
CSci 4223 Lecture 12 March 4, 2013
Topics: Lexical scope, dynamic scope, closures

1 Lexical Scope

SML, and nearly all modern languages, follow the Rule of Lexical Scope: the body of a function is
evaluated in the old dynamic environment that existed at the time the function was defined, not the current
environment when the function is called.

Here is a silly example to demonstrate the consequences of the rule:

val x = 1

fun f y = x + y

val x = 2

val y = 3

val z = f (x+y)

In this example, f is bound to a function that takes an argument y. The body of f uses x. According to the
rule given above, since the environment at f’s definition maps x to 1, function f must always return the
result of evaluating 1+y. On the final line of the example, the original binding of x (to 1) has been shadowed
by a new binding (to 2). Here is how the evaluation of that line proceeds:

• Look up f in the current dynamic environment to get the previously described function.

• Evaluate the argument x+y in the current dynamic environment by looking up x and y, producing 5.

• Call the function with argument 5.

• Evaluate the body x+y in the old dynamic environment where x maps to 1 (i.e., the dynamic envi-
ronment that existed at the point in time when f was bound), extended with a new binding of y to
5.

• Since 1+5 is 6, the result is 6.

The alternative to lexical scope is the Rule of Dynamic Scope: the body of a function is evaluated in
the current dynamic environment at the time the function is called, not the old dynamic environment that
existed at the time the function was defined. Dynamic scope would produce 7 as the final result in the above
example:

• Look up f in the current dynamic environment to get the previously described function.

• Evaluate the argument x+y in the current dynamic environment by looking up x and y, producing 5.

• Call the function with argument 5.

• Evaluate the body x+y in the current dynamic environment where x maps to 2, extended with a new
binding of y to 5.

• Since 2+5 is 7, the result is 7.

Once upon a time, static and dynamic scoping might have been considered equally valid alternatives for
programming languages. But decades of experience have taught us the static scoping is actually superior.
To see why, let’s first examine function values more closely.
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2 Closures

In the definition of f above (repeated here),

fun f y = x + y

variable x is not a parameter of f. We say that x is a free variable of f, because it is not bound by f. So
how does the run-time determine what value x has? The answer has to do with what functions values are.

So far, we have said that functions are values, but we have not been precise about what those values exactly
are. It turns out that a function value has two parts: the code for the function, and the environment that
was current when the function was defined. That environment is what determines the values of free variables.
You can think of these two parts as being a “pair,” but it is not an ML pair—just something with two parts.
You cannot access the parts of the “pair” separately; all you can do is call the function. When called, both
parts get used—the code determines what computation occurs, and the environment determines what the
values of free variables are.

This “pair” is called a function closure or just closure. The reason for the name is that the closure’s
environment “closes” off the free variables in the code of the function. In the example above, binding
fun f y = x + y actually binds f to a closure. The code part of that closure is the function fn y => x + y.
The environment part maps free variable x to 1. Therefore, any call to this closure will return the result of
evaluating 1+y.

Example 1.

val x = 1

fun f y =

let

val x = y+1

in

fn z => x+y+z

end

val x = 3

val g = f 4

val y = 5

val z = g 6

Here, f is bound to a closure in which the environment part maps x to 1. So in the evaluation of f 4,
expression let val x = y+1 in fn z => x+y+z end is evaluated in an environment where x maps to 1

and y maps to 4. But the let expression then shadows x, such that it maps to 5. So fn z => x+y+z

is evaluated in an environment where x maps to 5 and y maps to 4. Evaluating fn z => x+y+z therefore
creates a closure. The code part of that closure is just fn z => x+y+z. The environment part is the dynamic
environment that exists at the time the closure is created—that is, x maps to 5 and y maps to 4. So g is
bound to a closure that, when called, will always add 9 to its argument, no matter what the environment is
at any call-site. Therefore, in the last line of the example, z will be bound to 15.
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Example 2:

fun f g =

let

val x = 3

in

g 2

end

val x = 4

fun h y = x + y

val z = f h

Here, f is bound to a closure that takes another function g as an argument and returns the result of g 2.
The closure bound to h always adds 4 to its argument because h is defined in an environment where x maps
to 4. So in the last line, z will be bound to 6. The binding val x = 3 is totally irrelevant: g 2 is evaluated
by looking up g to get the closure that was passed in and then using that closure with its environment part
(in which x maps to 4).

