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Among many threats to the representation and assessment of change in be-
havioral research are effects associated with the phenomenon of regression to-
ward the mean. This concept has a long history, but its definition and interpre-
tation have remained unclear. In the present article, regression effects in
longitudinal sequences of observations are examined by formulating expecta-
tions for later observations conditioned on an initial selection score value. The
expectations are developed for several variations of classical test theory and
autocorrelation models. From this perspective, expectations based on the gene-
ral concept of regression are seen not only to depart from those depicted in the
psychometric lore but to vary considerably from one underlying model to an-
other, particularly as one moves from the two-occasion to a multiple-occasion
measurement framework. In some cases "unrelenting'' regression toward the
mean occurs. In others, scores may initially regress and then show egression
from the mean. Still other patterns are expected for some models. In general,
it is important to understand that regression toward the mean is not an ubiq-
uitous phenomenon, nor does it always continue across occasions. It is neces-
sary to specify the characteristics of model assumptions to understand the
when, how, and extent of regression toward the mean. Past interpretations have
been incomplete and to an extent incorrect because they focused largely on a
limited circumstance: two-occasions of measurement and simplexlike correlation
matrices.

Researchers interested in the study of defined as dealing with the study of change
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Figure I. Hypothetical bivariate distribution [corr(A"i, A'j) < 1.00] showing regression toward the
mean effect. [For a given value of X\, e.g., x, E(Xi\Xi = x) is closer to £(A'j) in standard deviation
units than x is to E(X\] in standard deviation units. Difference between .v and R(X%\X\ - x) labeled a
is less than difference between x' and E(X$\X\ = x') labeled b.]

most often identified culprits in discussions of
change measurement problems is the phe-
nomenon known as regression toward the
mean. Failure to account properly for regres-
sion toward the mean has been invoked as a
devastating confound in such areas of study as
compensatory education (Campbell & Erle-
bacher, 1970), business (Hotelling, 1933),
general education and psychology (Thorndike,
1942), behavior genetics (Humphreys, 1978),
and developmental research (Furby, 1973).

The present article is both a logical exten-
sion and, to some extent, a reformulation of
earlier articles, especially those by Bakes,
Nesselroade, Schaie, and Labouvie (1972),
Campbell and Stanley (1963), Clarke, Clarke,
and Brown (1960), Furby (1973), and Lord
(1963). We contend that regression toward
the mean is a concept that is too readily
invoked, often in a simplistic way, in dis-
cussion of change and that there still remains

a great need to spell out more carefully not
only what it is but what it is not. In so doing
we identify those conditions under which one
should be on the alert for regression effects
and also those conditions under which regres-
sion effects are minimized, nonexistent, or
manifested in ways that are at variance with
traditional expectations.

Two features of the present article are
particularly noteworthy. One, it is shown how
the discussion of regression toward the mean
is modified by considering multiple occasions
of measurement. In the past, much of the
discussion has centered on either two-vari-
able or one-variable-measured-on-two-occa-
sions situations. We believe that these situ-
ations maximize design and analysis problems
associated with regression toward the mean.
Second, careful attention is paid to the nature
of the underlying interoccasion correlation
structure of scores. It seems to us that much
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past discussion of regression effects has not
sufficiently considered the role of different
patterns of autocorrelation and has often
assumed that simplexlikc correlation matrices
are the only germane pattern. It is shown
that the form of regression toward the mean
changes significantly as alternative patterns
of cross-occasion correlations are assumed.

Past Literature

The statistical concept of regression is over
a century old—indeed, it was introduced
under the name "reversion" by Gallon in 1877.
Yet despite the relative antiquity of the con-
cept, a frequent failure to grasp its implica-
tions has been and continues to be the root
of errors in scientific inference. In this section,
regression toward the mean is briefly defined
as it is known to psychologists, particularly
developmental psychologists. In a later sec-
tion, a more precise mathematical formulation
is used.

Meaning of I lie Regression Concept

In past literature regression toward the
mean has been defined in relation to both the
identification of the phenomenon and its ex-
planation. In the present context, regression
toward the mean is considered primarily in
the setting of at least two occasions of ob-
servation involving the same measurement
variable and the same experimental units.
Such a restriction permits the use of the
term change.

In the developmental literature, Furby's
(1973) article is perhaps the latest com-
prehensive effort to deal with regression
toward the mean. Furby, for example, defined
the regression effect in the following manner
(our notation): For a given score on Xi
(e.g., .\-'), the corresponding mean score on X-,
[e.g., E(X-i\Xl = ;v')] is closer to E(JYV) in
standard deviation units than .T' is to E(X\)
in standard deviation units. She concluded
that such effects will be observed when the
correlation is less than perfect, for whatever
reasons. In addition, the greater the deviation
from the mean score Ce-g'> x> ~ E(Xi)~]> the
greater the regression toward the mean.
Figure 1 is the kind that is typically used to
demonstrate the phenomenon of regression.

In principle, the preceding statement of
statistical regression toward the mean can be
correct and useful but only within restricted
boundaries that for some issues are inappro-
priate. For example, the definition of regres-
sion involves the implicit, if not explicit ,
standardization of score distributions, thus
invoking immediate constraints and signifying
that some choice in the form of data repre-
sentation already has been made by the in-
vestigator. Furthermore, as is shown later,
Furby's statement is correct for the two-
occasion situation, but generalization to multi-
ple occasions involves additional qualifications.

Explanations of the Regression Phenomenon

A number of explanations for the phenome-
non of regression can be found in the litera-
ture (e.g., Furby, 1973). They range from
simplistic formulations to alternatives that
attempt to account for regression by speci-
fying the nature of its antecedents.

Regression is often accounted for by the
essentially tautological statement that it is
due to the lack of perfect correlation between
the two sets of scores. From a strictly causal
point of view, it would be as useful to say
that the lack of perfect correlation is clue to
regression toward the mean. In neither case
is one gaining any knowledge over and above
that provided by the definition of regression.
Lack of perfect correlation and regression
toward the mean are essentially equivalent.

