derivation of geometric mean as the limit of the power mean*

Mathprof[†] 2013-03-21 17:16:47

Fix $x_1, x_2, \ldots, x_n \in \mathbb{R}^+$. Then let

$$\mu(r) := \left(\frac{x_1^r + \dots + x_n^r}{n}\right)^{1/r}.$$

For $r \neq 0$, by definition $\mu(r)$ is the rth power mean of the x_i . It is also clear that $\mu(r)$ is a differentiable function for $r \neq 0$. What is $\lim_{r\to 0} \mu(r)$?

We will first calculate $\lim_{r\to 0} \log \mu(r)$ using l'Hôpital's rule.

$$\lim_{r \to 0} \log \mu(r) = \lim_{r \to 0} \frac{\log \left(\frac{x_1^r + \dots + x_n^r}{n}\right)}{r}$$

$$= \lim_{r \to 0} \frac{\left(\frac{x_1^r \log x_1 + \dots + x_n^r \log x_n}{n}\right)}{\left(\frac{x_1^r + \dots + x_n^r}{n}\right)}$$

$$= \lim_{r \to 0} \frac{x_1^r \log x_1 + \dots + x_n^r \log x_n}{x_1^r + \dots + x_n^r}$$

$$= \frac{\log x_1 + \dots + \log x_n}{n}$$

$$= \log \sqrt[r]{x_1 \dots x_n}.$$

It follows immediately that

$$\lim_{r \to 0} \left(\frac{x_1^r + \dots + x_n^r}{n} \right)^{1/r} = \sqrt[n]{x_1 \dots x_n}.$$

^{*} $\langle DerivationOfGeometricMeanAsTheLimitOfThePowerMean \rangle$ created: $\langle 2013-03-21 \rangle$ by: $\langle Mathprof \rangle$ version: $\langle 35741 \rangle$ Privacy setting: $\langle 1 \rangle$ $\langle Derivation \rangle$ $\langle 26D15 \rangle$

[†]This text is available under the Creative Commons Attribution/Share-Alike License 3.0. You can reuse this document or portions thereof only if you do so under terms that are compatible with the CC-BY-SA license.