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Abstract
Texture mapping is a common operation to increase the realism of three-dimensional meshes at low cost. We
propose a new texture optimization algorithm based on the reduction of the physical space allotted to the texture
image. Our algorithm optimizes the use of texture space by computing a warping function for the image and new
texture coordinates. Neither the mesh geometry nor its connectivity are modified by the optimization. Our method
uniformly distributes frequency content of the image in the spatial domain. In other words, the image is stretched in
high frequency areas, whereas low frequency regions are shrunk. We also take into account distortions introduced
by the mapping onto the model geometry in this process. The resulting image can be resampled at lower rate while
preserving its original details. The unwarping is performed by the texture mapping function. Hence, the space-
optimized texture is stored as-is in texture memory and is fully supported by current graphics hardware. We present
several examples showing that our method significantly decreases texture memory usage without noticeable loss
in visual quality.

1. Introduction

Texture images are a simple, yet effective way to increase
realism of polygonal meshes at low cost. A recent review
of the texture pipeline in real-time rendering systems can
be found in 13. Most current hardware graphics accelera-
tors provide a memory cache to store texture images. Im-
ages in the cache can be accessed by the Graphics Process-
ing Unit (GPU) through a high-bandwidth connection, im-
proving frame rate. However, the size of the cache is limited
by its cost, especially in commercial game-oriented graphics
boards and game consoles. Because not all textures used by
an application can reside in memory at the same time, com-
plex memory management algorithms need to be used. In
high-end applications, such as flight simulators, where larger
caches are available, the amount of textures employed in-
creases proportionally, requiring the same careful allocation
of texture memory.

Image compression can alleviate the problem of limited
texture memory. However, to obtain interactive frame rates,
the compressed texture must be decoded on the fly during
rendering, which requires specialized hardware 6; 2; 17. To op-
timally use the texture resources available on today’s tradi-
tional graphics boards, several authors have looked at the

problem of reducing the space required to store the texture
image, without resorting to complicated encodings 5; 15.

Except for simple textures containing repetitive patterns,
details are typically not uniformly distributed across the im-
age. For example, models obtained with 3D scanning sys-
tems are often textured with images that contain a large
amount of background pixels. Faces of humans and char-
acters need high resolution details in areas such as the eyes
and mouth, while the appearance of other regions can be cap-
tured with relatively fewer pixels per unit area.

In this paper we describe a novel algorithm that opti-
mizes the space used by textures. Our method works by dis-
tributing frequency content uniformly across the image. In
other words, the image is stretched in high frequency ar-
eas, whereas low frequency regions are contracted. We also
take into account distortions introduced by the mapping onto
the model geometry in this process. The resulting image can
then be resampled at lower rate (shrunk) without loosing de-
tails in areas of high frequency content. Alternatively, the
image can be subsampled more aggressively with a uniform
loss of visual fidelity across its regions. Only the texture im-
age and texture coordinates are affected by the optimization.
Neither the model geometry nor its connectivity change. The
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Figure 1: Space-optimized texture maps: (a) Input texture. (b) Frequency map obtained from the multiscale analysis. (c) Warped
and resampled texture. The texture is resampled at half the initial rate. Although shown here as large as the original, this image
is actually only one quarter its original size. (d) Model mapped using the warped and resampled texture (see Section 6 for
comparisons with the original.) (e)-(h) Multigrid warping: The figures show two pairs of images (I; I0) using deformation grids
of increasing density.

smaller optimized image uses less texture memory, but does
not require special hardware: Its “decompression” is per-
formed by the warped texture mapping function computed
in the optimization process.

Contributions In contrast with previous approaches, our
method requires minimal user input. Our frequency map au-
tomatically captures the relative importance of different re-
gions in the image. The map is efficiently and robustly com-
puted using a wavelet packet decomposition technique and
a denoising filter. We incorporate the effect of metric dis-
tortions by analyzing the Jacobian of the parametrization
and combining it with the frequency map. The image warp-
ing is obtained with a simple multigrid relaxation algorithm.
The final optimized image does not require special decom-
pression hardware, and artifacts typical of compression tech-
niques are not present.

