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The Map Method For Synthesis of
Combinational Logic Circuits

TH E SE ARCH for simple abstract
techniques to be applied to the design

of switching syste ms is still, despite
some recent advances, in its ear ly stages.
The problem in th is area which has been
attacked most energetically is th at of the
syn thesis of efficient combinati onal that
is, nonsequential, logic circuits.

Whil e this problem is closely related to
the classical one of simplifying logical
truth functions, there are some significant
differences. To each logical truth func
tion, or Boolean algebraic expression,
th ere corresponds a combin ati onal circuit
which may be constructed from a given
set of appropria te components. How
ever, minimizati on of th e number of ap
pearances of algebraic variables does not
necessarily lead to th e most economical
circuit. Indeed , th e criteria of economy
and simplicity may vary widely for dif
ferent types of compo nents . A genera l
approach to circuit synthesis must th ere
fore be highly flexible. What is perhaps
most to be desired is a simple and rapid
technique for genera ting a va riety of
near-min imal algebraic forms for the
designer 's inspection.

Boolean algebra ,1 or th e calcu lus of
propos itions, is a basic tool for investiga
tion of circuits constructed from 2-valued
devices. Its direct application to syn
thesis problems is, nevertheless, not com
pletely satisfactory. The designer em
ploying Boolean algebra is in possession
of a list of th eorems which may be used
in simplifying the expression before him ;
but he may not know which ones to try
first , or to which ' terms to apply them.
He is thus forced to consider a very large
number of alternative procedures in all
but the most tri vial cases. It is clear
that a method which provid es more in
sight into the structure of each problem
is to be preferred. Nevertheless, it will
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be convenient to describ e other methods
in terms of Boolean algebra. Whenever
th e term "algebra" is used in th is paper,
it will refer to Boolean algebra, where
addition correspon ds to the logical con
nective "or," while multiplication corre
sponds to " and."

The minimizing cha r t;" developed at
the Harvard Com putation Laboratory,
represents a step in the desired direction.
It makes possible th e fairly rapid deriva
tion of near-minimal 2-stage forms. By
a 2-stage form is meant a sum of products
of th e elementary va riables, or else a
prod uct of sum s of th e elementary varia
bles. These expressions may then be
further reduced by algebraic factoring.
The chief drawback to thi s method lies
in th e necessity of writing, and perhaps
era sing, on a cha rt th at, for n va riables,
contains 227' entries . Thus, we must
keep track of 1,024 entries for five vari a
ble problems and 4,096 entries for six
variable problems.

E . W. Veitch" has suggested a method
whereby results similar to those yielded
by th e minimizing char t can be obta ined
from an array contai ning only 2n entries
in a more rapid and elegant manner.
The map method , which is explained in
this paper, invo lves a reorganizati on of
Veitch's charts, an extension to the use of
3-dimensiona l arrays, and some special
techni ques for diode and relay circuits.

Maps

Let the active and inactive cond iti ons
of the inputs to a combinational circuit
be designated by assigning the values 1
and 0 respectively to the associated alge
braic variables. An assignment of a
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Fig. 1. Graphical representation of the input
co nditions for two variables

(A) Along two axes
(B) Along a single axis

simultaneous set of values to the n
variables for a given problem will be
called an input condition. Th ere are 2n

possible input conditions.
For example, with only two variables,

there are four input conditions. They
may be represented graphically by the
four squares in Fig. I(A) . Here, the
values of variables A and B have simply
been plotted along two perpendicular
axes. It should be noted that squares
which are adj acent, either horizontally
or vertically, differ in th e value of only
one of the variables.

If Fig. 1(A) is cut along its horizontal
midsection and the bottom half is rotated
into line with the top, as in Fig. 1(B),
th en a representation of the input condi
tions for two variables is obtained along
a single axis. Let us consider the squares
at opp osite end s of th e row to be termed
adjacent , as if it were inscribed on a
cylinder. Then, as before, adjacent
squares differ in the va lue of only one
variable. Conversely, if two input condi
tions differ in the va lue assigned to just
one of the va riab les, they are rep resented
by adjacent squa res.

If one also makes use of the ver tical
axis, one can represent th e input condi
tion s for three vari ables as in Fig. 2(A),
and for four variables as in Fig. 2(B).
In th e latter case, opposite end s of each
row or column should be considered
adjacent, as th ough the figure were in
scribed on a torus .

