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Abstract— In this paper, we present a novel approach for
mapping periodically moving visual features with a monocular
camera. Our target application is the estimation of moving
surfaces during minimally invasive surgery for the purposeof
aiding in the guidance of surgical tools. Our approach uses
a bank of Kalman filters to estimate FFT parameters that
encode the periodic motion of visually detected features. To
ensure convergent estimation for this highly nonlinear problem,
we have developed an iterative update procedure that treats
the Kalman filter measurement update step as an optimization
problem. Unlike existing solutions that rely on stereo vision,
our approach estimates periodic motion with a single moving
camera. With an experiment involving a beating heart phantom,
we have shown that our approach is able to successfully estimate
the periodic motion of visual features.

I. I NTRODUCTION

Minimally invasive surgery (MIS) has been shown to
reduce patient trauma and shorten hospitalization stays. The
impact of MIS has been widespread and has improved patient
care, but when operating through a small incision, a surgeon
loses the “bird’s eye view” that he or she is accustomed to
with open surgery. Thus, for guidance during MIS, surgeons
must rely on medical imaging, such as fluoroscopy [1],
MRI [2], CT [3], and ultrasound [4]. Unfortunately, these
imaging modalities either have a limited field-of-view, are
incompatible with robots, or emit prolonged radiation.

An alternative approach to surgical guidance is model-
basedimage-guided surgery. With image-guidance, patient
specific surface models representing the anatomy are gen-
erated using preoperative imaging (typically CT or MRI).
Then, in real-time during an operation, a computer gen-
erated 3D rendered visualization displays the position of
magnetically or optically tracked surgical devices relative to
the anatomy. The advantage of image-guidance is that the
surgeon can rotate the 3D rendered models on the computer
screen to gain a better spatial understanding of where the
tool or robot is located with respect to an anatomical target.

Thus far, image-guidance solutions have been limited to
the use of static 3D anatomical models despite the fact that
the anatomy is dynamic due to physiological motion. We
believe that a new image-guidance solution is needed that
can estimate the periodic motion of nearby organ surfaces
in order to better represent the true state of an operation
during minimally invasive surgery. The research challengeis
to create a convergent filtering algorithm that can accurately
estimate parameters that define the physiological motion.
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Fig. 1. A conceptual depiction of a robot using parallax to triangulate the
location of a sensed feature.

In this paper, we are presenting a solution for the mapping
of periodically moving visual features with a monocular
camera. This is a new contribution beyond existing solutions
that require stereo vision [5]–[7]. Mapping 3D information
with monocular vision is possible because a moving camera
can view features from different vantage points, exploiting
parallax, see Fig. 1. Due to the nonlinearity of this mapping
task, the conventionally adopted extended Kalman filter
(EKF) is susceptible to divergence. To avoid these issues, we
adopt the iterated extended Kalman filter (IEKF) and encode
the motion of visually tracked features with FFT parameters.

The main contribution of this work is the introduction of
a new approach for estimating physiological motion during
image-guided interventions. We note that we are solving
a mapping problem, and not a full-fledged simultaneous
localization and mapping problem, due to the fact that
sufficient localization methods exist for surgical tools (we
assume that an electromagnetic or optical tracking solution
tracks the camera pose). We believe that our mapping method
can have an impact on the accuracy and efficacy of minimally
invasive surgery, especially in the case of robotic systems.

II. BACKGROUND

A. Image-Guided Surgery

Image-guided surgery involves tracking a surgical tool and
registering its pose to preoperative images in order to overlay
a depiction of the tool on the rendered preoperative models.
For example, in [8], Cleary et. al. use an electromagnetic
(EM) tracker to guide a tool and register its position with
respect to preoperative images. Ensite NavX (St. Jude Medi-
cal, St. Paul, MN, USA) and Carto XP/CartoMerge (Biosense
Webster, Diamond Bar, CA, USA) are commercial exam-
ples of image-guidance that are used for electrophysiology
applications. Unfortunately, the majority of existing image-
guidance systems rely on static models despite the presence



of complex physiological motion.