Two major lines of reasoning have been
used to explain why a lack of perfect correla-
tion and regression toward the mean occur.
One is the assumed nature of measurement
errors. This argument, couched in classical
test theory and the two-occasion situation,
depends on the assumption that errors of
measurement are uncorrelated over time and
that at the first occasion individuals in ex-
treme scoring groups (high or low) have a
higher likelihood for positive (high) or nega-
tive (low) error components in their observed
scores, Since error of measurement is assumed
to be uncorrelated across occasions, the ex-
pectation is that extreme scoring groups will
have a 50:50 ratio of positive and negative
error on other measurement occasions. The
scores of previously established extreme groups
will, on other occasions, include on the average
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the same distribution of positive and negative
error components. Therefore, in terms of ob-
served scores at the second occasion, the
extreme groups are "moving" closer to the
overall mean. This interpretation assumes
that the movement is not in the true scores
but is fallaciously produced in the observed
scores by error of measurement. The magni-
tude of the phenomenon would be greater the
less accurate (reliable) were a given set of
measurements. In principle, if one is willing
to accept the basic tenets of measurement
theory that are involved, this rationale is
correct. As is shown later, however, the
argument applies only to the two-occasion
situation.

A second class of explanations for the lack
of perfect correlation and associated regression
has to do with identifying causal factors
operating between occasions. For example,
Furby (1973) and Clarke et al. (1960) recog-
nized that extreme scores (in addition to and
independent of error of measurement com-
ponents) in a distribution must reflect, at
least in part, relatively rare combinations of
antecedent events. It is further argued that
rare combinations of events tend not to be
maintained over time, and one therefore ar-
rives at the expectation that individuals ex-
posed at one time to rare combinations of
antecedent events will tend not to be so ex-
posed at a later time and consequently will
show a change toward the overall mean. This
argument is in many respects a variation on
the error of measurement view, although it
deals with antecedents of change rather than
its measurement. Moreover, the argument is
a potential but not a necessary explanation
as alternative conceptions of causal factors
are possible. For example, applications of
causal factors do not necessarily involve ran-
dom events, and they may lead to egression,
as is discussed later.

Basic Definition and Notation

The remainder of the discussion is focused
on the regression toward the mean concept
as it pertains to the study of phenomena
defined by the repeated (at least two occa-
sions) assessment of a particular variable.
The primary objective is to identify distinct
aspects of data that bear directly on the

anticipation and evaluation of regression ef-
fects, to formulate models that reflect these
characteristics, and to develop expectations
in relation to them. To provide an explicit
basis for these subsequent developments,
a statistical formulation of the general regres-
sion concept is presented first.

Consider a sequence of test scores, recorded
as measurements of the same attribute of a
single individual on a series of occasions. We
denote this sequence by the letters Xi, X2, . . . ,
Xn. Suppose, for this discussion, that the tests
have been scaled so that, for the population
of individuals under study, the standard de-
viations of the scores on one occasion are the
same as those on another occasion. To sim-
plify the notation for the discussion, this
common standard deviation is taken as unity
and test scores as deviations from the popu-
lation mean. Thus if we consider our indi-
vidual as randomly selected from the popula-
tion, his or her score on Occasion i will have
expectation E(Xf) = 0 and standard devia-
tion <r(Xi) = 1, for each Occasion i.

The following notation is also used: The co-
variance of Xi and Xj is written as cov(X,-, Xj),
and the correlation of Xi and Xj is written
con(Xi, Xj), where corr(Xj, Xj) equals
cov(Xt, Xj)/(f(Xi)a(Xj). Since a(X,} = a(Xj)
= 1, we have corr(Jt;, Xj) = cov(Xit Xj)
here, but not all variables discussed later
have standard deviation 1, and it is well to
maintain the distinction between corr(Xt, Xj)
and cov(Xt, Xj).

The expressions to be derived are general,
but, for purposes of illustration, the examples
are chosen from the traditional psychometric
framework of measurement. Thus all of the
examples we consider may be thought of as
cases in which the scaled test score Xi is
derived from a raw test score Yi by the
relation X, - F,/<r(7i). The raw test score
Yi is measured as a deviation from a popu-
lation mean and can in turn be broken down
into two components, for example, Yi = S{
+ 6i. The classical interpretation of such a
representation is the measurement error model
in which S,- is taken as the "true score" on
Occasion i and e, the measurement error on
that occasion. We often adopt this terminology
because of its familiarity, but the ideas are
more general than those of measurement error
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models. They also encompass, for example,
observed scores conceived of as measured
without error and consisting of permanent
trait and transient state components (see,
e.g., Nesselroade & Bartsch, 1977). We com-
ment briefly later on the methodological dif-
ficulties in distinguishing between these models.

Two Occasions Versus Multiple Occasions

In this section formulas for the general
situation are developed without yet con-
sidering the role of measurement error as it
is treated in the psychometric literature. How
does regression toward the mean extend from
the two-occasion framework? Is the extension
a simple one, and if not, what aspects of the
stochastic structure of the test scores underlie
its complexity? What considerations are needed
if a proper analysis of behavior over multiple
occasions is to be made? To better understand
what is at issue, let us first examine how the
extension from two occasions to multiple
occasions might naively, and falsely, be
thought to occur.

Two-Occasion Case

The phenomenon of regression toward the
mean for two occasions (scores X\ and X%)
is concerned with the conditional expectation
of Xt, given that the test was administered
on Occasion 1 and the score Xi = x has
been recorded. Under the supposition that
the scores are jointly normally distributed,1

this conditional expectation is given by

E(X*\Xi = x) = corr(Xi, X J - x .