The labels on th e diagrams may be
simplified as shown in Fig. 3. The rows
or columns within a bracket are th ose in
which th e designated variable has th e
va lue 1, while it is 0 elsewhere.

A combinational circuit of the type
under considera tion has a 2-va lued output
which is a fun ction of the input condi
ti on. The synthesis problem may be said
to begin with th e specification of thi s
func tional dependence. Such informa
tion may be represented on a map as
follows : Place a 1 in each square which
represents an input condition for which
th e out put is to have the value 1. The
other squares may be imagined to contain
zeroes.

Synthesis of 2-Stage Forms

Consider th e function mapped 10

Fig. 4(A) . Its algebraic realizati on is
the product A 'BC 'D, where the primes
indic ate negati on or complementation,
for A 'BC'D= 1 if, and only if, A = 0,
B=l, C=O, and D = l.

Let us define a complete product to be
a product in which each of the vari ables
appears as one factor, either primed or
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Fig. 3. Input representations with simplified
labels

'--v- /
D

ends of columns and rows are adjacent.
If m variables are not fixed in a given

subcube, it is said to be m-dimensional,
and it contains 2n squares. A single
square is thus a zero-dimensional subcube.
Note that the larger p-subcubes corre
spond to products having fewer factors,
since fewer variables are fixed in them.

It is now easy to see how to obtain
economical 2-stage forms from maps.
The rules are :
1. Choose a set of p-subcubes which in
cludes every p-square at least once. In
general, it is desirable to make the selected
subcubes as large and as few in number as
possible.
2. Write down the sum of the products
which correspond to the selected p-sub
cubes. This gives the desired expression.

As an example of this procedure, we
can, for the function mapped in Fig . 6,
make the selection
j=AC'+A'CD+BCD

An alternate procedure is possible that
leads to a product of sums, that is, a con
junctive normal form instead of a sum of
products. First, this procedure is used
to obtain an expression for the negative
of the function mapped. This is done by
considering the empty squares to be the
new p-squares. In the case of Fig. 6

j'=A'C'+CD'+AB'C
The function desired, which is the nega
tive of this, is now obtained by thesimul-

'---v------' '---v------'
D D

SOME ONE DIMENSIONAL P-SUBCUBES

'---v------' '--v--'
D D

SOME THREE DIMENSIONAL P- SUBCUBES

Fig. 2. Graphical
representations of
the input conditions
for three and for four

variables

10

(e)

CD

'---v------'
D

01 11

Fig. 5 shows some typical p-subcubes
and the corresponding products. Each
p-subcube may be thought of as a simply
connected square or rectangular group of
p-squares, if it is recalled that opposite

Fig. 5. A number of typical p-subcubes and the corresponding algebraic products

1. The factors of the product are those
variables whose values are fixed within the
subcube.
2. A factor is primed if, and only if, its
value within the subcube is O.

braically: AB+A'B=B(A+A')=B.
Now note that the p-squares on the map
are precisely that set for which B = 1.

Let us define a subcube to be the set
of all squares on a map over which certain
of the variables have fixed values. A
subcube formed entirely of p-squares
will be called a p-subcube.

Each p-subcube may be regarded as
the map of a product formed according to
the rules :
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(A) f=A'BC'D
(B) f=A'B+AB=B(A'+A)=B
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Fig. 4. Maps of two functions

not. Then any function whose map con
tains a single 1 may be represented by a
single complete product. Each factor is
primed if, and only if, it has the value 0
at the square in question. Because each
square that contains a 1 gives rise to a
product, such squares will be called p
squares.

If the map of a function contains k p
squares, then the function may be repre
sented by the logical sum of the corre
sponding k complete products, each se
lected by this rule. This form of represen
tation is the complete disjunctive normal
form of the calculus of propositions. It
is often the starting point for algebraic
simplification.