2. Overview of the method

Our optimization algorithm consists of two steps: First, we
compute a local frequency map for the image (Section 4).
This map segments the image domain Q = [0;1]� [0;1]
into regions of equal frequency. For example, Figures 1(a)
and 1(b) show an input image and its frequency map. The
frequency map is used to drive the relaxation algorithm in
the following step.

In the second step (Section 5), we compute a warping

w

w -1

(u,v) (u',v')

t t'

I I'

S(x,y,z)

Figure 2: Image warping: We compute a warping function
w : Q !Q using a multigrid relaxation approach. The orig-
inal image is mapped onto the geometry by a mapping func-
tion t. A coarse regular grid is overlaid on the original im-
age. Its progressive deformation is driven by the frequency
map of the image. Increasing grid resolutions are used in
subsequent steps. The warping w is then applied to the im-
age to create I0(u0;v0). A new mapping function t0 from the
warped image onto the geometry is also computed, such that
the visual appearance of the texture mapped model remains
the same after the optimization.

function w for the texture, as depicted in Figure 2. We de-
note by I0(u0;v0) the warped image. We use a relaxation al-
gorithm, closely related to Laplacian smoothing, to evenly
distribute frequency content across the image, stretching or
shrinking regions according to the frequency map computed
in the first step. We apply a multigrid scheme to deform
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the image. Figures 1(e)-(h) show couples of images (I; I0),
where I0 is warped using grids of increasing size. Intuitively,
the grid in I adaptively samples the frequency map. Hence,
vertices of the grid concentrate in high frequency regions.
After warping, the texture image is visually distorted (Fig-
ure 1c). However, the texture coordinates are appropriately
recomputed in order to unwarp the image when it is mapped
onto the surface (Figure 1d).

In the warped image, we expect the local spectrum to be
uniform over the whole image on average. Since frequency
content in the input image is not uniform, the target uniform
frequency cannot fill the whole spectrum. Hence, the mini-
mal sampling rate (Nyquist frequency) is lower on average
and the image can be theoretically resampled without loss
of resolution. As expected, this is not true in practice since
sharp edges might not be accurately preserved. However, we
show that the resampled warped image incurs much fewer
distortion than its unwarped counterpart (Section 6). For ex-
ample, the texture in Figure 1c is resampled at half the orig-
inal rate. Hence, its size is reduced by 75%.

3. Previous work

Texture mapping optimization has been investigated during
the past decade. Many researchers have studied the prob-
lem of finding a parametrization, i.e. a mapping from tex-
ture coordinates to mesh coordinates, which minimizes the
distortion or equivalently texture stretch. Lévy et al. ex-
plain how to find a set of texture coordinates given an im-
age and a surface8. They also propose an algorithm to com-
pute a parametrization under constraints7. On the other hand,
Sander et al. 14 propose a solution to obtain non-distorted
sets of textures for a class of multiresolution meshes, known
as Progressive Meshes. To minimize texture stretch, the tex-
ture coordinates are displaced in the image domain until an
optimization criterion is fulfilled. These works are comple-
mentary to ours and can be applied as a preprocessing step.

Sloan et al. 15 and Hunter et al. 5 have studied a simi-
lar problem to ours from slightly different points of view.
Sloan et al. address the problem of texture space optimiza-
tion through a user-driven approach15. They propose to build
an importance map for the texture, and suggest an auto-
matic procedure for its computation, but give only few de-
tails. The specification by the user of an importance map
in the context of a 3D painting application is discussed in
more depth. The optimization technique used in this work is
based on multilevel free-form deformation, and employs a
metric that takes into account importance as well as metric
distortion induced by the parametrization. The deformation
is applied to the embedding of the 3D mesh onto the image
domain defined by the texture coordinates. The authors re-
port that a more robust integration of the different metrics is
needed. An alternative approach described in the same paper
uses a quadtree to partition the image in areas of uniform
total importance, which are then resampled and packed as

equal-size tiles into a texture atlas. This approach precludes
the use of traditional mip-mapping. In contrast to this tech-
nique, our method uses a robust, wavelet-based technique
to measure local frequency content. Frequency and para-
metric distortion metrics are easily integrated into a single
frequency map. The relaxation method used to compute the
warping, based on Laplacian smoothing, provides a contin-
uous, smooth deformation that does not preclude the use of
mip-mapping.

