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Abstract 

This paper estimates indirect benefits of improved air quality induced by hydraulic fracturing, or “fracking” 

in the continental United States. The recent increase in natural gas supply led to displacement of coal-fired 

electricity by cleaner natural gas-fired generation. Using detailed spatial panel data comprising the near 

universe air quality monitors merged with US power plants locations, we find that coal generation decreased 

by 28% attributable to lower natural gas prices.  Using an IV identification strategy to isolate fracking’s 

impact on natural gas prices we identify a 4% decrease in average PM 2.5 levels due to decreased coal 

generation.  These benefits vary geographically; air pollution levels decreased most in parts of Alabama by 

35%. Back of the envelope calculations imply accumulated health benefits of roughly $17 billion annually. 
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Introduction 

How do new technologies impact the environment? Many innovations are surrounded by extensive 

discussions about their direct impacts for the natural environment, potentially leading to the ban of the new 

technology. In many settings of the economy new technologies replace existing dirty technologies, leading 

to important indirect environmental benefits. In the wake of new innovations, these indirect effects are 

sometimes overlooked, although they are required in full cost benefit analysis (Prest and Turvey 1968). 

Furthermore, to estimate these effects can be challenging when new technologies are introduced at times 

of major macro-economic shifts.   

This paper estimates the short run causal effect of fracking on ambient air quality attributable to 

natural gas’s displacement of coal in the electricity sector. In particular, we quantify indirect air quality and 

health benefits due to displacement of coal-fired electricity generation by cheaper natural gas-fired 

generation. The 2009 advance in horizontal drilling and hydraulic fracturing (“fracking”) technology is 

arguably the most important change to US energy markets since the OPEC crisis and has had vast 

implications for the American economy (Hausman and Kellogg 2015), substantially increasing the US 

natural gas supply. 

The conventional wisdom is that fracking induces negative localized environmental externalities, 

many of which have been recently discussed in the growing economics literature on fracking.1 Some 

regulators have limited or prohibited fracking. New York State, for example, has banned fracking entirely, 

and many U.S. municipalities and EU countries have strictly limited its scope. 

But because fracking has dramatically decreased U.S. natural gas prices, it has potentially 

decreased coal consumption and concomitantly improved U.S. air quality. According the EIA (1998), coal-

fired power plants, as compared to natural gas-fired power plants, emit 392 times as many units of 

particulate matter (PM)2 per megawatt hour (MWh) of electrical generation.3 Between 1950 and 2008 about 

half of US electricity generation came from coal. Between 2009 and 2016 this proportion dropped to 35-40 

percent. Indeed, one contribution of our paper is to estimate the relative impact of coal vs. natural gas on 

air quality econometrically using the (near) universe of all natural gas and coal-fired power plants. As a 

                                                           
1 Damages discussed in the economics literature include: toxic leaks into groundwater supplies (Muehlenbachs, Spiller and 

Timmins, 2013, 2015); chemicals exposing surface water (Olmstead et al., 2013); traffic accidents (Muehlenbachs and Krupnick, 

2014, Graham et al., 2015), earthquakes (Koster, 2015), price shocks to local nontradable goods adversely affecting individuals 

living near fracked wells (Allcott and Keniston, 2015). Natural gas leaks are discussed in Brandt et al. (2014) and Jackson et al. 

(2014) provide an overview of costs and benefits of fracking. 

2 PM is linked to a number of serious health and other externalities, well documented in the economics literature, see Graff Zivin 

and Neidell (2013) for a recent review of the literature. 

3 The cited ratio of 392 is based on engineering studies.  
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result of its effect on natural gas prices, fracking may have introduced indirect non-market benefits through 

air quality improvements. Air quality benefits are especially important, as a large share of the U.S. air 

quality monitors are in noncompliance with the current EPA air quality limits, which were imposed in lieu 

of Pigouvian taxes to mitigate PM’s negative health externalities.   Figure 1 shows this explicitly by showing 

the distribution of air quality monitors that are out of compliance during our sample period.  

To estimate these indirect effects, however, poses major econometric challenges because the 

fracking boom occurred simultaneously with fundamental shifts in the macro-economy. During our period 

of study, 2007 through 2012, changing structures of electricity markets, growing Chinese demand for coal, 

and most of all the Great Recession and subsequent recovery all had the potential to affect patterns of 

electricity generation.4  For example if the recession led to lower electricity demand and fossil fuel 

generation, air quality might have improved anyway.   

To estimate the causal impacts of fracking on electricity sector pollution, we therefore must 

construct the appropriate counterfactual of what electricity generation would have been in the absence of 

fracking’s impact on natural gas prices, ceteris paribus.  In this way, we estimate what would have occurred 

to electricity sector pollution if fracking had been banned in the U.S.  Aside from adequately modeling fuel 

substitution, there are three principal endogeneity challenges to do so.  The first is the accounting for the 

recession’s impact on electricity demand.  As a result, we must have a research design which conditions on 

observed electricity generation.  Second, some of the decrease in natural gas prices which occurred over 

our sample was due to decreased demand attributable to the recession.  As a result, we must isolate 

fracking’s impact on natural gas prices specifically within our research design.  Third, over our time period 

there were various EPA regulatory changes.  As a result, our research design must also account for EPA 

regulatory changes which occur in our sample period.  Note that we do not attempt to answer the more 

complicated question of how cheaper natural gas impacted investment decisions for new natural gas fired 

capacity, thus ending our sample period before 2013 when natural gas capacity began to increase.  As a 

result, our study focuses on short to medium run impacts of fracking on U.S. air quality.   

 To overcome this identification problem, we propose a three step IV empirical strategy to quantify 

how fracking indirectly affected air quality via impacts on the electricity sector. First, we isolate the effects 

of relative fuel prices from other industry forces by constructing regional least cost electricity dispatch 

models. Using hourly data comprising the electrical generation, fuel input prices, and boiler specific 

                                                           
4 We begin our dataset in 2007, 2 years before the fracking revolution that started around 2009. We end our study in 2012 to 

mitigate concerns about increases in natural gas capacity attributable to the natural gas price decrease. 



 4 

efficiency levels5 of the near universe of all US power plants, we construct an instrumental variable (IV) 

from the dispatch order. The simulated dispatch orders indicate how many MWhs each US power plant 

produces each hour as a function of the relative input prices of coal, oil, and natural gas as well as the 

regional composition of plant capacities.  Macroeconomic impacts during this period are therefore held 

constant in our counterfactual scenario. While dispatch models are common in the Industrial Organization 

literature (Wolfram (1998) and Borenstein, Bushnell and Wolak (2002) are two examples6), to our 

knowledge we are the first to use a dispatch model to econometrically estimate the causal impacts of 

changing market conditions on environmental outcomes.   

 Second, we evaluate how changes in electricity dispatch affect local air pollution. This analysis 

combines precise information from the universe of EPA-operated air quality monitors with the exact 

location of all power plants. Rather than conduct an ex ante simulation of air quality changes using 

atmospheric chemistry models, we look at how observed changes in electricity generation at power plants 

affect the observed patterns of air quality. We show that changes in relative prices substantially alter 

generation patterns across power plants and significantly change local air quality. Not all price changes, 

however, can be attributed to fracking (for example, coal price increases because of surging coal demand 

in China are unrelated to fracking).  

 Our third and final step isolates the portion of the natural gas price change that is related to fracking. 

Due to limitations of the global natural gas transportation network, increases in the US natural gas supply 

during our sample period were largely consumed domestically, leading to a decrease in US natural gas 

prices relative to international prices. Hausman and Kellogg (2015) attribute a US natural gas price decrease 

of $3.41/mmBtu7 to fracking, which represents a decline of roughly 50% from the 2007 price.  We also 

perform robustness checks around this number.  Using our IV estimate of the impact of the relative price 

change on air quality, we simulate air quality in a counterfactual scenario in which no fracking had occurred, 

ceteris paribus, by adding the Hausman and Kellogg (2015) estimate of $3.41 to the 2012 price of natural 

gas. Because we focus on relative fuel prices with a dispatch model, instrumented changes in generation 

are orthogonal to changes in EPA regulation.  Hence, for our 2012 counterfactual, we let the economy 

                                                           
5 The heat rate of a boiler is measured by the quantity of fossil fuel burned per unit of electricity generated. The higher the heat rate 

the more inefficient the production of electricity. While typically marginal costs cannot be observed in most industries, the public 

information of heat rates together with the public information of input fuel costs allows us to estimate the marginal costs for each 

power plant.  

6 As in those papers, we maintain the assumption that load is inelastic with respect to wholesale electricity prices since the 

marginal user rarely pays wholesale prices and instead pay retail prices.  

 
7 All prices in this paper are in 2012 U.S. dollars, using CPI according to the Historical Chained Consumer Price Index for All 

Urban Consumers, U. S. city average, all items (C-CPI-U).mmBtu stands for one million British thermal units and is the standard 

measure for one unit of natural gas.  
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evolve from 2007 to 2012 as it actually developed, except that we set the price of natural gas to the level as 

if fracking had been banned since 2007.   

 We find large and precisely estimated effects of fracking: coal generation declined by 28% on 

average and ambient air quality increased an average of 4% due to the displacement of coal by 2012.  Our 

spatially differentiated impact analysis, however, shows substantial heterogeneity in the geographic 

distribution of air quality benefits. Local air quality increased by 35% in the area of greatest coal 

displacement. Back of the envelope calculations imply that fracking produced health benefits of roughly 

$17 billion annually. To put this benefit into context, note that Hausman and Kellogg (2015) estimate direct 

benefits of $25 billion annually for the electricity market due to fracking. Hence our indirect estimated non-

market benefit account for an additional 68% of this annual market based surplus.8 Note that this indirect 

environmental benefit from fracking is much larger compared to the environmental costs heretofore 

estimated.9 As a result, we find evidence of a significant indirect non-market environmental benefit 

attributable to fracking using standard VSL estimates.  However, this estimate ignores other non-market 

costs like methane leakage, damage to local roads, earthquakes and any other externalities.  

In addition, this paper contributes to the knowledge of atmospheric pollution conditions. The 

reduction in coal-fired generation provides us with a unique opportunity to econometrically estimate the 

contribution of coal-fired power plants to air pollution. We find that shutting down all U.S. coal-fired power 

plants would on average decrease local air pollution by 16% (confidence interval from 9% to 23%). There 

is substantial heterogeneity, however—in the most coal intensive area of the US, a complete shutdown of 

coal-fired generation would decrease local PM2.5 levels by 89%. While the atmospheric chemistry literature 

continues to debate the source apportionment and spatial modeling of PM2.5 (i.e. Yu et al. 2013, Crawford 

et al., 2015, Pirovano et al. 2015), our study—to our knowledge—is the first to empirically estimate the 

apportionment for coal on a nationwide level. We also find estimates for NOx and SO2, but these estimates 

are less precisely estimated.   

This paper builds on a growing literature that uses quasi-experimental research designs to quantify 

how environmental regulation, manufacturing production, transportation, and other forms of economic 

activity affect air quality and human health. This body of work uses either local variation in air quality 

conditional on detailed fixed effects (Currie and Neidell 2005, Schlenker and Walker 2011) or observed 

policies with sharp variation that is conducive to difference-in-differences designs (Chay and Greenstone 

                                                           
8 This paper does not estimate the direct negative effects of fracking. These would need to be added for a full cost benefit analysis, 

which is beyond the scope of this paper. 

