
HP16C Emulator Module for the HP-41CX

(c) Martin-McClure Page 1 of 63 September 2015

User’s Manual and QRG.

Written and Programmed by Greg J. McClure and Ángel M. Martin

September 4, 2015

HP16C Emulator Module for the HP-41CX

(c) Martin-McClure Page 2 of 63 September 2015

This compilation revision 1.5.3

Copyright © 2015 Ángel M. Martin and Greg J. McClure

Published under the GNU software licence agreement.

Original authors retain all copyrights, and should be mentioned in writing by any part utilizing this

material. No commercial usage of any kind is allowed.

Screen captures taken from V41, Windows-based emulator developed by Warren Furlow.

See www.hp41.org

Acknowledgments.-

Special thanks go to Greg McClure for his tremendous work on the 16C Emulator module – his 16C
Buffer design and handling routines, together with the “big math” algorithms are the heart and soul of

this module.

Thanks to Monte Dalrymple for his feedback on the overlay and this manual, and for his thorough

testing of the beta software and release candidates.

Thanks to Michael Fehlhammer for making the 16C overlay a reality in such a short time even before
the module release.

http://www.hp41.org/

HP16C Emulator Module for the HP-41CX

(c) Martin-McClure Page 3 of 63 September 2015

Table of Contents.

1. Introduction

1.1. Introduction. 5
1.2. Page#4 Library and Bank-Switching 5
1.3. Organization of the Manual and Remarks 6
1.4. Function Index at a glance 7
1.5. New/Original Function Table 10

2. The 16C Data Structure

2.1 The Martin-McClure Buffer 11
2.1.1 16C Stack Operation 11
2.1.2 Stack and memory Functions 12

2.2. Data Input with 16NPT 13
2.2.1 The 16C Keyboard and Overlay 16

2.3. Data Output with SHOW and WINDOW 17
2.3.1 The true meaning of GRAD 18
2.3.2 Data Formats Summary 18

3. What’s New & Different

3.1 Differences from the Original 19
3.1.1 Number Entry and FLOAT mode 20
3.1.2 Flags as Semaphores: CY and OOR 21
3.1.3 Status and Flashing messages 23
3.1.4 Prompting Functions 24
3.1.5 Test functions launchers 25
3.1.6 ISZ/DSZ and function Parameters 26
3.1.7 Square Root and Square power 27
3.1.8 A few examples: Gray code, bit extraction, add w/ CY 28

3.2 New Functionality added 29
3.2.1 Rotations Launcher 29
3.2.2 Shifting and Bit operations Launcher 29
3.2.3 Bases and Signed Modes Launcher 30
3.2.4 Left and Right Launchers 31
3.2.5 Launcher Shortcuts Map 32

3.3. Remaining Functions not on Launchers 33
3.3.1 Last Function and Programmability 34

HP16C Emulator Module for the HP-41CX

(c) Martin-McClure Page 4 of 63 September 2015

3.4. Individual Function descriptions 35
3.4.1 Negative Logic Functions 35
3.4.2 Word size related functions 35
3.4.3 Left and Right Justification 36
3.4.4 Bit Reversal 36
3.4.5 Multi-Position Shifting 37
3.4.6 Storage and Retrieval in X-Memory 38

4. Diagnostics Functions.

4.0 Silent and Loud Modes 39
4.1. An alternative to the 16C keyboard 40
4.2 A few Development Aids 41
4.2.1. Buffer Registers handling 41
4.2.2. Buffer Data Types 42
4.2.3. Doubling and Halving 42
4.2.4. Digit Justification, Reversal and Decimal Sum 43
4.2.5 Test for Maximum Negative Value 44
4.2.7. Recalling the current Base value 45
4.2.8. Quick Hex<>Dec 45

Appendices.

a.1 Maximum values as function of word size 46
a.2 The Hexadecimal Number system 47
a.3 Program Examples 50
a.4 Buffer Technical Details 52

HP16C Emulator Module for the HP-41CX

(c) Martin-McClure Page 5 of 63 September 2015

Computer Science for the HP-41CX

1. Introduction.

At long last, a complete solution for the Computer Scientist on the HP-41 platform is finally available

in the form of the HP-16C Emulator module.

This module provides a comprehensive feature set that includes all the functionality from the original
HP-16C, plus a few new surprises and extensions added to the design. Support for up to 64-bit word

size is provided in all functions – beyond any previous attempt implemented on the 41 system ever

before.

The design takes full advantage of the alphanumeric capabilities of the 41, in particular the 24-
character LCD for more convenient number entry and display. Prompting functions and X-Memory

backup enhance the usability and go beyond the original machine. Use them in manual operation or in
a program, all functions are completely programmable.

Auxiliary FAT, Bank-switching and Page#4 Library.

The 16C Emulator module comes loaded with functions and a rich feature set – yet it only takes a

single page (i.e. half port) on the 41 ROM module bus. Its structure consists of four bank-switched 4k
blocks, with functions arranged in two Function Address tables – the main one filled-up with 64

functions plus an auxiliary one containing additional sub-functions. All are programmable, and easily
accessed using dedicated function launchers. Plus a complete 16C Keyboard overlay is available for

instant plug-and play functionality.

The 16C Emulator is a Library#4-aware module: it makes extensive usage of the library routines for

more efficient execution as well as management of the auxiliary FAT and sub-function launchers -
which relies on the presence of the Library#4 installed on the system. The Library#4 has been

updated for the 16C Emulator, thus ensure you have revision “O1”, with MOD file date August 2015.

The last remark is regarding the CX dependency: designed for the CX version of the 41 OS, the code
occasionally uses subroutines from the CX OS code. This was a compromise to enhance the

functionality at the economy of ROM space – as it avoided having to replicate large code streams
already available on the CX. Don’t use this module on a plain 41C or CV machine, it’ll have surely

unexpected and probably unwanted results.

The module checks for the presence of the dependencies, i.e. the Library#4 and the CX.-- If the

Library#4 is missing or the machine is not a CX the errors will halt it to avoid likely problems. Note
also that this module is not compatible with pages#6 and 7 – avoid plugging it in those locations.

Remember: The HP16C Emulator module extensively uses routines and functions from the Page#4
Library. Make sure the Library#4 revision “O1” (or higher) is installed on your system or things can go

south. Refer to the Page#4 Library documentation to properly configure the Library#4 before use.

HP16C Emulator Module for the HP-41CX

(c) Martin-McClure Page 6 of 63 September 2015

Organization of this manual.

We have no intention to duplicate the HP-16C Computer Scientist Manual – which is the best

reference to learn about the functions and concepts behind this module. This manual won’t teach you

the intricacies of the Carry and Out of Range flags, or the binary concepts behind the 1’s or 2’s
complement signed modes for instance. You’re encouraged to read the original 16C manual if needed.

It is however important to document the main design criteria applied to the 16C Emulator module and

the derived consequences for its use. Special attention has been put to the new and additional

functions, as well as documenting the small differences that may exist in a few functions when
compared to their original implementation on the 16C calculator.

It is expected that the reader be already familiar with the HP-41 environment, so as to be comfortable

keying instructions and operating the machine. A basic knowledge of the 41 system memory structure

and programming will be very useful if you also want to use the 16C module functions in your own
programs.

This module employs several powerful concepts also present in other advanced modules, such us a

secondary FAT to hold auxiliary sub-functions; several function launchers that group functions and
sub-functions by related functionality; and the LAST Function facility to re-execute the last function

(or sub-function) called - to mention just the most important ones. You may be familiar with all these

had you already used the SandMath, SandMatrix or PowerCL modules. You don’t need a 41-CL to run
this module but obviously its tremendous speed advantage makes it the best possible choice of

hardware.

Some remarks about the implementation.

Emulating the complete capabilities of the original 16C machine has been a tall order, only possible

thanks to a fortuitous combination of dedication and skills from both co-authors. Greg’s programming
skills have been put to a good use in the base conversion and “big math” algorithms - which work

seamlessly integrated into the module completely behind the scenes.

The double precision multiplication and division in particular are highlights of the module, taking up

the third bank in its entirety by themselves – which speaks volumes about their intricate design and
complex implementation.

From my part this module brings it all together home in many ways; starting with the advanced
concepts borrowed from the 41Z Complex module (dealing with auxiliary buffers for data storage and

abstraction data layers above the native real numbers support on the 41 OS); from the SandMath and
PowerCL modules (pioneering the function Launchers) and of course the heavy reuse of Auxiliary

FATS and sub-function management leveraging the Library#4 design way beyond its initial design
scope.

All in all, this module is nothing short of an improbable amazing feat if you ask me, and I think I
speak on both Greg’s and my own behalf to say it’s an important contribution to the 41 legacy. It has

been a very rewarding project, and a great learning opportunity for me as well – thank goodness Greg
was on watch to keep all those whimsical components of the 16C intricacies at bay many times

during the development, when I was getting completely confused!

PS. The trademark “Martin-McClure” is a result of a virtual coin toss and some consideration as to the

“ringing” of the words – but under no circumstance denotes any priority in the order of the names.

HP16C Emulator Module for the HP-41CX

(c) Martin-McClure Page 7 of 63 September 2015

Function index at a glance.-

Without further ado, here are all 125 functions included in the main and auxiliary FATs.

Function Description Input Result

1 -HP-16C+ Shows Library#4 Splash none Flashes splash msg

2 16C _ Main 16C Keyboard Launcher see 16C keyboard overlay executes function

3 16# _ _ _ WEX Subfunction by index Prompts for index executes function

4 16$ _ XEQ sub-function by Name Prompts for name executes function

5 16+ Integer mode addition values in 16X and 16Y Result in 16X, stack drops

6 16- Integer mode subtraction values in 16X and 16Y Result in 16X, stack drops

7 16* Integer mode multiplication values in 16X and 16Y Result in 16X, stack drops

8 16/ Integer mode Division values in 16X and 16Y Result in 16X, stack drops

9 16SQRT Square Root value in 16X result in 16X, argument to 16L

10 16WSZ _ _ Sets Word Size prompts for word size flashes size on LCD

11 1CMP Sets 1's Complement Mode none changes mode, sets flag 1

12 2CMP Sets 2's Complement mode none changes mode, sets flag 2

13 AND Logical Intersection values in 16X and 16Y Result in 16X, stack drops

14 ASR Arihtmetic Shift Right value in 16X result in 16X, argument to 16L

15 b? _ _ Bit Set testing value in 16X, bit# in prompt YES/NO, skips line if false

16 BINM Binary Base display none changes displayed base

17 Cb _ _ Clears bit value in 16X, bit# in prompt result in 16X, argument to 16L

18 DBL* Double precision 16* values in 16X and 16Y Result in 16X & 16Y, stack drops

19 DBL/ Double Precision 16/ values in 16X, 16Y, 16Z pushes value into 16C stack

20 DBLR Double Prec. Remainder values in 16X, 16Y, 16Z pushes value into 16C stack

21 DECM Decimal base display none changes displayed base

22 FLOAT Floating Point mode none supresses displaying mode!

23 HEXM Hexadecimal Base display none changes displayed base

24 LJY Left Justify value in 16X Result in 16X, #pos in 16Y

25 MASKL _ _ Builds a Left-justified Mask # of bits in prompt pushes value into 16C stack

26 MASKR _ _ Builds a Right-justified Mask # of bits in prompt pushes value into 16C stack

27 NOT Logical Inversion value in 16X result in 16X, argument to 16L

28 OCTM Octal Base display none changes displayed base

29 OR Logical Addition values in 16X and 16Y Result in 16X, stack drops

30 RL Rotate Left (one pos.) value in 16X result in 16X, argument to 16L

31 RLC Rotate Left thru Carry value in 16X result in 16X, argument to 16L

32 RLCN _ _ RLC n-positions value in 16X and prompt result in 16X, argument to 16L

33 RLN _ _ Rotate Left n-positions value in 16X and prompt result in 16X, argument to 16L

34 RMD Division Remainder values in 16X and 16Y pushes value into 16C stack

35 RR Rotate Right (one pos.) value in 16X result in 16X, argument to 16L

36 RRC Rotate Right thru Carry value in 16X result in 16X, argument to 16L

37 RRCN _ _ RRC n-positions value in 16X and prompt result in 16X, argument to 16L

38 RRN _ _ Rotate Right n-positions value in 16X and prompt result in 16X, argument to 16L

39 Sb _ _ Set bit value in 16X, bit# in prompt result in 16X, argument to 16L

40 SHOW Shows value in 16X value in 16X Puts value chars in ALPHA

41 SLN _ _ Shift Left n-positions value in 16X and prompt result in 16X, argument to 16L

42 SRN _ _ Shift Right n-positions value in 16X and prompt result in 16X, argument to 16L

43 STATUS Shows Status Info base and complement data Shows machine status msg

44 UCMP Sets Unsigned mode none changes mode, sets flag 0

45 WINDOW _ Shows the Window registers values in FX buffer regs shows FX registers on LCD

46 XOR Exclusive OR values in 16X and 16Y Result in 16X, stack drops

47 LEFT _ Left Launcher prompts for function executes function

48 MOD _ Modes Launcher prompts for function executes function

49 ROT _ Rotations Launcher prompts for function executes function

HP-16C_BS%202015%2005%2012b.xls#RANGE!D1130
HP-16C_BS%202015%2005%2012b.xls#RANGE!D2151
HP-16C_BS%202015%2005%2012b.xls#RANGE!D2204
HP-16C_BS%202015%2005%2012b.xls#RANGE!D804
HP-16C_BS%202015%2005%2012b.xls#RANGE!D809
HP-16C_BS%202015%2005%2012b.xls#RANGE!D693
HP-16C_BS%202015%2005%2012b.xls#RANGE!D154
HP-16C_BS%202015%2005%2012b.xls#RANGE!D161
HP-16C_BS%202015%2005%2012b.xls#RANGE!D2546
HP-16C_BS%202015%2005%2012b.xls#RANGE!D3076
HP-16C_BS%202015%2005%2012b.xls#RANGE!D2724
HP-16C_BS%202015%2005%2012b.xls#RANGE!D181
HP-16C_BS%202015%2005%2012b.xls#RANGE!D2732

HP16C Emulator Module for the HP-41CX

(c) Martin-McClure Page 8 of 63 September 2015

50 -16C STACK Shows Copyright & Sound n/a Flashes message & sounds

51 16ABS Absolute value value in 16X result in 16X, argument to 16L

52 16CHS Changes 16X sign value in 16X and compl mode result in 16X, argument to 16L

