
Advanced Review

Community detection
in large-scale networks: a survey
and empirical evaluation
Steve Harenberg, Gonzalo Bello, L. Gjeltema, Stephen Ranshous,
Jitendra Harlalka, Ramona Seay, Kanchana Padmanabhan and
Nagiza Samatova∗

Community detection is a common problem in graph data analytics that consists
of finding groups of densely connected nodes with few connections to nodes
outside of the group. In particular, identifying communities in large-scale networks
is an important task in many scientific domains. In this review, we evaluated
eight state-of-the-art and five traditional algorithms for overlapping and disjoint
community detection on large-scale real-world networks with known ground-truth
communities. These 13 algorithms were empirically compared using goodness
metrics that measure the structural properties of the identified communities,
as well as performance metrics that evaluate these communities against the
ground-truth. Our results show that these two types of metrics are not equivalent.
That is, an algorithm may perform well in terms of goodness metrics, but poorly
in terms of performance metrics, or vice versa. © 2014 The Authors. WIREs Computational
Statistics published by Wiley Periodicals, Inc.

How to cite this article:
WIREs Comput Stat 2014, 6:426–439. doi: 10.1002/wics.1319

Keywords: clustering; community detection; empirical evaluation; graphs;
ground-truth; networks

INTRODUCTION

Large-scale networks with thousands to millions of
nodes are ubiquitous across many different sci-

entific domains. Community structures in these net-
works are often of particular interest. For example,
communities represent modules of functionally associ-
ated proteins in biological networks,1 customers with
similar interests in customer preferences databases,2 or

∗Correspondence to: samatova@csc.ncsu.edu

Department of Computer Science, North Carolina State University,
Raleigh, NC, USA

Computer Science and Mathematics Division, Oak Ridge National
Laboratory, Oak Ridge, TN, USA

Conflict of interest: The authors have declared no conflicts of
interest for this article.

regions of homogeneous long-term climate variability
in climate networks.3

Identifying communities in a network is a com-
plex problem due to the existence of numerous
definitions of community and the intractability of
many community detection algorithms. Informally, a
community is a densely connected group of nodes
that is sparsely connected to the rest of the network.
As there are several structural definitions that sat-
isfy this criterion, no formal definition of commu-
nity is universally accepted.4 In addition, communi-
ties can have various properties, often stemming from
the domain at hand, such as hierarchical organization,
overlapping nodes, or weighted edges. For all these
reasons, community detection has been approached
from many different perspectives and is one of the

426 Volume 6, November/December 2014
© 2014 The Authors. WIREs Computational Statistics published by Wiley Periodicals, Inc.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction
in any medium, provided the original work is properly cited and is not used for commercial purposes.

WIREs Computational Statistics Community detection in large-scale networks

most widely researched problems in graph data analyt-
ics. In this article, we perform an extensive empirical
review of state-of-the-art community detection algo-
rithms, focusing on their performance in large-scale
real-world networks.

RELATED WORK

In recent years, several surveys in the area of com-
munity detection have been published. Fortunato4

and Coscia et al.5 presented comprehensive reviews of
both disjoint and overlapping community detection
algorithms published up to 2009 and 2011, respec-
tively. Fortunato classified these algorithms based on
their methodological principles, whereas Coscia et al.
classified them based on the definition of community
used. Crampes and Plantié6 proposed an alternative
classification based on the type of input and output
data. Malliaros and Vazirgiannis7 focused on commu-
nity detection algorithms for directed graphs, and sug-
gested a methodology-based taxonomy to classify the
different algorithmic approaches.

Furthermore, some existing surveys also offer
an empirical evaluation of the algorithms consid-
ered. Danon et al.8 and Lancichinetti and Fortunato9

evaluated several community detection algorithms
on synthetic graphs, by computing the fraction of
correctly identified nodes and the Normalized Mutual
Information (NMI), respectively. Orman et al.10

compared eight algorithms for disjoint commu-
nity detection with respect to the performance metrics
obtained and the topological properties of the commu-
nities identified on a set of synthetic graphs. Xie et al.11

contrasted the performance of 14 state-of-the-art algo-
rithms for overlapping community detection on both
synthetic graphs and on real-world social networks
with no known ground-truth communities. Similarly,
Leskovec et al.12 and Moradi et al.13 evaluated the
structural quality of the communities identified by
various algorithms on real-world networks.

This review presents an overview of eight
state-of-the-art (published since 2010) algorithms for
both disjoint and overlapping community detection.
We analyzed some of the top-performing algorithms
identified in previous empirical studies, as well as
more recent algorithms that have not been included
in any survey. Five traditional community detection
algorithms were also considered as benchmarks.
Moreover, existing empirical comparisons of com-
munity detection algorithms have focused mostly on
synthetic graphs or on real-world networks with no
known ground-truth communities. To the best of
our knowledge, this is the first review to present a
systematic evaluation of state-of-the-art algorithms

for community detection on large-scale real-world
networks with known ground-truth communities.
The algorithms were evaluated based not only on the
structural properties of the communities identified,
but also on the accuracy of the results obtained with
respect to the ground-truth communities.

ALGORITHMS

In this section, we describe eight state-of-the-art (pub-
lished since 2010) algorithms for overlapping and/or
disjoint community detection. Two of the algorithms
(TopGC and SLPA) can be used to detect both types
of communities. Six of the algorithms (CGGC, MCD,
CONCLUDE, SVINET, SLPA, and TopGC) are non-
deterministic. Moreover, some of the algorithms can
be applied to directed and/or weighted graphs. In addi-
tion, several traditional methods (CFinder, Walktrap,
FastGreedy, LPA, and LE) for community detection
are included as benchmarks. For an overview of the
algorithms, see Table 1.

Overlapping Community Detection
Many real-world networks contain overlapping com-
munities; that is, each node can belong to multiple
communities. One of the most widely used techniques
to find overlapping communities is the Clique Perco-
lation Method (CPM).26 This technique finds all the
maximal cliques in a graph, which requires exponen-
tial time in the worst case,27 and then forms communi-
ties by merging cliques with common nodes. We used
CFinder,1 an implementation of CPM, as the tradi-
tional method for benchmark comparison.

SLPA: Label Propagation
Speaker-listener Label Propagation Algorithm
(SLPA),14 later renamed to GANXiS, extends Label
Propagation Algorithm (LPA)23 to overlapping com-
munity detection. SLPA identifies both disjoint and
overlapping communities by propagating labels rep-
resenting community membership between nodes in a
graph.