9 The largest upper bound monetary estimate we could find is from Ames et al. (2012), that estimate that fracking produces an 

upper bound damage on groundwater of $250 million per year.  
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2005, Isen et al. 2014). Fabra and Reguant (2014) use emission prices to instrument for emission costs and 

identify pass through in the electricity market and Deschenes, Greenstone, and Shapiro (2012) use a triple 

difference design to study the effects of a NOx regulation on defensive health expenditures. A conceptually 

closer research design to ours is Mansur (2007), which develops an electricity dispatch model to simulate 

emission rates of firms with different levels of market power, but does not use a dispatch model to 

econometrically identify impacts on ambient pollution levels. In addition, recent papers by Linn et al. 

(2014), Cullen and Mansur (2015), Knittel et al. (2015), and Holladay and LaRiviere (2016) analyze the 

mechanisms of the fuel switching behavior and discuss implication on carbon emissions profiles. We 

expand on this work by closely linking an economic model of electricity markets together with detailed 

data on air quality to quantify the indirect environmental consequences of a general equilibrium economic 

shock—a change to natural gas extraction technology.   

The rest of the paper is organized as follows. Section 2.1 describes our data sources and 2.2 provides 

a first intuition of the correlation between electricity production by coal, plant emissions, and ambient air 

quality. Section 3 describes the construction of our dispatch model that we use to simulate our instrumental 

variable. Section 4 outlines our econometric framework and Section 5 presents regression results. 

Conclusions and further thoughts on research are offered in Section 6. The Appendix lists details of our 

data and several alternative specifications.  

 

2. Data 

2.1 Description of Data 

 We study the period between 2007 and 2012 for several reasons.  First, the period of study 

captures the nationwide decrease in natural gas prices, which begin in late 2008 and early 2009.  Second, 

by ending the sample in 2012, we avoid any changes to the stock of natural gas-fired generation capacity 

which resulted from decreased natural gas prices.  In order to extend the analysis to 2013 and beyond we 

would need a dynamic model of natural gas investment for the appropriate no-fracking counterfactual.  As 

a result, the study period takes as the counterfactual what would have occurred had there been no 

endogenous investment decisions by electricity generators.  Studying the effects of fracking while allowing 

endogenous investment would require a dynamic model and is outside the scope of our study.  Third, in 

late December 2012 the EPA announced more stringent air quality standards for PM 2.5, which is a by-

product of coal-fired electricity generation.  Stopping the sample in 2012 avoids the confounding effects of 

this regulatory change.  
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We collect ambient air pollution data from the Environmental Protection Agency’s (EPA) Air 

Quality System (AQS), which compiles ambient levels of PM2.5, SO2, and a variety of other air pollutants 

as measured by a network of approximately 5000 monitors across the United States.  Following the example 

of Deschenes, Greenstone, and Shapiro (2012), we restrict our observations to those monitors that report a 

minimum of one time during each of at least 47 weeks out of every year from 2007 to 2012.  This restriction 

is imposed to eliminate biased data from monitors that were either decommissioned or taken out of service 

during the period of interest, or were operated on a seasonal basis.  Additionally, we further restrict the 

sample of monitors to those designated as having “population exposure” to be consistent with EPA 

guidelines.  This restriction is intended to reduce noise from monitors that are located in industrial areas, 

although in practice very few monitors were dropped due to this criterion.  In total, 537 PM2.5 monitors in 

363 counties and 193 SO2 monitors in 154 counties remain in the final dataset.  AQS provides hourly 

pollution measurements for some monitors. For these we compute daily averages. Those daily averages are 

subsequently averaged again to aggregate up to the monthly, quarterly, and annual levels.  Figure 2 shows 

the locations of the PM2.5 and SO2 monitors that we include in our analysis, as well as the locations of all 

power plants that have at least one boiler for which the primary fuel is coal.  Triangles indicate PM2.5 

monitors, circles indicate SO2 monitors, and crosses indicate coal-fired power plants.  Figure 2 shows a 

significant number of air quality monitors proximate to coal-fired power plants, especially in the eastern 

US.  We also investigate natural gas power plants proximate to air quality monitors below. Given that the 

eastern US has more coal generation than the western US we are able to include the vast majority of coal-

fired power plants in our study. 

We obtain generation data from the EPA Air Markets Program Data (AMPD) via the Continuous 

Emissions Monitoring System (CEMS), which contains data on the near universe of all US power plants 

equipped with generators with rated capacity of 10 MW or greater.10 In addition to hourly generation and 

hourly SO2 and NOx emissions data, AMPD also contains data on primary and secondary fuel type, and 

exact power plant location. It is not uncommon for some plants to cease electricity generation either 

seasonally or during periods of low demand, and so we interpret missing values for generation or stack 

emissions as zeros unless there is a reason to suspect data entry error.11  We take fuel input price data from 

                                                           
10 Holladay and LaRiviere (2016) describe in more detail the subset of AMPD data that is collected by Continuous Emissions 

Monitoring Systems (CEMS), which are required to be installed on any power plant with a capacity of 25 MW or greater.   

11 For example, if a plant reported that a large amount of electricity was generated on a given day but no SO2 was emitted, this 

suggests that there was a data entry error.  The converse is not necessarily true—many power plants have the secondary function 

of generating steam for municipal heating.  Since steam generation produces air pollution but does not produce electricity, it is 

possible for daily SO2 emissions to be positive while electricity generation is zero.  Any observation that indicates generation with 

missing data for pollution is dropped, but those observations that are missing generation data but have positive pollution data are 

assumed to have zero generation. 
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the State Energy Systems (SEDS) database housed by EIA.  The database reports average fuel input price 

used by electricity generators using a given fuel in a given year by state. 12   

We obtain weather data from the National Oceanic and Atmospheric Administration’s (NOAA) 

Quality Controlled Local Climatological Data (QCLCD), which catalogs daily weather information as 

recorded at approximately 1,600 weather stations across the US.  Of these, we consider only those stations 

that reported data for at least 25 days out of every month during the period of 2007-2012, eliminating those 

stations that did not consistently report.  The resulting dataset contains monthly, quarterly, and annual 

averages for 886 weather stations in the lower 48 states.  Each power plant is assumed to experience the 

weather conditions that are reported by the station nearest to the plant.   

 

2.2 First Empirical Results 

Figure 1 shows the distribution of average daily PM2.5 measurements for the monitors in our 

sample.  The federal government sets the standard for allowable concentrations of PM2.5 through regular 

updates and amendments to the Clean Air Act of 1976.  During the period of 2007 – 2012, the compliance 

standard was set to an average daily concentration (over the course of one year) of 15 μg/m3 and a peak 

concentration of 35 μg/m3 per day. The average daily concentration limit was revised to 12 μg/m3 on 

December 14th of 2012, putting 24% of our sample monitors out of compliance. The mean PM2.5 

concentration in our sample is 10.69 μg/m3, with a standard deviation of 2.17 μg/m3. 553 monitors in 328 

counties reported average annual PM2.5 levels that exceeded the new standard in at least one year in our 

study period.   

 Preliminary analysis of the AQS PM2.5 data suggests that the change in ambient PM2.5 levels over 

time is not uniform across all regions of the United States.  Figure 3 shows the change in county average 

daily ambient PM2.5 levels from 2007 – 2012.  The counties that experienced the largest decrease, shown 

in black and dark grey, tend to be clustered around Appalachia and the Great Lakes region.  The Midwest 

and New England appear to have experienced a smaller decrease or an increase, shown in shades of light 

grey. 

Figure 4 shows a similar trend in the change in county average coal-fired electrical generation over 

the same time period.  Those counties that show the greatest decrease in coal-fired generation most often 

appear in the Appalachian or Great Lakes regions of the US, while those counties in the Midwest tend to 

show a smaller decrease or slight increase.  The visual correlation between reduced coal-fired electrical 

                                                           
12 Chu, Holladay and LaRiviere (2016) show that using fuel input spot prices can cause misleading inference when constructing 

dispatch models since coal spot prices are a poor proxy for actual coal purchases prices of power plants.  
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generation and reduced levels of PM2.5 is stark. In this paper we are interested in quantifying the relationship 

between coal generation and air quality.   

 Figure 5 illustrates one mechanism that may have contributed to the regional dichotomy.  The plot 

shows the price of natural gas and the percentage of electricity generated by coal.  Figure 5 suggests that 

prior to 2009 there was not a strong correlation between the price of natural gas and the percentage of coal-

fired electricity generation.  However, when the price of gas dropped below $6/mmBtu, the correlation 

strengthened significantly. The “Big trend” represents the average of the top third of states, ordered by 

change in coal share from 2007 to 2012 and “Small trend” represents the average of the lowest third of 

states, ordered by change in coal share from 2007 to 2012. This suggests that some regions of the US are 

more able to take advantage of low natural gas prices than others, and are therefore more able to substitute 

away from coal in electricity generation.  

There are several issues with Figure 5, though, which lead us to use a dispatch model of the 

electricity wholesale market.  Demand for electricity from coal is primarily an outcome of 1) relative coal 

and natural gas prices and 2) electricity demand which is itself a function of macroeconomic and regulatory 

activity.  The price of natural gas is similarly a function of national demand, which is itself a function of 

macroeconomic activity.  Since a sharp increase in the supply of natural gas, due to fracking, occurred 

during our study period, we employ a dispatch model to attribute changes in coal generation to relative 

changes in the price of coal and natural gas.    

 

3. Constructing the Instrument and the Dispatch Model 

In order to estimate the indirect benefits of fracking on air quality through the reduction of coal-

fired generation, our identification strategy proceeds in three broad stages. This section describes the first 

stage (which is similarly repeated in stage three). In our first stage, we develop regional specific dispatch 

models in order to isolate the effect of changes in relative prices on changes in observed electricity 

generation.  The dispatch model is motivated by Borenstein, Bushnell and Wolak (2002).  The purpose of 

the dispatch model is to predict the total amount of megawatt hours (MWhs) of electricity generated by 

fossil fuels at each hour and boiler.  Since our primary goal in the model is to isolate the change in generation 

exclusively due to changes in relative prices, we make several assumptions detailed in this section. 
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3.1 The Wholesale Electricity Market 

The U.S. electricity market accounts for roughly 2.2% of GDP.13 There are two important 

characteristics of the wholesale electricity market in the context of our paper.  First, the total generation of 

electricity must equal the total demand of electricity at every point in time.  If there is an imbalance, it leads 

to blackouts or frying of transmission lines.  As a result, each National Energy Regulatory Commission 

(NERC) region is governed by one or more an Independent System Operators (ISO) which balance 

electricity supply and electricity demand at every point in time in a given region.   

Second, the vast majority of cases the marginal retail end consumer of electricity does not pay the 

wholesale price of electricity but rather a constant average price of electricity.  As a result, electricity 

demand is highly inelastic at every point in time (Borenstein 2002).14  Determinants of electricity demand 

include weather and time of day.  For example, during hot summer days, peak demand often occurs when 

temperatures are highest as households run air conditioners intensely.  Because demand is exogenous and 

supply must equal demand at every point in time, the order in which electricity generating units are 

dispatched is the main determinant of electricity costs.   

There are two types of wholesale electricity markets in the United States: deregulated and regulated.  

In both deregulated and regulated markets, the ISO attempts to minimize the cost of needed generation.  In 

deregulated electricity markets private electricity producers bid for the right to produce electricity at every 

point in time during the day.15  The ISO then uses a complicated linear programming mechanism to select 

the cost minimizing dispatch order given a particular day’s forecasted composition of electricity demand.16  

In regulated markets, the ISO instead dictates to generators who will produce based upon inferred costs of 

electricity generators.  The ISO mandates significant data sharing processes to help ensure a cost 

minimizing composition of generation. 