Cohen et al. propose an image optimization method based
on frequency distribution. They compute a frequency map
for the image using Fourier analysis and spectrum integra-
tion. They partition the image using a k-d-tree data structure,
and resize each partition to equalize their frequency content.
While the technique is shown to be effective in reducing
image size while retaining good overall visual quality, the
resulting optimized image contains discontinuities that in-
troduce artifacts in rendering. The new texture also needs
to be augmented by a hierarchy of quadrilaterals used to
undo the warping during rendering. Although the unwarp-
ing uses only traditional texture mapping operation, it in-
troduces extra computations in the pipeline. In contrast, our
frequency analysis method is based on multi-scale, wavelet
packets approach allowing us to control resolution both in
space and frequency. Such a flexibility cannot be achieved
using Fourier analysis. Our optimized texture image does not
require any additional data structures or extra computations
during rendering. The warping is continuous and smooth,
minimizing distortion artifacts.

Our algorithm optimizes the use of texture space and
allows for reduced memory usage. Hence, it can be re-
lated to compression methods. Texture compression tech-
niques using new graphics hardware architectures have been
proposed2; 17. Simple compressed ecodings have been pro-
posed to reduce the cost of such additional hardware6, but
they have been shown to introduce visible quantization ar-
tifacts in some applications. In contrast, our approach does
not need any particular hardware and produces gracefully
degrading image quality for reduced image sizes.

4. Local frequency map

In this section, we explain how we compute a local fre-
quency map for the texture image. We first explain how
the frequency content is accurately measured (Section
4.1). Then, we show how the deformation induced by the
parametrization is taken into account in order to obtain the
frequency map (Section 4.2). Finally in Section 4.3, we give
the algorithm to obtain a frequency map taking into account
both the measured characteristics of the texture image and
the deformation induced by the parametrization.
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4.1. Wavelet packet decomposition

In this section, we use standard notations in discrete im-
age processing: The texture image is denoted by I(ejω) in
Fourier domain. Note that ω = (ω1;ω2) since the Fourier
domain is two-dimensional.

We use a wavelet packet (WP) expansion18 in order to an-
alyze the frequency content in the input image. This trans-
form is a standard tool in image processing and decomposes
an image into a set of coefficients characterizing frequency
subbands. It is usually implemented using an iterated filter
bank like the one represented in Figure 3. In the figure, H0

H0

H1 2

2

H1 2

H0 2

H1 2

H0 2

HH

HL

LH

LLrows

columns

I(u,v)

Figure 3: Image filter bank: The filter bank takes an im-
age I(u;v) as input and outputs four matrices of coefficients
HH;HL;LH and LL. The boxes H0 and H1 denote convo-
lution using low-pass and high-pass filters, respectively. Fi-
nally, 2 # denotes the downsampling operator (by two). All
these notations are standard in the filter banks literature18.

denotes the low-pass filter, whereas H1 denotes the high-pass
filter. First, each filter is convolved with the rows of the im-
age and the result is downsampled by two. Then, the filters
are applied to the image columns and the outputs are again
downsampled by two. The two steps above represent one
iteration on the image. After one iteration, we obtain four
sets of coefficients denoted by HL, LH, HH and LL. The
set LL contains low-pass coefficients, whereas HL, LH and
HH contain detail coefficients. Sets HL and LH correspond
to horizontal and vertical high frequencies. The set HH is a
combination of details in both dimensions. Consider the in-
put image in Figure 1: after two iterations each coefficient
matrix is four times smaller than the original image. Hence,
it is common to group them in a matrix having the same size
as the input image (Figure 4).

The filters H0 and H1 are chosen to be half-band filters.
We use a pair of 17-tap biorthogonal (i.e. FIR) filters pro-
viding good frequency and space localization18. Hence the
image spectrum I(e jω) is split between coefficients in sub-
band [0;π=2] (LL) and subband [π=2;π] (HH, HL and LH).
An octave-band decomposition is obtained by iterating on
the LL subband. In the WP expansion, the operation is iter-
ated on all subbands. Hence, the image spectrum I(ejω) is
split linearly (a one-dimensional analogy is depicted in Fig-
ure 5).