First, the memory of each node is initialized with
a unique label. This means that initially each node
belongs to a different community. Next, a node is
selected as a listener. A label is propagated to the
listener from each of its neighbors (speakers). Each
label propagated is randomly selected with a proba-
bility proportional to its frequency in the memory of
the speaker that sends it. The listener then incorpo-
rates the most common of the labels received into its
memory. This label propagation process is repeated
for a user-defined maximum number of iterations T

Volume 6, November/December 2014 © 2014 The Authors. WIREs Computational Statistics published by Wiley Periodicals, Inc. 427

Advanced Review wires.wiley.com/compstats

TABLE 1 Community Detection Algorithms Evaluated

Algorithm Olap Dir Wght Parm Complexity Implementation Year

State-of-the-art

SLPA14
√

*
√ √ √

O(Tm) Java 2012

TopGC15
√

*
√ √

? Java 2010

SVINET16
√ √ √

? C++ 2013

MCD17
√ √

O(nK) C 2012

CGGCi-RG18
√

? C++ 2012

CONCLUDE19
√ √

O
(
𝜅m + d (V)2 n + 𝛾n

)
Java 2011

DSE20
√ √

O(n log n+ n) C++ 2012

SPICi21
√ √

O(n log n+m) C++ 2010

Traditional

CFinder1
√

exponential Java 2005

FastGreedy22
√

O(n log2n) Python 2004

LPA23
√ √

O(m) Python 2007

LE24 O(m(n+m)) Python 2006

Walktrap25 O(mn2) Python 2005

SLPA, Speaker-listener Label Propagation Algorithm; TopGC, Top Graph Clusters; MCD, multithreaded community detection; CGGCi-RG, Core Groups Graph
Cluster with iterated randomized greedy modularity maximization; CONCLUDE, Complex Network Cluster Detection; DSE, dense subgraph extraction; SPICi,
Speed and Performance In Clustering; LPA, Label Propagation Algorithm; LE, leading eigenvector.

n= |V|, m= |E|, and d (V) is the average degree of the graph. Other variables are explained in the corresponding algorithm sections. Checkmarks indicate that
the algorithm identifies overlapping communities (Olap), can be run on directed graphs (Dir) or weighted graphs (Wght), or requires input parameters (Parm).
Algorithms marked with * can also be used to find disjoint communities.

(SLPA has been empirically shown to produce rela-
tively stable results for T >20.14). Finally, a proba-
bility distribution of labels is built for the memory of
each node. If the probability for a particular label of a
node is less than a given threshold r∈ [0, 1], the label is
deleted. Nodes with common labels are then grouped
into a community. If a node has multiple labels it will
belong to multiple overlapping communities. Hence,
the smaller the value of r, the greater the number of
overlapping communities identified by the algorithm.
Note that when r≥ 0.5, the algorithm returns only dis-
joint communities.

TopGC: Locality Sensitive Hashing
Top Graph Clusters (TopGC)15 is a probabilistic
clustering algorithm that finds the top well-connected
clusters in a graph. The main idea is to find sets of
nodes whose neighborhoods are highly overlapping,
as these nodes should be clustered together. This is
achieved by applying a technique called MinHash,
which estimates the similarity between two sets. To
reduce memory, an initial pruning phase is used to
determine the nodes most likely to be in the strongest
clusters. The strength of a cluster is defined as the
sum of edge weights in the cluster over the number of
possible edges multiplied by the root of the cluster size.

First, the algorithm generates m permutations
𝜋1, … ,𝜋m of all the nodes in the graph. Second,

for each permutation 𝜋i, a MinHash value mhi is
determined for each node in the graph by selecting
the neighboring node with the lowest order in the
permutation. Third, l random numbers in [1, m] are
generated to create a MinHash signature for each
node,

(
mhl1

,mhl2
, … ,mhll

)
. Hence, the probability

of two nodes having matching signatures is the Jaccard
index between the nodes raised to the power l. Finally,
the nodes are hashed using their signatures and nodes
with the same hash are placed in the same community.

SVINET: Statistical Inference
SVINET16 is based on a Bayesian model for
graphs with overlapping communities that uses a
mixed-membership stochastic blockmodel.28 In this
model, each node is assigned a vector of community
memberships 𝜃 of length K, where K is the number
of communities in the graph (which is assumed to
be known). The community structure of an observed
graph can then be estimated by computing the poste-
rior distribution; that is, the conditional distribution
of the community memberships given the graph.
However, computing the posterior distribution is an
intractable problem. For this reason, it is approxi-
mated using a stochastic optimization algorithm for
mean-field variational inference.

First, a set of pairs of nodes is subsampled
from the graph. Next, this subsample is analyzed

428 © 2014 The Authors. WIREs Computational Statistics published by Wiley Periodicals, Inc. Volume 6, November/December 2014

WIREs Computational Statistics Community detection in large-scale networks

and the community structure of the graph is updated
accordingly. This subsampling procedure is repeated
for a given number of iterations. Hence, SVINET
analyzes a subgraph of the graph at each iteration.

Disjoint Community Detection
The majority of algorithms for community detection
find disjoint communities; that is, each node belongs
to at most one community. In general, community
detection in literature refers to disjoint communities
unless explicitly stated otherwise.

Graph partitioning methods divide the graph
into two partitions (i.e., communities), which may
then be further partitioned. One of the limitations of
graph partitioning methods is that they usually require
the user to specify the number of partitions, which
may not be known in advance. One solution proposed
to this problem is to use a goodness metric (e.g., mod-
ularity) to evaluate the partition of the graph at each
step. However, this is computationally expensive and
can be infeasible for large graphs. Several heuris-
tics have been proposed to partition the graph. For
instance, the traditional algorithm Walktrap25 uses
random walks based on the intuition that a random
walk will likely get trapped in densely connected
regions of the graph corresponding to communities.

Other traditional methods use a bottom-up
approach, starting with individual nodes and
combining them. Some of these methods, such as
FastGreedy,22 are based on maximizing an objective
function (e.g., modularity). Others, such as LPA,23

are based on communication theory.
Another category of traditional methods use

spectral clustering to identify communities; for
example, by calculating the leading eigenvector (LE)24

of the modularity matrix of the graph.

MCD: Modularity Maximization
The multithreaded community detection (MCD) algo-
rithm in Ref 17 creates a set of disjoint partitions of the
input graph. Like other agglomerative clustering algo-
rithms, this method starts with each node as a separate
community and merges communities until some objec-
tive function (such as modularity or negative conduc-
tance) achieves a local maximum. For our evaluation,
we used modularity as the objective function.

To cluster the graph, this algorithm maintains
a community graph, where each community is repre-
sented by a single node and the edges are weighted
with the number of collapsed edges. Using this
community graph, at each iteration, the algorithm
computes the change in the optimization metric after
merging two adjacent communities, greedily selects

pairs of communities to merge, and contracts the com-
munity graph based on these mergers. In all itera-
tions, there are at most K contraction phases, which
is bounded by |V|, but is often much less.

CGGC: Ensemble-Based Modularity
Maximization
Core Groups Graph Cluster (CGGC)18 is an ensem-
ble learning method for clustering graph data. This
ensemble method combines several different cluster-
ings to help decide about the final partitioning of the
node set into clusters; if all the clusterings agree that a
pair of nodes belong together in a cluster, it is probably
true, otherwise, a second look should be taken.