 

                                                           
13 In 2014 total electricity sales to end customers was $393 billion equivalent to 2.2% of the $17.9 trillion GDP (see: 

http://www.eia.gov/electricity/annual/html/epa_01_01.html).  

14 There are two exceptions.  First, large industrial users sometimes have bilateral bargains with electricity producers that include 

them paying wholesale electricity prices.  Second, some residential consumers are beginning to pay real time wholesale electricity 

prices. These fractions of demand are, however, still very small, making electricity demand effectively exogenous at every point 

in time. In addition, our results rest on the assumption that the demand function for natural gas in 2012 is not impacted by the price 

of electricity. In the short run over our time span from 2007 to 2012 this assumption likely holds (Quistorff 2015).  

15 There is a large literature which shows how market power in the bidding process can lead to departures from least costs 

generation in determining wholesale electricity costs (Wolfram 1998 and Borenstein, Bushnell and Wolak 2002).  The main 

identifying assumption of our model is simply that the order of dispatch is determined by cost rather than the level of wholesale 

costs.    
16 Most of this bidding process takes place on a “day ahead” market.  There is also a “real time” market in which the ISO can 

purchase additional electricity as needed.  There are additional types of electricity producer contracts such as “reserve” contracts 

in which producers are paid to withhold generation capacity should it be needed in real time.   

http://www.eia.gov/electricity/annual/html/epa_01_01.html
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3.2 The Dispatch Model 

Our dispatch model attempts to exploit the cost minimization feature of the wholesale electricity 

market in order to construct an instrument for total generation by each electricity generating unit directly 

related to input prices changes from 2007-2012.   In the dispatch model we calculate the costs of electricity 

generation for every boiler with a capacity of over 10 MW in the United States.   We then simulate the total 

generation of each boiler had each generating unit been dispatched in order of our constructed cost measure. 

As in prior literature on the wholesale electricity market, we construct marginal cost curves for a 

NERC region by calculating the average cost of generation by boiler (Wolfram 1999 and Borenstein, 

Bushnell and Wolak 2002).  To do so, we construct two important plant specific characteristics: the heat 

rate and input prices.  The heat rate is the average of mmBtus used per MW.  The heat rate is a measure of 

a boiler’s efficiency.  To construct the heat rate, we use the CEMS database containing hourly generation 

and fossil fuel input (measured in mmBtu) for all generators.17  This allows us to construct the average 

observed heat rate over the sample period for each generator for each hour.18  We similarly use observed 

maximums of generation levels by boilers to identify capacity. Specifically, we construct heat rate for a 

boiler i over time period in which they are operating for T hours: 

ℎ𝑒𝑎𝑡_𝑟𝑎𝑡𝑒𝑖 =  ∑
𝑚𝑚𝐵𝑡𝑢𝑖𝑡

𝑀𝑊𝑖𝑡

𝑇

𝑡=1
. 

Input prices are provided at the state- fuel type- year level in dollars per mmBtu: 
$

𝑚𝑚𝐵𝑡𝑢𝑠𝑓𝑦
 .   We 

match this SEDS data to boilers in the CEMS database.  We choose the SEDS database for two reasons.  

First, other EIA databases which have input price data, like the EIA 923 form, have asymmetric reporting 

requirements for firms in regulated versus unregulated markets. As a result, there are many generators 

which report no input prices for an entire year.  Because SEDS is aggregated to state averages, there is 

reporting for states in both regulated and unregulated markets. Second, we are most concerned with long 

run prices changes due to increases in the supply of natural gas making the year level an appropriate level 

of analysis.  Third, different states face different transportation costs of fossil fuel inputs and we both want 

to control for that variation.   

                                                           
17 Although there are multiple possible fuel types (e.g., various types of coal, natural gas and oil), the CEMS data converts each 

fuel input into mmBtus so that they are directly comparable by heat content.  

18 Using observed heat rate rather than reported from EIA forms as others have done effectively weights by time spent generating 

for the envelope of heat rates.  Davis and Hausman (2016) use this technique.  We similarly use observed maximum capacity from 

the CEMS data rather than reported maximum capacity from EIA forms.  In both cases we restrict to taking observed averages and 

maximums to days in which a boiler produced for more than 1.5 hours to eliminate rounding errors. 
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We construct the cost of generation for a generating unit by taking the product of the heat rate and 

the input price.  We order generating units by costs within a NERC region and create a running sum of plant 

capacities creating a NERC level marginal cost curve for electricity generation.19  Figure 6 displays the 

marginal cost curve for the southeast US (SERC region) for 2007 and 2012.  We show fuel type by plotting 

different colors.  Figure 6 shows that while in 2007 the low MC electricity was mainly supplied by coal 

generators, by 2012 this dispatch got replaced by natural gas generators. This change is purely attributable 

to the change in the relative prices of the cheaper natural gas compared to the price of coal.  

Using observed NERC hourly generation allows us to construct instrumented hours of generation 

for each boiler in a NERC region.  Figure 7 displays the observed and predicted data of our first stage IV 

approach below for three different NERC regions (SERC, MRO and RFC) for the first and last year of the 

study period.  We restrict the figure to include only coal-fired generation. Figure 7 shows a strong positive 

correlation between observed MWs and instrumented MWs from the least cost dispatch model.  If the 

dispatch model perfectly predicted market events, we would observe a 45 degree line.  We take this as 

evidence that the dispatch model is doing an adequate job of predicting generation for many generators.  

There are, though, a significant number of individual plants across both regions in 2012 for which the 

dispatch model predicts zero generation in contrast to positive observed generation. What are the causes 

for the lower 2012 predicted generation from the dispatch model? First, coal-fired power plants may have 

long term contracts with coal mines which may require them to purchase coal at pre-specified prices which 

could impact input prices we use versus those faced by firms. Second, geographically isolated power plants 

providing electricity without nearby competition are likely to stay on to serve local populations.  Our 

dispatch model ignores spatial heterogeneity in demand within the NERC region.  More generally, NERC 

level dispatch models impose a no-trading assumption across NERC regions.  We have performed the same 

analysis with state level dispatch models but larger dispatch models rather than smaller ones better serve 

the medium run analysis we perform here.  Third, we implicitly assume that firms do not exercise market 

power asymmetrically over load levels and time.  Fourth, we ignore operation and maintenance costs and 

pollution costs incurred by firms in constructing the instrument.  If operation and maintenance costs are 

constant over our study window, they would be controlled for by the fixed effects in our empirical 

specifications below.  Finally, coal power plants sometimes stay on even when they earn a loss since 

ramping costs are large.  We ignore ramping with our dispatch model, like previous usage of the dispatch 

model in the literature (Borenstein et. al. 2002 and Fabrizio et. al. 2008). 

                                                           
19 We have also constructed state level MC curves.  Results from using state level curves in constructing instrumented hours are 

available from the authors upon request.  These instruments tend to be noisier in the east where states are physically smaller and 

work better in states that are physically larger.  We take observed maximum capacity from the CEMS data for each boiler.  
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Finally, we again note that the overall price decrease of natural gas (from a maximum $8 to a 

minimum of $2 from the mid-2000s to 2012) is not attributable entirely to fracking. According to Hausman 

and Kellogg (2015), the price reduction due to fracking is roughly $3.41. Hence, in our third stage we 

calculate fracking’s contribution to reduction in PM2.5 using various price scenarios from Hausman and 

Kellogg.  

 

 

4. Econometric Framework 

4.1 OLS Model 

The purpose of this section is to describe our econometric model that relates ambient air quality as 

a function of the electricity generated by coal-fired power plants.  The model takes the following form: 

(1) 
0 1 2 3it it it it itAmbient Generation Weather FixedEffects            

where itAmbient  is a measure of ambient PM2.5 or SO2, itGeneration is a measure of power plant output 

defined as either (i) megawatt-hours of electricity generated, (ii) tons of SO2 emitted by the plant, or (iii) 

tons of NOX emitted by the plant, itWeather  is a vector of weather variables including average wind speed, 

temperature, humidity, barometric pressure, and precipitation and FixedEffectsit is a vector of various spatial 

and time fixed effects as outlined below.  The variables are indexed by the spatial unit i and are indexed 

over time by t. We explore three separate specifications with t either aggregated to the annual, quarterly, or 

monthly level.  

We estimate two specifications over the spatial scale (indexed by i).  In the first case, itAmbient  

and
itGeneration are aggregated to the county level. This simple specification has the advantage of 

partitioning the United States into discrete, non-overlapping areas in which every unit of analysis contains 

at least one coal-fired power plant and at least one ambient air pollution monitor. Figure 8 displays the 

county observations (in red) that contain both a PM2.5 monitor and a coal-fired power plant. The 

disadvantage of the county aggregated model is that it implicitly assumes that air pollution from the 

generation of electricity does not cross county borders. While this assumption is clearly unrealistic, this 

first specification serves us as our simple baseline model to which we compare subsequent models. 

Our second spatial specification sums the total generation for all coal-fired power plants within a 

70 mile radius circle centered at each pollution monitor.  This specification has the advantage of more 

realistically modelling the area of influence of a given smokestack, but has the potential disadvantage of 
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weighting some power plants more heavily than others.  For instance, if a single power plant is located 

within 70 miles of six pollution monitors, the influence of that plant will be reported in six separate 

observations.  We perform robustness checks creating a 40 mile and 100 mile buffer as well and find that 

the 70 mile specification generates the most robust results. In all regressions we cluster standard errors by 

state, accounting for both temporal autocorrelation within each spatial unit of observation and for spatial 

correlation of ambient air pollution over across monitors within each state.  

The final number of observations used in each regression is restricted by the combined constraints 

of the various datasets.  For those regressions for which the unit of observation is a county, the total number 

of observations is restricted to those counties that contain both a pollution monitor and a power plant: 166 

in the case of PM2.5 monitors and 66 in the case of SO2 monitors20.  Similarly, for those regressions that 

rely on a 70 mile circle as the unit of observation, the total number of observations is limited to the number 

of pollution monitors that have at least one coal-fired power plant within a 70 mile radius.  Here the total 

number of observations is 387 in the case of PM2.5 monitors and 73 in case of the SO2 monitors.  Figure 9 

shows the monitors (in red) that are within 70 miles of at least one coal-fired power plant (indicated by 

black crosses).  The blue shaded areas denote the buffers around the PM2.5 monitors, within which the power 

plants are assumed to affect ambient air pollution levels.  Electrical generation and plant emissions are 

summed within each circle, and those sums are treated as discrete observations. 

 

4.2 Instrumental Variables Approach  

The main contribution of this section is identifying the causal effect of the relative input price 

change on ambient air quality.  We use observed input prices for fossil fuel-fired powers plants to construct 

the marginal cost of generation for each power plant.  We then use the dispatch model to construct a 

predicted level of generation at each coal-fired power plant.  Thus, predicted levels of generation are taken 

as the instrument for changes in coal-fired generation.21  Specifically, for each region we estimate: 

                                                           
20 We find that using ambient PM2.5 as a dependent variable tends to produce more stable results than using ambient SO2.  This 

may be a result of a smaller sample size—more than twice as many PM2.5 monitors meet our selection criteria as do SO2 monitors.  

Details of the regressions on ambient SO2 can be found in appendix 1. 