Since — 1 < corrCX'i, X%) < 1 always, if Xi
and X% are both measured in units of their
standard deviations, then given Xi = x, we
"expect" X2 to be closer to its mean [viz.,
E(Xz) — OJ. Expect may be given a more
concrete meaning here by supposing that we
select a very large number of individuals with
scores nearly x on Occasion 1. Their average
score on Occasion 2 will be very nearly
corr(Xi, X-2)-x. Some will have scored lower,
some higher, and some even higher than the
initial score x, but the average will be very
nearly corr (X\, Xt) • x. This situation was
shown in Figure 1.

Multiple-Occasion Case

Does regression toward the mean continue
in the same fashion beyond the second
occasion ?

Expectation fallacy. Through repeated ap-
plication of the formulas given for the two-
occasion case, we have

E(Xt X!=x) = corr(Xi,Xt)-x,
E ( X t \ X 1 = y) = con-(X,,X3)-y,
E ( X t \ X t = z) = c o n ( X 3 > X , ) - z ,

and so forth.
Now although these equations are correct,

they lead naturally to a mistaken conclusion
in the present multiple-occasion situation. The
natural misunderstanding is to picture an
expected sequence of test scores, starting at
an observed X\ = x and getting successively
closer to the mean of zero, as if regression
toward the mean implied a necessarily con-
tinuous regression beyond the second occa-
sion, as we believe is often assumed. Intui-
tively, given X\ = x, we might naively expect
the sequence
X, = x,
Xi = corr(.Xi, X-^-x,

= corr (X2, X3) • corr (Xi, X%) • x,

= corr(X3)

and so forth. Thus if corr(X;, X,+i) = .5 for
all i (as may well be true) and if we observe
Xi = 2.0, the expected sequence becomes

Xi = 2, X% = 1, X3 = .5, Xt = .25,

and so forth.

1 The assumption that all scores and errors are
jointly normally distributed can be dispensed with if
one replaces expected sequence with best predictive
sequence throughout, and if one understands best in
the restrictive sense of smallest mean square predic-
tion error among all sequences in which each term is a
linear function of the previous terms. Thus if one
does not view this linearity assumption as restrictive,
the assumption of normality is unimportant to the
conclusions.
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Regression toward zero (the mean) seems
steady and unrelenting. Bui the repealed ap-
plication of the two-occasion formula is generally
an error, it would be tantamount to invoking
a very restrictive and only infrequently ful-
filled assumption about the stochastic struc-
ture of sequences of test scores, Technically,
the assumption is that the sequence of test
scores follows a Markov process (Frederiksen
& Rotondo, 1979; Glass, Willson, & Gottman,
1972; Hibbs, 1974; Nelson, 1973).

The distinguishing feature of a Markov
sequence of scores is that if one wishes to
determine the probability distribution of a
future score, given both past and present
scores, then the information about the past is
unnecessary—all useful information about
future score distributions is summarized in
the present score. In particular, if we wish to
calculate E(Xs\Xi = x, Xz = y) and the
sequence is Markov, then it would be enough
to calculate E(Xi\Xt = y), for with Markov
sequences,

E(X3\X, = y) = E(X3\Xi = x, X, = y).

But this, as is seen, is not generally true for
stochastic sequences, and the consequences
for expected sequences and regression toward
the mean may be important. To see this
more clearly, consider a correctly calculated
expected sequence for a multiple-occasion
situation.

Correct expected sequence. Given that an
individual is selected as having score Xj. = x
on Occasion 1, what is his or her future
sequence of scores expected to be? There will
be two factors at work: the value of the
selected score or selection criterion Xt = x,
and the characteristics of the population of
observed scores [including the population
means, E(Xt) = 0, and corr(Xi, X,-)].

To produce a correct expected sequence,
the question can be asked with respect to
two occasions at a time but in a different
way than was done in the fallacious argument
identified earlier. The task is to follow longi-
tudinally the same selected group of indi-
viduals across occasions. This means that the
selection criterion remains X\ = x throughout.
We ask, then, for the expected sequence from
the standpoint of the occasion on which
selection occurred (the first occasion). Because

selection occurred only once, we do not need
to reask the question on each occasion. Then
the expected sequence is simply
E(X2\Xl = x), E ( X 3 \ X l = x), E ( X , \ X , = x),
and so forth, and all of these can be im-
mediately given from our knowledge of the
two-occasion situation : The expected sequence,
beginning with Occasion 1 and given Xi = x, is
x; con-(Xi, X - i ) - x ; corr (Xi, X3) • x ;

and so forth. It can be proved mathematically
that, for example,

j. = x, and X2 = corr(X1, X*)-x~}
Xi = x),

but by keeping in mind that selection is only
performed once, on the first occasion, we see
that this more laborious computation is not
needed.2 Thus we have the following com-
parison between the expected sequences of
scores, given that an individual is selected as
having score x on Occasion 1.

Correct expected sequence :
x
corr (X i, Xt)-x,
corr (X i, X3)'X,
corr(Xi, Xt)-x, and so forth.

Incorrect expected sequence:
x
corr (X i, X t ) - x ,
corr (X 2, X^ • corr(Xi, X%) • x,
corr(X3, xi) • corr (X2, X $) • corr (X i, X-2)-x,

and so forth.