53 16ENT^ Pushes 16X one level up values in 16C stack 16X in entered to 16Y

54 16NPT Main Data Input function Characters in ALPHA next value entered in 16X

55 16RCL _ _ Recalls value from memory values in data registers value from memory into 16X

56 16RDN Rolls the 16C stack down values in 16C stack 16C stack rolled down

57 16RUP Rolls the 16C stack Up values in 16C stack 16C stack rolled up

58 16STO _ _ Stores 16X in memory value in 16X and prompt 16X stored in data registers

59 16X<> _ _ Exchanges the 16X and mem values in 16X and data regs 16X and data regs exchanges

60 16X<>Y Swaps 16X and 16Y values in 16X and 16Y 16X and 16Y exchanged

61 CL16X Clears the 16X register anything in 16X 16X is zeroed

62 CL16ST Clears al the 16C stack anything in 16C stack the 16C stack is zeroed

63 LST16X Recalls last value used value in 16L reg pushes 16L into 16X

64 X?Y _ XY Tests launcher XY tests launcher executes function

0 -16C FAT2 Section header section header n/a

1 BIT _ Bit Functions Launcher prompts for function executes function

2 SHF _ Shift/Bist Launcher prompts for function executes function

3 RIGHT _ Right Launcher prompts for function executes function

4 16APN Append String to Value Partial String in Alpha Appends to Exisiting Value

5 16x^2 Squares 16X value in 16X result in 16X, argument to 16L

6 16X=0? tests 16X equal to zero value in 16X YES/NO, skips line if false

7 16X#0? tests 16X not equal to zero value in 16X YES/NO, skips line if false

8 16X<0? tests 16X less than zero value in 16X YES/NO, skips line if false

9 16X<=0? tests 16X less or equal to 0 value in 16X YES/NO, skips line if false

10 16X>0? tests 16X greater than zero value in 16X YES/NO, skips line if false

11 16X>=0? tests 16X greater or equal 0 value in 16X YES/NO, skips line if false

12 16X=Y? tests 16X equal to 16T values in 16X and 16Y YES/NO, skips line if false

13 16X#Y? tests 16X not equal to 16Y values in 16X and 16Y YES/NO, skips line if false

14 16X<Y? tests 16X less than 16Y values in 16X and 16Y YES/NO, skips line if false

15 16X<=Y? tests 16X less/equal to 16Y values in 16X and 16Y YES/NO, skips line if false

16 16X>Y? tests 16X greater than 16Y values in 16X and 16Y YES/NO, skips line if false

17 16X>=Y? tests 16X great/equal to 16Y values in 16X and 16Y YES/NO, skips line if false

18 16X^^^ enters 16X in all stack levels value in 16X 16X is replicated

19 DSZ Decrement and skip if Zero content of R00 data reg R00 decrements, skip iz aero

20 GET16 Gets 16C buffer from X-Mem X-mem file name in ALPHA new 16C buffer is in place

21 ISZ Increment and skip if zero content of R00 data reg R00 increments, skip iz aero

22 LOW16^ Enters x into 16X register real number value in x new value in 16X

23 NAND Negative AND values in 16X and 16Y Result in 16X, stack drops

24 NOR Negative OR values in 16X and 16Y Result in 16X, stack drops

25 REV Reverses bits in word value in 16X result in 16X, argument to 16L

26 RJY Right Justifies the value value in 16X Result in 16X, #pos in 16Y

27 SAVE16 Saves 16C buffer in X-Mem X-mem file name in ALPHA buffer saved in X-Mem file

28 SL Original Shift Left function value in 16X result in 16X, argument to 16L

29 SR Original Shift Right function value in 16X result in 16X, argument to 16L

30 WSFIT Fits the word size to 16X value value in 16X ws changed

31 X?0 _ Tests to zero Launcher X0 tests launcher executes function

32 XNOR Negative XOR values in 16X and 16Y Result in 16X, stack drops

33 #BITS Gets sum of selected bits value in 16X Returns sum of bits to 16X

34 FCAT _ Sub-function Catalog has hot-keys enumerates sub-functions

35 -TESTING Section header section header n/a

36 16KEYS Mass-Key Assignments (*) Prompts Y/N? Makes / Removes KA

37 16WSZ? Retrieves current word size set ws data from buffer Shows ws and puts it in 16X

38 2DIV Halves the content of 16X value in 16X result in 16X, argument to 16L

HP-16C_BS%202015%2005%2012b.xls#RANGE!D1040
HP-16C_BS%202015%2005%2012b.xls#RANGE!D1259
HP-16C_BS%202015%2005%2012b.xls#RANGE!D1825
HP-16C_BS%202015%2005%2012b.xls#RANGE!D1833
HP-16C_BS%202015%2005%2012b.xls#RANGE!D647
HP-16C_BS%202015%2005%2012b.xls#RANGE!D616
HP-16C_BS%202015%2005%2012b.xls#RANGE!D639
HP-16C_BS%202015%2005%2012b.xls#RANGE!D607
HP-16C_BS%202015%2005%2012b.xls#RANGE!D1978
HP-16C_BS%202015%2005%2012b.xls#RANGE!D1986
HP-16C_BS%202015%2005%2012b.xls#RANGE!D2276
HP-16C_BS%202015%2005%2012b.xls#RANGE!D2284
HP-16C_BS%202015%2005%2012b.xls#RANGE!D3371
HP-16C_BS%202015%2005%2012b.xls#RANGE!D3425
HP-16C_BS%202015%2005%2012b.xls#RANGE!D3899
HP-16C_BS%202015%2005%2012b.xls#RANGE!D3431
HP-16C_BS%202015%2005%2012b.xls#RANGE!D1062
HP-16C_BS%202015%2005%2012b.xls#RANGE!D2434
HP-16C_BS%202015%2005%2012b.xls#RANGE!D2439
HP-16C_BS%202015%2005%2012b.xls#RANGE!D2943
HP-16C_BS%202015%2005%2012b.xls#RANGE!D3190
HP-16C_BS%202015%2005%2012b.xls#RANGE!D3910
HP-16C_BS%202015%2005%2012b.xls#RANGE!D3256
HP-16C_BS%202015%2005%2012b.xls#RANGE!D991
HP-16C_BS%202015%2005%2012b.xls#RANGE!D2467
HP-16C_BS%202015%2005%2012b.xls#RANGE!D3511
HP-16C_BS%202015%2005%2012b.xls#RANGE!D2039
HP-16C_BS%202015%2005%2012b.xls#RANGE!D2422

HP16C Emulator Module for the HP-41CX

(c) Martin-McClure Page 9 of 63 September 2015

39 2MLT Doubles the content of 16X value in 16X result in 16X, argument to 16L

40 A2FX Alpha to FX registers String in ALPHA Chars transferred to FX regs

41 BASE? Recalls base to 16X none Base value in 16X

42 CHKBB Checks & Builds the 16C buffer none 16C Buffer in Memory

43 CLRFX Clears FX buffer registers none FX regs cleared (reset)

44 D>H Decimal to Hex Value in X-reg Hex string in Alpha

45 DGD Decimal Digit Sum Value in 16X Shows sum and enters it

46 DGLJ Digit Left-justify Value in X-reg Digits left-Justified

47 DGRV Digit Reversal Value in 16X Reversed digits in 16X

48 EX2FX Copies the EX regs to the FX regs Binary Data in EX regs Chars written in FX Regs

49 FX2EX Copies the FX regs to the EX regs Chars Data in FX regs Binary Data in EX regs

50 FXSZ? Shows number of non-zero chrs in FX none Number of characters in X

51 H>D Hex to Decimal Hex String in Alpha Result in X-register

52 H=L Copies the Low bits into the High bits Data in 16X Copies X to b13

53 L-H Moves the Low bits to the High bits Data in 16X Moved X to b13

54 L<>H Swaps Low and High 16X bits Data in 16X X-reg and b13 swapped

55 LDZER Shows Leading Zeros Data in 16X Leading Zeros added

56 MNV? Test for Maximum Negative Value Value in 16X YES/NO, skips line if false

57 TS/L Toggles Silent/Loud Mode none Active mode toggled

58 WSMAX Shows maximum value for ws ws data in buffer shows value in x

59 X-LA Appends chr(X) to laft-Alpha Crh value in X Appended to left Alpha

60 (c) Shows Copyright Message none Shows message

If you’re familiar with the 16C calculator you’ll no doubt recognize the majority of functions in the
main FAT – as such as been the criteria for function FAT allocation. Their functionality and operation

should be pretty much identical to their original counterparts, but there are a few differences that will

be covered later in the manual.

Hopefully you’re also intrigued about the new additions to the function set (located in the auxiliary
FAT), and can probably guess their scope and intention – that will be the subject of dedicated sections

as well, as they are likely to add some surprises to the digital mix. Refer to the table in next page for

a quick comparison between new, modified and original functions in the emulator.

Always ensure that Revision “O1” or higher of the Library#4 is installed on the system.

HP-16C_BS%202015%2005%2012b.xls#RANGE!D3338

HP16C Emulator Module for the HP-41CX

(c) Martin-McClure Page 10 of 63 September 2015

HP16C Emulator Module for the HP-41CX

(c) Martin-McClure Page 11 of 63 September 2015

2.1. The Martin-McClure Buffer

Without doubt the 16C-Buffer is the cornerstone of the 16C Emulator module. Designed to fulfill the

storage requirements for 64-bit data values and provide available scratch registers for data
management and auxiliary calculations, this buffer is automatically created and maintained by the

calculator behind the scenes - all transparent to the user.

Even if you can use the module completely unaware of the 16C buffer, knowing the fundamentals on

its structure and operation will largely increase you understanding of the module - significantly
smoothing the learning curve. Those wanting to know more should refer to appendix B for a more

detailed description of the buffer registers and design.

Data Size and Registers: the problem at hand.

Because the data values can be as large as 64-bit, the 56-bit standard 41C registers are not sufficient
to hold the values in all cases- even if we were to use up all of them in a custom data format.

The solution implemented uses two standard hp-41 registers for each 16C value, with each register
holding 32-bits worth of information. We’ll call those registers the “lower bits” and the “higher bits”

registers. This is so regardless of the selected word size, thus the higher bits register will be empty
when the value can be expressed by 32- or less number of bits.

The 16C Stack is the first abstraction layer you need to become familiar with. Like its “standard”
counterpart {X,Y,Z,T,L}, the 16C Stack consists of 5 logical 64-bit registers, named 16X, 16Y, 16Z,

16T, and 16L (or Last16X). Physically each one of these is made as the logical combination of the
standard stack register of the same name plus another register from the 16C Data Buffer. As you’d

expect, the standard stack contains the “lower bits” half of the value, whilst the buffer register holds
the “higher bits”.

Register Lower Bits + Upper Bits

16X X b13

16Y Y b12

16Z Z b11

16T T b10

16L L b14

2.1.1 16C Stack Operation functions.

A set of functions is provided to operate on the 16C registers as whole unit – including both the lower

and upper bits halves simultaneously. It is important that you remember that the standard functions
of the calculator will only access the lower bits halves, and thus you should use the 16C functions

instead – unless you’re already on the grand-master level and begin hacking around.

These functions include the 16C stack handling (usual suspects here: 16ENT^, 16X<>Y, 16RDN,

16RUP, CL16X, CL16ST) as well as exchange with the other data registers in the calculator
memory: 16STO, 16RCL, and 16X<>. The last three are also programmable using the “non-

merged” approach – whereby the target register number is entered as a follow-up line in the program.

HP16C Emulator Module for the HP-41CX

(c) Martin-McClure Page 12 of 63 September 2015

2.1.2. Stack and Memory Functions.

The table below summarizes all functions and sub functions related to stack and memory handling.

Function Description Comment

16ENT^ Pushes 16X into the 16C stack Lifts 16C Stack

LOW16^ Pushes x into 16X level Lifts 16C stack

16X<>Y Swaps 16X and 16Y levels

16RDN Rolls down the 16C stack

16RUP Rolls up the 16C stack

16X^^^ Copies 16X into all 16C levels

LST16X Recalls the last value to 16X Lifts 16C stack

CL16X Clears the 16X level

CL16ST Clears all 16C stack

16STO _ _ Stores 16X in memory Uses two data regs

16RCL _ _ Recalls value from memory Lifts 16C Stack

16X<> _ _ Exchanges 16X and memory Uses two data regs

SAVE16 Writes 16C stack to X-Mem Creates “H”-type file

GET16 Reads 16C stack from X-mem Only one buf allowed

Data registers Usage and Required SIZE

Note that 16STO, 16RCL and 16X<> are prompting functions.
As explained before, two data registers are used to store the 16X

values in memory. Refer to the table on the left for a

correspondence between the register# used in the prompt and the
actual SIZE required in the calculator to allow for the range of 16C

data registers needed.

Note that R00 is used by the ISZ and DSZ sub-functions as the
“indirect” register – therefore and to avoid conflicts the actual

registers usage in the 16C registers scheme begins with {R01 &
R02} for the 16C- version of “16R00”. This makes them compatible

with each other so you don’t have to worry about it.

Remember that you can also use the 41-native functions ISG and

DSE instead for a more powerful implementation that allows you to
choose the indirect register used. In that case you need to mind

the potential register conflicts!

Now that we’ve got the data requirements and design considerations out of the way let’s see how to
go about introducing and reviewing actual 16C values in the calculator.

Max 16RG# Size

n/a 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

… …

16R06

16R07

16R10

16R11

16R00

16R01

16R02

16R03

16R08

16R09

16R04

16R05

HP16C Emulator Module for the HP-41CX

(c) Martin-McClure Page 13 of 63 September 2015

2.2. Data Input. - { 16NPT , LOW16^ , 16APN }

If the 16C buffer is the invisible heart of the module then the 16NPT function is its visible
counterpart. This is the function you’ll be using most of the time to enter the data values and

arguments for your calculations – regardless of the selected base and complement mode set.

When invoked, the function prompts for the digit values to input, showing the selected base on the

left side of the display. The data is input as alphanumerical digits on the LCD display during the
process. Only the appropriate digits for each base will be allowed.