The general strategy is to run clustering algo-
rithms k times to generate k different partitions of the
nodes. From these k partitions, a maximum overlap
partition P̂ is created where nodes that are part of the
same clusters in all of the k clusterings are in the same
partition of P̂. A graph is built using the partitions
from P̂ as nodes and a final clustering step is performed
on this smaller graph to find the final partitioning.
An improvement to this method is made by perform-
ing the k-partitioning iteratively until a ‘best’ initial
partitioning is achieved. Although a combination of
several different clustering techniques can be used in
the initial k-partitioning phase of the algorithm, the
authors use only one clustering technique (run k times)
and compare label propagation and a randomized
greedy modularity maximization as their clustering
techniques. For our evaluation, we used CGGC with
iterated randomized greedy modularity maximization
(CGGCi-RG), which was shown to perform best.18

CONCLUDE: Random Walks and Modularity
Maximization
The Complex Network Cluster Detection (CON-
CLUDE) algorithm19 aims to combine the accuracy of
global methods with the efficiency of local methods.
This is done by incorporating knowledge about the
topology of the entire graph to heuristic algorithms
for community detection.

First, the 𝜅-path edge centrality of each edge in
the graph is computed using the Edge Random Walk
𝜅-path Centrality (ERW-Kpath) algorithm.19 𝜅-path
edge centrality is a measure of the importance of an
edge in the connectivity of the graph. ERW-Kpath is a
heuristic algorithm that approximates the 𝜅-path edge
centrality of an edge by calculating the probability
of the edge belonging to a random non-backtracking
walk of finite length 𝜅. Next, we use the 𝜅-path
edge centrality values estimated to compute the dis-
tances between all pairs of connected nodes in the
graph. Finally, the distances computed are assigned

Volume 6, November/December 2014 © 2014 The Authors. WIREs Computational Statistics published by Wiley Periodicals, Inc. 429

Advanced Review wires.wiley.com/compstats

as edge weights and the resulting weighted graph is
partitioned using the Louvain Method.29 The Louvain
Method is a widely used greedy algorithm for commu-
nity detection by network modularity maximization
that converges in 𝛾 iterations.

DSE: Matrix Blocking via Cosine Similarity
The method for dense subgraph extraction (DSE) in
Ref 20 is inspired by matrix blocking. Matrix blocking
is the process of reordering the rows and columns
such that a critical mass of the nonzero elements
are along or near the diagonal. The blocks along
the diagonal correspond to dense subgraphs. Through
an adaptation of the method presented in Ref 30, a
hierarchical clustering algorithm for extracting dense
subgraphs is created. This approach requires only
the minimum density of the subgraphs and yields an
incomplete clustering, meaning that not every node in
the graph needs to be part of a community.

Given a sparse graph G, a matrix M is created,
where Mij is the cosine similarity between columns i
and j in the adjacency matrix of G. A tree T, which
represents the partitioning of the nodes, is constructed
in a bottom-up fashion by iterating over the nonzero
entries in M in descending order, each time joining two
subtrees if they are not already connected. The dense
subgraphs can be extracted by a simple tree traversal,
outputting the subtrees rooted at internal nodes with
densities greater than the threshold value.

SPICi: Support Maximization
Speed and Performance In Clustering (SPICi)21 is a
greedy heuristic algorithm that produces an incom-
plete clustering and is designed to work on large bio-
logical networks. It begins by identifying a seed pair
of nodes, which will be the node u with the maxi-
mum weighted degree (dw(u)=

∑
v : (u,v)∈Ewu,v) and its

neighbor with the highest weighted degree. The pro-
cedure for growing the current cluster S is similar to
DPClus.31 At each iteration, the node with the high-
est support (support(u, S)=

∑
v∈ Swu,v) for the current

cluster is chosen to be added if the density would
remain above the user-defined threshold. Otherwise,
the cluster is reported and its nodes and incident edges
are removed from the graph.

EVALUATION METHODOLOGY

In this section, we describe the methodology used to
evaluate the community detection algorithms. Each
algorithm was applied to several graph datasets to
obtain goodness and performance metrics. Goodness
metrics quantitatively measure structural properties of
the identified communities, whereas the performance

metrics quantitatively compare these communities
against the ground-truth communities. These metrics
were analyzed and compared in R 3.0.2. The nondeter-
ministic algorithms were run 10 times on each graph.
All experiments were performed on a dedicated Intel
server consisting of two hex-core E5645 processors
and 64 GB DDR2 RAM. The data was stored on a
2TB RAID1 partition and the operating system was
installed on a 120.5 GB SSD.

Datasets
For our experiments, we used real-world networks
with overlapping ground-truth communities from
the Stanford Large Network Dataset Collection
(SNAP).31 Five undirected, unweighted networks
from three different domains were considered:

• Co-product purchasing network (Amazon):
Nodes represent products. Adjacent nodes rep-
resent products that are frequently copurchased.
Ground-truth communities are defined by the
hierarchy of product categories.

• Co-publishing network (DBLP): Nodes represent
authors. Adjacent nodes represent authors with
at least one shared publication. Ground-truth
communities are defined as sets of authors who
published in the same journal or conference.

• Social networks (LiveJournal, Orkut, Youtube):
Nodes represent users and edges represent friend-
ship between two users. Ground-truth com-
munities are defined by node membership in
user-created groups.

Only the top 5000 ground-truth communities
from each network (determined by Ref 32) were used
for evaluation, as goodness metrics have been shown
to degrade quickly after roughly the top 5000. In
addition, many of these top communities had low
internal densities, contradicting the intuitive defini-
tion of a community. Therefore, we ranked the top
5000 ground-truth communities based on internal
density and removed the bottom quartile. Duplicate
communities were also eliminated. Finally, all the
nodes (and incident edges) that did not belong to
any of the remaining communities were removed from
the networks. The resulting graphs and ground-truth
communities were used to test the algorithms for over-
lapping community detection.

In addition, five more graphs with disjoint
ground-truth communities were derived from the
real-world networks in order to test the algorithms
for disjoint communities. To obtain these graphs, the
maximum independent set of disjoint ground-truth

430 © 2014 The Authors. WIREs Computational Statistics published by Wiley Periodicals, Inc. Volume 6, November/December 2014

WIREs Computational Statistics Community detection in large-scale networks

TABLE 2 Summary of the Graphs Used for the Evaluations

Parameter Amazon Youtube DBLP LiveJournal Orkut Algorithms

Overlap

Num vertices 8275 12,091 26,956 44,093 297,691 —

Num edges 22,231 29,775 88,742 871,409 7,747,026 —

Max comms per node 4 11 8 13 43 SLPA

Num communities 1138 3579 3721 3528 3664 SVINET

Min comm size 3 2 6 3 3 TopGC

Max comm size 27 31 38 407 787 TopGC

Max comm overlap 1 1 1 1 1 TopGC

Min density 0.324 0.286 0.489 0.667 0.101 —

Disjoint

Num vertices 1644 3088 5831 17,969 1247 —

Num edges 5022 6695 18,733 434,075 15,511 —

Max comms per node 1 1 1 1 1 SLPA

Num communities 131 595 676 668 43 MCD

Min comm size 4 2 6 3 3 TopGC, DSE, SPICi

Max comm size 25 29 27 407 211 TopGC, MCD

Max comm overlap 0 0 0 0 0 TopGC

Min density 0.325 0.286 0.489 0.667 0.165 DSE, SPICi

SLPA, Speaker-listener Label Propagation Algorithm; TopGC, Top Graph Clusters; MCD, multithreaded community detection; DSE, dense subgraph extraction;
SPICi, Speed and Performance In Clustering.
Algorithms are listed in the row of the input parameter needed.

communities was found. Then, the nodes (and incident
edges) that did not belong to any of these communities
were removed.