It is easily seen, since [corr(X,-, -X";+])|< 1,
that the incorrect sequence necessarily re-

2 Comparison of this expression with the earlier
fallacious argument is instructive. The earlier argu-
ment, which would have followed for a Markov se-
quence, would have had E\_Xs\Xi = x, and X?.
= con(Xl,XJ-xl = ElXi\X* = con(Xi, *2)• *]. The
right-hand side of the equation is what we would
have for the expected score on Occasion 3 if we se-
lected an individual on Occasion 2 with score
corr^i, Xt)-x from a previously unselected popula-
tion. The fact that E\_X3\Xi = corr(A\ Xi)-x] and
E(Xs\X\ = x) are not generally equal is a reflection
of the fact that we only select once (on Occasion 1),
and the expected score must be based on this condi-
tion and not some subsequent one.
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Figure 2. Autocorrelation sequence (scaled expected
score sequence) for the classical measurement error
model. [Here a = <r2(S).]

gresses toward the mean of zero, as noted in
the earlier discussion of the expectation fallacy.
Clearly the pattern of the autocorrelations
corr(Xi, Xi) will determine the pattern of the
expected sequence. It is not necessarily one
of continual, unrelenting regression toward
the mean. If, for example, the autocorrelation
sequence corr(Xi, X i ) , i > 1, is constant
[e.g., corr(Xi, Z2) = corr(Xi, X3) = ••• =
corr(Xi, Xn) = .S'], we would expect regres-
sion from Occasion 1 to Occasion 2 but not
thereafter. The expected sequence of scores
of a group of individuals selected as having
score X\ = x on Occasion 1 is then .v, ,5.v,
.S.v, .5.v, . . . , .5.v.

One specific example of this particular re-
gression pattern is in the classical measure-
ment error model. Suppose that over n occa-
sions of measurement, the test scores of a
randomly selected individual, X\, X->, . . ., XH>
each consist of a true score 5 that remains
unchanged and a measurement error ei, such
that S, e\, 62, • • • , 6,1 are mutually independent
(and hence uncorrelated). Then A',- = 5 + e;,
i — 1, . . ., n, and as before we suppose that
a2(Xi) = land £(5) = 0 = E(e,-). Now, a*-(Xi)
= a'-(S) + ff'2(e,) [because cov(S, ef) = 0], and

since cov(e,-, Cy) = 0 for i T ^ j , we have
cov(Xi, Xj) = <r-(S), and therefore corr(A^,-, Xj)
= <r-(S) for i ^ j. Let us denote a = a'2(S).
Then 0 < a < 1 [since a + a"-(ei) = 1J, and
given X\ = x we have as the correct expected
sequence:

x, a.v, a.v, a.v, . . ., a:V.

Thus, as shown in Figure 2, after the first
retest, no further regression is expected; the
effect on changes in the expected score of
selecting the individual as having score X\ = x
is dissipated after the second occasion. Only
when all individuals have the same true score
is a = <r-(S) = 0 and the regression complete;
only when there is no measurement error is
a = 1 and is there no regression even from
the first to second occasion. The incorrect
expected sequence for this example would have
been .v, a.v, a2:v, alv, and so for th .

We emphasize that the "correct" expected
sequence is computed assuming that a group
of individuals each has score Xi = x on Occa-
sion 1. If additional selection is exercised
further down the line, further regression may
occur but not always toward the overall mean
of zero. For example, if of all individuals
selected as having scores Xi = x on Occa-
sion 1, one is selected after the second test
as having score X2 = 0, we would expect his
or her score on the third occasion to regress
toward the mean of the initially selected popu-
lation [viz., E(Xt Xi = x) = ax"] and thus

'_^ away from zero. In fact,

E(X3\Xl = x and X, = 0) =
(«+ 1) "

(as long as a < 1.). As stated earlier, one way
to interpret the correct expected sequence is
to think of a very large number of individuals
from the even much larger population as being
selected as having score x on Occasion 1.
Then their average scores on the successive
occasions will nearly agree with the expected
sequence.

Also in the context of this example, the
often held belief that measurement error (or
a transient state component) necessarily pro-
duces a regression effect that makes it im-
possible or difficult to measure change properly
is not correct, at least not with multiple-
occasion data. In this example we see that
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after the second occasion, the troublesome
effect of selecting the individual based on the
initial score Xi = x (the regression effect) is
spent. Lacking a differential effect from Occa-
sions k to k -\- 1, the expected change in score
between these occasions is zero. That is,
E(Xk+1 - Xk\X,= x) = .vCcorrpG, Xk+l)

= 0
for this model. Notwithstanding (a) the ex-
istence of a possibly large measurement error
and (b) a screening or selection at the first
occasion, the effect of regression toward the
mean is gone after Occasion 2 in terms of
expected changes in scaled scores.3 The level
of the expected scaled score remains at the
constant value E(Xk\Xi = x) = xa-(S), but
any change in aggregates of such selected
scores that cannot be attributed to random
fluctuation must be attributed to change in
true score and not to a regression effect.
Because the effect of measurement error on
regression toward the mean does not extend
beyond the second occasion, an easy design
control is apparent. If individuals are selected
at the first occasion, a proper representation
of change unconfounded with regression ef-
fects is achieved by beginning the charting
of change functions at the second occasion.
In other words, the first occasion serves as
criterion for selecting extreme groups, and the
second occasion serves as initiation point for
representing change.

The previous observations concerning the
disappearance of measurement-error-related
regression effects are more widely applicable.
If we consider the most general model we
have discussed, that in which the raw scores
Yi = Si + e; and the true scores S; change
either stochastically or deterministically over
time, then the expected change between
future occasions E(Xk+i — Xh\Xi = x) is
proportional to :v-cov(.SVi-i — Sk, Si) and de-
pends neither on measurement errors nor on
other factors that are uncorrelated over time,
both with each other and with any non-
transitory true score component. (As presented
here, this conclusion depends on the variances
of the unsealed scores remaining constant
across occasions.)

Nature of the Autocorrelational System

Thus far we have shown that designs in-
volving more than two occasions lead to dif-
ferent anticipations regarding regression to-
ward the mean. For example, if (as previously
described) con(Xi, A'2) = corr(Xi, X3) = • • •
= corr(Arj, Xn), then there is no further re-
gression toward the mean after the second
occasion. Extreme groups identified by their
scores on Occasion 1 will exhibit regression
on Occasion 2, but (as the earlier example
shows) this pattern need not continue. Of
course, if an extreme group is redefined on
Occasion 2 based on Occasion 2 scores, this
group will exhibit regression on Occasion 3.
But the original extreme group will not con-
tinue to regress in this example.