You can enter up to 24 digits at a single time, or split the entry in three different sub-sections (called

“partials”) if so preferred. Obviously for large values in Binary mode this last method will become
necessary, but for all other bases a single partial is enough to hold the maximum numbers allowed

even for a 64-bit word size.

The digit entry can be completed only partially by pressing the SST key – this will commit the digits

to the 16C buffer and will present the base prompt anew, ready for the next partial entry. The second

partial is then appended to the first one, and this can be repeated again for the third (and last) partial
– so even a 64-bit value in binary can be entered using three segments of data.

The flag annunciators are temporarily “borrowed” by 16NPT to show you which partial you’re working

on at any time. Thus you’ll see “1”, “12”, or “123” depending on which one of the three partial
screens you’re in at any given time. Once completed, their status will revert back to their previous

values prior to executing 16NPT.

Note that the back-arrow key will either delete the current digit, or cancel the function if there are no
more digits left on the display. This will show the value in 16X previous to the execution of 16NPT, or

enter the current partials already committed to if a partial entry had already happened.

Note as well that only 12 characters are displayed on the LCD at a given time. If you enter more the

previous will be scrolled to the left and removed from view (but not lost, not to worry about that). The
back arrow removes the rightmost digit but won’t scroll the string back to the right.

The digit entry is terminated pressing ENTER^ or R/S indistinctly, upon which the information is

shown as alphanumeric string in ALPHA (scrolling if larger than 12) and transferred to the 16CX

register. The 16C Stack is lifted as you’d come to expect, same as with the standard stack. At that
point you’re done and ready to move on to the next action.

There are several usability features built into the 16NPT function that make it easy to use and as

closer to the original 16C as reasonably possible – balancing the code requirements and the general
performance considerations. They are described in the following paragraphs.

HP16C Emulator Module for the HP-41CX

(c) Martin-McClure Page 14 of 63 September 2015

Maximum values will be observed.

Not only does 16NPT know which digits are allowed for the current base, but it also limits the entry
values according to the currently selected word size and complement mode – so the maximum value

is not exceeded. This however has an exception in decimal mode for word sizes of 34 and up, where
in some circumstances values slightly larger than the maximum can be keyed in. They however will

be normalized upon data entry completion, by applying the current mask to the digits in ALPHA.

Examples: in DEC mode and 2CMP, select word size = 34 and attempt to enter the following two

values: 8,589,934,595 and 8,589,934,999. Are the results what you had expected?

16NPT, 8, 5, 8, 9, 9, 3, 4, 5, 9, 5, ENTER^ => d: -8,589,934,589
16NPT, 8, 5, 8, 9, 9, 3, 4, 9, 9, 9, ENTER^ => d: -8,589,934,185

Direct Math and Negative Values entry. { 16NPT , CHS , - , + , * , / }

A special way to terminate the digit entry is by pressing one of the four arithmetic keys for a direct

(chained) operation; or the CHS key to directly enter the negative value of the number typed in. This

not only saves three keystrokes but also provides a convenient way to introduce negative numbers
not worrying about the current complement mode.

Example: enter the negative value of H: 25, with a word size of 32 and 2’s complement:

16NPT, 2, 5, CHS => H: FFFFFFDB

On-the-fly Base Rotation during Input. { 16NPT , [SHIFT] }

Another usability feature of 16NPT allows you to change the selected base mode on the fly, directly
from the 16NPT prompt. Pressing the [SHIFT] key will toggle the selected base amongst the four

possible ones, in the sequence {HEX -> OCT -> DEC -> BIN}, repeated cyclically.

Note that each time you change the base the contents of ALPHA and FX registers will be reset,

including the existing “partials” if previously entered - so you’ll start the digit entry process from the
scratch. This ensures that only appropriate characters for the new base are in the FX buffer, rejecting

previously entered ones before the base change.

If you cancel the data entry the current value in the 16X register will be shown again - in the last base

mode selected during the cyclic rotation.

Quick-Entry Shortcut for lower-bit values. { 16NPT , [RADIX] }

Besides the normal procedure explained before, there is a quick-entry mode also available for values
below the 32-bit limit, i.e. only impacting the “lower bits” half of the 16X register.

Simply type the (floating point) BCD value using the standard X-register, then call 16NPT and hit the
radix key (decimal point). This will call the LOW16^ function, effectively terminating the entry

appending the number in X as data input, clearing the higher bits and lifting the 16C stack

appropriately.

The entered value will be shown in the currently selected base mode, thus it’ll only be equal to the
BCD input in decimal mode. For example the sequence 12345, LOW16^ will return H: 3039

HP16C Emulator Module for the HP-41CX

(c) Martin-McClure Page 15 of 63 September 2015

Program Mode Operation { 16APN }

You’re no doubt wondering how the data is input under program control, where all the hot keys and

shortcuts are not available. The first thing to say is that 16NPT is indeed programmable, and that in
a running program it takes its input (digits) from the ALPHA register.

Therefore this is already good enough to enter any values in Octal, Decimal and Hexadecimal modes

regardless of the word size selected. For binary mode you may need to append more data after the
first 24 digits are dealt with this way if the word size is larger than 24 bits – as in binary each bit is a

full ASCII digit. You’ll then use the 16APN sub-function for that purpose, effectively performing the

same trick as with the SST key in manual mode to enter partials.

As an example let’s see two possible ways to input the hexadecimal value “1234ABCD”, illustrating the
usage of 16NPT and 16APN choices at your disposal.

#1 Choice: only two program lines required,

01 “1234ABCD”
02 16NPT

#2 Choice: it takes four lines to do the same:

01 “1234” first part (break at will)
 02 16NPT

03 “ABCD” second part
04 16APN

Note that because 16APN is a sub-function, the last line in the second choice is really two program

lines, as you need function 16# and the corresponding index. Refer to the sub-function launchers

section for further details on 16# and 16$).

As a last remark, it comes without saying that the characters in ALPHA should conform to the selected
base and word size restrictions. There won’t be any error message if this is not done, but as a rule the

function will always normalize the input, applying the current mask against it in program mode – thus

possibly changing the input (but wrong) entry into allowed values.

Summary of 16NPT hot-keys:

 ENTER^ terminates the digit entry.

 R/S terminates the digit entry

 SST appends digits to buffer and moves to next partial

 CHS terminates digit entry and changes the sign

 [-] terminates digit entry and does subtraction

 [+] terminates digit entry and does addition

 [*] terminates digit entry and multiplies by 16Y value

 [/] terminates digit entry and divides by 16Y value

 [SHIFT] discards digits and changes base mode on the fly

 [RADIX] discards digits and enters low-bits value from X register

 [BackArrow] deletes last digit or cancels out if last one.

 [ALPHA] launches the 16$ function

Note: characters “b” and “d” are shown in lower case for clarity – even if the 41 LCD is better than the

original on the 16C this implementation gives the emulator a feeling closer to the real machine.

HP16C Emulator Module for the HP-41CX

(c) Martin-McClure Page 16 of 63 September 2015

The 16C Digit Pad and 16C Keyboard Overlay.

Related to the quick entry modes, you can also use the 16C digit-pad to directly enter 1-9 single

digits as values. This is done from the 16C prompt, no need to call 16NPT at all – so even if its

applicability is limited to single-digit integers it doesn’t get any easier. Some typical uses for this
functionality include quick arithmetic (double, half, triple, etc.) and integer values used as parameters

for other functions. The picture below shows the 16C Keyboard Overlay in all its glory, where the
options for 16NPT, LOW16^ and the digit pad are shown in red color.

All functions shown on this overlay require pressing the 16C main launcher first.

Note: You can assign the 16C function to any location on the keyboard. Because it is used very
frequently it’s recommended you change that location from time to time to avoid the associated

hardware wear & tear on the key domes.

 Always ensure that Revision “O1” or higher of the Library#4 is installed on the system.

HP16C Emulator Module for the HP-41CX

(c) Martin-McClure Page 17 of 63 September 2015

2.3. Data Output – { SHOW , WINDOW }

When executed in manual mode (RUN), every function in the 16C Emulator module terminates the
execution by calling the data output routines - also directly available in function SHOW. This presents

the result value as a (possibly scrolling) string of digits in the ALPHA registers, preceded by the base

indicator on the left. For a more effective presentation SHOW will leave out the padding zero
characters to the left of the first significat digit, regardless of the selected word size.

This includes the 16C stack and memory handling function like 16X<>Y or 16RCL; so the user can

always expect to see a proper integer “digital” value as result of the operation.

This presentation will be omitted when the functions are executed in a program, with the exception of

SHOW itself which will put the result in ALPHA and stop the program if the user flag 21 is set - as it
is the case for the native function AVIEW.

Another possible option to visualize the value in the 16X register is the function WINDOW. Like in the

original 16C, it presents the value across a variable number of 8-character windows, as many as
needed to cover the actual length of the value. For instance in binary base with a word size of 56 it

may take up to 7 windows to review the complete result (maybe less since here too padding zeros on
the left won’t be shown).

Contrary to the original 16C however the listing starts with the MSB in window 0 (the first one), and

this will always be shown when you call the function. The succesive characters will be placed in the

following windows – until the LSB is placed in window 6 for the example mentioned above.

The user can navigate sequentially through the windows pressing the + and - keys, or randomly

get into any specific window by presing its corresponding number (from 0 to 7) on the number pad.
You’ll then use the back arrow key to leave the show, so to speak.

The windows are numbered from “W0:” to “W7:” placed at the left of the LCD. The selected base
character is also shown the the right of the LCD in all cases .

When used in a program, WINDOW will take the argument# from the next program line as a non-

merged design – similar to other prompting functions like 16STO and 16RCL.

The True Meaning of GRAD revealed.

If you always thought that it stood for a so-called centesimal angular mode seldom-used (except by
surveyors we’re told) then you’re in for a nice revelation ;-)

GRAD really stands for “GReater than Alpha Display” - The GRAD annunciator will be lit when the

value to display exceeds the 24-character limit of the ALPHA registers, as a visual clue that you need

to use WINDOW to see the complete value.

This will only occur in binary base mode, with word sizes larger than 24 bits, and when the significant
bits exceed that number (remember the leading zeroes won’t be shown). Every other case is well-

served by SHOW using the ALPHA register - even if it is exercising its scrolling capacity.

HP16C Emulator Module for the HP-41CX

(c) Martin-McClure Page 18 of 63 September 2015

Let’s see an example using a large word size (say ws=56). Enter the decimal value 1234567789, and
show it in binary using the WINDOW function screens:

Exceute BINM (this sets GRAD), and WINDOW. Then use the hot keys to access all the relevant

screens as follows: - Note the storage order of the bits, with the MSB in the leftmost position of W0

and the LSB at the rightmost position of W3

Therefore the binary bit stream is as follows:

B: 1 001 001 100 101 100 000 001 001 101 101

Summary of Data formats used throughout the registers.

Data is stored in different formats depending on the registers they are in.

- The lower bits registers in the standard stack are stored in BCD (Binary-Coded Decimal)

format, thus you can see them like regular decimal values if you exit the displayed prompt

from the 16NPT output (say for instance pressing the back arrow).

- The higher bits registers in the 16C buffer are stored in binary format, i.e. Non-normalized
numbers or NNN’s. Realize that for any math operation the lower-bits first will be converted to

binary, and only then the operation will be applied.

- The visual representation in the “Window” buffer registers is stored as character digits in

ASCII code. It may take up to 64 characters; therefore there are 8 “Window” registers like in
the original 16C machine. Realize that whilst the ALPHA register is the repository for SHOW,

the information shown in the WINDOW screens uses the LCD as a vehicle instead.

HP16C Emulator Module for the HP-41CX

(c) Martin-McClure Page 19 of 63 September 2015

3. 1.- Differences from the original 16C.

The obvious differences are the dedicated hardware - like the keyboard layout and the LCD. These

account for the most dramatic changes in utilization, since on the 41 the 16C Emulator is just one of
the many other modules that can be used simultaneously, and it needs to co-exist with the 41 native

OS.

But far from being a disadvantage that makes it much more interesting, as you benefit from the

power and capability offered on the 41 like extendend capacity in data registers and program space,
larger LCD with automatic scrolling functionality, and of course the ability to compbine the 16C

functions with any other from the 41 OS at the same time.

Is it a better 16C than the original 16C? Well that depends on your previous experience and bias – so

if you live and breathe by the original machine this module will make you do things a little different –
but if you’re just a casual user or start anew the 16C Emulator module on the 41 is a much more

convenient tool, with a more sophisticated user interface and rounder function set - not lacking any
functionality from the original machine.

Automated Base Conversions: the four modes.

There are five base modes on the 16C Emulator: Binary, Octal, Decimal, Hexadecimal and Floating

Point. By default the floating point mode is pre-selected upon initialization, i.e. the first time the
calculator is started with the 16C Module plugged in. There will be no value displayed while the

machine is in FLOAT mode.

The number conversion between the different bases is performed automatically as you select the base

mode of choice. There is therefore no need to exceute any function for visualization – just change to
the base of choice using one of the four base mode functions: BINM, OCTM, DECM, and HEXM.

These are located in the top row on the 16C keyboard, assigned to the [B], [C], [D], and [E]
respectivelly.

Note: Another way to change the base mode is using the MOD launcher – which will be described

later in this section.

The display always shows the base digit on the left, so you can tell which based it is expressed on.
Note that the values in the 16C stach will not change when you modify the base mode: they are in

binary and BCD as explained before, and the value display routine will represent them in the

appropriate base as per the current selection.

 These three numbers are indeed very different from

 each other – the base identifier gives them away.

 Don’t forget to change the default mode to a digital

 base; no display will occur in FLOAT mode.

HP16C Emulator Module for the HP-41CX

(c) Martin-McClure Page 20 of 63 September 2015

3.1.1. Number Entry on the 16C Stack.

By default the 41 keyboard knows nothing about the 16C module. The standard functions are always

available for real-number operation (call it the FLOAT mode if you wish). This is important to

remember, as it imposes some discipline on the user to differentiate them from the 16C-version of the
same functions – for instance for number entry and stack handling.

For example, pressing “1234” , ENTER^ pushes the real number 1,234 into the Y-register but it does

nothing good to the 16C stack at all – just the opposite!

For a proper 16C value entry you must use 16NPT at all times – even in its quick-entry and shortcut

modes. Thus the right keystroke sequence will be: 16NPT, “1234”, ENTER^.