Thus, in total, 10 graphs corresponding to
real-world networks (Amazon, DBLP, LiveJournal,
Orkut, and Youtube) were used for our experiments;
five with overlapping ground-truth communities and
five with disjoint ground-truth communities. The
summary of these graphs can be found in Table 2. For
algorithms that require edge-weighted networks as
input, a weight of one was assigned to all edges.

Parameter Selection
In many cases, the community detection algorithms
require the user to specify certain parameters, such
as minimum community size, overlap threshold, mini-
mum density (Table 2). For each graph, the parameters
were chosen based on statistics of the ground-truth
communities. Although it may inflate the performance
results compared to the parameter-free algorithms,
this approach was selected to provide a uniform com-
parison of the algorithms.

For the probability threshold parameter r used
in SLPA, we chose the inverse of one plus the maxi-
mum number of communities per node (max comms

per node, Table 2). This value guarantees that each
node can belong to as many communities as in the
ground-truth.

The maximum community overlap used in
TopGC is defined as the maximum overlap between
any two communities (max comm overlap, Table 2).
The overlap between two communities was calculated
by dividing the number of common vertices between
the two communities by the number of vertices in the
smaller community.

Goodness Metrics
Goodness metrics quantitatively measure different
attributes of community structures. A list of vari-
ous commonly used scoring functions was compiled
in Ref 32. It can be difficult to decide which good-
ness metric is suitable to express ‘good’ communi-
ties in a particular graph. Therefore, we selected four
goodness metrics that measure complementary prop-
erties for our empirical analysis: density, clustering
coefficient, conductance, and triangle participation
ratio.

Given an undirected graph G= (V, E) and a set
of nodes S⊆V, let ES = |{(u, v)∈E | u, v∈ S}| be the
number of edges in the subgraph induced by S. Let

Volume 6, November/December 2014 © 2014 The Authors. WIREs Computational Statistics published by Wiley Periodicals, Inc. 431

Advanced Review wires.wiley.com/compstats

0.0

0.2

0.4

0.6

0.8

1.0

Amazon
D

en
si

ty
Youtube DBLP LiveJournal Orkut

0.0

0.2

0.4

0.6

0.8

1.0

C
lu

st
er

in
g

co
ef

fic
ie

nt

0.0

0.2

0.4

0.6

0.8

1.0

T
P

R

S
LP

A

T
op

G
C

S
V

IN
E

T

C
F

in
de

r

gr
ou

nd
−

tr
ut

h

0.0

0.2

0.4

0.6

0.8

1.0

C
on

du
ct

an
ce

S
LP

A

T
op

G
C

S
V

IN
E

T

C
F

in
de

r

gr
ou

nd
−

tr
ut

h

S
LP

A

T
op

G
C

S
V

IN
E

T

C
F

in
de

r

gr
ou

nd
−

tr
ut

h

S
LP

A

T
op

G
C

S
V

IN
E

T

C
F

in
de

r

gr
ou

nd
−

tr
ut

h

S
LP

A

T
op

G
C

S
V

IN
E

T

C
F

in
de

r

gr
ou

nd
−

tr
ut

h

Traditional
algorithm
Ground−truth

FIGURE 1 | Goodness metrics for overlapping community detection. Missing boxplots indicate that the corresponding algorithm did not finish on
that graph within 4 h.

OS = |{(u, v)|u ∈ S, v ∉ S}| be the number of edges
between the vertices in S and any vertex outside
of S. A triplet is defined as a tuple of three nodes
(u, v, w) where (u, v), (v, w)∈E. If (u, w)∈E, then the
triplet is said to be closed, otherwise the triplet is
open. A triplet is defined to be centered at a vertex,
thus (u, v, w)= (w, v, u), but (u, v,w) ≠ (v,u,w). We
denote the set of closed and open triplets as Tc and
To respectively. Given these notations, the goodness
metrics for a community S are defined as follows32:

• Density, 2 |ES||S|(|S|−1)
: the ratio of edges to the number

of possible edges.

• Clustering coefficient, |Tc||Tc|+|To| : the ratio of closed

triplets to all triplets.
• Conductance, OS

2 ES+OS
: the fraction of edges that

point outside the community.
• Triangle participation ratio (TPR),|{v∈T | T∈Tc}|

|S| : the fraction of nodes that belong
to a triangle.

432 © 2014 The Authors. WIREs Computational Statistics published by Wiley Periodicals, Inc. Volume 6, November/December 2014

WIREs Computational Statistics Community detection in large-scale networks

0.0

0.2

0.4

0.6

0.8

1.0
Amazon

D
en

si
ty

Youtube DBLP LiveJournal Orkut

0.0

0.2

0.4

0.6

0.8

1.0

C
lu

st
er

in
g

co
ef

fic
ie

nt

0.0

0.2

0.4

0.6

0.8

1.0

T
P

R

S
LP

A
T

op
G

C
M

C
D

C
G

G
C

i−
R

G
C

O
N

C
LU

D
E

D
S

E
S

P
IC

i
F

as
tG

re
ed

y
LP

A LE
W

al
kt

ra
p

gr
ou

nd
−

tr
ut

h

0.0

0.2

0.4

0.6

0.8

1.0

C
on

du
ct

an
ce

S
LP

A
T

op
G

C
M

C
D

C
G

G
C

i−
R

G
C

O
N

C
LU

D
E

D
S

E
S

P
IC

i
F

as
tG

re
ed

y
LP

A LE
W

al
kt

ra
p

gr
ou

nd
−

tr
ut

h

S
LP

A
T

op
G

C
M

C
D

C
G

G
C

i−
R

G
C

O
N

C
LU

D
E

D
S

E
S

P
IC

i
F

as
tG

re
ed

y
LP

A LE
W

al
kt

ra
p

gr
ou

nd
−

tr
ut

h

S
LP

A
T

op
G

C
M

C
D

C
G

G
C

i−
R

G
C

O
N

C
LU

D
E

D
S

E
S

P
IC

i
F

as
tG

re
ed

y
LP

A LE
W

al
kt

ra
p

gr
ou

nd
−

tr
ut

h

S
LP

A
T

op
G

C
M

C
D

C
G

G
C

i−
R

G
C

O
N

C
LU

D
E

D
S

E
S

P
IC

i
F

as
tG

re
ed

y
LP

A LE
W

al
kt

ra
p

gr
ou

nd
−

tr
ut

h

FIGURE 2 | Goodness metrics for disjoint community detection. Missing boxplots indicate that the corresponding algorithm did not finish on that
graph within 4 h.