In order to obtain an accurate measurement of the local
frequency, we use a three-level WP decomposition. Hence,
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Figure 4: One filter bank iteration: After applying the filter
bank depicted in Figure 3 to the input image in Figure 1a,
four matrices of coefficients (LL, HL, LH and HH) are ob-
tained. These matrices are grouped in a matrix having the
same size as the original image.
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Figure 5: Spectrum subdivision after a three-level packet
transform: The linear subdivision is suggested for a one-
dimensional signal I(ejω) using ideal filters. A three-level
packet transform yields 8 subbands.

the image spectrum is split into 8 subbands. Since our image
is two-dimensional, we have actually 64 matrices of coeffi-
cients since three detail coefficient matrices per subband are
obtained after each iteration. In the next section, we explain
how the measurements obtained using the WP decomposi-
tion are scaled by taking into account the deformation of the
parametrization, i.e. by taking into account the model geom-
etry.

4.2. Surface parametrization

Given a set of coordinates (u;v)2Ω�Q, where Q is the unit
square [0;1]� [0;1], and a surface given by a set of points
(x;y; z) 2 S � R

3, a parametrization t is the continous func-
tion:

(u;v) 2 Ω 7! t(u;v) = (x(u;v);y(u;v); z(u;v))2 S: (1)

The mapping t(u;v) is a one-to-one transform. It is common
to choose (u;v) such that their ranges span the texture do-
main. Hence, the texture image is used as the parametriza-
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tion domain for the surface (or a surface patch in the case of
multiple parametric domains.)

The parametrization function (1) maps a set of points in
R

2 to set of points in R3. The mapping distortion is mea-
sured using the 3�2 Jacobian matrix

J =
h

∂t
∂u

∂t
∂v

i
: (2)

The minimum and maximum distortions of the parametriza-
tion are given by the singular values of J. These values are
equal to the singular values of JT J, where T is the transpose
operator. Moreover, they can be written in closed-form.

Until now we assumed t to be a continous parametrization
function. In practice, the mapping between texture domain
and surface domain is defined using discrete sets of values:
the texture and mesh coordinates. The surface defined by the
polygonal mesh is piecewise linear. Hence, we use an ap-
proximation for t returning one set of singular values per
mesh polygon (see 14 for example.) We can then compute
one value per vertex by averaging values of incident faces
and obtain a piecewise continous field by bilinear interpola-
tion.

If the parametrization is not distorted by the mapping,
then both singular values equal to 1. When any singular
value is larger than 1, then the parametrization is stretched.
In contrast, if any singular value is smaller than 1, then the
parametrization is contracted. We are interested in the lat-
ter case. Let us call φ the minimum singular value. If φ < 1
then the sampling frequency on the surface is decreased,
i.e. spatial resolution is reduced. A well-known consequence
is aliasing caused by undersampling of the texture image.
The uncertainty principle states that sharpness in space is
traded off for sharpness in frequency. Hence, whenever the
parametrization is shrunk, the mapping increases the local
frequency in the texture image.

4.3. Algorithm for local frequency measurement

In this section, we explain how a frequency map for the tex-
ture is computed using a hierarchical approach. Recall that
we must also take into account the distortion introduced by
the parametrization to correctly compute the frequency map.
This will be explained at the end of this section.

Typically, high frequency regions contain edges and small
details, whereas low frequency zones contain low variations
in intensity. In order to detect frequency changes accurately,
we perform a multiscale analysis of the input image. Mallat
et al. have shown that the local image regularity is character-
ized by the decay of the wavelet transform amplitude across
scales11. Hence, edges can be efficiently detected by follow-
ing local maxima in detail coefficient matrices. These values
are known as wavelet maxima11.