Not much more elaborate, as it only requires the 16NPT as a prefix. This function will lift the 16C

stack automatically so no need for a final 16ENT^ at the end in this example.

Similarly other stack manipulation and memory exchanges need to use the 16C-versions instead of the

“native” standard ones. Here is where the 16C keyboard comes to the rescue, as it has most of

them pre-assigned to their logical positions (like 16STO in the STO key, 16RDN in the RDN key,

etc). All you need to remember is always press the 16C launcher key first, then the 16C function to

complete the action.

Using the 16C launcher is a more convenient method than populating the 41 keyboard with multiple

standard key-assignments for three reasons:

- It doesn’t prevent the standard functions from being available in USER mode
- It allows direct access to both main functions and sub-functions equally

- It doesn’t take extra memory registers to hold all those many key assignments

However if those points are not an issue you can always re-configure the entire 41C keyboard using

ASN to map the main functions (won’t work for sub-functions) as you find it more appropriate.

Entering lower-bit values with LOW16^

As an alternative to 16NPT you can also use sub-funtion LOW16^ for a quick-entry mode of values

in the lower-bits half-register. With this method you enter the number directly in the X-register
instead of the ALPHA registers to hold the characters.

Obviously this only allows introducing digits 0-9 since the standard X- stack register is used. Besides
that, the value entered will be normalized to the base and word size conditions in effect by the

function, so that the end result will comply with the status of the machine.

Examples.: with word size = 16 and HEX mode selected

12345, 16$ “LOW16^” => “H: 3039”

1234, LASTF => “H: 4D2”

But with word size ws=8 and BIN mode selected instead:

12345, 16$ “LOW16^” => “b: 111001” , which corresponds to 57 in decimal – i.e. the value has

 been truncated to 8 bits

Note: pressing the “digit-pad” in program mode (16C plus number key) is the best shortcut to enter
LOW16^ in program mode; just make sure the number is already input in the previous program line.

HP16C Emulator Module for the HP-41CX

(c) Martin-McClure Page 21 of 63 September 2015

3.1.2. Flags as Mode Semaphores.

Personally I always thought that one of the shortcomings on the original machine is that it offers no

visual information for the currently selected signed mode. Whether it is unsigned, 1’s or 2’s

complement there’s no indication on the display to help you interpret the results – which believe me,
there will be differences depending on the current setting. As a consequence I need to use the

STATUS function very frequently just to see the mode, not very efficient in my mind.

On the 16C Emulator this is always shown by the first three user flag annunciators, “ 0”, “1”, and “2”.

At all times one of those three will be set to show you the current complement mode, where zero
means unsigned mode. They act as semaphores more than programming flags, and while you can

manually changed them using the 41 SF/CF functions it is strongly recommended you don’t do so.
Some functions rely on their status during intermediate calculations, and besides they’ll be changed

back by the 16C Emulator at the first opportunity to syncronize with the complement mode set.

In other words, flags 0,1, and 2 are reserved as they are taken over by the 16C Emulator in ther role

of signed/unsiged mode semaphores.

The example below shows the decimal representation of H: 9000 in 1CMP and 2CMP modes for a
word wsize of 16 bits. Can you tell at a glance which one is which?

Carry and Out of Range flags. (CY & OOR)

The original machine uses flags 4 and 5 for the Carry and Out of Range conditions respectively. The

display shows “C” for Carry set and “G” for OOR set, which therefore are matched to flag 4 and 5.

On the 16C module however the flags used are 3 for Carry and 4 for OOR – obviously those are also
shown in the annunciators area of the 41 display so they were the logical choice. As to why carry is 3

and not 4 as in the original machine, well we went with the rhyme as opposed to the reason this time.

CY and OOR will be set and cleared during the execution of numerous functions, summarized on the

table below. In general the CY management is identical to the original machine but the Emulator
applies a more extensive rule for OOR, in that there are additional instances besides the math

functions that also modify OOR. This prevents confusing interpretations of “why is OOR set now” as a

left-over from several operations before.

In other words the OOR flag is triggered more frequently on the emulator than it is on the original
machine, like for instance when recalling a number from memory using 16RCL or another 16C stack

function (16RDN or similar), in the event that the value being placed in the 16X register is too large

for the current word size – i.e. the ws had changed since that number was first stored in the other
register.

Note: For more on the CY and OOR flags, you should also refer to the Diagnostics section for

flashing messages on Carry and Out-of-Range conditions, user-selectable in a configurable optional
mode.

The table in next page summarizes all functions impacting the status of CY and OOR flags:

HP16C Emulator Module for the HP-41CX

(c) Martin-McClure Page 22 of 63 September 2015

Function Carry Out of Range Remarks

16+, 16- yes yes |Result| > |max(ws)|

16* no yes Result > max(ws) => OOR

16/ yes yes RMD#0, => CY

16SQRT yes no RMD#0, => CY

16X^2 no yes Uses 16Y and 16X regs

16CHS, 16ABS no yes *very* CMP-dependent

DBL* no cleared y * x -> (X & Y)

DBL/ yes cleared (y & z) / x -> X; RMD#0 => CY

SL(N), SR(N), ASR yes no may push msb/lsb => CY

RL(N), RR(N), yes no may push msb/lsb => CY

RLC(N), RRC(N) yes no may push msb/lsb => CY

16X<>Y, 16X<>, no yes 16X > max(ws) => OOR

16RCL, LST16X no yes 16X > max(ws) => OOR

16RDN, 16RUP no yes 16X > max(ws) => OOR

CL16X, CL16ST no cleared

16WSZ no yes 16X > max(ws) => OOR

Table 3.1. Functions affecting the status of CY and OOR flags.

 Blue font functions denotes additional OOR conditions beyond the original 16C machine.

 SLN and SRN are new additions in the emulator. They behave like the rotation counterparts

and only set/clear CY on the last position shifting.

 max(ws) is the maximum value that can be represented within the selected ws, max(ms) =

2^ws -1. See appendix A1 for a complete table, and sub-function WSMAX for their calculated

values.

No Leading Zeros flag. { LDZER }

Since flag 3 is reserved for Carry that means the “Leading Zeros” functionality from the 16C is not
available on the emulator in the same way – zeros are always omitted by default as it was described

in the data input & ouptut sections of this manual. Space is at a premium on both ALPHA and the

LCD so it didn’t seem to be a good idea to use it with non-relevant zeros. The only logical and needed
exception is during the digit input process in 16NPT, which allows for the first digit to be a zero.

You can however use the subfunction LDZER to shows the value in 16X including the leading zeros;
as a function of the base and the word size. Like it is the case in the original machine this functionality

is not available in Decimal mode (where the actual number of digits depends on the entered values).

It is also somewhat limited by the maximum length of the ALPHA registers, so it’s not recommended
you use it for long binary values (all other cases will fit).

Examples: show the leading zeros for the OCT value 13 with ws=13, then changed to HEX:

HP16C Emulator Module for the HP-41CX

(c) Martin-McClure Page 23 of 63 September 2015

3.3.3. What’s the Status?

The STATUS function is meant to show the current configuration of the emulator settings. Like in
the original machine the display includes the complement mode and the word size, but contrary to it

the flags information is replaced with the currently selected base. This should not be a shortcoming
considering that the status of the relevant system flags 0-4 is always shown in the annunciators

section of the LCD display, thus they are visible at all times.

Taking advantage of the alphanumeric capabilities the complement mode is shown as “0c”, “1c”, or

“2c”. Likewise the selected base is spelled out as mnemonic (BIN, DEC, OCT, HEX, or FLT). The text
is right justified and will stay in the display for a short while before the current value in the 16X

register is shown again.

The examples above both show the machine recently had both Carry (user flag 3) and Out-of-Range
(user flag 4) conditions. You can see that the complement mode matches the status of flags 0-1-2.

Flashing Functions.

Some functions will flash the result for a while and then revert to showing the current value in the 16C

register. For STATUS this is also the case on the original 16C, and like on it you can hold the flashing

display by holding any key - after you have allowed it to be presented, or otherwise all you’ll get is
the “NULL” message from the 41 OS.

Besides STATUS the other flashing functions are #BITS, WSFIT and 16WSZ? – the last two being

new additions to the function set, which will be described later on.

New (Flashing) Error Conditions.

The Division functions may show the error conditions to denote a math error condition – either a
division by zero in 16/ or a quotient result too large for the selected word size in DBL/

These error messages will briefly show in the display, but the original arguments will remain in the

16C stack. If this occurs during a program the execution will halt showing the familiar “DATA ERROR”
message.

HP16C Emulator Module for the HP-41CX

(c) Martin-McClure Page 24 of 63 September 2015

3.1.4. Prompting Functions.

The HP-41 features a user interface design more advanced than what the original 16C has. One of the

nicer features is the prompting functions, whereby the function’s argument is entered at the prompt in

manual mode.

Whenever possible we have favored this implementation over the usage of the 16X register for
function parameter, saving so keystrokes and simplifying the data entry sequence – as this approach

removes the need to use the 16C keypad or 16NPT to enter the parameters.

This is only applicable to the operation in manual (RUN) mode. In Program mode the functions

behave in the same way they do on the original 16C machine.

The new prompting functions are shown in the table below:

Function Parameter Function Parameter

MASKL _ _ 1 to ws RRN _ _ 1 to ws

MASKR _ _ 1 to ws RRCN _ _ 1 to ws+1

Sb _ _ 0 to ws-1 RLN _ _ 1 to ws

Cb _ _ 0 to ws-1 RLCN _ _ 1 to ws+1

b? _ _ 0 to ws-1 16WSZE _ _ 0< ws <65

SLN _ _ 1 to ws WINDOW _ 0<= w# < 8

SRN _ _ 1 to ws

Common implementation features to all these functions are as follows:

- Parameter entry requires two digits, always assumed to be decimal numbers irrespective of
the selected base mode. You can use the “soft” keys on the two top rows for parameters 1 to

10.

- The prompts will stay put (i.e. the function will ignore the input) for parameters larger than

the maximum word size (64).

- A warning message reminding of the current word size “WS= nn” will be shown if the

parameter entered is larger – In a running program the message shown will be ‘OUT OF
RANGE’ in those instances, and the execution will halt at the current program line.

- Entering “00” will toggle between complementary function pairs, i.e. change MASKL into

MASKR, RRN into RRCN, RLN into RLCN, SLN into SRN, and vice-versa. This does not impact

the bit selection functions Cb, Sb, and b? – for which zero is a valid input value.

- Pressing [SHIFT] will activate the INDirect facility – i.e. the parameter is retrieved from the

standard data register entered at the prompt. No support for STack registers is provided, so

do not use IND ST_ even if you can bring that option to the display.

- When you enter the functions in a program the prompt will be discarded by the OS – so you

can fill it with any values.

- In a running program the parameters are taken from the 16X register –the same as in the

original machine. Just fill the prompt with any values when you enter the function – they’ll be
ignored by the OS at that point. Note that in program mode a zero or values larger than the

current word size will also trigger an out of range condition.

HP16C Emulator Module for the HP-41CX

(c) Martin-McClure Page 25 of 63 September 2015

3.1.5. Test Functions Launchers.

You may have noticed the conspicuous absence of the test conditional functions from the 16C overlay

– or almost, since there above the EEX key are to be found the two test launchers, X?Y and X?0 –

very much following the design used by other calculators, like the HP-32S.

All individual test functions are in the auxiliary FAT, thus they’re implemented as sub-functions. In fact

that’s also the case for the X?0 launcher itself – even if that fact is totally transparent to the user and
on the overlay.

There are six different tests for XY conditions, plus another six for zero conditions. Each group is split
into two screens, with three choices on each of them as shown in the pictures below. You can use the

[SHIFT] key to move between the screen choices within each launcher, and the “anchor” key to
change the launcher type back and forth:

And pressing the “anchor” key [A] changes to the zero-test groups:

In all cases the selection is made using the top row keys [C], [D], and [E] – You can also hit the

“anchor” key [A] to toggle between the X?Y and X?0 launchers right from within them !

Being subfunctions adds no restriction to the testing functionality, even if an index line number is
required in a program to identify which one is to be used. As it is known, the non-merged functions

cannot be located *after* a test conditional (or otherwise the skip-if-false rule will jump into the

middle of both lines) – but there’s nothing preventing them to be placed *before* a normal program
line. The non-merged functions take care of updating the program counter to always ignore the

index# line, so the YES/NO, do-if-true rule is perfectly applicable in this case.

Examples:

a. Correct utilization

01 16#
02 6

03 GTO 01
04 GTO 02

b. Incorrect utilization

01 FS? 25
02 16#

03 6
03 GTO 01

04 GTO 02

That’s the reason why the tests have all six cases, including “>=”, which wouldn’t be possible to do

using a chained double conditional like it is done for the standard OS functions.

The table below shows the sub-function indexes (in decimal) used for the test conditionals:

Test Criteria X vs. 0 X vs. Y

 = 6 12

 # 7 13

 > 8 14

 >= 9 15

 < 10 16

 <= 11 17

HP16C Emulator Module for the HP-41CX

(c) Martin-McClure Page 26 of 63 September 2015

3.1.6. ISZ/DSZ and Function Parameters.

The HP-41 has its own implementation of the index-controlled functions ISG and DSE, more flexible

than those in the HP-16C and HP-15C – which use the HP-67 model with ISZ and DSZ instead,

whereby a unique indirect register is used and the index value is always made with zero.

For convenience the emulator includes DSZ and ISZ, which use the R00 register to hold the “indirect”
variable “I “. Therefore you won’t need to worry about converting the format for 16C program

compatibility using ISG and DSE. Notice however that this implementation still uses a standard

register (R00) and not a 64-bit logical register like it is the case for the 16C stack or the other
registers as accessed by 16STO and 16RCL.

While it is safe to assume that loop counters and other parameters won’t exceed the 32-bit limit, you

can always “convert” the index into a 64-bit format using LOW16^ in case that is required.

Similarly, the parameter for 16WSZE can only go up to 64 so it’s a bit of an overkill to allocate 64 bits

for that one too; therefore you can just use a standard value in X and 16WSZ will accept it as a valid
input. Remember however not to disturb the 16C stack by doing so!.