21 Note that our instrument becomes necessary because fracking is not the only macroeconomic shift in the US energy landscape 

in this time. Changing structures of electricity markets and policies (renewable portfolio standards), growing Chinese demand for 

raw materials, increasing Chinese supply of energy-intensive manufactured goods, and most of all the Great Recession all had 

potential to affect patterns of electricity generation between 2007 and 2012. The type of potential data error in our data discussed 

in footnote 2 as well as the particular market conditions described in footnote 16 are additional reasons why OLS could lead to 

attenuated results. Our IV strategy makes our estimates robust against these issues. To isolate the effects of natural gas price shocks 

from other industry forces, we use a dispatch model of regional US electricity market to construct an instrumental variable which 

identifies the causal impact of the changes in natural gas prices.  
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𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑖𝑡 = 𝛼 + 𝑍𝑖𝑡𝜃 + 𝐼𝑛𝑠𝑡. 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑖𝑡𝛿 + 𝜀𝑖𝑡 

𝐴𝑚𝑏𝑖𝑒𝑛𝑡𝑗𝑡 = 𝛼 + 𝑋𝑖𝑡𝜑 + ∑ 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛̂
𝑗𝑖𝑡

𝑗
𝛽 + 𝜀𝑖𝑡 

The top equation represents the first stage regression.  It estimates how observed generation relates 

to predicted generation due to relative marginal costs of fossil fuel generators by the dispatch model.  The 

bottom equation takes generator predicted values from the first equation for each generator i at time t and 

associates it with a level of spatial aggregation j as discussed in the previous Section.  The estimated 

coefficient 𝛽 describes the change in air quality attributable to relative input price changes over our sample 

period.22   

Our instrument is valid only if fracking did not affect PM2.5 through any channels other than 

electricity generation.  In the US natural gas is used primarily for electricity generation, heating and 

industrial production. Since heating via natural gas did not vary greatly over our study window (EIA, 2016), 

electricity generation is likely the only channel through which fracking affected ambient PM2.5 levels. 

Figure 7 shows our first stage relationship between instrumented coal and observed coal. In theory, 

without any ramping, maintenance, etc., the relationship should be a 45 degree line. Figure 7 shows, 

however, that the generation level is over-predicted at some of the power plants and under-predicted at 

others. In particular, note that the attenuation of the instrument increases from 2007 to 2012, which is likely 

due to increased ramping of coal-fired plants and today natural gas replaces previous coal-fired baseload 

generators. Over the entire nation, the percentage difference between the simulated dispatch and observed 

coal generation is -14.4% in 2007 and +3.7% in 2012. We conclude that while the instrument is noisy it is 

an adequate representation of observed generation behavior.    

 

4.3 Stage Three  

                                                           
22 As discussed above, despite the observed positive relationship between instrumented coal-fired generation in the dispatch 

model and observed generation, there are reasons why the instrument could cause concern.  First, we implicitly assume that firms 

do not exercise market power over time.  Market power would not be a large problem for the instrument per se so long as the 

composition of market power stayed constant over time.  Second, we ignore operation and maintenance costs and pollution costs 

incurred by firms in constructing the instrument in this iteration of the paper.  It is plausible that operation and maintenance costs 

are constant over our study window and it thus controlled for by fixed effects.  Third, pollution costs for coal-fired power plants 

decrease in regulated areas over our study period as total emissions are falling due to inexpensive natural gas.  This biases our 

instrument toward predicting too little coal. Finally, coal power plants sometimes stay on even when they are not the lowest-cost 

provider since ramping costs are large.  We ignore ramping with our dispatch model, like previous usage of the dispatch model in 

the literature (Borenstein et. al. 2002 and Fabrizio et. al. 2008).  This neglect of ramping has implications for our instrument. 

(2) 
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 Our third and final step isolates the effect of the fracking-related natural gas price change from any 

other confounder. In order to attribute the changes in observed generation to fracking, we must be certain 

that fracking caused the long term decrease in natural gas prices.  Figure 10 displays the Henry Hub natural 

gas spot and futures prices for 2005 – 2014.  If a futures contract displays the same price as a spot contract 

then the market predicts no price change.  Figure 10 shows that commodities markets did not anticipate the 

natural gas price decrease in late 2008 due to the recession.  More importantly for our purposes, in early 

2009 the market expected natural gas prices to increase rather than decrease.  We attribute this to the 

unanticipated price effects due to fracking.  The prices observed before the great recession of 2008 have 

not been observed since then, despite increases in total natural gas consumption since that time.  While we 

attribute a portion of the price change to fracking, we point out that other factors also influenced natural 

gas prices during our study period. In this third and final stage, we simulate the counterfactual scenario 

using the price change that Hausman and Kellogg (2015) attribute to fracking.  

Hausman and Kellogg (2015) estimate the expected price decrease of natural gas attributable to 

fracking in their “medium” case to be ΔPMedium = $3.41/mmBtu, relative to a counterfactual scenario of no 

fracking, with upper and lower bounds of ΔPUpper =4.11 and ΔPLower =2.16 in 2012 USD.  We calculate the 

counterfactual natural gas price by adding the Hausman and Kellogg (2015) estimates to observed 2012 

price of natural gas. For any given natural gas price, our dispatch model yields a dispatch order for all power 

plants in each NERC region.  Using counterfactual natural gas prices, we simulate a counterfactual dispatch 

order.  In section 4.2 we presented an IV approach for estimating the impact of a natural gas price change 

on air quality.  Using the estimate from our preferred IV specification (column 5) links changes in 

generation under the Hausman and Kellogg counterfactuals to predicted changes in air quality.23  In, 

summary, we estimate the change in air quality attributable to fracking using the following technique: 

a. Run dispatch model at observed 2012 input prices and record generation as Gih(P2012) 

in each hour h and boiler i. 

b. Run dispatch model at observed 2012 prices plus decrease in NG prices attributable to 

fracking and record generation as Gih(P2012 +ΔPk). 

c. Predict change in 2012 air quality at location j using IV coefficient estimates for the 

sum of the i boilers in the jth buffer :  

                                                           
23 Given a valid estimate of the effect of coal generation on PM2.5 concentrations we can identify the effect of fracking on air 

quality.  To do so we take the instrumented change in coal generation and aggregate it to the monitor level.  We then multiply the 

estimated coefficient by the predicted generation.  This creates a map with the spatial distribution of air quality post fracking.  We 

then perform the same exercise with a counterfactual input price schedule which assumes that natural gas prices return to their pre-

recession level (adding the Hausman Kellogg price of $3.41). This creates a map with the spatial distribution of air quality assuming 

that fracking had not caused a decrease in natural gas prices.  The difference between these two maps produces the spatial 

distribution of air quality changes attributable to fracking.   
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(3)     ΔPM j= 𝜷𝑰𝑽̂*Σh,iєj Gih(P2012 +ΔPk) -𝜷𝑰𝑽̂*Σh,iєj Gih(P2012) 

with k є {Medium, Upper, Lower} denoting a Hausman and Kellogg scenario. Accounting for differential 

impacts across space is important because generation is determined by the composition of installed power 

plant efficiency by fuel type, which varies spatially (Holladay and LaRiviere 2016).24  

 

5. Results  

This section describes the reduced form relationship between electricity generation at coal-fired 

power plants and the level of ambient air pollution using our data from 2007 to 2012 and the econometric 

framework described in Section 525.  

 

5.1 OLS Estimates 

Table 1 reports the results of 30 different linear regressions, each of which seeks to quantify the 

relationship between power plant activity and ambient PM2.5.  Results are presented in two panels: Panel A 

reports results from the county-level unit of observation, and Panel B contains those results obtained by 

defining the unit of observation as the 70-mile radius circle around a pollution monitor.  Each regression in 

Panel A is based on a sample of 166 counties, each of which contain both a PM2.5 monitor and a coal-fired 

power plant.  Reported electrical load and emitted pollution are the sums of the respective quantities from 

all coal-fired power plants within a given county, and measured ambient PM2.5 is the simple mean of all 

monitors with that county.  Each regression in Panel B is based on a 70-mile radius circle centered at each 

of 387 PM2.5 monitors.  The electrical load and emitted pollution are summed over all coal-fired power 

plants that fall within the circle surrounding a given power plant. Within each panel, 5 models are specified 

for each of three measures of plant activity: gross electrical load, emitted SO2, and emitted NOx.  In columns 

(1) – (2) we employ the annual time unit of observation, progressively adding weather controls and county 

fixed effects and year fixed effects. Columns (3) reports results of our quarterly aggregation, and columns 

(4) and (5) report results of monthly aggregation, while (5) also includes county as well as US Census 

Region by year by month fixed effects. 

                                                           
24 This shows up in our counterfactuals asymmetrically across regions: adding the lower bound for fracking’s impact on natural 

gas prices ($2.16/mmBtu) relative to upper bound for fracking’s impact ($4.11/mmBtu) leads to no large differences in coal 

generation in FRCC, MRO, SPP, TRE or WECC.  In RFC, NPCC and SERC, however, natural gas generation increases by between 

roughly 40%, 8% and 130% respectively.  Note that while the level change in coal and NG generation is identical, the percentage 

change in coal generation in smaller than the percentage change in NG generation in these regions because the installation bases 

are so large.   

25 We also find that a log-linear specification produces similar results.  See appendix 2 for details. 
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Throughout this and the following tables, our preferred model is specification 5 of Panel B. Column 

(5) takes the unit of observation as the 70-mile circle around a pollution monitor and uses monthly average 

daily generation levels as a right hand side variable while including region-by-month-by-year fixed effects.  

In this specification we identify the coefficient off of variation in generation across monitors within region 

within a month-year.  Put another way, observed differences in PM2.5 monitors in those regions are 

identified by coal-fired power plants in one area of a region that are less efficient than in another and 

therefore decreasing production due to inexpensive natural gas.   

Our OLS estimates show that there is a statistically significant positive relationship between 

electricity generated at coal-fired power plants and the level of ambient PM2.5 as measured at pollution 

monitors in nearby populated areas.  Our preferred model specification (column 5 of Panel B of Table 1), 

suggests that an increase of daily generation by one terawatt-hour of coal-fired electrical generation 

corresponds to a 17.39 µg/m3 increase in ambient PM2.5 (which is equivalent of one gigawatt hour increasing 

PM2.5 by 0.0174 µg/m3).  This result is robust to a variety of time unit specifications--estimates using annual 

and quarterly timeframes return values ranging from 16.11 µg/m3 to 18.10 µg/m3 per terawatt-hour.  

Our county-level analyses of Panel A produces similar but less precise results, returning values 

ranging from 12.08 µg/m3 to 36.61 µg/m3.  The larger range for county level estimates is attributable to 

imprecision in the aggregation of the left hand side variable: county level ambient PM2.5 levels. While there 

is no theory to guide the appropriate aggregation technique, we focus on the 70 mile radius around air 

quality monitors as our primary specification.   

To put these numbers into context: the largest coal-fired power plant in our sample (W. A. Parish 

Power Station near Houston, TX) is capable of producing 95 GWh per day.  The effect of such a power 

plant on PM2.5 would be an increase of 1.65 µg/m3.  In our sample, the 2012 mean daily PM2.5 is 9.47 µg/m3.  