The algorithm is based on the following general idea: For

(a)

u

v

u

v

(b) (c)

Figure 6: Local frequency content measurement: (a) The in-
put image is a texture atlas. (b) The map M1(u;v) (Eq. 3)
segregates the pixels I(u;v) into two classes of frequen-
cies. The matrix M2(u;v) (Eq. 4) is computed by refining
M1(u;v). In order to do this, the previous classification re-
sults are sorted again into four subclasses. Results of apply-
ing the optimization to this image are discussed in Section 6.

each pixel I(u;v), we test the existence of a wavelet maxi-
mum within an area around the corresponding wavelet coef-
ficient. If such a maximum exists, the existence is recorded
in the frequency map, denoted by M(u;v). The WP trans-
form allows maxima to be found at multiple scales (i.e. fre-
quencies), leading to a classification of the image into fre-
quency region. We explain the algorithm in more details be-
low. Note that the classification is performed only in regions
covered by the mesh, i.e. used for texturing. Unused regions
are set to the smallest classification value.

Recall that at each step, the WP expansion splits the spec-
trum of the input coefficients into two subbands (Figure 5).
After the first iteration, the image is transformed into a set
of low-pass coefficients (describing frequencies between 0
and π=2), and three sets of detail coefficients (representing
frequencies between π=2 and π). For each set of detail coeffi-
cients (i.e. HL, LH and HH), wavelet maxima are measured
using a threshold value estimated from the variance in the
corresponding subband10. Hence at step 1, pixels are sorted
into two sets and the results are stored in a matrix M1(u;v).

c The Eurographics Association and Blackwell Publishers 2002.



Balmelli, Taubin, Bernardini / Space-Optimized Texture Maps

The matrix is defined as

M1(u;v) =

�
1; if a local maxima was found,
0:5; otherwise.

(3)

In Figure 6b, we show the two-color classfication for the
input image in Figure 6a. After the second iteration, each
subband has been again split into two half-bands. Hence
M1(u;v) can now be refined: Each previous entry is sorted
by looking for wavelets maxima in the corresponding detail
matrices. The new matrix M2(u;v) is then defined as

M2(u;v) =

8>><
>>:

1; when M1(u;v) = 1, local maxima,
0:75; when M1(u;v) = 1, no local maxima,
0:5; when M1(u;v) = 0:5, local maxima,
0:25; when M1(u;v) = 0:5, no local maxima.

(4)
In Figure 6c, we show the four-color refinement of the map
M1(u;v). Recall that we use a three-level WP expansion.
Therefore, our final frequency map M(u;v) = M3(u;v) has 8
different intensities.

The frequency map M(u;v) segments the input image into
frequency region. However due to the parametrization (1),
the frequency in the texture image may vary as explained
in Section 4.2. To compute a frequency map for the texture,
we construct a piecewise continuous field as described in
Section 4.2 using the minimal singular value φ. Call φ(u;v)
this field, then the modulated frequency map is given by the
ratio σ(u;v) = M(u;v) �φ(u;v). Moreover, we have

σ(u;v) =
�

> 1; if the texture image is undersampled,
< 1; if the texture image is oversampled.

(5)

5. Relaxation algorithm

Let Q = [0;1]N be the N-dimensional unit cube. In this paper
we are interested in the case N = 2, but the formulation and
algorithm are the same independently of the dimension. Our
decision to treat the general case despite the additional com-
plexity is based on the many potential applications that we
envision for this algorithm beyond the needs of this paper.

In this section a warping function means a C1-continuous
function w : Q ! Q, with inverse warping function η =
w�1 : Q ! Q of the same class. In particular both w and
η are one-to-one and onto. When restricted to the boundary
∂Q of cube, they both define one-to-one and onto continu-
ous functions ∂Q! ∂Q as well. The points in the domain of
w will be denoted ν, and those in the domain of η will be
denoted ν0.

Very often not all the texture image is used to texture
the surface. That is, the texture coordinates are defined on
a smaller (closed) subset of the interior of the unit square
Ω � QÆ, the border of the texture image is not used for tex-
turing the surface, and so, larger distortions are acceptable
close to the boundaries (the image of the set Ω through the
warping function w will be denoted Ω0). This is why in our

current implementation we impose an additional restriction:
the warping and inverse warping functions keep the corners
of the square fixed. This restriction does not seem to create
major artifacts, and simplifies the implementation. In gen-
eral, our warping functions satisfy Neuman boundary condi-
tions

∂w
∂n

����
∂Q

= 0 ;

i.e., at boundary points the partial derivatives are nonzero
only along directions aligned with the boundary. Note that
this constraint removes only one degree of freedom for most
boundary points, but some boundary points are more re-
stricted, because the boundary is only piecewise smooth. For
example, the corners of the cube have zero degrees of free-
dom (i.e., they cannot move).