However, it is usually possible to
write down a more economical representa
tion than a complete normal form by
direct inspection of a map . Consider the
function whose map is shown in Fig. 4(B).
Its complete disjunctive normal form is
AB+A'B. This is easily reducible alge-

B
-"-----.,

.;\-1H-I"
"------ -"r-

C
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Fig. 9 . Set theoret ic interpretation of a map

" Don't-Care" Conditions

Fig. 8. Map of a factorable function

Very often , th e outp ut of a circuit is
sub jec t to less rigid restricti on th an the
assignme nt of a definite va lue, 0 or I . for
some in put condi tions . The simp lest
such case is th at of no restriction a t all
This may occur because the input condi
tions in question never are realized 'in
practice, or because the output ha s no
effect in those cases. We shall designate

Fig. 7. Maps used to minimize a diode circuit
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Factoring by Inspection

lead to equally good 2-stage forms ; but
the former yields the best factored form.
Inspection of the map indicates th at p
subcube BCD lies in CD along with A ' CD,
thus providing two commo n factors,
whil e th e alternative cho ice 'of A BD will
give only a single commo n factor in either
of two ways. Wh en inspecting th e map,
it is not necessary to think of th ese sub
cubes bv name as we mu st in th e text,
bu t merely to observe their relations, as
sets of p-squares.

Even more exte nsive use of the set
theoretic union (our +) and intersection
(our ') relations is possibl e. Consider
Fi g. 9. Algebraically , we get

!= A 'B 'C'D+ A 'B'CD'+ABC'D+ABCD'
= A 'B'(C'D+CD ' H AB(C'D+CD' )
= (.1'B '+AB )(C'D+ CD')

But it can be seen directly that the four
p-squares form the set which is the inter
section of the uni on of A'B ' and A B and
the union of C'D and CD'. Thus f=
(A 'B'+AB)(C'D+CD') , as illustrated
by the dotted lin es.

one pair of aster isks lies in the same p
sub cube. In some cases it may be found
that only k asteri sks ca n be placed on a
map in this manner , and yet more than k
terms are required to represent the func- CA)
ti on . When this occurs, a proof that at
least k+1 terms are necessary can be
carried through by contradiction. When
th e a t tem pt to asso cia te a p-subcube with
each as terisk is mad e, it will be found im
possible to include all p-squares in the k
p-subcubes so selec ted.

Wh en circuits are not restricted to the
2-stage variety, it is sometimes advan
tageous t o reduce fur the r th e 2-stage
forms by algebraic factoring. It is of
some importanc e to sho w that factoring
may also be carried out directly by inspec
ti on of a map .

For examp le, th e function mapped in
Fi g. 8 is

!= A 'B '+B' C=B'(A '+C)

Since both the chosen p-subcubes lies
within subcub e B , th e pre senc e of the
common factor is established by inspec 
tion .

Occasionally, observat ion of the possi
bilities for factoring will det ermine the
selection of subcubes and lead to a better
circuit th an would otherwise be ob ta ined .
In th e case of Fig. 6, the choices

! = A C'+.1 'CD+ BCD =.1C'+CD(A'+B)
!= A C'+ A'CD+ABD=A (C'+BDHA 'CD

or =AC'+D(A'C+AB )

B

1

1

1 1 1

1 1

~
D

tan eous interchan ge of primes and non
primes, and of multiplication and addi
tion signs .

Thus

Now note that asterisks are placed in two
of th e p-squares, so chosen th at no single
p-subcube includes both of th em. Hence
at least two p-subcubes are requ ired .
Furthermore, th e selected p-subcube con
taining each asterisk is of maximum pos
sible dimensionality. Hence eac h of the
corresponding pro ducts contains the
minimum number of factors.

The same kind of proof mu st be carri ed
out for the altern ate procedure, as illus
trated in Fi g. i (B) . Here we have

J'= A 'B '+B' C'
f= (A +B )(B+C)

This is not as good, however, as th e pre
vious result, which we have now proved
to be minimal in

Fig. 6. Map of a function

1. Number of terms
2. Appearan ces of the variables
3. Diodes

Thi s proof depends upon the fact that no

Minimal 2-Stage Forms

Both of these procedures have been
pro posed by Veitch."

In combinational diode circuits, there
is usually one diode per input lead to
eve ry stage. For 2-stage circuits, this
means one diode per appearance of each
algebra ic variable plus one diode per
product, or per sum, of these variables.
It is ofte n a simple matter to min imize
rigorously th e number of diodes used in
such a circuit.

Consider Fig. 7(A) . The dotted lines
correspond to th e choice of p-subcubes.