Obviously, a great variety of autocorrela-
tional patterns can be conceived of, and each
could be examined concerning its implications
for the development of regression expectations.
To display a range of possibilities within our
space limitations, we focuson threeprototypical
autocorrelational systems: (a) constant auto-
correlations, (b) autocorrelations that decrease
with increasing separation of observations in
a sequence, and (c) autocorrelations that in-
crease with increasing separation of observa-
tions. A limited set of more complex patterns
is briefly considered later.

Constant Autocorrelations

The statement that regression ceases after
Occasion 2 is restricted to the situation in
which the autocorrelations between occasions,
con(Xi, X i ) , for i = 2, . .., 11, are constant
at whatever value. Note also that the antici-
pation of no further regression toward the

3 In the present example, Occasions 1 and 2 are
used as selection and postselection occasions. This
need not be the case. Should other occasions from
a longer observational sequence be used as selection
and postselection occasions, for example, Occasion 1
and Occasion 4, the regression toward the mean effect
shown earlier for Occasion 1 and Occasion 2 would
hold for the pair of occasions being considered. In
other words, the regression toward the mean effect
described is not specific to the first pair of occasions
in an observation series. It is specific to the first pair
of occasions defining the selection and postselection
events.
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Figure 3. Decreasing autocorrelation sequence. (For
A'i = 1.00, this is the expected score sequence. If
A'i = -x, the expected score sequence is this sequence
multiplied by x.)

mean beyond the second occasion is inde-
pendent of the magnitude of measurement
error (reliability). Measurement error is only-
one of several reasons why the autocorrela-
tion might be less than one.

Assuming constant autocorrelations is not
always reasonable. Since cov(Ai, Xk — AVi}
= corr(Xi, Xk) — corr(A~i, AVi), it is equiva-
lent to assuming that the initial score Xi is
uncorrelated with all future score changes in
the scaled test scores X/, — Xk-\. Now in de-
velopmental research it is often found that
score changes are correlated with initial scores
and thus that the magnitude of interoccasion
correlations changes with the interoccasion
distance. However, constant autocorrelations
are possible. Consider a situation in which
true trait scores are invariant with occasion-
specific state variability, resulting from treat-
ments applied randomly to subgroups of indi-
viduals, separately at each occasion (Baltes,
Nesselroade, & Cornelius, 1978). Such a situ-
ation is, of course, similar to that in the error
of measurement model, although in this in-
stance the treatment is substantive.

Let us examine the role of the autocor-
relation sequence in further detail by con-
sidering examples of two additional patterns
of interoccasion correlation:4 for decreas-
ing, corr(A!, X-,) > corKAj, A3) > • • • >
corr(A\, Xn)\ for increasing, corr(A'i, X->) <
corr(Ai, A3) < • • • < corr(Xi, A,,).

Note that these two models of autocorrela-
tions are extreme cases selected for didactic
purposes. More complicated models are briefly
mentioned later. Furthermore, at this point
we are proceeding as if these two autocor-
relational models exist. In a later section, we
introduce possible underlying measurement
models that are associated with each of the
autocorrelational patterns.

Decreasing Autocorrelation: Continual
Regression

A second major type of interoccasion cor-
relation is one in which the autocorrelation
sequence corr(Ai, A,-) decreases with i, that
is, in which the interoccasion correlations
decrease with increasing distance between
occasions. The classical case of such a matrix
of correlations is the simplex (Guttman, 1954;
Humphreys, 1960; Kenny, 1979). This case is
illustrated in Figure 3.

We assume that individuals are selected for
study based on their scores on Occasion 1,
and thus the selected individuals have ex-
pected score sequences AI = x, x corr(Ai, A2),
. . . , x corr(Ai, A,,); thus the expected score se-
quence is just a scaled version of the auto-
correlation sequence, scaled by the initial
score .v. Thus the behavior of the autocorrela-
tion sequence determines that of the expected
score sequence, and a decreasing sequence of
autocorrelations leads to a continuing regres-
sion toward the mean.

In our view, man)- developmental psy-
chologists believe that this arrangement is,
in principle, the most common one in em-
pirical research. Because of the frequent ap-
pearance of the simplex pattern in research
and perhaps partly because of the subtle
reinforcement of the notion that comes from
the expectation fallacy discussed earlier, there
has been a tendency to consider this situation
as ubiquitous. Yet, as the present develop-
ment shows, it is ubiquitous only to the extent
that decreasing autocorrelations corr(Ai, A,-)
are, and, as is demonstrated, this need not be
the case.

4 For reasons of simplicity, we restrict attention to
sequences with positive autocorrelations.
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Increasing Auto correlations: Egression

The third major situation that can be en-
countered is that in which the autocorrela-
tions corrpsTi, Xi) increase with i, that is, in
which interoccasion correlations increase as
the distance between occasions increases.

In such a situation (see Figure 4 for an
illustration), we would find the following
outcomes. Focusing on the use of Occasion 1
as a predictor for all subsequent occasions,
we see that the magnitude of regression de-
creases continually when compared with the
effect from Occasion 1 to Occasion 2.