Performance Metrics
Performance metrics are another way to measure the
quality of the output by comparing identified commu-
nities against the ground-truth communities. For every
pair of nodes, we checked whether they belong to the
same community. A pair of nodes is misclassified if
(1) they were assigned to different communities but
belong to the same ground-truth community (false
negative) or if (2) they were assigned to the same
community but belong to different ground-truth com-
munities (false positive). Using the true/false positives/
negatives, we obtained several statistical measures:
precision (P), recall (R), F-measure (F), specificity (S),
accuracy (A),33 and NMI,34 which measures the sim-
ilarity between the set of ground-truth communities
and the set of communities output by an algorithm.

RESULTS AND DISCUSSION

In this section, we present the results obtained with the
community detection algorithms evaluated in terms of
goodness metrics, performance metrics, output sim-
ilarity, and run-time. To obtain these values, the

deterministic algorithms were run once and the non-
deterministic algorithms were run 10 times. For the
nondeterministic algorithms, the values per goodness
metric in an ‘average’ run, shown in the boxplots, were
computed as follows: for each percentile, the mean of
the 10 runs was calculated; the resulting 100 points
were used as an approximation of an ‘average’ distri-
bution of the goodness metric.

Goodness Metrics Results
The algorithms were evaluated on a per-
goodness-metric basis. The results for the overlapping
and disjoint community detection algorithms can be
found in Figures 1 and 2 respectively. The goodness
metrics selected for evaluation are bounded by 0 and
1. A high value of density, clustering coefficient, or
TPR indicates ‘good’ communities, as does a low
value of conductance.

Analysis of Ground-Truth Communities
An analysis of the overlapping and disjoint
ground-truth communities revealed that the
LiveJournal, Orkut, and Youtube networks do not

Volume 6, November/December 2014 © 2014 The Authors. WIREs Computational Statistics published by Wiley Periodicals, Inc. 433

Advanced Review wires.wiley.com/compstats

have similar values for the majority of the goodness
metrics, despite all being social networks. LiveJournal
communities have low median scores for conductance
and high scores for density, clustering coefficient, and
TPR, whereas Orkut communities have a wider range
and lower scores for density and clustering coefficient.
On the other hand, Youtube communities exhibit the
widest range of values for all the goodness metrics
except for density.

The ground-truth communities of the Youtube
network have unexpected values for most of the
goodness metrics. Three quarters of the Youtube over-
lapping and disjoint ground-truth communities have
low clustering coefficients and low TPRs. The median
clustering coefficient (0 for overlapping and 0.214 for
disjoint) and the median TPR (0 for overlapping and
0.429 for disjoint) are considerably lower than in the
other networks. For the disjoint graphs, Youtube’s
communities also have a higher median conductance
(0.2) than the communities of the other networks
(0 for each). This means that most of the Youtube
communities do not exhibit the expected structural
properties of ‘good’ communities; that is, there are
many edges within these communities (indicated by
the high density), but there are not many triangles
(indicated by the low TPR and the low clustering
coefficient). Owing to these particular structural
properties, all the community detection algorithms
evaluated yielded a low precision (and thus a low
F-measure) on the Youtube network.

Analysis of Algorithms
For each graph, the algorithms were ranked based
on the median values of the goodness metrics of
the communities found. In cases where the medians
were similar, the interquartile ranges were compared,
followed by inspection of the ranges. Note that the
comparison of the overlapping algorithms for the
LiveJournal and Orkut networks may be affected by
the fact that only two of these algorithms ran within
the allotted time frame.

The overall top and bottom ranked algorithms
are shown in Table 5. No full ranking is provided,
because some instances had no clear distinction
between the rankings of the algorithms. For instance,
all the overlapping and disjoint community detection
algorithms identified communities with generally high
TPR (median very close to 1 and small interquartile
range of 0.106), except in the case of the Youtube
network.

Among all the algorithms, TopGC identified the
best overlapping and disjoint communities in terms
of density and clustering coefficient. TopGC achieves
this high performance because it aims to find only the

best communities as determined by a scoring function
proportional to density, rather than all communities
in the graph. However, the communities identified
by TopGC also had the worst conductance. This
demonstrates that an algorithm optimizing for a single
goodness metric may not capture all desired structural
properties of a community.

On the other hand, SLPA found the communities
with the lowest conductance of all the overlapping
algorithms. SLPA achieved a low conductance,
because it naturally forms communities with few
outgoing edges: sets of nodes with few outgoing edges
are likely to propagate the same labels between them
and hence will frequently be placed into the same
community.

Performance Metrics Results
The performance metrics for each algorithm were
calculated using the ground-truth communities. These
metrics can be found in Tables 3 and 4. The algorithms
were ranked on a per-performance-metric basis using
the median values as described in the previous section.
The overall top and bottom ranked algorithms are
shown in Table 5. Note that due to a high number
of true negatives, the specificity and accuracy of all
the overlapping and disjoint community detection
algorithms were near perfect (almost 1) on most
graphs. Therefore, these two performance metrics did
not provide any discriminatory information and were
not included in our analysis.

In most cases, TopGC yielded considerably
worse values of recall, F-measure, and NMI than all
the other overlapping and disjoint community detec-
tion algorithms. TopGC only identifies the top com-
munities in the graph as determined by its scoring
function. Therefore, many nodes are not placed in
any community, resulting in a very large number of
false negatives (and thus in a very low recall and
F-measure). On the other hand, the number of false
positives is likely to be low, which explains the high
precision of the algorithm.

For overlapping communities, SLPA achieved
the best recall, F-measure, and NMI on all graphs.
SLPA has been previously identified as one of the best
performing algorithms on overlapping networks.11

For disjoint communities, SLPA also produced very
good results in terms of recall, F-measure, and NMI
on all graphs except Youtube.