! =B+AC

! = (A +C)(c +D )(A '+B+C' )
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Z 0 T F S245Digit

0 0 . .0 ..0 .. 0 0 0 0 1. .. 1
1 1. .0 ..0 0. . . 1. .. 1. .. 0 0 0
2 0 1. . . 0 0 . . 1. .. 0 1. . . 0 0
3 1. . . 1. . . 0 0 0 1. . . 1. . . 0 0
4 0 0 1. . . 0 1. . . 0 0 1. . . 0
5 0 0 0 1. 0 1. . . 0 1. .. 0
6 1. . . 0 0 1. 0 0 1. . . 1. . . 0
7 o. . .1. .. O 1. 1. . . 0 0 0 1
8 1. . . 1. .. 0 1. 0 1. . .0 0 1
9 O O 1. . . 1. O 0 1. . . 0 1

A prevent any sneak paths between ter
minals j and k. While disjunctive com
binations of this sort are certainly not
new to the relay art," this section is in
cluded to show how they may easily be
recognized on maps, and hence how they
playa part in the selection of subcubes.

Note that the paths ABC' and A'BC',
which give rise to one of the combinations,
differ by only a prime on A. The corre
sponding subcubes in Fig. 11 are seen to
be related by a simple displacement.
The same is true for the other pair of p
subcubes.

A little practice will enable the de
signer to evaluate the various possibilities
for factoring and disjunctive combination
by inspection of the maps. It will then
be a simple task to make a good choice
of p-subcubes.

Table I. SpeciRcations for a Coded Decimal
Digit Translator

It is of interest to note that for any
given function some of the variables or
their primes may be unnecessary. That
is, it is possible to find an algebraic repre
sentation of the function in which these
variables, or negated variables, do not
appear. Hence the corresponding relay

Unnecessary Contacts

B C I A

S)
eo c 1A

~

The map method, inasmuch as it yields
expressions in Boolean algebra, can be
used to design 2-terminal, series-parallel
relay contact networks, but not bridge
type 2-terminal network s. Hence, many
2-terminal contact networks designed
by means of the map method will not be
minimal in contacts or springs. This
will be true, in particular, of the sym
metric circuits. 4

However, in the case of complicated,
multioutput networks, th e map method
may be a very effective tool. Suppose
that terminal i is a ground, to be con
nected through networks i ij and i ik to the
output terminals j and k respectively.
The specifications for ft j and i ik. which are
networks on the contacts of relays A , B,
C, D, are mapped in Fig. 11. If each
net is synthesized separately , there
results the circuit of Fig. 12(A). In
Fig. 12(B), it is shown how, with a slight
rearrangement, parts of the upper paths
to j and k can be combined, as can parts
of the lower paths. This results in a
saving of four contacts.

The second circuit is completely equiva
lent to the first, for the transfers on relay

(

Disjunctive Combination in Relay
Nets

equal to 0, and the other two equal to 1.
The rule for making such choices is as

follows: Assign values to the d's which
enlarge and combine the necessary p
subcubes as much as possible but do not
make necessary the selection of any addi
tional subcubes.

The ease with which don 't-cares can
be properly evaluated is one of the major
advantages shared by the minimizing
chart, Veitch chart, and map methods in
varying degree.

1 1

, 1

1 1

1 1

d

1 d

1 1 1 J
l d 1 d

obtained by setting the two d's on the right

'---y------/
D

~

D

Fig. 11. A i-output problem

Fig. 10. Map of an Incompletely speciRed
function

such don 't-care conditions by placing the
symbol d in the appropriate squares.

It is usually quite simple to make an
economical assignment of values to the
d-squares by inspection of a map . Since
these are at the disposal of the designer,
it is to his advantage to employ them so
as to simplify the resulting circuit.

The best 2-stage form for the function
in Fig. 10 is

!=AC'+BD

A
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Fig. 15. The flnished translator network

2 I

- '"
L~

4

- '" 5

2 1 I L:",
1

4 5

I '"
5

2 , 5

, I 5

4

2 5
X

~~
4 5

--=- ~~

~
5

, 1 1

d d

d d

1 d d

,
d d

, , d d

1 d d

F=

0=

, ,
1 d d

1 d d

d d

4
~

~
5

5 -

1

1 d d

1 d d

, d d

1

, 1 d d

d d

, d d

z=

,{

,{

T=

Fig. 14. Work sheet for synthesis of the
translator
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Fig. 1 3. A translato r problem

Fo

relays. From these specifications, one
obtains the five maps in Fig. 13.

At th is point, p-subcubes must be se
lected, and the desirability kept in mind of
factoring and disjunctive combinations.
The chosen p-subcubes are listed in
Table II, where the numbers in paren
thesis indicate the order in which they
were selected. This should be followed
on the maps in orde r to see how the terms
will combine.

