of the simulation, the estimates of the features

upon initialization, are shown in Fig. 4-(a). The features a
Fig. 7. Experiment II: a birds-eye view of the mapped feauiiéhe features shown \_Nlth Iarge correspondlng eII|p50|ds d.ue to the ihitia
are shown as points with a surrounding path defining theiogiermotion. ~ uncertainty of the feature locations and motion parameters
Tpehmarr)]ped motion path_s agLee v;/1ith ea]E:h other and Withdtlfmceumotion The result of this experiment is the successful mapping
of the phantom, suggesting that the suriace was mappedageiur of periodically moving features located on the surface of

the heart. When compared to an EKF implemented with the
where %;,_; is the current estimate of the state vectorsame Fourier series parameterization, the iterated &hgori
Py ,—1 is the estimated covariance matrix for the statet,hat we have (_Jleveloped outperfor_med t_he EKF. The EKF
andz; is a camera measurement corresponding to a feat S prone t_o dlvgrgence after the S|mylat|on ha_d prpgressed
observed at time-step. Also, in this cost functionh(xs) e simulation with mapped features is shown in Fig. 4-(b).

An example of one of the features converging to the true

is the measurement model (discussed above) Bnds tion is sh in Fia. 4-(d). Lastl | look at th
the covariance matrix for the measurement that defines tHE 10N 1S Shown in =g.. -(d). asty, a closer look at the
formance of our filter is shown in Fig. 5. In this image, the

expected camera sensor noise. The objective of our appro : . :
b J bp error between the estimated motion path and the true path is

is to replace the current Kalman state vector estimate Wwéh t . ) .
plotted over time. For an EKF using only static parameters,

optimal solution to this minimization problem. By applying : ianifi d di
Gauss-Newton’s method to the optimization problem, que error is more significant due to divergence.

have derived the following iterative solution, B. Experiment II

X0 = Xpp—1 Experiment Il involves a recorded dataset captured from
K, = Pk|k—1HiT[HiPk|k—1HiT +R]! a !apqroscope (shovyn in Fig. 6-(a)). The moving su_rface for
‘ HTR-'H. + P 1 this trial was a beating heart phantom, shown in Fig. 6-(b)
Xi —;%( ) i it k"“*ll) and 6-(c). The phantom beats according to oscillations that
(H; R (zr — h(xi)) + Py, (Xg—1 —xi)),  are induced by a pneumatic pump. We tracked the pose of the
where H; is the Jacobian of the measurement functio Iaparosc_ope with an A;censpn Trakstar EM tracking sygtem
i . ; raAscensmn Technologies, Milton, VT, USA). The tracking
evaluated at the estimatg and~; is a variable step factor.
- . : sensor has an RMS error of 1.4mm. The checkerboard seen
This iterative procedure can be run for a user-defined number _. .
; . . . In Fig. 6-(a) was used for camera calibration.
of iterations or it can be run until convergence. The new . . .
: . . ; For this experiment, we capturéd0 camera images of
updated estimatg;;, is then set equal to the final solution . . . .
. L the beating heart phantom. Eight periodically moving visua
x; after iteration is complete. ; . .
features were tracked using conventional visual template
V. EXPERIMENTAL EVALUATION tracking [21]. The tracked features can be seen in Fig. 6-
(b) and Fig. 6-(c). For this experiment, the implementation
only required one iteration of the iterative filter for stabl
To validate our FFT-based periodic motion estimatiorestimation. Also, for this experiment, we used the form of
algorithm, we tested the approach on two experiment#he measurement model that projects a feature g pixel
datasets. The first is primarily a simulation, although thécation, as opposed to bearing-angles.
motion data is derived from real gated MRI scans of a human In Fig. 7, we show the resulting motion paths that were
heart [20]. A picture of the simulation is shown in Fig. 4-mapped during Experiment Il. The image can be interpreted
(a). We simulated a camera in Matlab that traveled a fixeals a “bird’s eye view” of the mapped feature motion. The

Xi+1

A. Experiment |
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Fig. 8. The difference in the measurement innovation foticsestima-
tion and dynamic estimation. Larger (positive) values espond to our
dynamic method outperforming a purely static mapping mettgecause
this difference is noisy, we have included a best-fit curveréd).

qualitative result is that the motion paths agree with the

expected motion of the surface in that they are movingm

approximatel3mm in the direction orthogonal to the camera

pose. Additionally, the feature motion paths agree wittheac

other, which suggests that the motion was accurately mappe[?]
A quantitative result for this experiment is shown in Fig. 8,

where we plot thennovation differencgID), which is the

difference between the innovation for an implementation as
suming static features and our implementation with dynamic
features. The innovation is the error between the expectéd!
measurement (given the measurement model) and the actual
measurement that is acquired from the camera. The ID beifig]
mostly positive (noisy gray plot in Fig. 8) demonstrated tha

there is greater error for the static case, thus our motio

enabled feature mapping algorithm outperforms the purely
static method. To better visualize the ID, we additionall3f13]

show a best-fit curve for the ID (shown in red).

VI. CONCLUSIONS ANDDISCUSSION

In this paper, we present a novel approach for mapping pe-
riodically moving visual features with a monocular cameral1]
The application is the estimation of moving surfaces during
minimally invasive surgery for the purpose of aiding in the
guidance of surgical tools. Our approach uses a Kalman filt€#]
with FFT parameters and an iterative measurement update
step. We have extended periodic motion mapping beyond
existing solutions that rely on stereo vision and have show#’]
that our approach can accurately map moving surfaces. We
note that we are solving a mapping problem, and not a
full-fledged simultaneous localization and mapping (SLAM)18]
problem, due to the fact that sufficient localization method

exist for surgical tools (electromagnetic and opticalkiag).

The main contribution of this work is the introduction of [19]
a new approach for estimating physiological motion with
a monocular camera. We believe our algorithm can hayeo)
a significant impact on the development of new image-

guidance systems for MIS. In particular, we believe that

can be better equipped to compensate for such motion.

[14]
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