B. Monocular Feature Mapping

The monocular simultaneous localization and mapping
(SLAM) problem deals with the mapping of visual features
with a single camera while localizing a robot. The key to
monocular SLAM is that by sensing a feature from different
vantage points, the location of features in the world can be
mapped via triangulation, see Fig. 1. When approached from
a probabilistic standpoint, monocular SLAM is a challenging
problem due to the nonlinearity of the camera measurement
model [9]. There have been many solutions to counteract the
nonlinearity issues of monocular SLAM [10]–[12] including
our own solution presented in [9], [13] that uses an iterative
algorithm to perform the measurement update step, which is
motivated by the work presented in [14]. These monocular
SLAM approaches are concerned with the mapping of static
features rather than dynamic surface motion.

C. Filtering for Surgery

There has recently been a number of filtering algorithms
that have been introduced for surgical estimation. For exam-
ple, Grasa et. al. [15] use an endoscope to perform SLAM for
MIS. The authors rely on the use of an EKF with undelayed
initialization of visual landmarks. Similarly, in [16], the
authors use a fiberscope with a proximally mounted CCD
camera to recover camera motion and 3D scene informa-
tion during minimally invasive surgery. In [17], the authors
estimate the pose of a stereoscope while simultaneously
estimating the 3D positions of visually detected features
during MIS. These papers have only focused on the mapping
of static features for surgical estimation despite the needfor a
motion-enabled solution that accounts for surface movement.

D. Periodic Motion Estimation

One example of periodic motion estimation in the context
of surgery is the work presented in [5]. The authors introduce
an algorithm that performs stereo-vision based SLAM within
the body while accounting for periodic motion. But unlike
the approach that we are presenting, the work in [5] does
not use fast Fourier transform (FFT) parameters to encode
motion and instead only accounts for a single sinusoidal
offset in terms of depth (the dimension orthogonal to the
camera). This means that their approach does not account
for the complex motion that can occur when organs deform.

In the work by Richa et. al. in [6], [7], a thin-plate
spline model is used to to track visually detected periodically
moving features in the camera images of a stereo camera.
The way that our method extends the work by Richa et.
al. is that we are performing monocular estimation rather
than stereo estimation. Thus, we believe that our approach
is preferable for surgical scopes that are equipped with a
single camera sensor. This also means that our approach must
deal with the nonlinear filtering issues common to monoc-
ular problems (resolving depth through parallax). Another
example of periodic motion estimation is presented in [18],
in which Bachta et. al. investigate the use of amplitude
modulation to predict periodic heart motion.

k 0          5         10        15        20        25        30        35        40        45

 C                                                     C                                                 C

→

1 2 3

n → 0 4 8 12 16 0 4 8 12 16 0 8 124 16

Fig. 2. A depiction of a periodic signal with varying cycle lengths. The
indexn represents the phase in the current cycle andk is the overall time-
step for an experiment. The labelsC1, C2, and C3 correspond to each
periodic cycle of the experiment.

III. M ONOCULAR PERIODIC FEATURE MAPPING

To perform monocular mapping of periodically moving
visually detected features, we have developed a filtering
framework that encodes motion with FFT parameters. The
problem formulation and our solution are described below.

A. Assumptions

The following is a list of the assumptions that we are
making for our periodic motion filtering algorithm. We
believe these are reasonable assumptions due to the fact that
they do not impose significant restrictions and because there
are ways to relax these assumptions with future work.

A1: The pose of the camera is known.
A2: The camera projection models are known.
A3: The signal period phase and duration is known.

We are making assumptionA1 because we have chosen
to focus primarily on the mapping aspect of this estimation
problem. In addition, we believeA1 is a safe assumption to
make because accurate techniques exist to separately track
the pose a surgical device (e.g. EM and optical trackers).

We believe that assumptionA2 is a safe assumption
because a calibration procedure can be performed prior to
a surgical intervention to determine the camera-specific in-
trinsic and extrinsic parameters for a fixed-zoom camera. For
our experiments we use the Matlab calibration toolbox [19].

We are making assumptionA3 because we believe it is
feasible to create a system that inputs an EKG signal (in
the case of cardiac motion) to track the phase of the cardiac
cycle. In the case of respiratory motion, it may be possible to
create a system that tracks the patient’s chest displacement.
We assume the duration of the period of the signal can be
determined by observing the duration of the previous cycle.