A check on the six d-squares now shows
that each of them has been taken = 1 on
at least three of th e maps. Hence the
restricti on on unused conditions has been
satisfied, and no cha nges need be made
in Table II .

The worksheet on which the network is
planned is shown in Fig. 14. The lines
drawn between terms designate disjunc
tive combinations or factoring; and the
symbols ad jacent to the lines indicate
which contacts are shared in each case.
A careful comparison of this worksheet
with the resulting network, shown in
Fig. 15. will enable the reader to under
stand both.

s

Table II. A List of Selected p-Subeubes

Tz

Suppose it is desired to find a relay con
tact network to translate coded decimal
digits from a 1-2-4-5 code to 2-out-of-5
code. The five outputs will operate the
relays Z (zero) , 0 (one), T (two), F (four),
and S (seven) . The required translation
properties are listed in Table 1. The
unarithmetic representation for zero is
standard in the 2-out-of-5 code.

The remaining six input conditions for
th e 1-2-4-5 relays are unused or don't
care conditions. However, it is required
that none of these conditions results in
operation of zero or two of the five output

Illustrative Example: A Relay
Translator

wherein both the following rules hold :

1. A function may be represented without
the appearance of an unprinted variable.
say D if. and only if. to each p-square in
subcube D there corresponds an adjacent
p-square in subcube D' .
2. A function may be represented without
the appearance of D' if, and only if. to each
p-square in subcube D' there corresponds
an adjacent p-square in D.

(1) 4S' (2) 4S (10) 1'2'4 'S' (6) 12 (8) 12'S
(3) 12 ·S· (4) 12·S (12) 2S (7) 12 'S' (13) 4S'
(S) 1' 2 (11) 2S' (14) -is (9) 1'2·4·S ( IS ) 1' 2'4

2

T £.
' 2' 5
1' 2'4

2S 45

<, 2 \ d4'~'
~25 4

45

(
45

5 12'5

£ .Q
" 2-------=------ 12

,(,ts " 2'4 5
5 45' ' 2' 5'

contact network will not contain make
contacts, or break -contacts, on some of the
relays.

For examp le, the functions in Fig. 11
are shown on four -variable maps, but
they may be realized in terms of only
three variables, as in Fig. 12. Neither V
nor V ' is necessary.

In this case, it can be seen at a glance
that the patterns appearing in the V and
D' subcubes in both maps are identical.
Therefore the output is independent of
the value assigned to V . This is a case
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Three-Dimensional Maps

Up to this point , we have discussed
functions of no more than four variables.
If it is desir ed to increase the number of
variables on a map, two possibilities sug
gest themselves:

1. Increase the number of variables
plotted on each axis.
2. Use three mutually perpendicular axes
instead of two.

Both methods are feasible. If
method 2 is employed, th en for (even) 11

variables, we will have n/ 2 on each axis.
This means an array of 2n12 by 2n/2
squares. However, with more th an two
variables on an axis, the definition of
adjacence must be extended rather ten
uously and subcubes become more diffi
cult to recognize. This scheme is like
the one originally suggested by Veitch ."

We have chosen method 2, which allows
a 50-per-cent increase in the number of
variables without any extension of the
rules. Thus, for six variables, the meth
ods we have described still apply, but
in three dimensions.

A suitable framework is shown in Fi g.
16. It consists of four 6-inch square
plexiglass sheets supported at l- I/ 2-inch

intervals by rods of the same material.
The rods and sheets are glued together.
The author has been told that the 3
dimensional ticktacktoe boards sold at
some toy shops under various names are
sat isfactory .

Each sh eet is ruled at J-I/2-inch inter
vals parallel to both pairs of edges. Thus
we ha ve a 4-by-4 array of squares on
every sheet . The plexiglass framework
enables us to do away with the writing
and erasing which would be necessary
when dealing with similar problems by

Fig. 16. The cube: a 3-dimensional plastic
framework for maps

other methods . In using it, we employ
movable markers, such as 7I S-inch plastic
roulette chips. The following scheme is
suggested:
1. Mark all p·squares with white chips.
2. Mark all d-squares with black chips.
3. As subcubes are selected, mark each
one with a set of distinctively colored chips .

Chips of eight or nine different colors
are usually sufficient to make all the
selected subcubes easily distinguishable.
The corresponding products are then
found by means of labels on the edges of
the plastic cube.