Hence, if W. A. Parish Power Station were to go from being shut down to operating at full capacity in a 

typical county, we would expect it to increase the ambient PM2.5 level by approximately 17.4% based on 

these OLS regressions.  This effect is amplified if we assume that all power plants were to shut down around 

a given pollution monitor within 70 miles.  Figure 11 shows the histogram of total generation under this 

assumption.  The mean total generation of 73.7 GWh corresponds to PM2.5 level changes of 1.3 μg/m3, and 

in the most coal intensive area of the United states—with a generation of 405 GWh in one 70 buffer—we 

expect PM2.5 level changes of 7.04μg/m3.  This implies that in such a region, the shut down of all plants 

would lower PM2.5 levels by 74%. Note that not all of this change would be attributable to fracking. 

Rows A-2 and B-2 of Table 1 summarize the results, for the county level and monitor level 

respectively, that are obtained from using emitted SO2 as the independent variable of interest.  At the county 

level (row A-2) and the monitor level (row B-2), we find small but statistically significant coefficients in 
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all specifications, indicating a strong relationship between emitted SO2 and measured PM2.5.  We note that 

the coefficient of interest is smaller at the monitor level in all cases, which suggests that SO2 may dissipate 

at a distance of less than 70 miles from the point at which it is emitted. Although significant, the absolute 

effect of SO2 on PM2.5 is very small. Shutting down all SO2 emitted from power plants would reduce PM2.5 

by only up to 0.4%.26 This is because only some of the SO2 transforms to sulfate, and it is sulfate which is 

ultimately captured by the PM2.5 monitors (Hodan and Barnard (2004).  

Rows A-3 and B-3 indicate inconclusive results when emitted NOx is substituted as the regressor 

of interest. At the monitor level the coefficients for NOx are significant in some specifications, but are 

insignificant at our preferred specification (5).  These mixed results may be attributable to the action of the 

NOx Budget Program (NBP), a seasonal cap-and-trade system which regulates NOx emissions in many of 

the counties in our sample.  Because the NBP is active only during summer months, its effects may 

introduce additional noise to the model, especially when aggregated to the annual level. When we 

instrument NOx by the relative prices of the dispatch model, orthogonal to NBP, then we would expect our 

results to have the correct sign. We will explore this in the next section.  

 

5.2 IV Estimates 

Table 2 presents the PM2.5 results using the instrument.  We focus the discussion on the monitor 

level 70-mile buffer estimates rather than the county level estimates because they are measured with less 

noise. 27  We first note that the IV estimates tend to have the same sign as the OLS estimates and in some 

cases are larger by an order of magnitude.28  

The coefficient estimate on instrumented coal generation seems plausible: the mean amount of 

daily coal-fired generation at monitors is 73.7 GWhs per day. According to our IV preferred estimate in 

specification (5), that corresponds to ambient PM2.5 concentration of 1.53 +/- [.67] µg/m3, with results in 

brackets accounting for the 95% confidence interval.  On average, then, our estimates suggest that coal-

                                                           
26 This calculation is based upon that the 70 mile buffer with the highest SO2 emissions in our dataset in the U.S. emits 2513 tons 

of SO2 per day.  

27 As in the OLS specifications, the county level IV estimates tell a similar story but have more noise associated with them.   

28 Focusing on Panel 1 (with the right hand side variable of coal in TWhs), the IV estimate is 19% larger in our preferred 

specification (5), 63% larger in specification (4) and 72% larger in specification (3) compared to the OLS specifications. Only the 

at the yearly level the estimates are almost identical in magnitude as the OLS estimates. As in the OLS specifications, county level 

linear time trends and state year time trends reduce the level and significance of the IV estimates.  This is expected: much of the 

variation in average yearly PM2.5 levels are absorbed by these fixed effects.  For example, the state year fixed effect specification 

implies that we identify the effect of coal generation on different PM2.5 readings within a state within a year attributable to different 

coal-fired being in the 70 mile radius of those monitors.  Given that we observe input prices at the state level as well, this absorbs 

a significant amount of variation in the data.   
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fired generation’s contribution to ambient PM2.5 levels is 16% +/- [7%] in areas where coal-fired generation 

is present. In the most coal intensive area of the United States—with a generation level of 405 GWh in a 

single 70 buffer—our IV method predicts PM2.5 changes of 8.41μg/m3.  This implies that in such a region, 

the shutdown of all plants29 would lower PM2.5 levels by 89% +/- [39%].  

In Panel 2, the independent variable of interest is instrumented SO2 emission at coal-fired power 

plants. The IV estimates are about 3 to 4 times larger compared to the corresponding OLS estimates. Still, 

even in the most aggressive specification (4), a complete ban of SO2 at powerplants would only reduce 

ambient PM2.5 by only up to 1.9% in the dirtiest area and by a tiny 0.13% in the average 70 mile buffer 

zone.  

Panel 3 of Table 2 displays the results by regressing ambient PM2.5 on the sum of the instrumented 

NOx emissions from coal-fired power plants within a 70 mile buffer. While the corresponding OLS results 

(Table 1) produced very unstable results, our IV results are significand and have the correct sign. This is 

important in terms of verifying our identification strategy.  While the OLS results were inconclusive and 

likely biased because of the regional and temporal NOx cap and trade programs, in our the IV specifications 

NOx emission are instrumented by the predicted coal quantities from our dispatch model. Hence, in our IV 

specification, the relative price change between fossil fuels only (and not the NOx Budget Program) explain 

changes in PM. When we single out these price changes as the causal channel our regressions produce the 

correct sign throughout all of our IV specifications of Panel 3 in Table 2. However, the OLS specification 

presented in Panel 3 of Table 1 yielded inconclusive results; one possible explanation is the confounding 

effect of the NOx Budget Program.    

Throughout this paper we assume that coal-fired generation produces more air pollution than 

natural gas-fired generation.  To test to this assumption30, the above set of regressions are repeated by 

including the production of electricity from natural gas-fired power plants in addition to the coal-fired 

generation as two separate regressors.31 Table 4 displays the results for several of the above OLS and IV 

specifications. Natural gas-fired generation does not have a significant impact on local air pollution in any 

specification, while the effect of coal-fired generation is qualitatively very similar to our previous 

regressions of Table 1 and 2.  

                                                           
29 To put these numbers into context: the largest coal-fired power plant in our sample (W. A. Parish Power Station near Houston, 

TX) is capable of producing 95 GWh per day.  If W. A. Parish Power Station were to go from being shut down to operating at full 

capacity in a typical county, we would expect it to increase the ambient PM2.5 level by 21% +/- [9%] based on these IV regressions. 

30 According the EIA (1998), coal-fired power plants emit 392 times as many units of particulate matter per unit of electricity 

compared to natural gas fired power plants. 

31 In the IV specification (6), natural gas is instrumented by the dispatch models boiler specific hourly natural gas predictions (in 

the same fashion as we instrumented for coal-fired generation).  
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Finally, note again, that not all of the air quality changes in the above IV regressions are attributable 

to fracking, but are attributable to the changes in the relative prices. To isolate the effect of fracking, we 

proceed in stage three.  

 

5.3. Third Stage 

 Our third and final step isolates the effect of the fracking related change in the price of natural gas 

from any other confounder. Using formula (3) to identify the predicted PM2.5 reduction using the price 

difference by Hausman and Kellogg (2015), we find a U.S. national average decrease in air pollution of 4% 

within 70 miles of a coal plant.  

One advantage of our approach is that we can study the spatial incidence of fracking at each air 

quality monitor of the United States. Figure 12 shows the results of the counterfactual analysis for 

generation of both coal (panel a) and natural gas (panel b) power plants from the median case of Hausman 

and Kellogg (2015) with price differential ΔPMedium.  The figure shows the changes in generation which 

result from changes in the NERC level dispatch order as a result of NG prices which were uniformly 

$3.41/mmBtu higher across the U.S.  The implication is that these changes would not have occurred if 

fracking had been banned.  Each black singular dot refers to the location of a power plant in our sample.  

Figure 12 shows the spatial substitution patterns of coal and natural gas generation.  These patterns are 

dictated by the NERC level supply model and the embedded generation capacity within each region during 

the timeframe of the analysis.  While region level patterns across NG generation increases and coal 

generation decreases are commensurate, there is clear within region variation.  This is clear in the northeast 

where coal decreased across the entire region but increases in NG generation were concentrated close to 

the New York City metro area.  A similar pattern holds for the southeast.  It is also clear that the WECC 

region was not dramatically impacted by a change in the dispatch order.  

 While Figure 12 displays information regarding generation level impacts, we can perform the same 

task at the air quality monitors.  In doing so, we can match levels to percentage changes relative to observed 

2012 ambient air pollution levels.  In Panel (a), the shaded areas around each power plant in Figure 12 

hence also display the corresponding additional PM2.5 emitted in the counterfactual 2012 scenario.  The 

shaded areas correspond to a percentage change in air pollution ranging from a 0% (white) to 35% (black). 
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The darkest spot is an Alabama which today would observe an additional 35% in PM2.5 if fracking had 

been banned.32 

Figure 13 shows two histograms of monitor level outcomes from the counterfactual dispatch model; 

one in levels and one in percentages.  The largest percentage change in air quality was in Alabama which 

would have observed 35% higher levels of PM 2.5 had fracking not decreased the price of NG.  This is an 

outlier, though, because it is nearby not only several coal-fired power plants, but inefficient coal-fired power 

plants which according to the dispatch model would be generating much more intensely with high NG 

prices.   

 We have performed the same analysis with the Hausman and Kellogg (2015) lower and upper 

scenarios.  While there are small level changes in the results if fracking impacted the price drop at the  upper 

bound ($4.11) or lower bound ($2.16) rather than the expected impact $3.41, we found no qualitative 

differences in generation.  In Appendix Table A3 we argue that the lack of difference between the 

counterfactual scenarios is the result of the limited ability of combined cycle boilers to exploit lower natural 

gas prices.  This is consistent with our research design: we chose to stop our sample in 2012 to avoid to 

model endogenous capacity decisions which would be complicated by increase renewable generation in 

addition to lower natural gas prices from 2012 going forward.  We conclude that due to the fixed stock of 

generating capacity the change in dispatch does not scale linearly with changes in NG prices.  This is 

important for extrapolating these findings to larger wedges in coal and NG prices which could be caused, 

for example, by carbon taxes in which a full investment model like Gowrisankaran et. al. (2016) or Cullen 

and Reynolds (2016) is needed.  Our findings highlight the need for those approaches.  

 

5.4 Monetarization of Indirect Benefits 

To put the change in air pollution levels into context, using the monetary externality cost measurers  

derived by Muller, Mendelsohn and Nordhaus (2011), we find that fracking provided health benefits by 

$17 billion per year, with a lower bound externality benefit of $5.4 billion and an upper bound of $43 billion 

per year, due to the displacement of coal. The “Medium”, “Lower” and “Upper” benefits are calculated 

under the assumptions as described in the note of Table 5. Note again that values between the columns do 

not change substantially, as the “Medium” and “Upper” bound scenarios of the natural gas price difference 

have little impact on coal-fired generation relative to the “Lower” bound scenario, due to the nonlinear 

                                                           
32 The percentage is calculated by ΔPM j/ [𝜷𝑰𝑽̂*Σh,iєjGih(P2012 +ΔPk) + PM2.5 from other sources at location j], whereby “PM2.5 from 

other sources” is the difference between the observed PM2.5 in 2012 at location j and the PM2.5 contribution from the surrounding 

power plants, 𝜷𝑰𝑽̂*Σh,iєjGih(P2012). 
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natural gas price supply function. In comparison, the magnitude of the changes across the rows is 

considerably, due to the different assumptions in calculating the health costs, as outlined in the note below 

Table 5 and detailed in Muller, Mendelsohn, and Nordhaus  (2011).  