Similarity Measure
To further compare the community detection algo-
rithms, the pairwise similarity between the output of
the algorithms (i.e., the identified communities) was

434 © 2014 The Authors. WIREs Computational Statistics published by Wiley Periodicals, Inc. Volume 6, November/December 2014

WIREs Computational Statistics Community detection in large-scale networks

TABLE 3 Performance Metrics for Overlapping Community Detection

Metric SLPA TopGC SVINET CFinder

Amazon

Recall .938 [.932; .944] .134 [.115; .141] .640 [.617; .747] .727

Precision .996 [.992; .999] .999 [.996; 1] .789 [.492; .837] 1

F-measure .966 [.962; .969] .236 [.207; .248] .719 [.547; .757] .842

NMI .826 [.823; .827] .208 [.170; .246] .634 [.378; .680] .649

Youtube

Recall .917 [.915; .926] .076 [.057; .094] .438 [.431; .449] .293

Precision .006 [.005; .007] .381 [.255; .570] .167 [.142; .187] .011

F-measure .012 [.009; .014] .126 [.103; .144] .242 [.214; .263] .022

NMI .449 [.425; .465] .067 [.050; .080] .100 [.063; .163] .068

DBLP

Recall .925 [.922; .927] .131 [.126; .136] .782 [.773; .875] .805

Precision .840 [.831; .853] .975 [.944; .984] .665 [.491; .721] .925

F-measure .881 [.875; .888] .231 [.224; .237] .742 [.601; .748] .861

NMI .820 [.818; .828] .214 [.165; .245] .701 [.512; .719] .843

LiveJournal

Recall .974 [.972; .977] .166 [.159; .182] NA NA

Precision .933 [.923; .936] .961 [.957; .970] NA NA

F-measure .953 [.947; .956] .283 [.273; .307] NA NA

NMI .593 [.592; .595] .110 [.095; .132] NA NA

Orkut

Recall .743 [.732; .753] .003 [.003; .003] NA NA

Precision .483 [.465; .557] .868 [.865; .874] NA NA

F-measure .587 [.572; .634] .005 [.005; .005] NA NA

NMI .491 [.481; .496] 0 [0 ; 0] NA NA

SLPA, Speaker-listener Label Propagation Algorithm; TopGC, Top Graph Clusters; NMI, Normalized Mutual Information.
Results displayed as median [range] over 10 runs where applicable.

computed. Moreover, the similarity between the out-
put of each algorithm and the ground-truth communi-
ties was also determined.

The similarity between the output of two com-
munity detection algorithms A and B is given by
Ref 7:

S (A,B) = 1
n

∑
v∈V

||CA (v) ∩ CB (v)||||CA (v) ∪ CB (v)|| (1)

where Ci(v) is the set of nodes that belong to the same
community as v in the output of algorithm i.

The similarity matrices for the overlapping and
disjoint community detection algorithms are shown
in Figure 3. Some of the similarities obtained are rela-
tively consistent across different graphs (e.g., Amazon
and Orkut). However, for the Youtube graph, all the
community detection algorithms have very differ-
ent outputs and none of them is very similar to the
ground-truth communities. This is likely due to the

unconventional structure of the communities of this
graph.

In most cases, the outputs of TopGC and SPICi
were considerably different from the output of the
other algorithms and from the ground-truth commu-
nities. This can be partly explained by the fact that
both algorithms produce incomplete clusterings of the
graph, whereas the ground-truth communities are a
complete clustering. In addition, TopGC aims to iden-
tify only the most densely connected communities in
the graph. For this reason, it usually finds fewer or
smaller communities than the other algorithms and
than the ground-truth.

Furthermore, among the overlapping algo-
rithms, the communities identified by SLPA were the
most similar to the ground-truth communities for
all graphs. This agrees with the performance metrics
obtained in our evaluation and with the conclusion of
other community detection empirical surveys.11

Volume 6, November/December 2014 © 2014 The Authors. WIREs Computational Statistics published by Wiley Periodicals, Inc. 435

Advanced Review wires.wiley.com/compstats

TABLE 4 Performance Metrics for Disjoint Community Detection

Metric SLPA TopGC MCD CGGCi-RG CONCLUDE DSE SPICi FastGreedy LPA LE Walktrap

Amazon

R .904 [.889; .923] .061 [.055; .067] .990 [.985; .995] 1 [1 ; 1] .791 [.771; .816] 1 .639 1 .866 1 1

P 1 [.995; 1] 1 [.995; 1] .956 [.955; .969] .956 [.956; .956] 1 [.999; 1] .974 .999 .956 1 .956 .956

F .950 [.941; .960] .114 [.105; .126] .973 [.970; .982] .978 [.978; .978] .883 [.871; .898] .987 .779 .978 .928 .978 .978

NMI .939 [.932; .948] .079 [.063; .093] .957 [.956; .961] .960 [.960; .960] .861 [.853; .874] .970 .774 .960 .915 .960 .960

Youtube

R .875 [.850; .890] .035 [.025; .045] .709 [.700; .714] .926 [.920; .932] .779 [.763; .794] .373 .436 .911 .908 .787 .817

P .031 [.024; .041] .680 [.536; .765] .501 [.491; .514] .058 [.049; .063] .433 [.227; .480] .756 .564 .041 .014 .008 .040

F .060 [.047; .079] .066 [.048; .085] .587 [.577; .596] .109 [.094; .117] .555 [.352; .594] .499 .492 .078 .028 .016 .077

NMI .565 [.548; .579] .043 [.031; .052] .592 [.578; .602] .290 [.287; .298] .678 [.651; .695] .286 .510 .354 .538 .261 .663

DBLP

R .912 [.901; .919] .070 [.063; .075] .879 [.877; .884] 1 [.999; 1] .855 [.845; .871] .949 .556 1 .884 .998 .997

P .954 [.942; .966] .997 [.987; 1] .847 [.844; .851] .469 [.469; .470] .985 [.975; .994] .948 .972 .461 .972 .459 .284

F .932 [.922; .942] .131 [.118; .140] .863 [.862; .867] .639 [.639; .639] .918 [.910; .924] .948 .707 .631 .926 .629 .442

NMI .932 [.925; .939] .073 [.066; .082] .856 [.852; .863] .638 [.638; .638] .911 [.902; .917] .942 .567 .635 .918 .641 .635

LiveJournal

R .983 [.980; .985] .079 [.062; .098] .576 [.575; .578] .994 [.994; .994] NA .974 .871 .995 .985 .993 .977

P .986 [.983; .989] .997 [.991; .998] .859 [.852; .864] .728 [.727; .729] NA .981 .994 .644 .967 .088 .988

F .984 [.984; .986] .147 [.116; .179] .690 [.687; .692] .841 [.839; .841] NA .978 .928 .782 .976 .162 .983

NMI .979 [.977; .980] .109 [.100; .116] .797 [.793; .802] .779 [.776; .779] NA .974 .923 .750 .975 .668 .974

Orkut

R .989 [.988; .994] .013 [.012; .014] .997 [.994; .999] .999 [.999; .999] .970 [.798; .993] .990 .414 .999 .997 .997 .977

P .996 [.996; .996] .997 [.993; 1] .996 [.979; .996] .888 [.888; .888] .996 [.996; .997] .804 .997 .996 .996 .992 .996

F .992 [.992; .995] .026 [.023; .028] .997 [.986; .997] .940 [.940; .940] .983 [.886; .995] .887 .585 .997 .996 .995 .986

NMI .975 [.969; .982] .073 [.068; .085] .984 [.907; .987] .903 [.903; .903] .942 [.899; .977] .894 .615 .987 .981 .984 .956

SLPA, Speaker-listener Label Propagation Algorithm; TopGC, Top Graph Clusters; MCD, multithreaded community detection; CGGCi-RG, Core Groups Graph Cluster with iterated
randomized greedy modularity maximization; CONCLUDE, Complex Network Cluster Detection; DSE, dense subgraph extraction; SPICi, Speed and Performance In Clustering; LPA,
Label Propagation Algorithm; LE, leading eigenvector; P, precision; R, recall; F, F-measure; NMI, Normalized Mutual Information.
Results displayed as median [range] over 10 runs where applicable.