Contrary to this situation, the masking, bit shifting and rotation functions expect 16C-formatted values

when used in a program for the number of positions (or number of bits in the MASKL/R case) – thus
you shouldn’t use the standard X-reg workaround with them. As a reminder, the three proper ways to

do it are:

- a string value in ALPHA plus 16NPT (and optionally 16APN), or

- a decimal value in real-stack X register plus LOW16^, or
- a value from 16RCL, 16X<>, or any other 16C stack operation.

Registers and Word Size changes.

There is no effect of a word size change in the data stored in the data registers. This is different from

the real 16C machine, which adjusts the values in memory to fit the currently selected word size –
spilling over adjacent registers in case of a wordsize decrease and splitting across registers in case of

a wordsize increase.

Put in another words, the size of the storage registers in the HP-41 is fixed, always 56 bits whereas on

the 16C it is a variable number defined by the smallest multiple of 4 bits (half-bytes) equal to or
greater than the current word size.

Depending on your programs and needs that may be a fundamental difference or just a negligible
detail – but nevertheless it is important to be aware of if for the cases where this becomes a relevant

consideration. Suffice it to say that the memory allocation is a very particular affair on the 16C, much
more intricate than on any other HP calculator to say the least.

HP16C Emulator Module for the HP-41CX

(c) Martin-McClure Page 27 of 63 September 2015

3.1.7. Square Root and Square Power. { 16SQRT , 16X^2 }

The Square root function is a bit of a hybrid in that is uses the native OS routines to calculate the

result. This is clearly a way-around approach that works just fine for input values lower than 2^33 but
that needs to be adjusted for larger values of the input parameter.

The adjustment is done in a short FOCAL code stub triggered by the function itself when required. It

simply checks if the square power of the result matches the input parameter. If it does then it’s a
perfect square that needs no adjustment. If it doesn’t then it may need subtracting one to the result,

and it will always have to set carry.

The only caveat to this approach is that the original input value is not left in the LST16X register – but

in the 16Y level of the 16C stack. In any case the final result will only be shown in manual mode, not
if the function is executed in a program

The program below illustrates the method used for the adjustment of the result calculated by the
16SQRT function. The actual implementation is more clever and splits the execution between an intial

MCODE part and a final FOCAL adjustment only done when needed.

1 LBL "64SQRT"

2 CF 05
3 CF 06

4 32SQRT 32-bit square root

5 LOW16^ replicate result in 16C stack

6 LST16X recall input x

7 16RDN place it in 16T level

8 16* calculates sqrt(x)^2

9 16RUP recall x to 16X

10 16X#Y? is x # sqr(x)^2?

11 SF 05 yes, set flag 5

12 16X>Y? is x > sqr(x)^2?

13 SF 06 yes, set flag 6

14 LST16X recall sqrt(x) to 16X

15 FC? 05 were they different?

16 GTO 05 no, the result was ok

17 FS? 06 was it greater?

18 GTO 06 no, skip adjustment

19 1 yes, subtract one

20 - (always < 2^32)

21 LBL 06

22 SF 03 sets carry

23 LBL 05

24 SHOW show result
25 END done.

The square power 16X^2 is a subfunction available for keytroke convenience, as it is assigned to the
X^2 key on the 16C keyboard. It uses the main 16* code with 16Y equal to 16X, thus it is completely

equivlent to the sequence { 16ENT^, 16* }. There is no byte savings in a program using either of

those approaches- 4 bytes will be used.

Therefore you need to keep in mind that two levels of the 16C stack will be used. Note that following
the standard conventions the input parameter is left in the LST16X register.

HP16C Emulator Module for the HP-41CX

(c) Martin-McClure Page 28 of 63 September 2015

3.1.8. A few Examples: Gray Code, Bit Extraction, Add w/ Carry

The following examples are taken from the HP-16C article published in the May 1983 HP-Journal

issue. With them you should get familiar with the way the emulator functions are used to prepare

16C-like programs on your HP-41. We’re sure you’ll appreciate having the function names shown as
opposed to their keycodes on the original machine - and enjoy seeing the goose flying.

a. Binary-to-Gray and Gray-to-Binary conversions

 Note that the test function 16X#0?
Really corresponds to the combination of

the two program lines:

16# and

 7

Example: convert b: 11010 to Gray code and back to binary.

Keystrokes Result Comment
BINM b: xxxxx current 16X content

16NPT, 1, 1, 0,1,0, R/S b: 11010 enters binary value in 16X

XEQ “GRAY” b: 10111 Gray equivalent
XEQ ”BIN” b: 11010 Original value back

b. Bit Extraction and Addition with Carry

 Note the usage of 16NPT to enter values

to the 16C register, as shown in lines
7/8 of “bXT” and lines 3/4 of “16+C”.

Note also the carry flag is “3” on the

emulator, not “4” as in the original

machine.

Apart from that the programs are
practically identical to the original ones

on the real 16C machine.

Examples: Extract bits 2-5 from the value H: 39 (or b: 111001)

Keystrokes Result Comment

HEXM H: XXXX current 16X contents
16NPT, 3, 9, R/S H: 39 enters 39 in 16X

16C, 2 H: 2 lifts 16C stack
16C, 5 H: 5 lists 16C stack

XEQ “bXT” H: E or b: 1110

1 LBL "bXT" 1 LBL "16+C"

2 16RDN 2 CF 03

3 RRN 3 "0"

4 16RUP 4 16NPT

5 LAST16X 5 RLC

6 16- 6 16+

7 "1" 7 CF 05

8 16NPT 8 FS? 03

9 16+ 9 SF 05

10 MASKR 10 16+

11 AND 11 FS? 05

12 HEXM 12 SF 03

13 SHOW 13 SHOW

14 RTN 14 RTN

1 LBL "GRAY" 7 LBL "BIN"

2 16ENT^ 8 16ENT^

3 SR 9 LBL 02

4 XOR 10 SR

5 SHOW 11 XOR

6 RTN 12 LAST16

13 16X#0?

14 GTO 02

15 16RDN

16 SHOW

17 RTN

HP16C Emulator Module for the HP-41CX

(c) Martin-McClure Page 29 of 63 September 2015

3.2.- New functions not present on the original 16C.

This section needs to start describing the other function launchers – one of the more relevant

additions to the functionality of the emulator not available in the real 16C machine.

There are two kinds of launchers: those that group functions by complementary operation (like ROT

and SHF), and those that do it according to a functional criteria, (such as MODBIT,LEFT and

RGHT). Note the consistent use of the sigma letter in their names to denote a launcher funtion.

3.2.1. Rotations Launcher – { ROT }

This launcher groups the 8 rotation functions into two screens, one for operation excluding the Carry
bit and another for the operation including it. Once it is up on the display you will use the [SHIFT] key

to toggle between each screen, as shown below:

Where the only visible clues are the SHIFT annunciator and the “C” added to the screen id# on the

left. The function table is below:

 RL Rotate Left RLC Rotate Left thru CY

 RLN _ _ Rotate Left n positions RLCN _ _ RLC n positions

 RRN _ _ Rotate Right n positions RRCN _ _ RRC n positions

 RR Rotate Right RRC Rotate Right thru CY

3.2.2. Shiftings Launcher – { SHF }

This launcher groups 4 bit shifting functions in the first screen, plus another 4 bit-manipulation
functions in the second. Once it is up on the display you will use the [SHIFT] key to toggle between

each screen, as shown below:

 SL Shift Left DGLJ Digit Left Justify

 LN _ _ Shift Left n positions LJY Left Justify

 RN _ _ Shift Right n positions RJY Right Justify

 SR Shift Right ASR Arithmetic Shift Right

Remarks:

- Both the Rotations and the Shifting launchers expect you to choose the option using the top

row keys [B] to [E] as per the screen layout.

- Hitting the “anchor” key [A] (in the non-shifted screen) will move back and forth between
these two launchers, the Rotation and the Shifting screens.

- Pressing the back arrow keys cancels the function and displays the current value in the 16C
register again.

HP16C Emulator Module for the HP-41CX

(c) Martin-McClure Page 30 of 63 September 2015

3.2.3. System Modes Launchers – { MOD and BIT }

Moving on now to the “functional criteria” launchers, they have in common that the prompt includes
the different choices as a string of letters separated by colons, and the selection is made using the

initial letter of the function chosen.

The first two group the signed modes, the base modes, and other system configuration controls –

very fundamental part of the system indeed. MOD is assigned to the USER key on the 16C

keyboard, and shows the following teo screen when called – toggled with the [SHIFT] key as usual:

Unshifted screen.

Roughly speaking the left half of the LCD is for the base modes (Binary, Octal, Decimal, Hex and

Floating Point Mode) whereas the right half of the LCD is for the signed mode (UCMP, 1CMP and
2CMP) plus the word size setting (16WSZE, 16WSZ?). The question mark is for STATUS.

 MOD

 BINM Binary Display UCMP (0) Unsigned Mode

 OCTM Octal Display 1CMP 1’s Complement mode

 DECM Decimal Display 2CMP 2’s Comlpement mode

 HEXM Hexadecimal display 16WSZE _ _ Sets word size

 FLOAT Floating Point mode 16WSZ? Shows Current ws

 - Separator - shows © STATUS (?) Shows the Status

Shifted sscreen:

Here too the left part is for general configuration and information functions, whilst the right part

includes bit and digit reversal and sums - plus the three general bit manipulation functions.

 BIT

 BASE? Recalls current base REV Bit reversal

 16KEYS 16C key assignments DGD Decimal Digit Sum

 TS/L Toggle Silent/Loud #BIT #Bits set (*)

 LDZER Shows Leading Zeros Cb _ _ Clears bit

 - Separator - shows © Sb _ _ Sets bit

 DGRV Digit Reversal b? _ _ Is bit set?

(*) Use the “H” character for the hash/pound symbol - #

One of the main advantages of these launchers is that they provide direct access to both main and
sub-functions in their choices. You should also note that the functions 16# and 16$ are also included

in the choices even if not shown in the LCD – just by pressing the USER and ALPHA keys as well.

So there you have it, perhaps a bit of repetition but you have it both ways so no excuse for not being

able to access the functions or subfunctions in a split second anymore.

HP16C Emulator Module for the HP-41CX

(c) Martin-McClure Page 31 of 63 September 2015

3.2.4. Left and Right Launchers – { LEFT and RGHT }

The last two group many shifting and rotation functions together using the geometric position as a
criteria – as opposed to the specifit bit manipulation action as in the previous cases. You can think of

these two launchers as the two personalities of the same function, and as you surely have guessed
already you’ll use the [SHIFT] key to toggle between them at will.

There are 9 functions on each screen, as shown on the function tables below:

 LEFT _ RGHT _

 LJY Left Justify RJY Right Justify

 REV Reverse Bits ASR Arithmetic Shift Right

 MASKL Mask Left MASKR _ _ Mask Right

 SLN Shift Left n-positions SRN Shift Right n-positions

 RL Rotate Left RR Rotate Right

 RLN Rotate Left n-positions RRN Rotate Right n-positions

 RLC Rotate Left thru CY RRC Rotate Right thru CY

 RLC# RLC n-positions RRC# RRC n-positions (*)

 STATUS (?) Shows the Status STATUS (?) Shows the Status

(*) Use the “H” character for the hash/pound symbol - #

LEFT is a main function but RGHT is located in the Auxiliary FAT, with index# = 2

Note also that the main four launchers are interconnected and can be navigated sequentially using the

XEQ key. Refer to the chart in next page for a complete representation of the options.

Launchers as sub-functions.

There are four launcher functions located in the auxiliary FAT, thus implemented as sub-functions in

the 16C Emulator module: SHF, BIT, RGHT, and X?0.

Because sub-functions are always programmable (i.e. cannot be declared as non-programmable),

when you execute them in program mode the function itself will be entered into the program. This

means you cannot use them this way in program mode to directly access their menu choices as it
happens in manual mode.

To work-around this limitation you can use their “parallel” launchers - which as main functions are

properly declared as non-programmable - and toggle their functionallity using either the SHIFT key

and/or the anchor key [A], as follows:

 Use X?Y, [SHIFT] -> for X?0 options

 Use LEFT, [SHIFT] -> for RGHT options

 Use ROT, [A], [SHIFT] -> for SHF options

 Use MOD, [SHIFT] -> for BIT options

Naturally you can also access any of their menu choices by calling them individually, using its index or
name within the auxiliary FAT – as described in the next pages.

HP16C Emulator Module for the HP-41CX

(c) Martin-McClure Page 32 of 63 September 2015

3.2.5 Launcher Maps – Navigating the Function Shortcuts

A picture is worth ten-thousand words…

HP16C Emulator Module for the HP-41CX

(c) Martin-McClure Page 33 of 63 September 2015

3.3. Remaining functions not on Launchers.

As there are several other functions not included into any launcher, one would assume that there

must be some other way to access them. After all they can also be very useful either in manual mode

or included in your program, and who knows, some of them can even become your very next favorite
one.

Those amongst you familiar with the SandMath or PowerCL modules would already know the answer

is in the sub-function execute functions, which for the 16C Emulator are 16# and 16$.

There are three ways to execute any sub-function:

- by name, spelling all letters at the “16$ _” prompt – For your convenience the ALPHA mode

is activated by 16$ so you can start spelling the function directly, saving another pressing of

the ALPHA key – (like it is needed for COPY for example).

- by its index, entering the number at the “16#_ _ _” prompt (in decimal) - the subfunction
name is briefly shown in the display when it is entered using its index at this prompt , as well

as during a single-step execution in a program. This provides visual feedback to the user as to
whether the function was that intended to use.

- by direct enumeration using FCAT, hitting XEQ when the sub-function name is shown and

the enumeration is paused (single-stepped).

In terms of the 16C keyboard, you can access 16# pressing PRGM and 16$ pressing ALPHA keys

respectively at the 16C prompt (and some other launchers as well) – all conveniently layed out for

you.

Note: Even if the sigma character “” can be typed during the 16$ prompt, it however won’t be

recognized by the name search routines due to some conflicts in the character value assignment. You

need to use the “N” character instead – or the 16# function followed by the sub-function index. This

only impacts the sub-function DGD and the three sub-function launchers covered before.

HP16C Emulator Module for the HP-41CX

(c) Martin-McClure Page 34 of 63 September 2015

3.3.1. Last Function functionallity and Programability.

Also common to the other modules (not surprisingly since the same routines in the Library#4 are

used), the function is either executed in manual mode, or automagically entered as two program

lines in PROGRAM mode. Furthermore the subfunction code is stored in the LastFunction buffer so it
can be re-executed pressing LASTF on the 16C keyboard (Radix key at the 16C_ prompt).