Example 3.

fun filter (f,xs) =

case xs of

[] => []

| x::xs’ => if f x then x::(filter(f,xs’)) else filter(f,xs’)

fun allGreaterThanSeven xs = filter (fn x => x > 7, xs)

fun allGreaterThan (xs,n) = filter (fn x => x > n, xs)

Here, allGreaterThanSeven is “old news”—we pass in a function that removes from the result any numbers
7 or less in a list. But it is much more likely that you want a function like allGreatherThan that takes the
“limit” as a parameter n and uses the function fn x => x > n. Notice this requires a closure and lexical
scope. When the implementation of filter calls this function, the run-time needs to look up n in the
environment where fn x => x > n was defined.

Example 4.

fun allShorterThan1 (xs,s) = filter (fn x => String.size x < String.size s, xs)

fun allShorterThan2 (xs,s) =

let

val i = String.size s

in

filter(fn x => String.size x < i, xs)

end

Both these functions take a list of strings xs and a string s and return a list containing only the strings in
xs that are shorter than s. And they both use closures to look up s or i when the anonymous functions
get called. The second one is more complicated but a bit more efficient: it “precomputes” String.size s

and binds it to a variable i available to the function fn x => String.size x < i. Whereas, the first one
recomputes String.size s once per element in xs (because filter calls its function argument this many
times and the body evaluates String.size s each time).
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3 Lexical vs. dynamic scope

Dynamic scope leads to serious problems!

• Suppose, in Example 1, the body of f were changed to let val q = y+1 in fn z => q+y+z. Under
lexical scope this is fine: we can always change the name of a local variable and its uses without it
affecting anything. But under dynamic scope, now the call to g 6 will make no sense: we will try to
look up q, but there is no q in the environment at the call-site.

• Consider again the original version of Example 1, but now change the line val x = 3 to val x = "hi".
Under lexical scope, this is again fine: that binding is never actually used. But under dynamic scope,
the call to g 6 will look up x, get a string, and try to add an integer to it. That would be a type error.

• In Example 2, the body of f is unstylish: there is a local binding that is never used. Under lexical
scope we can remove it, changing the body to g 2. This won’t have any impact on the rest of the
program. But under dynamic scope, it would change the final value of z to 5, because x would be
bound to 3 instead of 4 during the evaluation of h’s body.

For “regular” variables in programs, lexical scope is the best choice, without question. It enables programmers
to better reason about what a function does—for example, under lexical scope we are guaranteed that any use
of the closure bound to h will add 4 to its argument, regardless of how other functions like g are implemented
and what variable names they use. This is a key separation-of-concerns that only lexical scope provides.

There are limited cases where dynamic scope does make sense. But they are sufficiently rare that few modern
languages support it or provide it as the default. In fact, many languages that began life offering dynamic
scope now either offer a choice between both scoping rules (e.g., Perl) or have developed variants that are
only lexically scoped (e.g., LISP and Scheme).

One known good use of dynamic scope is exception handling. When an exception is raised, evaluation has
to “look up” which handle expression should be evaluated. This “look up” is done using the dynamic call
stack, with no regard for the lexical structure of the program.

4 Closures with Java

Java 8 will have support for closures, just like most other mainstream object-oriented languages now do
(C#, Scala, Ruby, . . . ). But the details aren’t finalized yet, so let’s consider how we might write closure-like
code in Java today. Although Java doesn’t currently have first-class functions, currying, or type inference,
it does have generics, which we can use to code up something like closures.