As an alternative, singling out only PM2.5 and analyzing lung cancer cases only, the medical 

literature reports that a decrease in PM2.5 of .25-.64 µg/m3 would correspond to a decrease in lung cancer 

rates of 0.9 to 2.3% (Raaschou-Nielson et. al. 2013).33  The American Lung Association reports that there 

are 160,000 deaths related to lung cancer each year and that roughly 85% of these are due to smoking.  

Assuming that 10% are due to external air quality conditions, our estimates suggest that fracking then is 

responsible for saving between 129-354 lives each year, the equivalent of $1.2 to $3.3 billion annually 

using current VSL measures.  Overall, these back of the envelope estimates suggest that the increased air 

quality attributable to fracking, via the natural gas price decrease, is on the order of the lower billions of 

annual U.S. dollars.34 

 

6. Conclusion 

Our main contribution is to offer a new method to identify the causal effect of natural gas price 

decreases attributable to fracking on air quality.  We find that fracking displaced 28% of coal-fired 

generation in the short term during our sample period. A full investigation of long run impacts would require 

a dynamic model of natural gas capacity investments.  In this way, the longer run impacts are likely to be 

larger than what we find here making this a lower bound. 

Assuming this coal displacement was uniformly distributed, our IV estimates imply a 95% 

confidence interval for decreases in PM2.5 due to fracking of 2-6%. We show, however, that these benefits 

vary spatially, with the largest gains in Eastern United States and most pronounced in Alabama, where air 

pollution decreased by 35% due to fracking. As a result, we find evidence of a significant environmental 

benefit attributable to fracking, with an average estimate of $17 billion in annual health benefits.35  

                                                           
33 These calculations assume linear dose-response functions. Raaschou-Nielson et al. (2013) experimented with non-linear models 

as well, but conclude that the results do not deviate from their linear dose response model.  

34 For any of the above damage calculations, note that these are likely lower bounds. If the damage function from air pollution on 

health is convex, the monetary benefits would be larger because most coal-fired powerplants with the largest decreases in 

production due to fracking are located in the most PM2.5. polluted areas of the eastern United States.  

35 We interpret, our analysis to be short-run to medium run. For a discussion on the interpretation of short, medium vs. long run 

elasticities, see the Comment and Discussion Section in Hausman and Kellogg (2015).  

 



 24 

Identifying this lower bound from short run impacts is a key contribution of this paper and longer run 

impacts are almost surely larger as natural gas capacity changes.  

In this paper we limit our study to natural gas fracking (although oil related fracking also 

fundamentally changed international energy markets in significant ways). Focusing on natural gas provides 

methodological advantages over oil because very little natural gas is exported form the US. As a result, US 

natural gas prices capitalize US ‘fracking’ more directly. Secondly, we look at local air pollutants only, and 

not at CO2, which is a global air pollutant.  Even though CO2 emissions decreased substantially in the US 

electricity generation sector during our study period, US coal continues to be mined for export. As a result, 

fracking’s impact on global CO2 emissions is ambiguous. Locally measured PM2.5 does not suffer from this 

leakage problem. Knittel, Metaxoglou and Trindade (2015) as well as Linn, Muehlenbachs, and Wang 

(2014) are two recent promising working papers that provide methods to analyze CO2 in this context.  

Finally, we once again point out, that this study by no means presents a full cost benefit analysis of 

fracking. Rather, it contributes to cost benefit analyses by developing a novel three stage methodology to 

estimate indirect partial air pollution benefits.   Our results highlight the importance of incidence for 

developing policies which maximize national welfare.  Politicians motivate bans on fracking by pointing 

out negative externalities, localized at fracking sites.  However, our results highlight large positive indirect 

impacts in areas in which coal-fired electricity production has been replaced by cleaner natural gas.  Similar 

political issues occur in free trade debates, where local job loss receives enormous political attention while 

marginal decreases in consumer prices at the national level have disparate benefits.  Because fracking policy 

is created at the state level (rather than trade policy being created at the national level), this discord 

highlights the costs of disjointed energy policy which has characterized the US in recent decades.  

Furthermore, states like New York, which have banned fracking, are able to enjoy lower natural gas prices 

without suffering negative non-market impacts or positive market impacts through leasing revenue.  We 

are not aware of studies which answer regulatory federalism questions about the efficiency of this type of 

policy in nationwide input markets.   
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Figure 1: Histogram of PM2.5 Average Daily Sample Values 

Note: The mean daily concentration of PM2.5 at the monitors in our sample is 10.69 μg/m3, with a standard 

deviation of 2.17 μg/m3. The light dotted line displays the WHO PM2.5 standard of 10 μg/m3.. Since December 

14th of 2012, the EPA has set the standard to 12 μg/m3 (bold striped line). From 1997-2012, the federal standard 

for compliance with the Clean Air Act was 15 μg/m3. 
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Figure 2: Locations of Coal-Fired Power Plants and Air Pollution Monitors 

Note: The map displays all power plants that have at least one boiler for which coal is the primary fuel and all air pollution monitors 

that detect either PM2.5 or SO2 and meet the reporting criteria as explained in the text. 
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Figure 3: Change in Ambient PM2.5 Levels 2007-2012 

 

Note: There is a regional dichotomy in the change in ambient PM2.5 levels.  Most counties in the Midwest and Mid-Atlantic regions 

show a decrease in average daily pollution level, but the decrease is more pronounced in Appalachia and the near the Great Lakes 

than in the Midwest or New England. 
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Figure 4: Change in the county average daily electrical generation (MWh) by coal-fired power plants, 

from 2007-2012 

 

 

Note: Counties in the Appalachian and in the Great Lakes regions tended to decrease their coal-fired electrical generation by the 

largest amounts.  Counties in the Midwest generally show smaller decreases or slight increases. 
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Figure 5: Percentage of Electricity that is Generated by Coal and Natural Gas Price 

 

Note: During the period of 2007 – 2009, there does not appear to be a strong correlation between the real price 

of natural gas and the percentage of electricity that is generated by coal-fired power plants.  In 2009 the price 

of natural gas drops below $6/mmBtu, and the correlation appears to strengthen substantially. Big trend 

represents the average of the top third of states, ordered by change in coal share from 2007 to 2012. Small 

trend represents the average of the lowest third of states, ordered by change in coal share from 2007 to 2012.  
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Figure 6: Marginal Cost Curves of Electricity Generation 

 

Note: 2007 and 2012 constructed SERC supply curves.  Data are taken from CEMS and SEDS datasets.  Capacity 

measure constructed from max average hourly generation observed within a day conditional on boiler generating.  Red 

dots represent natural gas-fired capacity; the 2012 curve displays significantly more mixing at lower levels of 

generation. 
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Figure 7: Observed and Instrumented Megawatt hours 2007 and 2012 

 

Note: 2007 and 2012 instrumented hours from dispatch model (y-axis) against observed generation in CEMS data (x-

axis).  Capacity measure constructed from max average hourly generation observed within a day conditional on boiler 

generating.  Color indicates NERC region.  Only coal generation displayed. 45 degree line indicated by dotted line.  

 

 

Note: For regressions using county as the unit of observation, only those counties that contain both a PM2.5 monitor and a coal-

fired power plant are included. 

Figure 8: Counties that Contain Both a PM2.5 Monitor and a Coal-Fired Power Plant 
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Note: In regressions using the 70 mile radius circle as the unit of observation, a circle is drawn around each PM2.5 Monitor.  Within 

each circle, the total amount of electricity generated and pollution emitted is summed.  Each circle is then treated as a single 

observation. 

  

Figure 9: 70 Mile Radius Circles Centered on PM2.5 Monitors 
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Note: Hunry Hub natural gas prices over time.  Figure 11 displays prices for contracts on the date they were written. Therefore, if 

a futures contract is the same prices as a spot contract then the market predicts no price change.  In early 2009 the market expected 

natural gas prices to increase rather than decrease.   

 

 

Note: Under the 70-mile radius unit of observation, we sum the electrical  generation of all plants within that radius of each pollution 

monitor. The mean total generation is 73.7 GWh, the maximum is 405. 

  

Figure 10: Natural gas spot and futures prices 

Figure 11: Histogram of Total Generation (GWh) in 70-mile Radius Observations 
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Figure 12: Regionally differentiated incidence of fracking on ambient air quality  

 

 

Panel (a): Counterfactual increase in coal generation Panel (b): Increase in NG Generation 

Note: Panel (a) displays the simulated counterfactual situation in 2012 if fracking had not occurred in the United States 

from 2007 to 2012. In Panel (a), darkness indicates more dramatic increase in levels of coal generation if fracking had 

not occurred. The darkest spot in Alabama corresponds to a causal decrease in PM2.5 levels of 35% due to fracking. 

Panel (b) displays the causal spatial increase in electricity generation by natural gas due to fracking in 2012 relative if 

fracking had not occurred. In Panel (a) each black dot represents a coal-fired power plant. In Panel (b) each dot 

represents a natural gas-fired power plant.  

 

Figure 13: Histogram of level and percentage change of PM 2.5 at the monitor level.    

 

Panel (a): Change in Levels           Panel (b): Percentage change 

Note: Panel (a) displays 2012 monitor level changes in ambient air quality relative to “no fracking” counterfactual. 

Panel (b) displays these changes in terms of percentage points. The largest percentage decrease in PM2.5 is 35% in 

Alabama, but that was an outlier; the next closest was a decrease of 23%. The national average decrease in air 

pollution is 4% around coal-fired power plants caused by fracking. 

Largest percentage 
decrease of 35% in Alabama 

Average decrease is 4% 
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Table 1: Regression results for PM2.5 on various specifications of power plant activity.   

Panel A: County Level Regressions 

 (1) (2) (3) (4) (5) 

Measures of Plant Activity      

A-1: Avg Daily Gross Load 

(TWh) 36.61** 25.98 23.06** 23.97*** 12.08* 

 (16.84) (16.93) (10.29) (7.634) (6.940) 

R-squared 0.917 0.923 0.759 0.637 0.719 

Adjusted R-squared 0.897 0.904 0.744 0.629 0.705 

A-2: Avg Daily SO2 (Million 

Tons) 1.795*** 1.599*** 1.789*** 1.884*** 1.222*** 

 (0.497) (0.356) (0.417) (0.383) (0.324) 

R-squared 0.913 0.920 0.752 0.634 0.719 

Adjusted R-squared 0.894 0.901 0.738 0.626 0.707 

A-3: Avg Daily NOx (Million 

Tons) 0.754 0.208 -6.084*** -5.130*** -5.448*** 

 (3.328) (3.186) (1.612) (1.419) (1.462) 

R-squared 0.915 0.921 0.752 0.634 0.719 

Adjusted R-squared 0.895 0.902 0.738 0.626 0.706 

Time unit of observation Annual Annual Quarterly Monthly Monthly 

Weather controls  yes yes yes yes 

Fixed Effects:      

  County yes yes yes yes yes 

  Year yes yes    

  Year*Quarter   yes   

  Year*Month    yes  

  Region*Year*Month     yes 

Number of Counties 166 166 166 166 166 

Observations 854 854 3,355 10,010 10,010 

Standard errors clustered by state 

in parentheses     

 

*** p<0.01, ** p<0.05, * p<0.1      
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Panel B: Monitor Level (70 Mile Radius)     

 (1) (2) (3) (4) (5) 

Measure of Plant Activity      

B-1: Avg Daily Gross Load (Twh) 17.79*** 16.27*** 16.11*** 18.10*** 17.39*** 

 (3.560) (3.352) (3.068) (2.888) (2.489) 