Note that 16$ can also be used to execute functions in the main FAT, or even functions located in

other plug-in modules: if the function name is not found in the auxiliary FAT the search continues

automatically through all the modules plugged on the 41 system; and only if no match is found the
‘NONEXISTENT’ error message is displayed.

Obviously there’s a noticeable time penalty associated with all this - but one that it’s totally

unpercieved on the 41-CL set in TURBO 10 or higher in case you wonder.

LASTF Operating Instructions

The Last Function feature is triggered by pressing the radix key (decimal point - the same key used by
LastX) while the launcher prompt is up. This is consistently implemented across all launchers

supporting the functionality in all four modules – they all work the same way.

When this feature is invoked, it first shows “LASTF” briefly in the display, quickly followed by the last-
function name. Keeping the key depressed for a while shows “NULL” and cancels the action. In RUN

mode the function is executed, and in PRGM mode it’s added as two program steps if programmable,

or directly executed if not programmable.

If no last-function yet exists, the error message “NO LASTF” is shown. If the buffer #9 is not present,
the error message is “NO BUF” instead.

The LastF buffer is maintained automatically by the modules (created if not present when the

calculator is switched ON), and its contents are preserved while it is turned off (during “deep sleep”).

No user interaction is required.

The buffer reserves one register for each of the four modules that have sub-functions, plus the header
also stores the 41Z last-function - which is always in its main FAT. Therefore up to five last-functions

can be simultaneously available at any given time. A total of five registers are used, as follows:

Register Used for:

b4 SandMatrix fcn id#

b3 SandMath fcn id#

b2 PowerCL fcn id#

b1 16C Emulator – Time-based Seed (RND)

b0 Header – w/41Z fcn id#

Not bad for a single-line, 12-chars LCD machine from 1979, won’t you agree? Which once again

proves the adagio “it’s not the size of the wand what matters but the skill of the wizard who uses it…”

HP16C Emulator Module for the HP-41CX

(c) Martin-McClure Page 35 of 63 September 2015

3.4.- Individual Description of the new functions.

The remaining sections provide a succint description of the added functions not included in the

original 16C calculator and not covered already in previous chapters of this manual. Some are little

embellishments of standard 16C functions, or natural extensions of the same ideas that probably
weren’t included in the original machine due to space constraints. They are located in the auxiliary

FAT and therefore you need to use the 16# or 16$ launchers to execute them.

3.4.1 Negative Logic Functions. { NAND , NOR , and XNOR }

Not needing much as description, these three round up the set of logical functions and save you from

having to NOT the result of their positive counterparts.

Examples. Here’s a table of direct results with ws=32 and 16x=1, 16Y=0

Value NAND NOR XNOR

Unsigned d: 4294967295 d: 4294967294 d: 4294967294

1CMP d: -0 d: -1 d: -1

2CPM d: -1 d: -2 d: -2

3.4.2. New Word Size related functions. – { WSFIT , WSMAX , 16WSZ? }

 16WSZ? is a flashing function that in manual mode shows the current word size briefly on

the display, and then enters that value in the 16X register - peforming a stack lift. You can

maintain the flashed message up holding any key once it has been shown – or it’ll just NULL
itself out.

 WSMAX simply returns to the real X-register the maximum value that can be represented

with the currently selected word size. In math terms, this is calculated by the formula:

Wsmax = [e^(ws*Ln 2)] – 1

 WSFIT will change the selected word size to the needed number of bits to represent the

current value in the 16X register. This has two possible uses, one to downsize the word size in
case the value in 16X is smaller than the maximum one (i.e. eliminating thos bits used by the

leading zeroes), but another one is to increase its size as per the binary value exisiting in the

16X register – which in some instances may be a superset of its visual representation made
by SHOW and WINDOW.

Example. With ws=32 calculate the square of H: 123456.

16NPT “123456”, 16X^2 returns H: 66CB0CE4 and sets the OOR flag.

Pressing WSFIT shows the message “WS=41” followed by H: 14B66CB0CE4

HP16C Emulator Module for the HP-41CX

(c) Martin-McClure Page 36 of 63 September 2015

3.4.3. Bit Reversal function – { REV }

Often it’s needed to reverse the bit sequence of a word – be that because of incompatible data

transfer protocol conventions or for another legit reason. This is no surprisingly the subject of applied
math and sophisticated algorithms exist – but this implementation follows a sequential alteration of

the bits to build a mirror-image of the initial word.

Note that the reversion is made on the complete word size, i.e. taking into account the leading-zeros
as well. There are two ways to circumvent that if not desired:

1. Execute WSFIT first to adjust the word size to the number of relevant bits, then call REV.
Realize that the word size has been changed and may need changing back.

2. Call REV and then use RJY on the result to get rid of those reversed leading zeros after

they’re reversed into the LSB positions.

Example: set ws = 12, HEX mode. Get the bit reversal of 9

16NPT, 9, => H: 9 (or b: 00001001)
REV => H: 90 (or b: 10010000)

RJY => H: 9 since 0x9 is a “polindrome” value, so to speak

Example: Verify that the bit reversal of 0xD9 with a word size ws=8 is 0x9B

Which is easy enough to check in binary base, but pretty challenging in decimal with 2’s complement
set, as a manner of example:

3.4.4. Right and Left Justification. - { LJY , RLY }

There is no Right Justify function on the original 16C but somehow it felt just natural to include that
function to complete the set, if only for symmetry sake. But there’s also some slight difference in the

way LJY the Left Justify function works.

The 16C Emulator versions return the left- and right-justified values to the 16X register, and the

number of positions needed to do the justification in the 16Y register – exactly opposite to the original
LJ function on the machine.

Not much of a difference, as executing 16X<>Y will bring things back to the original shape – but
nevertheless important for you to be aware of in case you’re using programs copied from the original

machine.

HP16C Emulator Module for the HP-41CX

(c) Martin-McClure Page 37 of 63 September 2015

3.4.5. Shifting multiple Positions – { SLN , SRN }

The original 16C includes one-position shifting functions SL and SR, which on the emulator have been

moved to the Auxiliary FAT as subfunctions. Their place in the main FAT has been taken by n-position
versions of the same functiions, which as a particular case can also perform the single-position. With

n=1.

The number of positions is entered in the function prompt in manual mode, or taken from the 16X
register when running a program.

In a program any value larger than the current word size or zero will result in a “DATA ERROR”

condition, but in manual mode:

 Entering a number larger than 64 will be ignored and the prompt will stay put.

 Entering a number larger then the word size will show the message “WS=nn” and cancel.

 Entering zero at the prompt will toggle between these two functions.

Obviously right-shifting more positions than the current number of bits will result in a zero result. Not

so obvious perhaps is the case of left-shifting a number of positions beyond the current word size,
which will eventually also result in zero once all bits have been moved off the field.

Notice that when shifting multiple positions the carry flag will reflect the circumstances on the last bit

shiting action, and thus not a cumulative effect. This is consistent with the behavior of the n-position
rotation functions RLN and RRN.

Bacause the shifted bits are “lost”, these two functions are not always complementary of one another.
This is different from the bit rotation functions, where the rotated bits are kept within the word and/or

CY bit – just in different positions.

Note that when entered in a program it is more byte-efficent to use the n-positions version with the

value “1” in the 16X register (three bytes) instead of using the 16# launcher followed by its sub-
fuction index (four bytes). The 16C stack conditions however are different in those two cases, so you

should choose the better one for your case.

HP16C Emulator Module for the HP-41CX

(c) Martin-McClure Page 38 of 63 September 2015

3.4.6. Storing the 16C Stack in Extended Memory. { SAVE16 , GET16 }

You can use sub-functions SAVE16 and GET16 to store and retrieve the complete 16C stack plus the

auxiliary buffer registers to / from an extended memory file. Note that even if you can have multiple
X-Mem files with different 16C stack sets (obviously with different file names), there can only be one

on-line at any time.

When you execute GET16 there’s a check prompting for confirmation. Realize that this action will

override the existing 16C buffer, replacing it with the data from the X-Mem file. Only the “Y/N” keys
are active at this prompt.

Upon termination the function will show the current value in the 16X registers in RUN (manual) mode;

either the current one for SAVE16 or the newly retrieved one in the GET16 case. Also the mode
annunciators 0-1-2 will be changed appropriately if different.

If you’re using the OS/X extension module you’ll notice that these files will be identified with the

character “H” during the CAT_4 enumeration. Also note that 16C stack files are always 25 registers

long – 20 for the buffer plus 5 for the {X,Y,Z,T,L} stack.

Notice how the X-Mem file really occupies 28
register in X-Mem, as there are three

additional registers needed by the OS to

manage it within the X-Mem file system.

The file header register is the second one
starting from the bottom. This address can

be retrieved using the function FLHD,
available in RAMPAGE module amongst

others.

The buffer address can be obtained using

function BUFHD, available in the RAMPAGE
module as well – with several others for

buffer management in case you’re interested.

3

HP16C Emulator Module for the HP-41CX

(c) Martin-McClure Page 39 of 63 September 2015

4.0 Silent and Loud Modes. { TS/L }

Without a doubt the Carry and Out of Range flags are a vital component of the information displayed

during the execution of the calculations. However it’s not difficult to miss a particular occurrence of
these situations, or you may find yourself paying extra attention just to catch possible changes of

these flags.

The 16C Emulator offers a “training wheels” mode to make those situations easier to remark: each

time the Carry or Out of Range flags are set a corresponding message is shown briefly in the display.
Besides the visual message also a short tone sounds to alert the user, with a higher pitch for CY and a

lower one for OOR.

Note that contrary to the standard 41-OS these messages will flash in the LCD briefly and then they’ll
go away to show the result of the function executed. We have used the text “OVERFLOW” for the Out

of Range warning as it is easier to read during the brief flashing time, and to differentiate it from the
floating point error from the native 41 OS. We’ll refer to this as the OOR event nonetheless, following

the 16C conventions.

Activating the LOUD mode.

The SILENT/LOUD modes are user-selectable executing the sub-function TS/L to toggle the active

mode. Of course you can also use the numeric launcher 16#, with index =054. When you do the

mode selected is also briefly shown in the display – plus a dual tone if you’re toggling to LOUD mode.

The CY/OOR messages “air time” will be variable, as it depends on the subsequent operations

performed during the execution of the function. For 41CL users the implementation is compatible with

the current turbo setting so you won’t be missing them even if the CPU is running at high speeds.

Independently form whether you are a casual user or a seasoned digital design engineer, you may
find this functionality useful, neutral, or plain hideous – in which case all you need to do is ignore this

section altogether as the factory-default setting is SILENT mode. Go ahead and try it out to get the

feeling and decide for yourself.

It comes without saying that the flags annunciators will continue to be displayed as well in Loud
mode. Lastly, and as you can expect, the messages will not be displayed when the functions are

executed in a runnng program.

HP16C Emulator Module for the HP-41CX

(c) Martin-McClure Page 40 of 63 September 2015

4. 1.- An alternative to the 16C keyboard. { 16KEYS }

If you prefer a more direct approach to access the 16C Emulator functions in an automated way, the

sub-function 16KEYS will prepare a standard key assignment-based complete keyboard re-definition
for all those (main) funcions from the 16C keyboard to be assigned to their corresponding keys.

When executed it prompts for the action to perform, press “Y/N” either to do the assignments or to

clear them. You can also cancel at this point pressign the back arrow key. Once the action is
completed the function will display the current value in 16X.

,

 or:

This method removes the need to press the 16C “prefix” key each time you need to execute the

emulator functions, thus from that perspective is a faster one and perhaps the closest to the original

machine. The only requirement is to have USER mode on, and conversely you’ll need to turn it OFF

when you need to access any of the standard HP-41 functions. Another disadvantage is that no other

key assignments are compatible with this mode since all keys have a function assigned.

It however has two important shortcomings:

 No support for the LASTF facility or the 16# and 16$ launchers – since it’s not possible to

assign functions to the PRGM, USER or ALPHA keys. Note that you can also use the “-

16C_STACK” function – or XROM 16,49 – to trigger the LASTF functionality. It’s easy to do
with the XROM function in the OS/X module. Also to overcome this deficiency the 16#

function will be assigned to the [RADIX] key.

 No support for sub-functions from the auxiliary FAT - which have been replaced with 16C

itself, so you have a way to invoke them: simple repeat the same action, which the second

time will trigger the 16C-variant on that sequence of keystrokes.

Remember that executing a function directly via XEQ (or assigned to a key) does not store the

function’s id# in the LASTF buffer – so even if you can access the LASTF functionallity the buffer
contents will only be updated when you use 16C or other launcher to execute the function.

Both the 16C-prefix Keyboard and the 16KEYS approach use the same 16C overlay shown in page 15

of this manual. Since both are available on the emulator you can choose the one that suits you better

- the choice is yours.

HP16C Emulator Module for the HP-41CX

(c) Martin-McClure Page 41 of 63 September 2015

4. 2.- A few development aids.

The remaining section of the manual describes a handful of utility functions that were using during the

development of the module for testing purposes. Some may be of interest to you if you feel

adventurous and decide to explore the 16C Buffer or other more technical aspect of the
implementation.

4.2.1. FX Buffer registers handling. { A2FX , CLRFX , EX2FX , FX2EX , FXSZ? }

As the repository of the digits shown in the displaying of the results, the buffer FX registers have a

pivotal role in the emulator design. Normally you won’t have to worry about their contents – which
will be updated by the module’s functions and accessed by SHOW and WINDOW; but should you

feel intrigued here are the functions available for the tasks.-

Note that the output of these functions is does not utilize the module’s digital facility, but just

standard real numbers or even no changes to the display at all.

 A2FX – Alpha to FX Registers

This function writes the current content of the ALPHA registers {M, N, O, P} into the buffer FX

registers, starting at the first available position within the FX set (as per the [S&X] field

information). Up to 24 characters can be written using this function, but there is no action on
the GRAD annunciator in case of overload.

 CLRFX – Clears FX registers.

A complete clear of all eight FX registers, which resets their “active” contents to zero. Register

labels will be respected, from F0 to F7 in nybbles <13,12>.

 EX2FX and FX2EX – Moving data between EX and FX registers.