B. Periodic Signals

Due to physiological motion, features in the body are
moving in a periodic manner. In Fig. 2, we provide an
example of a periodically moving signal from cardiac data
that has varying cycle lengths. This is the type of signal that
would be unknown at the start of an experiment and that we
would like to estimate with our filtering algorithm for each
cartesian coordinate (x, y, andz) of a moving feature. For
this discussion, we can assume that the example in Fig. 2
corresponds to thex-coordinate of a single moving feature.
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Fig. 3. A depiction of the FFT of a periodic signal. Thereal component
is shown (top) and theimaginary component is shown (bottom).

The variation in the signal period, during an experiment,
may be caused by a varying heart rate or breathing rate. For
example, the signal in Fig. 2 has a much longerC2 cycle in
comparison toC1 andC3. In Fig. 2, the indexn represents
the phase in the current periodic cycle andk is the overall
time-step for an experiment. Thus, camera measurements are
acquired asynchronously with respect to the phase of the
cycle. This does not complicate the problem due to the fact
that the phase of the periodic cycle is known (assumption
A3), and thus we can associate a measurement to a phase.

C. Kalman Filter State Vector

To map the periodic motion of visually detected features,
our solution is to include dynamic parameters within a
Kalman filter mapping algorithm. The parameters that we
are using to encode the motion of visual features are fast
Fourier transform (FFT) parameters. In Fig. 3, the FFT is
shown that corresponds to one period of the signal in Fig. 2.
The FFT is comprised of a real part that is symmetric and an
imaginary part that is odd-symmetric, assuming real signals.

By looking at the example FFT in Fig. 3, it is apparent
which parameters capture the motion of the underlying
signal. From the real part, we include the parameters within
regionsR1 and R2 in our Kalman filter state vector. Like-
wise, from the imaginary part, we include the parameters
within regionR5 in our Kalman filter state vector. In Fig. 3,
the parameter within regionR1 represents the DC or zero-
frequency component of the FFT. This parameter defines the
mean of the motion path for whatever coordinate this signal
corresponds to (x, y, or z). It is worth noting that the regions
R3, R4, R6, and R7 are not included in the Kalman state
vector. This is because the coefficients are either negligible
or redundant due to the inherent symmetry of the FFT.

Based on the above analysis of the FFT for typical
physiological motion, we can formulate the Kalman filter

state vector as follows,

xk =
[

xDC yDC zDC fx
T fy

T fz
T

]T

.

This state vector includes the DC terms of the periodic mo-
tion (xDC , yDC , andzDC ), and three vectors containing the
FFT parameters (as discussed above), which are represented
by (fx, fy, and fz). We note that our discussion of Fig. 3
is simply an example: thus, the number of FFT parameters
included in the state vector may be chosen by the user.

D. Filter Prediction Step

The position of a feature at any given point in time,
according to our Kalman filter formulation, is completely
determined by the state vectorxk along with the phase of
the periodic cycle. For this reason, despite the fact that there
is inherent motion in the position of a feature, there is no
“motion” of the state vector parameters. Thus, we can define
the Kalman filter prediction step as follows,

xk+1 = f(xk) = xk.

The implication of this is that our filtering algorithm is only
dependent upon the implementation of a Kalman measure-
ment update step (the prediction step is simply ignored).

IV. I TERATIVE UPDATE FORPERIODIC ESTIMATION

In Sec. III, we discussed how our Kalman filter formula-
tion seeks to estimate a state vector (one per visually detected
feature) that includes FFT parameters for reconstructing the
motion. To review, the main idea is to estimate a Kalman
state vector that is initially unknown by applying camera
observations. Then, when the parameters of the FFT are
accurately estimated by the Kalman filter for a given feature,
its spatial motion can be recovered by computing the inverse-
FFT for each cartesian component (x, y, and z). In this
section, we will present our iterative Kalman measurement
update step for applying camera observations.

A. Monocular Measurement Model

The monocular measurement model of a point feature with
a cartesian (x, y, z) representation can be written as follows,

h(xk)=

[

atan2(y − yR, x− xR)

atan2(z − zR,
√

(x− xR)2 + (y − yR)2)

]

, (1)

where(xR, yR, zR) is the position of the robot or camera in
the world. This models the mapping of a feature position to
the feature bearing-angles relative to the coordinate frame of
the camera. We note that an alternate model that could be
used without significantly changing the method is a (x, y, z)
projection to the pixel location (u, v) in the camera image.