Given a continuous frequency map σ : Ω!R+ , the prob-
lem we are facing is to construct a warping function w so that
σ(ν) measures the stretching of w at the point ν. That is, a
point at distance d from ν in Ω should be mapped by w to a
point at distance d �σν in Ω0. The stretching will cause re-
gions where σ < 1 to contract, while regions where σ > 1
will expand. Since this problem can only be solved approx-
imately, we introduce a variational formulation, and a dis-
crete relaxation algorithm to solve it.

The warping functions that we use in our current im-
plementation are defined by a rectangular grid and bilin-
ear interpolation within the quadrilateral faces of the grid.
We initialize the algorithm with a regular grid G with ver-
tices V = fν1; : : :;νKg covering the unit square Q. We can
choose the number of samples along each axis indepen-
dently. Choosing rows and columns approximately propor-
tional to the width and height of the input texture image pro-
duces approximately square faces on the texture image, and
works well in practice.

We relax the grid by minimizing an energy function. This
relaxation procedure should move the vertices to new loca-
tions so that the distance jνi �ν jj between two grid vertices
νi and ν j connected by a grid edge e = (i; j) is approxi-
mately inversely proportional to the value of σ at the edge
midpoint. Since we assume σ to be continuous and suffi-
ciently smooth, we approximate this value by the geometric
average (σ(νi)σ(ν j))

1=2, and we minimize this energy func-
tion

ED = ∑
e=(i; j)

σ(νi)σ(ν j) jνi�ν jj
2 : (6)

We want to emphasize the fact that this is a nonlinear func-
tion of the grid vertex positions. The simplest case is when
the function σ is constant. In this case ED is a quadratic func-
tion of the grid vertex positions, and easy to minimize be-
cause the boundary constraints are linear: this is a classical
least-squares problem. But for the general case of arbitrary
σ we first need to analyze existence and uniqueness of solu-
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Figure 7: Results of the relaxation algorithm applied to two different texture images. Note how background pixels are reduced
to a very small area in the final optimized image. Also, areas of the images with high frequency content are expanded relatively
more than regions with smooth color variations. The warping preserves continuity and smoothness in the image. The updated
texture coordinates undo the warping. A traditional texturing pipeline can be used with these images (see also Color Plates.)
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Figure 8: These rate-distortion curves compare the error introduced by subsampling the images with and without our optimiza-
tion for the three models shown in the top row. Details are discussed in Section 6.

tions, and then develop an algorithm to efficiently compute
the minimizer.

This is why we have chosen this energy function. Since
we relax the grid covering the domain Ω of the warping func-
tion w, our relaxation procedure in fact estimates the inverse
warping function η, whose domain is covered by the initial
regular grid (νi = η(ν0i)). Because of the regularity of the
grid with vertices ν0i , in this case the distance between two
warped vertices connected by an edge jνi�ν jj is equal to the
absolute value of a finite difference approximation of a par-
tial derivative of the inverse warping function with respect
to one of the N coordinate axes jη(ν0i)�η(ν0j)j. It turns out
that the energy ED (6) is a discretization of the integral

EC(η) =
Z

Q
σ(η)2 jjDηjj2 dν0 ; (7)

where Dη is the Jacobian matrix of η, and jjDηjj is the

Frobenius norm (square root of sum of squares elements)
of this matrix, i.e.,

kDηk2 = ∑
i; j

�
∂ηi

∂ν j

�2

:

It is not a very difficult problem in calculus of variations to
prove that the minimizer η̂ of EC for N = 1 satisfies

σ(η̂(ν0))kDη̂(ν0)k= constant:

This is not necessarily true for N > 1, but the behavior of the
minimizer is similar. In addition, the minimizer exists, and
is unique, but we postpone a detail analysis of the nonlinear
PDE problem associated with the minimization of (7) and
our discretization to a forthcoming paper.