One satisfactory labeling scheme is
shown in Fig. 16. The two bottom planes
are A, while the middle two are B. The
variables C, D, E, and F are arr anged on
each plane as on the top, each letter serv
ing to label two rows or columns. Oppo
site ends of an y row, column, or vertical
on the cube must be considered adjacent.
Then every subcube may be thought of as
a rectangular parallelepiped with edges 1,
2, or 4 units long. For multioutput prob
lems, it is best to have a set of cubes, one
per output.

The extension to seven variables is

probably best accomplished by placing
two cubes side by side. Corresponding
squares in the tw o cubes must be con
sidered adjacent when looking for p
subcubes. Ei ght variables can be han
dled with a set of four cubes, and nine
variables require eight cubes. In the
latter case, it is convenient to make
them so as to stack easily into two layers
of four each. Beyond nine variables, the
mental gymnast ics required for synthesis
will, in general, be formidable . Other
methods are even more limited in this
respect. Outstanding exceptions to this
limitation are the symmetric and posi
ti onal circuits, discussed by Keister,
Ritchie, and Washburn.!

Conclusions

Employment of the map method seems
to be profitable when nontrivial problems
in combinational circuit synthesis arise.
Its most important advantages appear to
be flexibility and speed . Further, if
such problems ar ise frequently, it is
ad vantageous to have a method, such as
this, which can be learned and used effec
tively in a shor t time by designers new
to the field.
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Discussion

S. H. Caldwell (Massachusctts Institute of
Technology, Cambridge, Mass.): When
Shannon published his classic paper on
analyzing relay and switching circuits; ' the
engineer was given a powerful method for
the solut ion of many problems in the field
of switching circuit s. Unfortunately. when
one att empted to use th e method, th ere
arose a peculiar sort of frustrati on. Given a
circuit which had been designed by th e
methods of trial and error prevalent at th e
tim e, it was readily possible to usc Shan
non's techn iques to investigat e alterna tive
forms. In particular, th e switching algebra
could he used directly for th e simplificat ion
of cont act networks. But th e situation was
different with respect to the synthesis of a
network (unl ess it could be described by a
symmetric funct ion). In th e general case.

it was necessary to resort to a word state
ment of the requir ed circuit charact erist ics
and then convert thi s to an algebra ic state
ment.

For simple problems, and especially those
which involv ed a small number of variables.
no difficulty was encountered, but because
of their very simplicity such probl ems rarely
needed th e algebra ic approach. When prob
lems of any magnitude were at tempted, the
method brok e down both because of the
difficulty of writing word statements and
because of th e difficulty of convert ing bulky
word st ate ments into algebraic expressions.

These difficulti es were resolved by the
adaptat ion of the logical truth table into th e
familiar tabl e of combinations (see ref. I of
the paper ). This mechanism enabled th e
designer to state his requirement s in an
orderly manner, and gave him a systematic
means for checking the completeness of his
reasoning . Moreover. the transition from

the table of combinations to an equivalent
algebraic state ment became almost a matter
of routine, depending on individual prefer
ence for simplifying the algebraic expression
by inspection of the table or by algebraic
manipulation.

The arrays described by Veitch (see ref. 3
of the pap er) and by Mr. Karnaugh repre
sent further development of the table of
combin ations into forms which are more
compact. and which also have the property
of making more evident th e way s in which
the algebra ic expression of a switching func
t ion can be simplified. Of course. the end
result desired in all cases is a minimization
of th e required circuit . what ever we mean
by the word " minimizat ion."

The problem of manipulating functions
of many variables is much like th e problem
the physicist had in his development of
mathematical models of atomic structure.
Over a period of years he succeeded in
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getting better and better mathematical
solutions for the hydrogen atom, but none
of his methods really worked when he tried
to add just one more electron. Similarly,
in these various methods for reducing
switching functions to minimal forms we
seem to be producing better and better
ways for reducing functions of four variables,
but we are still rather unhappy about five
and six variables. The author's plastic
cube for the treatment of six variables is an
ingenious extension of his four-variable
array, and it certainly has the reduction
properties he ascribes to it . It does not ,
however , have the neatness of display which
is a feature of the plane map; groupings of
variables are not as immediately evident,
and alternative groupings are even less
apparent.