The measurement model of the Kalman filter computes
the expected bearing-angle measurements given a state vec-
tor xk. To implement the measurement function given our
unconventional Kalman state vector with FFT parameters, we
must first reconstruct, fromxk, the full FFT that corresponds
to the periodic motion of the feature. This involves filling in
zeros for the elements of the FFT that we chose not to encode
in the filter and it involves using the known redundancy of
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Fig. 4. Experiment I involves a beating heart simulation. In(a), feature initialization is shown, in (b), the result is shown after the estimation of features
has converged, in (c), an example cycle is shown upon initialization, and in (d), the same cycle is shown after the algorithm successfully mapped the
periodic motion.
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Fig. 5. Experiment I: the error between the estimated position of a moving
feature vs ground truth. For static estimation (red), the estimate diverges. For
our dynamic solution (blue), the algorithm successfully maps the motion.

the FFT to fill in the additional missing parameters. In other
words, with only a few of the FFT parameters represented in
the estimated Kalman state vector, we can almost completely
reconstruct the FFT. The significance of this is that we can
maintain a low dimensionality for the filtering task. We will
use the following equations to signify the reconstruction of
the FFT that corresponds to the feature motion,

Fx = ReconstructFFT(fx, xDC),

Fy = ReconstructFFT(fy, yDC),

Fz = ReconstructFFT(fz, zDC).

After reconstructing the FFT for each component (x, y,
andz), we can compute the time-domain signal for the fea-

ture motion by using the inverse FFT. Then, we can extract
the specific (x, y, z) position of the feature by knowing the
phase in the cycle corresponding to the measurement,

x = F
−1 (Fx) , x = x[n]

y = F
−1 (Fy) , y = y[n]

z = F
−1 (Fz) , z = z[n].

The measurement function can then be computed using the
monocular measurement modelh(xk) from Eq. 1, except,
for our definition of the Kalman state vector, the terms
extracted from the inverse FFT are used in place of the
directly estimated (x, y, z) parameters.

B. Iterative Measurement Update

The conventional extended Kalman filter (EKF) measure-
ment update is the most widely used method for applying
sensor measurements to correct a Kalman filter state es-
timate. Unfortunately, as we have shown in our previous
work [9], the EKF is susceptible to a diverging state estimate
when applied to monocular mapping problems. To prevent
divergence, we have developed an iterative measurement
update method. Based on the underlying objective of the
Kalman filter to maximize the posterior probability, we can
optimize the following cost function,

x̂k|k = argmin
xk

[(xk − x̂k|k−1)
TP−1

k|k−1
(xk − x̂k|k−1) +

(zk − h(xk))
TR−1(zk − h(xk))],
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Fig. 6. Experiment II: a photo of the calibration setup is shown in (a), which includes a laparoscope with a camera and a magnetic tracking system. In
(b), the rubber heart phantom is shown with acquired trackedfeatures, and in (c), a second image is shown after the camerahas moved significantly.
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Fig. 7. Experiment II: a birds-eye view of the mapped features. The features
are shown as points with a surrounding path defining their periodic motion.
The mapped motion paths agree with each other and with the surface motion
of the phantom, suggesting that the surface was mapped accurately.

where x̂k|k−1 is the current estimate of the state vector,
Pk|k−1 is the estimated covariance matrix for the state,
andzk is a camera measurement corresponding to a feature
observed at time-stepk. Also, in this cost function,h(xk)
is the measurement model (discussed above) andR is
the covariance matrix for the measurement that defines the
expected camera sensor noise. The objective of our approach
is to replace the current Kalman state vector estimate with the
optimal solution to this minimization problem. By applying
Gauss-Newton’s method to the optimization problem, we
have derived the following iterative solution,

x0 = x̂k|k−1

Ki = Pk|k−1H
T
i [HiPk|k−1H

T
i +R]−1

xi+1 = xi + γi(H
T
i R

−1Hi +Pk|k−1)
−1

∗ (HT
i R

−1(zk − h(xi)) +P−1

k|k−1
(x̂k|k−1 − xi)),

where Hi is the Jacobian of the measurement function
evaluated at the estimatexi andγi is a variable step factor.
This iterative procedure can be run for a user-defined number
of iterations or it can be run until convergence. The new
updated estimatêxk|k is then set equal to the final solution
xi after iteration is complete.