Our relaxation algorithm is a successive approximation
algorithm where the new position of a vertex νn+1

i is deter-
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mined by adding a displacement to the corresponding cur-
rent position νn

i . A related algorithm was proposed by Li
9 in the context of adaptive mesh generation for finite ele-
ments computations. The displacements are computed col-
lectively as a continuous function of the current positions
δ(ν). In our case, we define the displacements by equating
the partial derivatives to zero, i.e., formulating it as a descent
algorithm.

We first compute unconstrained displacement vectors

δU (ν)i = ∑
j2i?

µi j(ν j �νi)�

(
∑
j2i?

µi jjνi�ν jj
2

)
rσ(νi)

2σ(νi)
;

where i? is the set of grid vertex indices connected to i by a
grid edge, and �

µi = ∑ j2i? σ(ν j);

µi j = σ(ν j)=µi :

These displacements are independent of scaling of the fre-
quency map: If we replace σ(ν) by λσ(ν), for some posi-
tive λ, we obtain the same displacements, which is highly
desirable. Another way of looking at this property is by ob-
serving that rσ=σ is equal to r log(σ). But affine scaling
of σ, or equivalently the ratio q between minimum and max-
imum values of σ in Q, affects the quality of the result. In
our implementation, the frequency map is represented as an
8-bit gray level image, and the user can affinely scale the
frequency map to the interval [q;1], with q accessible to the
user through the program’s user interface. Small values of q
produce less grid distortion, and larger values produce more
distortion. The target value for q is determined in the fre-
quency map estimation phase.

Note that the weights µi j are non-negative, they add up
to one in the neighborhood of each vertex ∑ j2i? µi j = 1,
and are not necessarily symmetric µi j 6= µ ji. Also observe
that the first sum on the right hand side is nothing but the
well known Laplacian operator from mesh signal processing
12; 16. Laplacian smoothing tends to move each vertex to the
weighted average of its neighbors, with weights inversely
proportional to the target sample rate.

The second term is equal to zero if the vertex νi is an ex-
tremum of σ, and by continuity, is very small in a neighbor-
hood. In general, this term pulls the vertex νi along a descent
direction for σ. The ratio involving the gradient of σ(νi) is
discretized as a finite differences approximation in the direc-
tion of the neighbor h of i in which the ratio varies fastest.
That is

rσ(νi)

2σ(νi)
�

(σ(νh)�σ(νi))

(σ(νh)+σ(νi))

νh�νi

jνh �νij2
;

where h 2 i? is the neighbor of i corresponding to the maxi-
mizer of

max

�
jσ(ν j)�σ(νi)j

(σ(ν j)+σ(νi))

1
jν j �νij

: j 2 i?
�
:

Note that this discretization produces an appropriate scal-
ing, because

jσ(νh)�σ(νi)j � jσ(νh)+σ(νi)j ;

and the following two expressions�
∑ j2i? µi jjνi�ν jj

2=jνh �νij;

∑ j2i? µi jjνi�ν jj;

are of the same order of magnitude.

Then we apply the (linear) boundary constraints. The four
corners of the unit square (which correspond to four ver-
tices of the grid) do not move, and other boundary vertices
are constrained to only move along their supporting straight
boundary segments. The results are constrained displace-
ment vectors δ(νn)i, which are subsequently applied to the
current vertex positions

νn+1
i = νn

i +δ(νn)i i = 1; : : :;N :

Let Ξ = QK , i.e., the cartesian product of K copies of the
unit cube. And let f : Ξ ! Ξ be the continuous function de-
fined by the relaxation rules just introduced. Since Ξ is com-
pact and convex, by Brouwer fix point theorem4, f has a
fixed point. If f is a contractor, then by Banach fix point the-
orem 1 it has a unique fixed point, and our successive approx-
imation algorithm converges to it from any starting point (the
function f is a contractor, or contraction map, if there exists
a constant K 2 [0;1) such that j f (ν)� f (ν0) � Kjν� ν0j
for all ν and ν0 in Ξ). Unfortunately, f does not seem to be
a contractor in the general case. The relation between the
initial grid sampling rate and the frequency content of the
frequency map σ play a crucial role. But it can be shown
that each local minimum has a neighborhood where f is a
contractor 3.