TABLE 5 Best and Worst Algorithms for Each Goodness and Performance Metric

Best Performing Algorithm Worst Performing Algorithm

Metric Overlapping Disjoint Overlapping Disjoint

Goodness metrics

Density TopGC TopGC SVINET —

Clustering coefficient TopGC TopGC SLPA —

TPR CFinder — — —

Conductance SLPA CGGCi-RG TopGC TopGC

Performance metrics

Recall SLPA CGGCi-RG TopGC TopGC

Precision TopGC — SLPA, SVINET —

F-measure SLPA — TopGC TopGC

NMI SLPA — TopGC TopGC

TopGC, Top Graph Clusters; SLPA, Speaker-listener Label Propagation Algorithm; CGGCi-RG, Core Groups Graph Cluster with iterated randomized greedy
modularity maximization; TPR, triangle participation ratio; NMI, Normalized Mutual Information.

436 © 2014 The Authors. WIREs Computational Statistics published by Wiley Periodicals, Inc. Volume 6, November/December 2014

WIREs Computational Statistics Community detection in large-scale networks

ground−truth

CFinder

SVINET

TopGC

SLPA
S

LP
A

T
op

G
C

S
V

IN
E

T

C
F

in
de

r

gr
ou

nd
−

tr
ut

h

Amazon

S
LP

A

T
op

G
C

S
V

IN
E

T

C
F

in
de

r

gr
ou

nd
−

tr
ut

h

Youtube

S
LP

A

T
op

G
C

S
V

IN
E

T

C
F

in
de

r

gr
ou

nd
−

tr
ut

h

DBLP

S
LP

A

T
op

G
C

S
V

IN
E

T

C
F

in
de

r

gr
ou

nd
−

tr
ut

h

Live journal

S
LP

A

T
op

G
C

S
V

IN
E

T

C
F

in
de

r

gr
ou

nd
−

tr
ut

h

ground−truth

CFinder

SVINET

TopGC

SLPA

Orkut

ground−truth
Walktrap

LE
LPA

FastGreedy
SPICi
DSE

CONCLUDE
CGGCi−RG

MCD
TopGC

SLPA

S
LP

A
T

op
G

C
M

C
D

C
G

G
C

i−
R

G
C

O
N

C
LU

D
E

D
S

E
S

P
IC

i
F

as
tG

re
ed

y
LP

A
LE W

al
kt

ra
p

gr
ou

nd
−

tr
ut

h

S
LP

A
T

op
G

C
M

C
D

C
G

G
C

i−
R

G
C

O
N

C
LU

D
E

D
S

E
S

P
IC

i
F

as
tG

re
ed

y
LP

A
LE W

al
kt

ra
p

gr
ou

nd
−

tr
ut

h

S
LP

A
T

op
G

C
M

C
D

C
G

G
C

i−
R

G
C

O
N

C
LU

D
E

D
S

E
S

P
IC

i
F

as
tG

re
ed

y
LP

A
LE W

al
kt

ra
p

gr
ou

nd
−

tr
ut

h

S
LP

A
T

op
G

C
M

C
D

C
G

G
C

i−
R

G
C

O
N

C
LU

D
E

D
S

E
S

P
IC

i
F

as
tG

re
ed

y
LP

A
LE W

al
kt

ra
p

gr
ou

nd
−

tr
ut

h

S
LP

A
T

op
G

C
M

C
D

C
G

G
C

i−
R

G
C

O
N

C
LU

D
E

D
S

E
S

P
IC

i
F

as
tG

re
ed

y
LP

A
LE W

al
kt

ra
p

gr
ou

nd
−

tr
ut

h

ground−truth
Walktrap
LE
LPA
FastGreedy
SPICi
DSE
CONCLUDE
CGGCi−RG
MCD
TopGC
SLPA

0.0 0.2 0.4 0.6 0.8 1.0

FIGURE 3 | Matrices of pairwise similarity scores for the community detection algorithms and the ground-truth. Dots indicate that a similarity
score could not be computed, because one of the algorithms did not finish on that graph within 4 h.

Amazon Youtube DBLP LiveJournal Orkut

T
im

e
(s

ec
on

ds
)

S
LP

A

T
op

G
C

M
C

D

C
G

G
C

i−
R

G

C
O

N
C

LU
D

E

D
S

E

S
P

IC
i

F
as

tG
re

ed
y

LP
A LE

W
al

kt
ra

p

0.01

1

100

10000

S
LP

A

T
op

G
C

S
V

IN
E

T

C
F

in
de

r

FIGURE 4 | Run-times of the disjoint and overlapping community detection algorithms (including read and write times) per graph. The algorithms
were terminated if they did not finish within 4 h. For the nondeterministic algorithms, the average of 10 run-times was taken.

Run-Time
Figure 4 shows the run-time of the community detec-
tion algorithms on each network. For our evaluations,
we used the available implementation of each algo-
rithm (Table 1). Note that the language of these imple-
mentations likely had an impact on the run-time.

Among the algorithms for overlapping com-
munity detection, TopGC had the fastest run-time.
CFinder was not able to run on the two largest
networks (LiveJournal and Orkut) within the
allotted time frame of 4 h. This algorithm is very

computationally expensive and thus may not be
appropriate for community detection in large-scale
networks. The time complexity of SVINET is not
explicitly stated in Ref 16 but it also failed to run on
LiveJournal and Orkut.

Among the algorithms for disjoint commu-
nity detection, DSE and SPICi had the fastest
run-time in all networks except for LiveJournal.
On LiveJournal, MCD had the fastest run-time.
Moreover, CONCLUDE did not run on LiveJournal
within the allotted time frame.

Volume 6, November/December 2014 © 2014 The Authors. WIREs Computational Statistics published by Wiley Periodicals, Inc. 437

Advanced Review wires.wiley.com/compstats

CONCLUSION

In this review, we empirically evaluated several
state-of-the-art community detection algorithms for
overlapping and disjoint community detection on
large-scale real-world networks. The algorithms were
evaluated by measuring the structural properties of
their identified communities, as well as their perfor-
mance with respect to the known ground-truth
communities. Our results show that these two
types of measures are not equivalent; an algorithm

that identifies communities with ‘good’ structural
properties does not necessarily yield good perfor-
mance metrics. For example, TopGC obtained good
results in terms of goodness metrics (i.e., density, clus-
tering coefficient, and TPR), but it did not perform
well when compared against ground-truth communi-
ties. In contrast, SLPA did not identify communities
with good clustering coefficients. However, it returned
the best values for the performance metrics (i.e., recall,
precision, and NMI), and the communities it identified
were the most similar to the ground-truth.