V. EXPERIMENTAL EVALUATION

A. Experiment I

To validate our FFT-based periodic motion estimation
algorithm, we tested the approach on two experimental
datasets. The first is primarily a simulation, although the
motion data is derived from real gated MRI scans of a human
heart [20]. A picture of the simulation is shown in Fig. 4-
(a). We simulated a camera in Matlab that traveled a fixed

path around the moving cardiac model and we simulated the
detection of visual features, with known data association,
on all sides of the beating heart. For each bearing-angle
measurement that was simulated, artificial noise was added.
At the start of the simulation, the estimates of the features,
upon initialization, are shown in Fig. 4-(a). The features are
shown with large corresponding ellipsoids due to the initial
uncertainty of the feature locations and motion parameters.

The result of this experiment is the successful mapping
of periodically moving features located on the surface of
the heart. When compared to an EKF implemented with the
same Fourier series parameterization, the iterated algorithm
that we have developed outperformed the EKF. The EKF
was prone to divergence after the simulation had progressed.
The simulation with mapped features is shown in Fig. 4-(b).
An example of one of the features converging to the true
motion is shown in Fig. 4-(d). Lastly, a closer look at the
performance of our filter is shown in Fig. 5. In this image, the
error between the estimated motion path and the true path is
plotted over time. For an EKF using only static parameters,
the error is more significant due to divergence.

B. Experiment II

Experiment II involves a recorded dataset captured from
a laparoscope (shown in Fig. 6-(a)). The moving surface for
this trial was a beating heart phantom, shown in Fig. 6-(b)
and 6-(c). The phantom beats according to oscillations that
are induced by a pneumatic pump. We tracked the pose of the
laparoscope with an Ascension Trakstar EM tracking system
(Ascension Technologies, Milton, VT, USA). The tracking
sensor has an RMS error of 1.4mm. The checkerboard seen
in Fig. 6-(a) was used for camera calibration.

For this experiment, we captured550 camera images of
the beating heart phantom. Eight periodically moving visual
features were tracked using conventional visual template
tracking [21]. The tracked features can be seen in Fig. 6-
(b) and Fig. 6-(c). For this experiment, the implementation
only required one iteration of the iterative filter for stable
estimation. Also, for this experiment, we used the form of
the measurement model that projects a feature to a (u,v) pixel
location, as opposed to bearing-angles.

In Fig. 7, we show the resulting motion paths that were
mapped during Experiment II. The image can be interpreted
as a “bird’s eye view” of the mapped feature motion. The
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tion and dynamic estimation. Larger (positive) values correspond to our
dynamic method outperforming a purely static mapping method. Because
this difference is noisy, we have included a best-fit curve (in red).

qualitative result is that the motion paths agree with the
expected motion of the surface in that they are moving
approximately3mm in the direction orthogonal to the camera
pose. Additionally, the feature motion paths agree with each
other, which suggests that the motion was accurately mapped.

A quantitative result for this experiment is shown in Fig. 8,
where we plot theinnovation difference(ID), which is the
difference between the innovation for an implementation as-
suming static features and our implementation with dynamic
features. The innovation is the error between the expected
measurement (given the measurement model) and the actual
measurement that is acquired from the camera. The ID being
mostly positive (noisy gray plot in Fig. 8) demonstrates that
there is greater error for the static case, thus our motion-
enabled feature mapping algorithm outperforms the purely
static method. To better visualize the ID, we additionally
show a best-fit curve for the ID (shown in red).

VI. CONCLUSIONS ANDDISCUSSION

In this paper, we present a novel approach for mapping pe-
riodically moving visual features with a monocular camera.
The application is the estimation of moving surfaces during
minimally invasive surgery for the purpose of aiding in the
guidance of surgical tools. Our approach uses a Kalman filter
with FFT parameters and an iterative measurement update
step. We have extended periodic motion mapping beyond
existing solutions that rely on stereo vision and have shown
that our approach can accurately map moving surfaces. We
note that we are solving a mapping problem, and not a
full-fledged simultaneous localization and mapping (SLAM)
problem, due to the fact that sufficient localization methods
exist for surgical tools (electromagnetic and optical tracking).

The main contribution of this work is the introduction of
a new approach for estimating physiological motion with
a monocular camera. We believe our algorithm can have
a significant impact on the development of new image-
guidance systems for MIS. In particular, we believe that a
robot that is aware of the surrounding physiological motion
can be better equipped to compensate for such motion.
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