The score sequence expected for an indi-
vidual with initial score Xi = x (viz., the
autocorrelation sequence scaled by multiplying
by x) would decrease from Occasion 1 to
Occasion 2, but after that (looking from the
second occasion on), it would exhibit egression
from the mean, The future expected inter-
occasion change between Occasions k and
k + 1 of an individual selected with initial
score Xi = x, evaluated from the standpoint
of the time of selection (Occasion 1), is away
from the mean. In terms of.our mathematical
formulation, we would have

E(Xk+1-X,,\X1 = x)> 0,

if x > 0 (and the reverse inequality if x < 0).
Now, this situation may seem unlikely, but

it is possible, and there arc a number of
situations in which it might actually be an-
ticipated. In data reported by Humphreys
and Parsons (1979), cross-correlation of listen-
ing and intellectual composite scores at Grades
5, 7, 9, and 11 show increased values over
time if one corrects for within-occasion cor-
related error components. In developmental
research in general, a pattern of increasing
autocorrelations would occur if there is a sys-
tem of determinants that leads to accumu-
lating advantage and disadvantage as a func-
tion of initial standing. Baltes et al. (1978)
have simulated one such outcome pattern,
and we present a mathematical formulation
of other examples later. For the present, the
important point to note is that such a situ-
ation could occur and that it would cor-
respond to expected behavior contrary to the
continuing regression toward the mean that
is often thought to be ubiquitous. Here, after
the initial two-occasion regression between
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Figure 4. Increasing autocorrelation sequence. (For
Xi = 1.00, this is the expected score sequence. If
A'i = x, the expected score sequence is this sequence
multiplied by x.)

Occasions 1 and 2, all future expected changes
are away from the mean.

Complex Systems of Autocorrelations

The cases considered thus far all display
patterns of marked regularity. In each case
the autocorrelations are simply ordered—con-
stant, decreasing, or increasing—and more
complex situations are clearly possible. Causal
explanations for patterns in the autocorrela-
tion sequence have not yet entered into our
statistical discussion, but to understand how
more complex systems relate to regression
toward the mean, we consider a model that
exhibits such behavior, as shown in Figure 5.

Recognizing that this is but one of several
alternatives that could be considered, let us
suppose than an occasion-specific intervention
is imposed on an ongoing system. Without
speculating on the explanatory origin of the
intervention, we might suppose it has the
effect of adding a component C to the true
score on the occasion in which the interven-
tion takes place and that this component C is
uncorrelated with any other true score or
measurement error. For purposes of illustra-
tion, suppose that, except for the intervention,
the observed scores follow the classical mea-
surement model and that the intervention
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Figure 5. One possible complex autocorrelation se-
quence with an occasion-specific intervention on Occa-
sion 5.

takes place on Occasion S. Then the unsealed
observed scores are

F, = S + ei, for i= 1,2, 3, 4, 6, 7, . . . , -it •
Y,• = S + C + «,, for i = 5 ;

furthermore, cov(F,, Y k ) = a'2(S), c/2(F,-) =
a2(S) + t72(e,-) for i ^ 5, and t72(F5) = a'-(S)

For the scaled scores X{ = F,-/o-(F;), if we
suppose as before that ff2(5) + <72(e,) = 1,

corr(Xj, X,)
i = 2, 3, 4, 6, . . ., n;

Thus the autocorrelation sequence makes an
isolated decrease at i = 5. This signals that
the corresponding expected score sequence,
after remaining constant from Occasions 2
through 4, regresses toward the mean from
Occasions 4 to 5. Subsequently, however, it
egresses to its initial value.

Some More Complex Models

Discussion thus far has focused on isolating
different potential patterns that might be
followed by the expected score sequence. The
models that have been introduced for purposes
of illustration have been relatively simple and
perhaps unrealistic for many applications.

In any real application, a proper analysis

of test data would involve a design strategy
that incorporated planning, test evaluation,
and model identification and estimation, and
it is not the purpose of the present article
to enter into such an extensive discussion.
It may be useful, however, to present a few
more complicated illustrations of possible
models, to show both the directions such a
strategy might take and how our development
of the regression (or egression) of expected
sequences fits in with such situations. In ad-
dition, by showing how similar patterns can
be expected to occur with very different
models, the difficulties of model identification
and the importance of sound experimental
design are examined.

All of the models to be discussed are de-
scribed within the framework introduced
earlier, where the raw scores F; = S, -f- en
the 5,-s are true scores, and the e,-s are mea-
surement errors (assumed to be uncorrelated
with each other and with the true scores).
Of course, a situation with no measurement
error could be included by assuming u2(e,-) = 0.

Autoregression models. The first class of
examples exhibits the pattern of decreasing
autocorrelations associated with a simplex
correlation matrix (Guttman, 1954; Hum-
phreys, 1960); that is, corr(X,-, Xi+i) decreases
as j increases. In particular, we first examine
a situation in which the true scores evolve in
time, perhaps as a result of a changing en-
vironment or biology, perhaps as a result of
experimenter intervention. Specifically, con-
sider a model in which the true score has no
permanent component but in which past
changes of environments or interventions have
an effect (albeit a decaying one) on present
test scores. Consider then the case in which
the true scores S,- follow a first-order auto-
regressive process (Glass et al., 1972; Nelson,
1973). That is, suppose the first score S\ has
E(Si) = 0 and a*(Si) = 1 and that the re-
maining scores develop sequentially; given
Si, Sz = QSi + C'2; given S,, S, = QS« + C3;
given 61,-, Si+i = QSf + C,-+i. C, is viewed as
an intervention effect or environmental change
specific to the ith occasion. So that the true
scores (Si) have the same scale, we suppose
that 0 < 6 < 1, that a"-(C,) = 1 - 62, that
E(d) = 0, and that Si, the C,s, and the e,s
are mutually independent (and hence uncor-
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related). By substituting repeatedly, we see
that the v'th true score can be written

Si = d + 0c,-_i + e'cvs + • • • + 0-%.
An easy calculation shows that here,

corr^,, Si+j) = 0J, J > 0,

and in particular,

corr(5i, Si) = 0''"1, i > 1.

Then

01'
corr(X,, X i ) =

and the expected sequence (after Occasion 1)
is a multiple of Qx, Q-.v, Q3x, and so forth.
The sequence is illustrated in Panel a of
Figure 6. We can see here that in the special
case of no measurement error (V'(e;) = OJ,
the "incorrect" sequence is the "correct" one,
and there is continued regression toward the
mean. But such cases need not exhibit regres-
sion all the way to the mean eventually, as
the following variation on this model shows.