ACKNOWLEDGMENTS

This work was supported in part by the DOE SDAVI Institute and the U.S. National Science Foundation
(Expeditions in Computing program).

REFERENCES
1. Adamcsek B, Palla G, Farkas IJ, Derényi I, Vicsek

T. Cfinder: locating cliques and overlapping mod-
ules in biological networks. Bioinformatics 2006,
22:1021–1023.

2. Reddy PK, Kitsuregawa M, Sreekanth P, Rao SS. A
graph based approach to extract a neighborhood cus-
tomer community for collaborative filtering. In: Sub-
hash Bhalla, eds. Databases in Networked Information
Systems. Berlin/Heidelberg: Springer; 2002, 188–200.

3. Steinhaeuser K, Chawla NV, Ganguly AR. Complex
networks as a unified framework for descriptive analysis
and predictive modeling in climate science. Stat Anal
Data Mining 2011, 4:497–511.

4. Fortunato S. Community detection in graphs. CoRR,
abs/0906.0612, 2009.

5. Coscia M, Giannotti F, Pedreschi D. A classification for
community discovery methods in complex networks.
CoRR, abs/1206.3552, 2012.

6. Crampes M, Plantié M. A unified community detec-
tion, visualization and analysis method. CoRR,
abs/1301.7006, 2013.

7. Malliaros FD, Vazirgiannis M. Clustering and commu-
nity detection in directed networks: a survey. CoRR,
abs/1308.0971, 2013.

8. Danon L, Diaz-Guilera A, Duch J, Arenas A. Comparing
community structure identification. J Stat Mech Theor
Exp 2005, 2005:P09008.

9. Lancichinetti A, Fortunato S. Community detection
algorithms: a comparative analysis. Phys Rev E 2009,
80:056117.

10. Orman GK, Labatut V, Cherifi H. Comparative eval-
uation of community detection algorithms: a topolog-
ical approach. J Stat Mech Theor Exp 2012, 2012:
P08001.

11. Xie J, Kelley S, Szymanski BK. Overlapping commu-
nity detection in networks: the state-of-the-art and
comparative study. ACM Comput Surv 2013, 45:43.

12. Leskovec J, Lang KJ, Mahoney MW. Empirical compar-
ison of algorithms for network community detection.
CoRR, abs/1004.3539, 2010.

13. Moradi F, Olovsson T, Tsigas P. An evaluation of com-
munity detection algorithms on large-scale email traffic.
In: SEA. Berlin/Heidelberg: Springer; 2012; 283–294.

14. Xie J, Szymanski BK. Towards linear time overlapping
community detection in social networks. In: PAKDD.
Berlin/Heidelberg: Springer; 2012, 25–36.

15. Macropol K, Singh AK. Scalable discovery of best
clusters on large graphs. Proc VLDB Endowment 2010,
3:693–702.

16. Gopalan PK, Blei DM. Efficient discovery of overlap-
ping communities in massive networks. Proc Natl Acad
Sci 2013, 110:14534–14539.

17. Riedy J, Bader DA, Meyerhenke H. Scalable multi-
threaded community detection in social networks. In:
Parallel and Distributed Processing Symposium Work-
shops & PhD Forum (IPDPSW), 2012 IEEE 26th Inter-
national. Washington, DC: IEEE; 2012, 1619–1628.

18. Ovelgönne M, Geyer-Schulz A. An ensemble learning
strategy for graph clustering. In: Bader DA, Meyerhenke
H, Sanders P, Wagner D, eds. Graph Partitioning and
Graph Clustering. Providence, RI: American Mathemat-
ical Society; 2012, 187–206.

19. De Meo P, Ferrara E, Fiumara G, Provetti A. Mixing
local and global information for community detection
in large networks. J Comput Syst Sci 2014, 80:72–87.

20. Chen J, Saad Y. Dense subgraph extraction with appli-
cation to community detection. IEEE Trans Knowl
Data Eng 2012, 24:1216–1230.

438 © 2014 The Authors. WIREs Computational Statistics published by Wiley Periodicals, Inc. Volume 6, November/December 2014

WIREs Computational Statistics Community detection in large-scale networks

21. Jiang P, Singh M. Spici: a fast clustering algorithm
for large biological networks. Bioinformatics 2010,
26:1105–1111.

22. Clauset A, Newman MEJ, Moore C. Finding commu-
nity structure in very large networks. Phys Rev E 2004,
70:066111.

23. Raghavan UN, Albert R, Kumara S. Near linear time
algorithm to detect community structures in large-scale
networks. Phys Rev E 2007, 76:036106.

24. Newman MEJ. Finding community structure in net-
works using the eigenvectors of matrices. Phys Rev E
2006, 74:036104.

25. Pons P, Latapy M. Computing communities in large net-
works using random walks. In: Proceedings of the 20th
International Conference on Computer and Informa-
tion Sciences. Berlin/Heidelberg: Springer-Verlag; 2005,
284–293.

26. Palla G, Derényi I, Farkas I, Vicsek T. Uncover-
ing the overlapping community structure of complex
networks in nature and society. Nature 2005, 435:
814–818.

27. Tomita E, Tanaka A, Takahashi H. The worst-case time
complexity for generating all maximal cliques. In Chwa
KY, Munro JI, eds. Computing and Combinatorics.
Berlin/Heidelberg: Springer; 2004, 161–170.

28. Airoldi EM, Blei DM, Fienberg SE, Xing EP. Mixed
membership stochastic blockmodels. J Mach Learn Res
2008, 9:1981–2014.

29. Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E.
Fast unfolding of communities in large networks. J Stat
Mech Theor Exp 2008, 2008:P10008.

30. Saad Y. Finding exact and approximate block structures
for ilu preconditioning. SIAM J Sci Comput 2003,
24:1107–1123.

31. Altaf-Ul-Amin M, Shinbo Y, Mihara K, Kurokawa
K, Kanaya S. Development and implementation of
an algorithm for detection of protein complexes in
large interaction networks. BMC Bioinformatics 2006,
7:207.

32. Yang J, Leskovec J. Defining and evaluating network
communities based on ground-truth. In: ICDM. New
York, NY: ACM; 2012, 745–754.

33. Samatova NF, Hendrix W, Jenkins J, Padmanabhan K,
Chakraborty A. In: Samatova NF, Hendrix W, Jenkins J,
Padmanabhan K, Chakraborty A, eds. Practical Graph
Mining with R. Chapman and Hall/CRC: CRC Press;
2013.

34. McDaid AF, Greene D, Hurley NJ. Normalized mutual
information to evaluate overlapping community finding
algorithms. CoRR, abs/1110.2515, 2011.

Volume 6, November/December 2014 © 2014 The Authors. WIREs Computational Statistics published by Wiley Periodicals, Inc. 439