Let’s start with this ML code:1

datatype ’a mylist = Cons of ’a * (’a mylist) | Nil

fun length xs =

case xs of

Nil => 0

| Cons(_,xs) => 1 + length xs

fun map f xs =

case xs of

Nil => Nil

1In ML, there is no reason to define ’a mylist since ’a list is already provided, but doing so will help us compare ML to
Java.
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| Cons(x,xs) => Cons(f x, map f xs)

fun filter f xs =

case xs of

Nil => Nil

| Cons(x,xs) => if f x then Cons(x,filter f xs) else filter f xs

val doubleAll = map (fn x => x * 2)

fun countNs (xs, n : int) = length (filter (fn x => x=n) xs)

Without further ado, here is a Java analogue of the code, followed by a brief discussion of features you may
not have seen before and other ways we could have written the code:

interface Func<A,B> {

B m(A x);

}

interface Pred<A> {

boolean m(A x);

}

class List<T> {

T head;

List<T> tail;

List(T x, List<T> xs) {

head = x;

tail = xs;

}

static <A,B> List<B> map(Func<A,B> f, List<A> xs) {

if(xs==null)

return null;

return new List<B>(f.m(xs.head), map(f,xs.tail));

}

static <A> List<A> filter(Pred<A> f, List<A> xs) {

if(xs==null)

return null;

if(f.m(xs.head))

return new List<A>(xs.head, filter(f,xs.tail));

return filter(f,xs.tail);

}

static <A> int length(List<A> xs) {

int ans = 0;

while(xs != null) {

++ans;

xs = xs.tail;

}

return ans;

}

}

class ExampleClients {

static List<Integer> doubleAll(List<Integer> xs) {

return List.map((new Func<Integer,Integer>() {

public Integer m(Integer x) { return x * 2; }

}),
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xs);

}

static int countNs(List<Integer> xs, final int n) {

return List.length(List.filter((new Pred<Integer>() {

public boolean m(Integer x) { return x==n; }

}),

xs));

}

}

This code uses several interesting Java features:

• Generic class List is used instead of an ML type constructor. The List class constructor plays the
role of the Cons datatype constructor. As is idiomatic in Java, null is used for the empty list, whereas
the ML code uses the Nil datatype constructor.

• Generic interface Func is used instead of first-class functions—because Java doesn’t have first-class
functions. An instance of Func represents a function of ML type ’a -> ’b. An instance of Pred

represents a function of ML type ’a -> bool. The function “inside” an instance is invoked with method
m; that method provides the equivalent of a closure’s code part. The fields of a class implementing one
of these interfaces could be used to provide the equivalent of a closure’s environment part.

• The map and filter implementations are similar to their ML counterparts. The use the m method
passed to them as an argument (inside an object of type Func or Pred) as the equivalent of the first-
class function that would instead be passed in ML. Note that generic, static methods in Java require
the type variables to be explicitly mentioned to the left of the return type.

• Methods doubleAll and countNs use anonymous inner classes, which you’ve probably encountered
before when programming with Java’s Swing GUI library. This language feature lets us create an
object that implements an interface without giving a name to that object’s class. (In that respect,
it’s similar to anonymous functions in ML.) Instead, we use new with the interface being implemented
(instantiating the type variables appropriately) and then provide definitions for the methods. As an
inner class, this definition can use fields of the enclosing object or final local variables and parameters
of the enclosing method, gaining much of the convenience of a closure’s environment.

There are many different ways we could have written the Java code. Of particular interest:

• The Java code uses recursion to implement map and filter. Tail recursion is not as efficient as loops
in Java, so for efficiency’s sake, we should probably rewrite map and filter to use loops. However,
doing so—without needing to reverse an intermediate list—is more intricate than you might think.
That’s why sort of program is often given as a challenge problem at programming-job interviews. The
recursive version is easy to understand, but would be unwise for very long lists.

• A more object-oriented approach would be to make map, filter, and length instance methods instead
of static methods. The method signatures would change to:

<B> List<B> map(Func<T,B> f) {...}

List<T> filter(Pred<T> f) {...}

int length() {...}

The disadvantage of this approach is that we would have to add code at any call-site lst.map(...)

or lst.filter(...) of these methods to check whether lst is the empty list—that is, null. Other-
wise, trying to invoke an instance method could raise a NullPointerException. Likewise, methods
doubleAll and countNs would have to check their arguments for null to avoid such exceptions.