This pair of functions move the data back and forth between the {E0, E1} registers (in binary

form – NNN) and the {F0 – F7} registers. The ASCII digit values in FX are dependent on the
current base mode selected.

Note that even afer executing FX2EX the result will *not* be placed in the 16C stack – that is

the buffer register b13 and stack X-register.

 FXSZ? – FX Registers size.

This function returns the number of digits currenly used in the FX registers. A maximum of 64

digits is returned (for BIN mode only), sinc each FX register can hold up to eight characters.
The status of the GRAD annunciator will be lit if greater than 24. In fact this function is like

ALENG for ALPHA, but excluding the base id# and leading blank character.

The result will be pushed in the 16C stack,

and brefly shown in a flashing message:

Advanced user’s tip: Nothing like a comprehensive RAM editor like RAMED in the OS/X module for
cursory inspections of all the buffer registers in all their g(l)ory details – even editable if you decide to

take a walk on the wild side…

HP16C Emulator Module for the HP-41CX

(c) Martin-McClure Page 42 of 63 September 2015

4.2.2. Buffer Creation and Data Types. { CHKBB , L<>H , L-H , H=L }

 CHKBB – Check (and create) Buffer.

Seminal routine accessed by *every* single one of the module functions: use it to create the
16C Data buffer when needed – as it is done automatically during the CALC_ON event (polling

point).

 L<>H – Swap Lower and Higher bits.

You can use this function to swap the low and high bits parts of the 16X register. In other

words, the contents of the stack- X and buffer b13 registers will be exchanged, doing the
required conversions as appropriate: b13 = BIN(X), and X = BCD(b13).

Example: using a word size of 56, enter the hex value 12300000000000

Type: 16NPT, “123”, L<>H => H:12300000000000
If you execute it again you’ll get the original “123” input, i.e. the digits will be shifted down.

 H=L and L-H – Copy and Move Lower bits

These two complement the swapping functionality, and provide ways to copy and move the
lower bits art of the 16X register into the higher bits. In both cases the previous content of

b13 will be overwritten, and in the move case (L-H) the X register will be cleared after the
copy.

A pre-requisite for these functions is that the current word size needs to to be larger than 32
in order for the higher bits register to be shown during the masking process. If this is not the

case the rerror message “WS=nn” will be shown (or “DATA ERROR” in a program execution).

The schematic below graphically shows the actions performed by these three functions:

4.2.3. Doubling and Halving the 16X value. { 2MLT , 2DIV }

 2DIV and 2MLT

Handy shortcuts to divide or multiply the contents of the 16X register by two. It saves bytes in

a program and keystrokes during manual mode. It does not lift the 16C stack but saves the

original number in LST16X. Note however that the CY and OOR flags are not always set by
these functions.

HP16C Emulator Module for the HP-41CX

(c) Martin-McClure Page 43 of 63 September 2015

4.2.4. Digit Justification, Reversal and Decimal Sum. { DGLJ , DGRV , DGD }

These functions can be considered an extension of the bit-based conterparts, LJY, REV, and #BITS.
The concepts are analogous to the original set, but these are digit-based instead of bit-based. The

results may be sometimes similar or even the same, but in general thay are totally different.

 DGLJ does a digit-based left justification of the value in 16X, which in general is not the same

as the bit-based function LJY available in the main FAT (and in the original 16C). Only when
the bit density of the leftmost character (i.e. the number of bits per character) is complete

then both functions will yield the same result.

Example: with ws=32, left-justify the value H: 123 using bits and digits as criteria:

, vs:

 DGRV does a full-digit reversal (i.e. mirror image) based on the information contained in the

ALPHA register. This should normally be based on the actual value in 16X, and therefore it’ll

return a digit-reversed version of the number. The result will be normalized to fit within the

current ws and complement mode selected. The original value is saved in 16L, the last-16C
register.

Note that contrary to the bit-reversal situation, the result here is completely base-dependent.

Also note that Zero chars on the left (after reversion) will ultimately be ignored. Obviously this

function is completely equivalent to REV for binary mode, since in that case each bit
corresponds to one digit as well.

Examples: with ws=32, any complement mode:

 DGRV

but say now you have ws=8

 DGRV

 DGD does a decimal digit sum based on the bcd values from 16X – independently from the

base mode set. The decimal result is briefly shown as a flashing message in the display, and

then it is input in the 16X level (in the configured based) replacing the original value – which
goes to the 16L register as well.

, then:

(Note: remember that the sigma character in a sub-function name cannot be directly entered via

the “” key (SHIFT-F) in ALPHA mode; thus you need to use the ‘N” character i.e. for ”‘NDGT”

instead.)

HP16C Emulator Module for the HP-41CX

(c) Martin-McClure Page 44 of 63 September 2015

4.2.5. Test for Maximum Negative (signed) Value. { MNV? }

 MNV? is a test function to check whether the number in 16X is the Maximum Negative signed

Value (MNV) for the currently selected word size. The result will be YES/NO, skipping a
program line if false – as with any standard tests.

Of all the conventions used on the 16C calculator one of the trickiest to grasp is that of the maximum
negative value for signed complements. Even if the definition is clear enough, some of the particular

function results when the operand is such a maximum negative value may be unexpected or even
disconcerting to the untrained eye – and it accounts for many numerous singularities in the general

algorithms to properly emulate the real machine.

For starters, this is the only value that equals its own 16CHS in 2CMP – This is not the only

remarkable thing about it, but remember this one, we’ll use it later on.

We define the maximum negative value as the largest absolute number with a negative sign - i.e. the

msb is set in either 1CMP or 2CMP. Given the arrangment of the negative values (see appendix 1B)
the maximum negative happens to be that such all other bits are zero, and therefore can easily be

generated calling LJY on the number “1”; or creating a single bit MSKL ; or also doing a left-shifting
of (ws-1) number of bits with SLN.

Corner cases involving the MNV.

Setting ws=32, 2CMP, let’s do some math using the MNV(32) = H: 80000000 as one of the
arguments. (i.e. d: -2147483648)

Multiplying or dividing the MNV by -1 is perhaps an academic discussion but calculating the result

poses some challenges to the algorithms. The 16C responds the following in 2CMP:

Division: 16NPT, “1”, LJY, 16NPT “0”, NOT, 16/ => H: 0, and OOR

Multiplication: 16NPT, “1”, LJY, 16NPT “0”, NOT, 16* => H: 0, and OOR

Note that the last one yields a different result from a sign change of the MNV, i.e. both operations are
surprisingly not equivalent in this case.

Is that a picky behavior or is it justified? Mathematically speaking multiplying by -1 should be
equivalent to doing 16CHS, and for the MVN that results in the same MVN – not zero/OOR. But this is

not how it works here, where the rule for a sign change is “invert, then add one”, and not a
multiplication by -1 . Such is life in the digital world!

To Get in Mode Argument w/ Operation and Arg.#2 w/ Op#2

-1 2CMP only 0 NOT
-1 1CMP only 0 NOT 1 16-

-1 Signed modes 1 16CHS

-0 1CMP only 0 NOT/16CHS

MNV Signed modes 1 LJY

MNV Signed modes ws-1 MASKL

MaxVal Unsigned Mode 0 NOT

MaxVal Signed modes 1 LJY result 16CHS

In 1CMP: 0 – 1 = -1 /CY; adding 1 again returns -0 instead of the original 0.

HP16C Emulator Module for the HP-41CX

(c) Martin-McClure Page 45 of 63 September 2015

4.2.6. Quick Dec <-> Hex conversions. { D>H , H>D }

These two functions perform a quick & dirty conversion between decimal and (unsigned) hex values

using the real X-register and ALPHA. Use then when you want to check results independently from the
selected base on the emulator.

The maximum number allowed is H: 2540BE3FF or d: 9,999,999,999 in decimal. Both functions are

mutually reversed, and H>D does (real) stack lift as well.

These functions were written by William Graham and published in PPCJ V12N6 p19, enhancing in turn

the initial versions first published by Derek Amos in PPCCJ V12N1 p3.

4.2.7. Recalling the current base value. { BASE? }

 The function BASE? recalls the value of the current base to the 16X register – as an easy way

to find it out in a running program. The value is pushed into the 16C stack. Possible return

values (in decimal) are 2, 8, 10, and 16 – always shown as ”‘10” in their digital display.

This function is similar to 16WSZ? in that both return configuration data to 16X, and that in manual
mode an information message will also be displayed:

4.2.8. Alpha Reverse and Left append character. { X-LA , AREV }

 The function X-AL appends the character which ASCII code is in X to the left side of the

ALPHA string. It is therefore the symmetrical of XTOA. This function was written by Håkan
Thörngren, and first published in PPCJ V13 N7 p9. It is used as a subroutine by the Leading

Zeros functionality, within the function LDZER.

 The function AREV does a mirror-image of the ALPHA register contents. It was written by

Frans de Vries and first published in DF V10 N8 p8. It is used as an internal subroutine by the
Digit Reversal, within the function DGRV.

Copyright Message “Easter Egg” { (c) }

So you can amuse your friends, a copyright message with a fancy sound can be invoked using the (c)

function, with index# =060 in 16# - to access this message:

HP16C Emulator Module for the HP-41CX

(c) Martin-McClure Page 46 of 63 September 2015

a.1 Maximum values as function of word size 44
a.2 The Hexadecimal Number system 45
b.1 Program Examples 48
c.1 Buffer Technical Details 51
 Buffer Registers Explained
 Input/Output Routines
 Multiplication Routines
 Division Routines
 Addition/Subtraction Routines

HP16C Emulator Module for the HP-41CX

(c) Martin-McClure Page 47 of 63 September 2015

Appendix A1. Maximum Values depending on the Word Size.

The table below shows the maximum possible values that can be represented as a function of the
selected word size. These values are also returned by the function WSMAX for the current selection

of ws (in floating point format, native to the 41C OS).

ws max va lue

1 1

2 3

3 7

4 15

5 31

6 63

7 127

8 255

9 511

10 1,023

11 2,047

12 4,095

13 8,191

14 16,383

15 32,767

16 65,535

17 131,071

18 262,143

19 524,287

20 1,048,575

21 2,097,151

22 4,194,303

23 8,388,607

24 16,777,215

25 33,554,431

26 67,108,863

27 134,217,727

28 268,435,455

29 536,870,911

30 1,073,741,823

31 2,147,483,647

32 4,294,967,295

ws max value

33 8,589,934,591

34 17,179,869,183

35 34,359,738,367

36 68,719,476,735

37 137,438,953,471

38 274,877,906,943

39 549,755,813,887

40 1,099,511,627,775

41 2,199,023,255,551

42 4,398,046,511,103

43 8,796,093,022,207

44 17,592,186,044,415

45 35,184,372,088,831

46 70,368,744,177,663

47 140,737,488,355,327

48 281,474,976,710,655

49 562,949,953,421,311

50 1,125,899,906,842,620

51 2,251,799,813,685,250

52 4,503,599,627,370,490

53 9,007,199,254,740,990

54 18,014,398,509,481,983

55 36,028,797,018,963,967

56 72,057,594,037,927,935

57 144,115,188,075,855,871

58 288,230,376,151,711,743

59 576,460,752,303,423,487

60 1,152,921,504,606,846,975

61 2,305,843,009,213,693,951

62 4,611,686,018,427,387,903

63 9,223,372,036,854,775,807

64 18,446,744,073,709,551,615

Also shown in the graphic below using a logarithm scale:

HP16C Emulator Module for the HP-41CX

(c) Martin-McClure Page 48 of 63 September 2015

Appendix A2. The Hexadecimal Number System

The base of this number system is 16(d). The numbers 0-9 as well as

the letters A to F are used to represent 11(d) to 15(d). The carry over

to the next place occurs at 16(d). The table below shows the
correspondence between binary, decimal and hexadecimal numbers

up to 15(d):

As you can see on the table, Hex numbers are the natural choice to

represent four binary digits (4 bits); therefore the hexadecimal
number system uses the 4 bits of a nibble in the full value range. Each

nibble can represent values from bin 0000 to 1111, of in hex from 0 to
F. This number system is often used in computer science.

Representation of negative Numbers

When using a limited count of digits m to represent numbers, the

value range to the numbers to be represented n is 0 < n < 2^m,

meaning that the greatest number will be 2^m – 1. Note that no
negative numbers are included in this system of notation. To remove this deficiency, the concept of

“complement” is introduced.

The Complement (from a reference K)

The K-complement of a number x is defined as the difference from K of that number: Com(x) = K–x

for which k is fixed by the chosen complement. Since in the binary number system the usual values
of K are 2^m, and (2^m – 1), we usually speak of “one’s complement” or the “two’s complement” –

representing the difference from either the greatest number represented or the one after it. In
general, for any base system “b” there will be a “b” and a “b-1” complement – like the 9’s and 10’s

complement in the decimal system where b=10.

Distribution of ranges of values.

If there seems no reason yet for the existence of complement notation, remember that to this point

we haven’t dealt with negative numbers. We shall include these by adopting an arbitrary distribution
of value ranges in our number systems. For instance in the binary system, we’ll define a negative

number as one which most significant (leftmost) bit is set (has a value of 1). Arranging number

distributions and using complements change the ranges of values as follows:

 No Complement 0 < x <= (b^m – 1)

 b-Complement - b^(m-1) <= x <= b^(m-1) -1

(b-1) Complement - b^(m-1) -1 <= x <= b^(m-1) -1

Basically in the signed modes (with complement) we divide the original total value range b^m-1 in
two half sections, allocating one of them for negative numbers and the left over for positive.

Hex Binary Decimal

 0 0000 0

1 0001 1

2 0010 2

3 0011 3

4 0100 4

5 0101 5

6 0110 6

7 0111 7

8 1000 8

9 1001 9

A 1010 10

B 1011 11

C 1100 12

D 1101 13

E 1110 14

F 1111 15

HP16C Emulator Module for the HP-41CX

(c) Martin-McClure Page 49 of 63 September 2015

Complement (Signed) Modes.