Mr . Karnaugh rightly points out that the
search represented by this paper is in its
early stages. It should be added that the
necd for better methods for handling the
problem in more than four variables will be
come acute, and it is a problem worthy of
the best thinking. Recent developments in
the synthesis of sequential circuits show that
the end result of a sequential synthesis is a
combinational problem. It is a multiple 
output problem in many variables, and has
ramifications which will tax the best efforts
of the circuit designer. Among the possi
bilities for meeting this problem is that of
mechanizing the process involved in the
map method.

LOW-LE VE L electronic or electrical
measurements are particularly sus

ceptible to errors introduced by external
electromagnetic influences. The cou
pling of spurious electromagnetic energy
into a measuring system not only may
result in the receipt of false information
but also can sometimes cause the com
plete masking of the desired data as
well. For these reasons, many low-level
measurements, such as the determination
of crystal characteristics, filter insertion
loss, noise measurements, and the like,
must be made in a location as free as
possible from such interference. In a
laboratory, such isolation from interfer
ence is usually achieved by completely
enclosing an area in copper or bronze
screening. By shielding off a region rela
tively free of external interference in this
way, a working area is provided within
which sensitive electronic measurements
can be made.

Incidentally, I am not impressed by the
drawbacks attributed to the Harvard Com
putation Laboratory minimizing chart.
The large number of entries involved is no
drawback in these days of cheap duplication
processes. Keeping track of the entries is
really a simple routine. In using the chart
for the realization of six-variable functions
with don't-care conditions, I find that one
rarely has to complete the vertical ruling of
the entire chart because the required condi
tions are usually satisfied with terms at the
left-hand side of the chart. In some cases
one finds a condition which is satisfied by
only one possible minimal term, where the
acceptance of that term in turn specifies
the nature of one or more don't-care condi
tions. Of course, the six-variable cube in
herently contains the same information, but
it is doubtful that its display gives the de
signer quite as much immediate guidance as
he gets from the minimizing chart.
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M. Karnaugh: In view of Professor Cald
well's remarks about mechanization, it
appears to be desirable to restate the reasons
for presenting this paper.

The map method, in its present form, is
likely to be useful in two ways: as a peda-

Certain instrumentation requires a
much higher degree of freedom from
extraneous influences than can be ob
tained in screened enclosures. A reduc
tion in the shielding efficiency of screened
booths occurs at the lower frequencies be
cause of practical limitations in wire size
and at higher frequencies because the
wave lengths begin to approach the dimen
sions of the mesh openings. Fig. I
shows a typical attenuation curve of a
screened room. Because sheet metal
presents neither of these difficulties, it is
often used instead of screening, to enclose
those areas in which a high degree of
shielding is required .

Copper sheet has ordinarily been used
for this purpose, although copper-clad
steel has been used in some cases. Such
rooms are usually double-walled; the
inner and outer sheet-metal walls are
spaced about 4 inches apart and are insu
lated from each other except at the point

gogic device, for the introduction of ideas
about logic circuits and their synthesis, and
also as a desk-top aid to the working engi
neer .

In making full use of the human faculty
for recognizing geometric patterns at a
glance, the map method supplies a number
of short cuts to synthesis that are not as
easily found by other methods. On the
other hand, the development of machine
which can recognize such relationships has
only begun. If one mechanizes the map
method in a more conventional way, using a
repetitive scanning technique, then the re
sult is similar to a mechanization of the
Harvard minimizing charts and no special
advantages are expected.

The minimizing charts, which represent
one of the first significant advances over
purely algebraic manipulation, have proven
their usefulness in practice and will un
doubtedly do so even more convincingly
when machines are programmed to work
along the same lines . However, it has been
the author's experience that maps present
the specifications for a logic circuit in a form
more easily used by the human operator.
Here, habit and taste enter the picture and
it would be unwise to dwell on this point.

For those who are relatively new to the
problem under discussion, it is suggested
that a number of problems be worked by
both methods. It is of interest to see how
they are related, and each will throw some
light on the operation of the other.

where the power line enters the room.
Ordinarily the walls are hung upon a kiln
dried, wax-impregnated wood frame and
all seams and mounting nails or bolts are
completely soldered over to reduce the
possibility of energy leakageinto the room.
Special seals are used to insure con
tinuous metal-to-metal contact around
the periphery of the door. Air is intro
duced through "waveguide below cutoff"
vents, the cutoff frequency being deter
mined by the expected top operating fre
quencies in the room. All power lines
entering the room are filtered.

These rooms are very expensive, having
ranged in cost from about $10,000 for
small rooms to $100,000 for much larger
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