Suppose the unsealed scores are

Y, = S + Si + ef>

where 5 is independent of the 5,-s and e,-s,
and the 5,s behave exactly as did the 5,-s
described earlier; that is, they follow a first-
order autoregressive model. Let Xi = F,-/
a(Yi), where ̂ (Yt) = r>(S) + 1 + <r"-(e,) here.
Then cov(7,, 7,-+,-) = <r2(5) + 0J' and

coir(Xi, Xi+j) = „,<-,•. , 7 , _2 / . \

+ 1 + <720,-)'
1.

Here the expected sequence, given Xi = x,
decreases from x toward

<r>(S) + 1 + ^(ei) "'

thus manifesting regression toward but not to
the mean, as shown in Panel b of Figure 6.
We suppose here that 9 > 0, but the model
also makes mathematical sense if 0 < 0. Such
a value of 8 would correspond to negative
correlation between successive scores, and the
autocorrelation sequence (and thus the ex-
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Figure 6. Expected sequences for autoregression
models. (Here d = 9-[l + <T2(e,-)^' and d* = a*(S)-

pected score sequence) would decrease in
damped oscillations about zero, as in Panel c
in Figure 6.

Accumulating advantage models. We next
consider a class of models that exhibits the
second nonconstant autocorrelation pattern
discussed earlier, namely, increasing autocor-
relations (and thus egression from the mean
after the second occasion). Earlier examples
reflected a variety of characteristics, including
the persistence of initial nontransitory true



634 J. NESSELROADE, S. STIGLER, AND P. BALTES

o-(S)

C,'

I 2 3 4 5 6 7 8
Occasion

Figure 7. Autocorrelation sequence for the accumu-
lating advantage model.

score components and, in the case of the
autoregrcssive model, serially correlated true
scores. But although the true scores in the
autoregressive model are serially correlated
(and high true scores on one occasion tend
to be followed by high true scores on the
succeeding occasion), they are regressive in
that this component of the score tends itself
to regress toward its mean. That model does
not represent a situation of accumulating ad-
vantage, in which "the rich get richer and
the poor get poorer," but rather a situation
in which opportunities are available inde-
pendently of one's ability and past gains are
"taxed" and past losses are partly compen-
sated on each occasion. An autoregressive
model possesses a memory of the past, but
it lades with time. In the next example, this
is not so: Advantage does truly accumulate,
and the increasing pattern may occur.

We suppose in this example that an indi-
vidual initially has true score S\ = S and that
after each occasion his or her true score in-
creases by an amount a-S, where a > 0. (i.e.,
The true score increases by aS if 6* > 0; if
S < 0 it decreases by a\S\. The rich get
richer and the poor get poorer.) Then the
true score on Occasion i is Si = S + (i — l)aS
= [1 + (i — l)a]5, and the raw test score
on Occasion i is

F. = Si + e,,
= [1 + (i - \)a]S + e,,

where S and <?,- are independent (and hence

uncorrelated) and c-2(e,) is constant (e.g., the
same test is administered on each occasion).5

Here

covCSj, 5,-) = [!+(»- l)a>2(S)
and

Suppose, to simplify calculations, that <r2 (S) +
er2(e,-) = 1, so <r2(Fi) = 1. Then if X, = Y,-/

corr
[1 + (i - l)a>s(

{[1

Since a > 0, [1 + (i — 1)#]~2 decreases toward
zero as i increases, and corr (Xi, Xi) increases
toward <r(S), as shown in Figure 7.

The result indicates that the accumulation
of Si makes e,- a progressively less important
component of the scaled score Xj, since o-2(5)
increases while <r2(e,-) stays constant. The
reason corr(Xi, X,-) does not increase toward
one is that e\ does not become a less im-
portant component of Xi; we may write the
limit of corr (XL X,-) as a(S) = [1 - cr2(ei)]»,
in fact.

In this accumulating advantage model, the
true scores evolve deterministically, and there
is egression from the mean. To show that
deterministic evolution need not produce in-
creasing autocorrelations and to show how all
ordinal patterns (constant, increasing, and
decreasing) ma)' be encompassed in a single
model, let us consider a variant of the ac-
cumulating advantage model. Suppose

and
Si = 0*5,

Y, = 9*5 + eit

where S might be thought of as an initial
true score and 0 is a change parameter. If
0 < 6 < 1, then a positive true score decays

6 For the model given, changes in true score are
functionally related to the initial base: Si — 5y_i = aS.
However, the same pattern of autocorrelations can be
obtained from models in which true score changes are
only positively correlated with S, for example. Si — 5;_i
= aS + Hi, where the Ui are independent.
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geometrically with time; if 6 > 1, it grows
exponentially with time; the reverse is true
for negative true scores. The case 0 = 1
is just the classical measurement model
(Figure 2).

Then an easy calculation gives

cov(Fi, F;) = e'+1-<72(5)
<T2(F,0=e»<r(S)+<72(«),

and for i > 1,

corr(Xi, X,)
= corr(Fi, F,-),

{[ev(5)

Clearly, then, if 8 > 1, corr(A'i, X{) in-
creases toward 9o-(5)/[9V(5) + ^(e)J (sec
Figure 4), and if 0 < Q < 1, corr(Xi, X,-)
decreases toward zero (see Figure 3). If 6 = 1,
the sequence is stationary, as we have seen
(Figure 2). This model illustrates that the
decreasing pattern can arise from different
suppositions, as, for example, from the pro-
gressive (and deterministic) decay of an initial
true score or from a stochastic disappearance
of initial conditions, as in the autoregressive
model. Additional explanations could be for-
mulated, but these should suffice to illustrate
the range of phenomena of concern.