All of this means that to ensure convergence to the global
minimum, the initial grid has to be very fine. Again, the sam-
pling rate of the initial grid has to be finer than the rate deter-
mined by the Nyquist frequency of the map. If the shortest
wavelength of the frequency map σ is shorter than the dis-
tance between two vertices νi and ν j connected by a grid
edge, it is clear than there is no guarantee of convergence
to any meaningful result. But a very fine grid implies slow
convergence. So, we follow a multigrid approach with a hi-
erarchy of grids, where the coarse iteration is performed on
a coarser grid and an appropriately downsampled frequency
map. In our current implementation both the grid and the
frequency map can be upsampled and downsampled interac-
tively. Finally, in Figure 7 we show the results of the relax-
ation algorithm when applied to two texture images.

6. Experimental results

We demonstrate the advantages of using our texture space
optimization technique on several models. We compare
the results of using progressively smaller, space-optimized
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(a) (b) (c) (d)

Figure 9: A comparison of the visual quality obtained at reduced texture image sizes without (top row) and with (bottom row)
space optimization. (a) Original texture size. In (b), (c) and (d), the texture is reduced at 30%, 20% and 10% of the original
size, repectively (See also Color Plates.)

textures versus using non-optimized textures of the same
reduced size. We report quantitative results using rate-
distortion curves (Figure 8), and illustrate the improved vi-
sual fidelity by comparing a model rendered with various
texture sizes with and without optimization (Figure 9.)

Figure 8 shows rate-distortion curves for three different
textured models. The curves illustrate the error introduced
by subsampling the images with and without our optimiza-
tion (respectively blue and red curves). The horizontal axis
measures the size of the subsampled image as a percent-
age of the original. Going from right to left, the texture is
progressively shrunk. The vertical axis measures error (on
a logarithmic scale) according to the following simple met-
ric: The image is applied as texture to the model and ren-
dered from a fixed viewpoint (a sample rendering is shown
in the top row for the three models.) The viewpoint is cho-
sen to have all the significant texture details on screen. A
pixel-by-pixel difference image and its L2-norm are com-
puted and plotted in the diagrams. The optimized image pro-
duces smaller errors for basically all image sizes, except for
very small (less than 10%) shrinkage factors, where small
artifacts introduced by the warping outpower the better use
of space.

A comparison of the visual quality obtained at reduced
texture image sizes, with and without space optimization, is

shown in Figure 9. The top row shows renderings of a head
model. From left to right, the rendered image is produced
using a texture of the original size, and then reduced at 30%,
20% and 10% of the original size. The bottom row shows
the same model rendered using a space-optimized texture.
The images are rendered at a screen resolution that approx-
imately matches the original texture size. It is evident that
pixelization artifacts are much more visible with the unop-
timized textures, especially at 30% and 20% of the original
size. Even at 10% of the original size, the optimized image
preserves some high-frequency details that are absent in un-
optimized version.

7. Conclusion

We have tested our texture optimization algorithm on a vari-
ety of datasets, taken from collections of textured 3D mod-
els, or scanned by the authors. We have obtained very good
results in most cases. As in previous approaches, and for ob-
vious reasons, this technique does not lead to spectacular re-
sults with small textures containing repetitive patterns, such
as grass or bricks. In contrast, significant savings in space
can be obtained by optimizing textures produced by many
3D scanning systems, which contain large areas of back-
ground pixels. We have also obtained very good results on
textured models of heads and characters, where details are
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concentrated in a few localized areas. The main advantages
of our technique with respect to prior art can be summarized
as follows:

� The image is analyzed automatically, with a robust, effi-
cient technique based on wavelets.

� Metric distortion introduced by the parametrization can
be integrated by simply combining the measurement of
frequency content with simple properties of the Jacobian
of the parametrization.

� Image warping is implemented as a relaxation algorithm
with nice convergence and stability characteristics.

� The warping preserves image continuity and smoothness,
allowing the use of a traditional texturing pipeline, includ-
ing mip-mapping.

More work remains to be done to quantitatively character-
ize the smaller error introduced with respect to unoptimized
images. It would be interesting to employ metrics that take
into account human perception. Finally, to better preserve
sharp edges, we plan to investigate the use of anisotropic fil-
ters for image warping and resampling.
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