6



• An even more object-oriented (though less idiomatic in Java) approach would be to not use null for
empty lists. Instead we would have an abstract list class with two subclasses, one for empty lists and
one for nonempty lists. This approach is a much more faithful object-oriented approach to datatypes
with multiple constructors, and using it makes the previous suggestion of instance methods work out
without special cases. It does seem more complicated and longer to programmers accustomed to using
null.

• Anonymous inner classes are just a convenience. We could instead define “normal” classes that imple-
ment Func<Integer,Integer> and Pred<Integer> and create instances to pass to map and filter.
For the countNs example, our class would have an int field for holding n and we would pass the value
for this field to the constructor of the class, which would initialize the field.

The moral of the story is that we can code-up function closures and higher-order functions in Java as it is
today, though it’s a little more difficult than coding up the same thing in ML.

5 Closures with C

C does have first-class functions. To make a function f take another function g as an argument, you can
write this code:

int f(int (*g)(int)) { ... g(17) ... }

Function g takes an int as an argument and returns an int, which is what the perhaps strange-looking
syntax indicates.

However, C’s first-class functions are not closures. If you pass a pointer to a function, it is only a code
pointer. There is no environment part, as there was in ML closures. That’s unfortunate, because a lot of
the convenience of higher-order functions in ML came from the fact that they could use lexically scoped,
free variables.

However, we can code-up closures in C. The way to “give a function f a closure” is to modify f to explicitly
take its environment as an argument. That environment will need to be supplied by any functions that call
f, so those functions will also need to take the environment as an argument.

So instead of a function being implemented like this:

int f(int (*g)(int), list_t xs) { ... g(xs->head) ... }

it would instead be implemented like this:

int f(int (*g)(void*,int), void* env, list_t xs) { ... g(env,xs->head) ... }

We use void* as the type of the environment, because there isn’t any better choice. Clients will have to cast
to and from void* when passing and using environments. We don’t discuss those details here.

Here’s the full C version of our running example:

#include <stdlib.h>

#include <stdint.h>

#include <stdbool.h>

typedef struct List list_t;

struct List {

void * head;

7



list_t * tail;

};

list_t * makelist (void * x, list_t * xs) {

list_t * ans = (list_t *)malloc(sizeof(list_t));

ans->head = x;

ans->tail = xs;

return ans;

}

list_t * map(void* (*f)(void*,void*), void* env, list_t * xs) {

if(xs==NULL)

return NULL;

return makelist(f(env,xs->head), map(f,env,xs->tail));

}

list_t * filter(bool (*f)(void*,void*), void* env, list_t * xs) {

if(xs==NULL)

return NULL;

if(f(env,xs->head))

return makelist(xs->head, filter(f,env,xs->tail));

return filter(f,env,xs->tail);

}

int length(list_t* xs) {

int ans = 0;

while(xs != NULL) {

++ans;

xs = xs->tail;

}

return ans;

}

void* doubleInt(void* ignore, void* i) { // type casts to match what map expects

return (void*)(((intptr_t)i)*2);

}

list_t * doubleAll(list_t * xs) { // assumes list holds intptr_t fields

return map(doubleInt, NULL, xs);

}

bool isN(void* n, void* i) { // type casts to match what filter expects

return ((intptr_t)n)==((intptr_t)i);

}

int countNs(list_t * xs, intptr_t n) { // assumes list hold intptr_t fields

return length(filter(isN, (void*)n, xs));

}

There are a lot of details we could discuss about this code, but we’ll limit ourselves to just two:

• As in Java, using recursion instead of loops is much simpler but likely less efficient.

• Instead of modifying functions to take environments as arguments, another alternative would be to
define structs that put the code and environment together in one value. However, our approach (an
extra void* argument to every higher-order function) is probably more idiomatic in C.
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