Discussion and Conclusions

Summary

We have tried to present a systematic
examination of regression toward the mean
with explicit attention paid to certain im-
portant design and model characteristics that
impinge directly on the interpretation of the
regression phenomenon.

We remind the reader that the mathematical
statements presented earlier concerning the
nature of regression effects on different cir-
cumstances rest, as do all such developments,
on certain assumptions and conventions. The
sequences of expected score values developed
stemmed from consideration of individuals
initially selected as having score X\ — x. As
mentioned earlier, repeated or subsequent

selection would result in different expected
outcomes than the ones presented here. We
also assumed that errors (e,-) are independent
of true scores (5,-) and of previous observed
scores (AT,-_i). Some of the models we dis-
cussed permitted Xj to depend on 5,_i by
allowing Sf to depend on 5,-_i. What if the
previous test score (X;_i) influenced the
present true score, as might be the case if
people are told their scores? Then 5, and e,_i
can be correlated, since 5, and 5,-_i + fi,_i arc.
The effect of this and other departures from
the assumptions, where plausible, needs to be
examined, but that is beyond the scope of the
present discussion.

One feature of primary significance in our
treatment of regression effects is the focus on
observation sequences that extend over more
than two occasions of measurement. Histori-
cally, discussions of the effects of regression
toward the mean are based largely on two
measurements (either two variables measured
on one occasion or one variable measured on
two occasions). We believe that research on
change processes will be best served by theo-
retical concepts and empirical inquiry ex-
tending beyond the two-occasion case and
thus have developed a multiple-occasion per-
spective on the nature of regression effects.
Examination of regression effects in a broader
temporal perspective shows that although
traditional conceptions are essentially accurate
in predicting what will occur between Occa-
sions 1 and 2, proper expectations for scores
at a third and later occasions are not so
evident. We return to some design implica-
tions of this fact.

A second important feature of our presenta-
tion is an explicit concern with the underlying
processes (deterministic or stochastic) assumed
to represent the observed data and how
variations in the nature of the scores lead
to different expected regression effects. Ex-
pected score sequences were presented for a
variety of models that might be assumed to
represent the kinds of data obtained from
experimental designs common to social and
behavioral science research. Included were
classical measurement theory models, both
with and without intervention effects super-
imposed on true scores, and autoregression
models, both with and without a permanent
true score component.
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To emphasize matters of traditional con-
cern to behavior change researchers, the mathe-
matical formulation was developed so that
the underlying structure of a sequence of
measurements could be characterized by the
nature of patterns of correlations between
scores on Occasion 1 and on subsequent occa-
sions £_corr(Xi, Xi), i = 2, 3, . . ., «J. Varying
the nature of these autocorrelation patterns
and extending the sequence of observations
to more than two occasions of measurement
provided the variety of expected regression
effects noted.

There are several possible patterns for
corr(/Yi, X;). For didactic purposes, we con-
centrated on three in particular to illustrate
a range of possible regression effects. Included
were the situations in which (a) corr(A'i, AT,)
decreased as i increased (as observations be-
came more removed in the sequence), (b)
corr(A'"i, X i ) increased as i increased, and
(c) corr ( X i , Xi) remained stable as i in-
creased. For all three of these general cases,
some regression toward the mean is expected
between Occasions 1 and 2. Only for the first
situation, however, is fu r the r regression ex-
pected. For the second situation, the expected
score sequence from Occasions 2 to 3 and later
actually shows egression from the mean. For
the third situation, the expected regression
effects are dissipated after Occasion 2, and
barring other influences, no fur ther change is
expected.

Implications for Design and Control

By understanding more clearly the nature
of the regression phenomenon in multiple-
occasion data in relation to other influences
affecting scores, one may engineer designs to
control for the expected regression effects. For
example, under the classical measurement error
model, regression effects are expended in one
measurement occasion after selection has oc-
curred. As a consequence, an easy control
arrangement is to use Occasion 1 as a selec-
tion point and to begin charting change for
the groups selected at the second occasion.
Intervention effects, however, depending on
when in the sequence after selection the inter-
vention is introduced, may lead to sequences
that involve regression toward the mean and
then egression from the mean. The point is

that when the underlying structure of the
score sequence (the model) has been iden-
tified, the regression effects are predictable,
and thus initial selection, intervention, and
measurement can be more usefully arranged
in the design of studies focusing on the as-
sessment of change.

Students of behavioral change should not
think of regression toward the mean as a
univocal phenomenon with straightforward,
unalterable effects. Rather, our examination
reveals that if one is to anticipate and take
into account the effects of regression in ana-
lyzing and evaluating change data, explicit
consideration must be given to the nature of
the process assumed to generate those data.
Designs can be arranged to deal more ef-
fectively with the confounding of substantive
change by expected regression effects, if the
underlying model can be specified and the
lengths of the observation sequences adjusted.

Statistically, whether the models can be
identified and estimated depends on the de-
sign. Typically, one could analyze collections
of individual's histories and not simply com-
pare means of treatment and control groups
(even randomly constituted ones). The latter
course would often be valid but would not
make the most efficient use of the data; real
effects might be masked by averaging or
might remain undetected because of inability
to take account of the correlation to estimate
better the variability of means.

Finalh', developmentalists are encouraged
to think beyond the confines of one or two
approaches (e.g., use of classical test theory
model, two occasions of measurement, and
simplexlike correlation patterns) as they at-
tempt to elaborate further the nature of
change across the life span. We believe that
developmental researchers should continue to
develop and formulate research designs that
exhibit the unique characteristics and strengths
of their fields. In the case of developmental
psychologists, for example, this involves the
study of multiple-occasion change. Recogniz-
ing, for instance, the significance of measure-
ment error in a two-occasion situation is
unquestionably important. However, letting
concepts based on two-occasion models be-
come a stumbling block to developmental
research would be unfortunate.
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