R-squared 0.853 0.862 0.693 0.591 0.696 

Adjusted R-squared 0.832 0.842 0.682 0.586 0.689 

      

B-2: Avg Daily SO2 (Million Tons) 0.481*** 0.420*** 0.498*** 0.584*** 0.549*** 

 (0.0798) (0.0762) (0.0761) (0.0735) (0.0821) 

R-squared 0.848 0.858 0.687 0.585 0.690 

Adjusted R-squared 0.826 0.837 0.676 0.579 0.684 

      

B-3: Avg Daily NOx (Million Tons) 1.704*** 1.636*** -0.78*** -0.514** -0.376 

 (0.392) (0.405) (0.256) (0.239) (0.401) 

R-squared 0.851 0.860 0.691 0.588 0.693 

Adjusted R-squared 0.829 0.839 0.680 0.583 0.687 

Time unit of observation Annual Annual Quarterly Monthly Monthly 

Weather controls  yes yes yes yes 

Fixed Effects:      

  County yes yes yes yes yes 

  Year yes yes    

  Year*Quarter   yes   

  Year*Month    yes  

  Region*Year*Month     yes 

Number of monitors 387 387 387 387 387 

Observations 2,316 2,316 9,255 27,763 27,763 

Standard errors clustered by state in parentheses 

*** p<0.01, ** p<0.05, * p<0.1     
 

Note: Table 1 reports the results of 30 different linear regressions, each of which seeks to quantify the relationship between power 

plant activity and ambient PM2.5. Within each panel, 15 regression models are specified, five for each of three measures of plant 

activity: gross electrical load, emitted SO2, and emitted NOx.  Results are presented in two panels: Panel A reports results from the 

county-level unit of observation, and Panel B contains those results obtained by defining the unit of observation as the 70-mile 

radius circle around a pollution monitor.  Each regression in Panel A is based on a sample of 166 counties, each of which contain 

both a PM2.5 monitor and a coal-fired power plant.  Reported electrical load and emitted pollution are the sums of the respective 

quantities from all coal-fired power plants within a given county, and measured ambient PM2.5 is the simple mean of all monitors 

with that county.  Each regression in Panel B is based on a 70-mile radius circle centered at each of 387 PM2.5 monitors.  The 

electrical load and emitted pollution are summed over all coal-fired power plants that fall within the circle surrounding a given air 

quality monitor. In columns (1) – (2) we employ the annual time unit of observation, progressively adding weather controls and 

county fixed effects and year fixed effects. Columns (3) reports results of our quarterly aggregation, and columns (4) and (5) report 

results of monthly aggregation, while (5) also includes county as well as US Census Region by year by month fixed effects. 
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Table 2: IV regression of average PM2.5 on instrumented average daily coal generation 

 (1) (2) (3) (4) (5) 

VARIABLES 70 Mile 70 Mile 70 Mile 70 Mile 70 Mile 

1: Avg Daily Gross Load (TWhs) 17.61*** 15.06*** 27.64*** 29.43*** 20.76*** 

 (6.140) (5.001) (7.112) (6.499) (4.614) 

R-squared 0.853 0.862 0.694 0.591 0.696 

Adjusted R-squared 0.832 0.842 0.683 0.586 0.689 

      

2: Avg Daily SO2 (Million Tons) 1.396*** 1.157*** 2.303*** 2.715*** 1.848*** 

 (0.362) (0.305) (0.487) (0.494) (0.471) 

R-squared 0.832 0.849 0.642 0.542 0.676 

Adjusted R-squared 0.808 0.826 0.629 0.536 0.670 

      

3: Avg Daily NOx (Million Tons) 3.969** 3.369*** 6.422*** 7.805*** 5.735*** 

 (1.542) (1.113) (1.970) (2.171) (1.715) 

R-squared 0.843 0.856 0.639 0.536 0.664 

Adjusted R-squared 0.821 0.834 0.626 0.530 0.657 

Time unit of observation Annual Annual Quarterly Monthly Monthly 

Weather controls  yes yes yes yes 

Fixed Effects:      

  County yes yes yes yes yes 

  Year yes yes    

  Year*Quarter   yes   

  Year*Month    yes  

  Region*Year*Month     yes 

Observations 2,316 2,316 9,255 27,763 27,763 

Standard errors clustered by state in 

parentheses 

 

    

*** p<0.01, ** p<0.05, * p<0.1       

 
Note: Table 2 reports the results of 15 different IV regressions, each of which seeks to quantify the relationship between power 

plant activity and ambient PM2.5.  The unit of observation is an air pollution monitor with a 70-mile radius circle.  The electrical 

load and emitted pollution are summed over all coal-fired power plants that fall within the 70 mile circle surrounding a given 

monitor. 15 regression models are specified, five for each of three measures of plant activity: gross electrical load, emitted SO2, 

and emitted NOx.  In columns (1) – (2) we employ the annual time unit of observation, progressively adding weather controls and 

county fixed effects and year fixed effects. Columns (3) reports results of our quarterly aggregation, and columns (4) and (5) report 

results of monthly aggregation, while (5) also includes county as well as US Census Region by year by month fixed effects. 
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Table 3: IV regression of average PM2.5 on instrumented average daily coal generation 

 (1) (2) (3) (4) (5) 

Panel A 40 Mile 40 Mile 40 Mile 40 Mile 40 Mile 

Ave Daily Coal (TWhs) 8.821 6.935 14.82 18.26* 12.20 

 (11.32) (9.938) (11.20) (10.40) (9.253) 

Constant 12.51*** -35.72 -10.08 96.80*** 79.16** 

 (0.270) (38.14) (40.74) (34.98) (30.89) 

Observations 1,980 1,980 7,899 23,695 23,695 

R-squared 0.842 0.852 0.697 0.602 0.694 

Adjusted R-squared 0.820 0.830 0.687 0.596 0.687 

      

Panel B 100 Mile 100 Mile 100 Mile 100 Mile 100 Mile 

Ave Daily Coal (TWhs) 18.50 16.12 26.63*** 26.64*** 19.70*** 

 (11.72) (10.92) (9.830) (7.272) (6.397) 

Constant 10.22*** 39.63 61.97 139.4*** 121.7*** 

 (1.530) (48.47) (46.10) (32.94) (27.60) 

Observations 2,514 2,514 10,056 23,695 23,695 

R-squared 0.848 0.860 0.683 0.602 0.694 

Adjusted R-squared 0.826 0.840 0.672 0.596 0.687 

Time unit of observation Annual Annual Quarterly Monthly Monthly 

Weather controls  yes yes yes yes 

Fixed Effects:      

  County yes yes yes yes yes 

  Year yes yes    

  Year*Quarter   yes   

  Year*Month    yes  

  Region*Year*Month     yes 

Standard errors clustered by state in parentheses 

*** p<0.01, ** p<0.05, * p<0.1      

 

Note: Table 3 provides robustness checks for the IV 70-mile specification of Table 2.  Panel A shows the results for 

a 40-mile specification.  The coefficient of interest is not statistically significant in most specifications.  Panel B gives 

the results for a 100 mile specification.  The coefficient of interest is statistically significant in the three of the five 

specifications and similar in magnitude to the 70-mile specifications shown in table 2. 
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Table 4: IV Robustness regression results for PM2.5 on coal and natural gas power plant generation 

 --------------------------------OLS ------------------------      IV 

  (1) (2) (3) (4) (5) (6) 

 county county county county county 70 miles 

             

Avg Daily Load Coal (Twh) 57.85*** 44.11** 50.77*** 41.79*** 25.86** 20.54*** 

 (18.32) (19.20) (14.49) (9.941) (10.13) (5.395) 

Avg Daily Load of Natural Gas (Twh) 27.97 19.04 34.39 39.62 14.46 -101.3 

 (20.14) (16.87) (26.47) (23.98) (15.19) (110.1) 

Constant 11.30*** -175.7* 20.41 84.58** 31.91 79.57*** 

 (0.369) (100.7) (45.24) (36.90) (40.44) (25.16) 

       

Observations 1,608 1,608 6,345 18,942 18,942 27,772 

R-squared 0.890 0.902 0.646 0.516 0.638 0.693 

Adjusted R-squared 0.865 0.879 0.628 0.506 0.626 0.687 

Standard errors clustered by state in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

Note: Table 4 displays the IV regression results when in addition to coal generation, natural gas generation is added as an 

independent right hand side variable of interest. The results show that coal generation has a qualitatively similar effect on PM2.5 as 

in our main regression Table 2, in particular for our preferred IV regression specification (6). In contrast, the generation of electricity 

by natural gas has not statistical significant impact on air quality.  

 

Table 5: Gross externality benefits measured in USD from improved ambient air quality due do the 

displacement of coal from the fracking revolution  

  Scenario of Natural Gas Price Reduction due to Fracking 

  Lower  Medium Upper 

H
ea

lt
h
 C

o
st

 

S
ce

n
ar

io
s 

Lower Bound  5,403,056,856 5,918,083,939 5,947,291,829 

Medium 15,239,391,133 16,692,031,624 16,774,412,851 

Upper Bound 38,998,987,309 42,716,426,382 42,927,247,432 

 

Note: The Columns reflect the three calculated scenarios of the reduction in the price of natural gas due to fracking. The “lower”, 

“medium” and “upper” scenario correspond to a decrease in the price of natural gas of $2.16, $3.41, and $4.11 per mmBtu 

respectively. The rows represent the gross externality measures that relate coal generation to health costs: the lower, medium and 

upper assume an age adjusted Value of Statistical Life of 2.8 million, age-adjusted VSL of 7.7 million and age un-adjusted (uniform) 

VSL of 7.7 million, respectively, as described in Muller, Mendelsohn, Nordhaus (2011).  All prices are in 2012 USD.  
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Table 6: Year by year IV regression of average PM2.5 on instrumented average daily coal 

generation 

 

YEAR (2007) (2008) (2009) (2010) (2011) (2012) 

VARIABLES 70 Mile 70 Mile 70 Mile 70 Mile 70 Mile 70 Mile 

Avg Daily Gross Load (TWhs) 32.10*** 14.16** 11.88 24.85*** 28.23*** 31.78*** 

 (10.87) (6.471) (7.667) (6.884) (6.604) (4.834) 

R-squared 0.722 0.722 0.709 0.709 0.686 0.672 

Adjusted R-squared 0.700 0.700 0.686 0.686 0.662 0.646 

Time unit of observation Monthly Monthly Monthly Monthly Monthly Monthly 

Weather controls yes yes yes yes yes yes 

Fixed Effects:       

  County yes yes yes yes yes yes 

  Region*Month yes yes yes yes yes yes 

Observations 4,632 4,632 4,632 4,631 4,631 4,605 
Standard errors clustered by state in 

parentheses 

 

    

 

*** p<0.01, ** p<0.05, * p<0.1        

  

Note: Table 5 reports the results of single year IV regressions of average PM2.5 on average daily load for the years 2007 through 

2012.  The regression specification is identical across all 6 cases. 

 

 



 43 

[Web Supplemental Online Material] 

Appendix I: Ambient SO2 as the Dependent Variable 

Our model for estimating the effect of plant activity on ambient SO2 is identical to that of plant 

activity on ambient PM2.5, which we describe in section 5.  The two stage least squares model takes the 

following form: 

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑖𝑡 = 𝛼 + 𝑍𝑖𝑡𝜃 + 𝐼𝑛𝑠𝑡. 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑖𝑡𝛿 + 𝜀𝑖𝑡 

𝑆𝑂2𝑗𝑡 = 𝛼 + 𝑋𝑖𝑡𝜑 + ∑ 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛̂
𝑗𝑖𝑡

𝑗
𝛽 + 𝜀𝑖𝑡 

Fewer SO2 monitors meet the selection criteria of section 3.1 than do PM2.5 monitors, so our sample is 

necessarily smaller.  The county-level regressions (Panel A) consist of 66 counties that contain at least one 

monitor and at least one coal-fired power plant, while the monitor-level regressions consist of the 73 

monitors for which there is at least one coal-fired power plant located within 70 miles.  Figures A1 and A2 

depict our samples for the county-level and 70-mile radius specifications respectively. 

Table A2 reports the results the results for 32 regressions in which ambient SO2 is taken as the 

dependent variable.  We find that average daily gross electrical load is not a statistically significant 

determinant of ambient SO2 in any of our model specifications.  When emitted SO2 is taken as the 

independent variable and ambient SO2 is taken as the dependent variable (shown in Table 1 A-2 and B-2), 

we find a statistically significant relationship at the county-level unit of observation only.  One possible 

explanation for this finding is that SO2 dissipates at some distance less than 70 miles from the point at which 

it is emitted.  The counties that are included in the county-level sample are substantially smaller than a 70-

mile radius circle, and thus might more accurately capture the effect of emitted SO2 on ambient SO2. 
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Appendix 2: Log-linear IV specification and results 

In section 5 we define a linear-linear model of ambient air pollution on power plant activity.  In 

this appendix, we examine a log-linear IV specification, in which the log of ambient air pollution is 

regressed against instrumented plant activity.  The second stage takes the following form: 

ln (𝐴𝑚𝑏𝑖𝑒𝑛𝑡𝑗𝑡) = 𝛼 + 𝑋𝑖𝑡𝜑 + ∑ 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛̂
𝑗𝑖𝑡

𝑗
𝛽 + 𝜀𝑖𝑡 

in which ln( )itAmbient denotes the natural log of ambient PM2.5 measurements.  All other variables are 

defined as in section 5. 

 Table A2 summarizes the results obtained by applying the log-linear model.  In our monthly 

specifications of the 70-mile radius unit of observation (column 5 of Panel B), we find that an increase of 

1 Twh (or 1,000 Gwh) of electrical load from coal-fired power plants corresponds to an 129% increase in 

ambient PM2.5 as measured in nearby populated areas.  At the county level (Panel A), however, we find 

statistically significant results in only two of five model specifications. To put these results into context, 

note that these estimates are a bit more noisy and smaller in size compared to the linear model. For example, 

shutting down the largest Texas power plant leads to an 21% reduction in PM2.5  in our main specification, 

but only to a reduction of 13% (column 5) to 19% (column 4) in the log-linear specification.  

Rows A-2 and B-2 give the results obtained when emitted SO2 is used as the independent variable 

of interest.  We find small but statistically significant results at the 70-mile circle levels.  Under the 70-mile 

circle specification, our preferred model indicates that an increase of 1 million tons of emitted SO2 is 

associated with a 13% increase in ambient PM2.5, while other time unit specifications estimate an effect 

between 8% and 20%.  At the county level, estimates of the effect are again more noisy. 

Rows A-3 and B-3 summarize the IV results obtained when emitted NOx is used as the independent 

variable of interest.  As in the linear specification, while the OLS results are unstable likely due to the NOx 

Budget Program‘s seasonal cap and trade system, our 70-buffer IV estimates on NOx are all significant and 

have the correct sign.  
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Appendix 3 

Figure A3 of Appendix 3 provides background data for the nonlinear supply curve of natural gas electricity 

generation. Panel (a) shows the distribution of observed heat rates for natural gas boilers in SERC in 2012 

and Panel (b) shows the dispatch model’s results for the lowest possible counterfactual natural gas price 

without fracking (ΔPUpper scenario) versus the highest possible natural gas price (ΔPLower scenario) without 

fracking relative to observed natural gas prices in the 2012 EIA SEDS database.  Panel (a) shows the well-

known bimodal distribution of heat rates for NG boilers by combined cycle versus gas turbine technologies.  

Panel (b) shows that the increase in generating hours for natural gas units during 2012 across low versus 

high natural gas prices would only be met by combined cycle generators.  Observed large differences are 

only present for a couple of individual boilers.  As a result, the medium run impacts we estimate are limited 

by installed combined cycle natural gas capacity.       
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Figure A1: Counties that contain at least one SO2 monitor and at least one coal-fired power plant

 

For  regressions using county as the unit of observation, only those counties that contain both an SO2 monitor and a coal-fired 

power plant are included.  
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Figure A2: 70-Mile Buffers around SO2 Monitors 

 

In those regressions using the 70 mile radius circle as the unit of observation, a circle is drawn around each SO2 monitor.  

Within each circle, the total amount of electricity generated and pollution emitted is summed.  Each circle is then treated as a 

single observation. 
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Figure A3: Sensitivity Analysis around Different Fracking Impacts 

 

Panel (a)      Panel (b) 

Panel (a) shows the distribution of observed heat rates for natural gas boilers in SERC in 2012 and Panel (b) shows 

the dispatch model’s results for the lowest possible counterfactual natural gas price without fracking (ΔPUpper 

scenario) versus the highest possible natural gas price (ΔPLower 
scenario) without fracking relative to observed natural 

gas prices in the 2012 EIA SEDS database.  Panel (a) shows the well-known bimodal distribution of heat rates for NG 

boilers by combined cycle versus gas turbine technologies.  Panel (b) shows that the increase in generating hours for 

natural gas units during 2012 across low versus high natural gas prices would only be met by combined cycle 

generators.  Observed large differences are only present for a couple of individual boilers.  As a result, the medium 

run impacts we estimate are limited by installed combined cycle natural gas capacity.       
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Table A1: IV Regression results for ambient SO2 on various specifications of plant activity.  

Panel A: County Level      

 (1) (2) (3) (4) (5) 

Measures of Plant Activity      

A-1: Avg Daily Gross Load (Twh) -94.51 -101.3 -44.76 -25.79 -57.94 

 (114.5) (120.2) (96.86) (70.00) (76.51) 

R-squared 0.700 0.712 0.642 0.583 0.608 

Adjusted R-squared 0.632 0.639 0.617 0.569 0.573 

A-2: Avg Daily Emitted SO2 (tons) -11.45 -13.23 -6.175 -4.494 -8.344 

 (23.60) (27.17) (13.04) (10.80) (12.73) 

R-squared 0.468 0.423 0.551 0.524 0.460 

Adjusted R-squared 0.348 0.275 0.520 0.508 0.412 

Time unit of observation Annual Annual Quarterly Monthly Monthly 

Weather controls  yes yes yes yes 

Fixed Effects:      

  County yes yes yes yes yes 

  Year yes yes    

  Year*Quarter   yes   

  Year*Month    yes  

  Region*Year*Month     yes 

Number of Counties 66 66 66 66 66 

Observations 365 365 1,447 4,315 4,315 

Standard errors clustered by state in parentheses 

*** p<0.01, ** p<0.05, * p<0.1      

 

 

  



 50 

Panel B: Monitor Level      

 (1) (2) (3) (4) (5) 

      

Measures of Plant Activity      

B-1: Avg Daily Gross Load (Twh) 2.734 -1.407 1.356 1.890 3.643 

 (12.77) (14.07) (8.729) (5.975) (6.704) 

R-squared 0.691 0.701 0.616 0.566 0.602 

Adjusted R-squared 0.627 0.632 0.593 0.553 0.578 

B-2: Avg Daily Emitted SO2 (tons) 0.237 -0.120 0.117 0.193 0.381 

 (1.115) (1.204) (0.753) (0.609) (0.702) 

R-squared 0.693 0.697 0.618 0.568 0.600 

Adjusted R-squared 0.629 0.627 0.595 0.555 0.577 

Time unit of observation Annual Annual Quarterly Monthly Monthly 

Weather controls  yes yes yes yes 

Fixed Effects:      

  County yes yes yes yes yes 

  Year yes yes    

  Year*Quarter   yes   

  Year*Month    yes  

  Region*Year*Month     yes 

Number of Monitors 73 73 73 73 73 

Observations 438 438 1,750 5,246 5,246 

Standard errors clustered by state in parentheses 

*** p<0.01, ** p<0.05, * p<0.1      
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Table A2: IV Regression results for log (ambient PM2.5) on various specifications of plant activity  

Panel A: County Level      

 (1) (2) (3) (4) (5) 

Measure of Plant Activity      

A-1: Avg Daily Gross Load 

(Twh) 7.464 4.487 8.842* 9.625** 4.550 

 (5.474) (5.310) (5.065) (4.309) (3.880) 

R-squared 0.934 0.939 0.789 0.673 0.753 

Adjusted R-squared 0.918 0.924 0.777 0.665 0.741 

A-2: Avg Daily SO2 

(Million Tons) 0.663 0.409 0.927* 1.098* 0.511 

 (0.447) (0.455) (0.552) (0.590) (0.471) 

R-squared 0.922 0.936 0.769 0.651 0.749 

Adjusted R-squared 0.904 0.920 0.755 0.643 0.737 

A-3: Avg Daily NOx 

(Million Tons) 3.068 1.930 3.597 4.129* 2.034 

 (2.500) (2.408) (2.353) (2.151) (1.892) 

R-squared 0.912 0.931 0.743 0.625 0.739 

Adjusted R-squared 0.892 0.914 0.728 0.616 0.727 

Time unit of observation Annual Annual Quarterly Monthly Monthly 

Weather controls  yes yes yes yes 

Fixed Effects:      

  County yes yes yes yes yes 

  Year yes yes    

  Year*Quarter   yes   

  Year*Month    yes  

  Region*Year*Month     yes 

Number of Counties 166 166 166 166 166 

Observations 854 854 3,355 10,010 10,010 

Standard errors clustered by state in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Panel B: Monitor Level       

 (1) (2) (3) (4) (5) 

Measure of Plant Activity      

B-1: Avg Daily Gross Load 

(Twh) 1.075*** 0.854*** 1.965*** 1.908*** 1.287** 

 (0.353) (0.304) (0.711) (0.619) (0.557) 

R-squared 0.873 0.882 0.673 0.598 0.694 

Adjusted R-squared 0.855 0.865 0.661 0.592 0.688 

B-2: Avg Daily SO2 

(Million Tons) 0.0967*** 0.0799** 0.199*** 0.205*** 0.131** 

 (0.0372) (0.0377) (0.0715) (0.0620) (0.0602) 

R-squared 0.860 0.873 0.626 0.564 0.682 

Adjusted R-squared 0.840 0.855 0.613 0.559 0.675 

B-3: Avg Daily NOx 

(Million Tons) 0.284** 0.228** 0.555** 0.594*** 0.413** 

 (0.132) (0.0947) (0.229) (0.228) (0.203) 

R-squared 0.865 0.877 0.635 0.565 0.677 

Adjusted R-squared 0.846 0.859 0.622 0.559 0.670 

Time unit of observation Annual Annual Quarterly Monthly Monthly 

Weather controls  yes yes yes yes 

Fixed Effects:      

  County yes yes yes yes yes 

  Year yes yes    

  Year*Quarter   yes   

  Year*Month    yes  

  Region*Year*Month     yes 

Number of monitors 387 387 387 387 387 

Observations 2,316 2,316 9,255 27,763 27,763 

Standard errors clustered by state in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 