The transformation of decimal numbers represented in the binary system (and vice-versa) varies

with the signed mode used. The three modes are:

- Unsigned mode (no complement, only positive numbers)

- 1’s complement mode
- 2’s complement mode

The 1’s Complement of a number is calculated by subtracting this number from the greatest
representable number in the chosen word size (number of bits). For instance, say the word size is 5

bits – then the 1’s complement of a number “a” is (11111 – a). The computer simply inverts all bits of
the original number, i.e. executes the logical function “NOT”. Through this segmentation of the initial

value range (arbitrary but specific), all negative numbers have their highmost bit set, which plays the
role of the minus sign. In the q’s complement mode the number of positive and negative numbers

represented are the same, i.e. even zero has two possible representations: +0 and –0, which in binary

would be 00000 and 11111 (always assuming a word size of 5 bits).

The 2’s Complement of a number is calculated by adding one to its 1’s Complement. Using the
same example of word size 5 bits, the 2’s Complement of a number “a” would be (11111 – a) + 1,

The 2’s complement of bin 10001 is the number bin 01111. Notice how also in this segmentation the

leftmost bit is set for all negative numbers, and therefore takes over the role of the minus sign. In the
2’s complement mode there is one more negative number than in the positive number range, since

zero only has the representation +0

The Unsigned Mode (no complement). Since the Complement mode employs one bit as the
negative sign, the range of values for a word size of 8 bits in the 1’s complement is from –127 (d) to

+127(d), and in the 2’s complement from –128(d) to +127(d). Note that in both cases those are 256

values. For cases when only the positive number range is needed, the precedence sign bit is not
necessary (unsigned mode) and the value range is used for all cases from 0 to 255(d) - assuming the

same word size of 8 bits.

In the table below you can see the correspondence between the three sign modes for decimal

numbers 0-15 represented in binary, using a four-bit word size:

Dec Hex Binary Unsigned 1’s Compl. 2’s Compl.

0 0 0000 0 0 0

1 1 0001 1 1 1

2 2 0010 2 2 2

3 3 0011 3 3 3

4 4 0100 4 4 4

5 5 0101 5 5 5

6 6 0110 6 6 6

7 7 0111 7 7 7

8 8 1000 8 -7 -8

9 9 1001 9 -6 -7

10 A 1010 10 -5 -6

11 B 1011 11 -4 -5

12 C 1100 12 -3 -4

13 D 1101 13 -2 -3

14 E 1110 14 -1 -2

15 F 1111 15 -0 -1

HP16C Emulator Module for the HP-41CX

(c) Martin-McClure Page 50 of 63 September 2015

Appendix B1.- Programming Examples.

Let’s see an example of how the 16C Emulator module functions are used in a program. We’ll use the
Checksum Calculation example from the 16C manual, pages 90, 91 and 92.

The program assumes you have pre-loaded 4-bit hex values in registers R1 to R10, as follows:

R01: A R03: B R05: 3 R07: A R09: D

R02: 7 R04: 1 R06: D R08: 2 R10: 6

The table below shows both the original program and the equivalent using the Emulator functions for
a side-to-side comparison; not surprisingly very similar in concept but with some differences –

especially in the 16C stack management.

 Remarks:

1. Indirect Register “I” corresponds to R00

2. RCL (i) uses the indirect capability of

16RCL, adding 128 to the 16C-register

number.

3. Note the non-merged arrangement in
lines 11 & 12 for 16RCL, with the rg# in

the next program line.

4. Note how the parameter for the word

size is in the 16X register – lines 3 & 4.
In fact here we use an insider’s trick

using just the real-X register (only valid
for 16WSZE!)

5. Sub-functions (in brown color) really use
the 16C# launcher followed by an index

number

6. Entering 16C values requires either
16NPT or LOW16^ for numbers below

32 bits. This is how zero was input in

lines 16 and 17.

7. DSZ operates on standard values – as an
index very much like ISG and DSE do.

8. A final SHOW instruction has been
 added to see the 16C result.

Note how all the stack lift and drop are performed in exactly the same way as in the original machine

– pretty much following the same rules as in all RPN designs.

1 LBL D 1 LBL "CHKS"

2 UNSIGN 2 UCMP

3 4 3 4

4 WSIZE 4 16WSZ

5 HEX 5 HEXM

6 "A" 6 10

7 STO I 7 STO 00

8 0 8 CLX16

9 ENTER^ 9 16ENT^

10 LBL 0 10 LBL 00

11 RCL (I) 11 16RCL

12 B# 12 128

13 + 13 #BITS

14 X<>Y 14 16+

15 0 15 16X<>Y

16 RLC 16 0

17 + 17 16LOW^

18 X<>Y 18 RLC

19 DSZ 19 16+

20 GTO 0 20 16X<>Y

21 RTN 21 DSZ

22 GTO 00

23 SHOW

24 END

16C Emulator Codehp-16c Program

HP16C Emulator Module for the HP-41CX

(c) Martin-McClure Page 51 of 63 September 2015

Appendix B2.- Square Root using Newton’s Method

The program below is an alternate (and very slow!) way to calculate the square root of a number,
simply using an iterative approach following Newton’s method:

Finding is the same as solving the equation:

Therefore, any general numerical root-finding algorithm can be used. Newton's method, for example,

reduces in this case to the so-called Babylonian method:

The program uses the initial estimation: x0 = 6 * log(S)

Data registers R01 and R02 are used to store the successive approximations, Xn.

Example: Calculate the square root of ABC,DEF,ABC,DEF

16NPT, ABCDEFABCDEF, => H: ABCDEFABCDEF

 XEQ “64SQRT” => H: D1B7FD

HP16C Emulator Module for the HP-41CX

(c) Martin-McClure Page 52 of 63 September 2015

Appendix B3.- Showing leading zeros – A FOCAL reprise.

The program below is a parallel version of the MCODE function available in the module – it basically
uses the same method so you can see how it’s been implemented; in particular is a good example of

the BASE? function.

As you can see all action happens in the ALPHA register – and therefore the usage of the standard X-

Functions AROT, ALENG – and ABSP from the OS/X module as well. Not only this program requires
the data registers 16R00 to preserve the original value, but it should also be said it will fail in 1/2CMP

due to the incompatible usage of user flags 1 and 2.

HP16C Emulator Module for the HP-41CX

(c) Martin-McClure Page 53 of 63 September 2015

Appendix C.- Data Buffer Technical Details.

This document is an attempt to descript the format of the B buffer used by the HP-16 MCODE
Emulator Module developed by Angel Martin and Greg McClure. The B buffer is used to allow full 64-

bit word size emulation (as implemented on the HP-16).

The buffer requires 20 free registers. Function CHKBB (check for buffer B) is used to check for, and

create if needed, buffer B. The format of the buffer (from highest absolute register to lowest absolute
register) is shown below, and individual sections will be discussed after.

F7 0bbbbbbbb 00l Input / Output sub-buffers, the “Windows” of the
F6 0bbbbbbbb 00l HP-16. It is used for input of digits (for bin,
F5 0bbbbbbbb 00l oct, dec, and hex modes) by user, and for output
F4 0bbbbbbbb 00l of results of function or view.
F3 0bbbbbbbb 00l In bin mode, b=0 or 1; oct mode, 0<=b<=7;
F2 0bbbbbbbb 00l dec mode, 0<=b<=9; hex mode, any hex digit.
F1 0bbbbbbbb 00l These digits are store in reverse of display or input.
F0 0bbbbbbbb n0l b=bcd digit, l=number of digits used, n=negative
E3 0aaaaaaaa 000 Temporary calculation registers. E0 and E1 are used
E2 0aaaaaaaa 000 several purposes, E2 and E3 are for double precision
E1 0aaaaaaaa 000 functions DBL* and DBL/.
E0 0aaaaaaaa 000
14 0llllllll 000 These are the upper 32 bits for the stack registers.
13 0xxxxxxxx 000 The HP-41 can only save 32 bits of info in its std
12 0yyyyyyyy 000 stack, these hold the other 32 bits of simulated regs.
11 0zzzzzzzz 000
10 0tttttttt 000
01 0mmmmmmmm 0cd m represents the mask based on word size. Wordsize is
00 0mmmmmmmm 0bb stored in bb, c is complement’s mode, d is calc mode.
BB 14f000000 xxx Header with buffer id#, buffer size, and loud mode flag.

BB buffer register (Header)

Let’s start with the BB buffer header. It is required to identify the buffer, and the HP-16 MCODE
Emulation module will refresh this header on power on (as all buffers are refreshed by the individual

modules that require their use). The 14 is the buffer size in hex (requires 20 registers). The “f” is the

Silent/Loud mode flag used for message displaying. Nothing more is stored in this header. (Note that
the S&X field is used by function BFCAT and therefore is reserved).

Buffer registers 00 and 01

The 00 and 01 register hold a calculated mask that will help in making decisions (carry status, out-of-
bounds conditions, etc) on the status of arithmetic and logic functions. It is related to the word size

(bb) and is described below:

For word size <= 32: All 01 m fields will be 0, i.e. it will contain 01 000000000 0cd. The 00 m fields

will represent the bits allowed in values to be saved and used. Some examples are: 00 0FFFFFFFF
020 (for 32 bits), 00 00000FFFF 010 (for 16 bits), etc.

For word size > 32: All 00 m fields will be F, i.e. it will contain 00 0FFFFFFFF 0bb. The 01 m fields will

represent the upper bits allowed in values to be saved and used. Some examples are: 01 0FFFFFFFF
0cd (for 64 bits, where bb would be 40), 01 00000FFFF 0cd (for 48 bits, where bb would be 30).

HP16C Emulator Module for the HP-41CX

(c) Martin-McClure Page 54 of 63 September 2015

The cd bits in buffer register 01 show the current complements mode, c, and binary mode, d. If c=0,
no complement mode is set, c=1 means 1’s complement is set, c=2 means 2’s complement is set.

These settings influence both display and calculation flag results. If d=0, floating point mode is set,
and the HP41 registers act as normal (no emulation is in effect). If d=1 then bin mode is in effect,

d=2 means oct mode, d=3 means dec mode, and d=4 means hex mode.

Buffer registers 10 thru 14

When bin, oct, dec, or oct mode is in effect and word size > 32, then these buffer registers contain

the upper bits (beyond the 32 stored in the standard stack). For example, if the HP-16 “X” register
should contain the hex value 1234 5678 9ABC DEF0, then buffer 13 will contain 13 012345678 000

and actual HP41 register X will contain the floating point value corresponding to 9ABCDEF0, that is,
2,596,069,104. This is done to insure the registers can always been viewed in floating (not have

weird Non-Normalized contents). The same pairing of a buffer register and a stack register exists for

each of the stack registers, thus emulating the HP-16 64-bit binary stack. The pairing is as follows:

Buffer register + HP41 stack register = HP-16 emulated register

b10 Binary(T) 16T

b11 Binary(Z) 16Z

b12 Binary(Y) 16Y

b13 Binary(X) 16X

b14 Binary(L) 16L

Buffer registers E0 thru E3

These buffer registers are scratch registers. They are used for holding partial results, for holding

the dividend when translating binary output to digital representation, and for construction of binary
values on user input. Their purpose changes based on the function being simulated. The masks of

buffers 00 and 01 are applied here to insure values are in range, and to determine the proper carry
and out-of-range flag settings. An example of their use for digit input and display output is show in

the discussion of the F0 thru F7 buffer registers. They can’t be counted on to hold any values of use
between functions, and can be overwritten by any function needing them.

Buffer registers F0 thru F7

These buffer registers hold the digit representations of the binary values input from the keyboard, or
the digit representations of the binary values to output to the display. Similar to the Q register on

entry of some kinds of alpha data, binary values are written in or read out in reverse order. For the
multiplication and division routines, some of these buffer registers are also used as scratch registers.

The input routine takes digits entered by the user and stuffs them into these registers from right to
left, starting at F0 and continuing to F7. The number of digits entered in a particular register is placed

as the rightmost digit of the buffer, and up to eight digits can be entered into positions 3 thru 10 of
each register. This allows up to 64 digits (max possible for binary value with max word size) to be

entered. As an example: in oct mode 1234 1234 5656 is entered by keyboard. The contents of buffer

registers F0 and F1 will contain:

F1 000006565 004
F0 043214321 n08

HP16C Emulator Module for the HP-41CX

(c) Martin-McClure Page 55 of 63 September 2015

Notice that the digits are entered from right to left, starting at position 3 of each register until
finished. All other Fx buffer registers will contain 0 length and 0 bcd values. The negative indicator

would be 0, since octal values do not include a sign.

After input is completed, the bcd to bin translation routine would then create the binary

representation of this octal number and place these into the following Ex buffer registers:

E1 000000002 000
E0 09C29CDAE 000

representing binary 2 9C29 CDAE (in hex). The X register would receive decimal value of

9C29CDAE(hex) and buffer register 13 would receive the 2 (assuming word size >= 34).

The output routine will take a value placed in the EX buffer registers and translate them to digits in

the Fx buffer registers. Then control will be given to the display routines which will use these
registers as HP-16 Windows. For example, assume the binary value in E0/E1 buffer registers are:

E1 000000222 000
E0 033334444 000

The bin to bcd translation routine would then take these values and translate them to the Fx buffer

registers based on mode (bin, oct, dec, hex). It will first clear all Fx buffer registers, then for oct
mode, the following will be placed into the Fx buffer registers specified:

F1 000360124 006
F0 040121341 n08

which represents 42 1063 1431 2104 octal. Window 1 on HP-16 would hold 421063 and Window 0

would hold 14312104. Notice these values are read from right to left. Again, since this is octal, n is 0
to represent no sign.

Negative value flag for Decimal signed modes

The XS digit of the F0 register has a special function to denote that a negative value is to be
presented in the LCD when a signed decimal base mode is the selected one. When the value is not

zero it will direct the [SHOW] routine to add a minus sign before the value, for the familiar
representation convention. This is also controlled by the complement mode, and built in the [EX2FX]

code.

Functions buffer usage outlines

The following sections will show how the buffers are used in various math / logic / programming

functions. One of the first things that will be noticed is that in addition to the auxiliary E2 and E3

buffer registers, for more complex cases buffers F0 and F1 are here also used as temporary registers
for calculation purposes.

HP16C Emulator Module for the HP-41CX

(c) Martin-McClure Page 56 of 63 September 2015

Input/Output Routines

Input of various values for calculation is accomplished via several possible routines mentioned in this

manual (16NPT, LOW16^, 16APN). At the core of these functions are the [FX2EX] and [EX2FX]
routines (which are also available as sub-functions) that move the results of input back and forth

between the FX registers and buffers E0 thru E2. The info in buffers F0 thru F7 are ASCII values.

The FX2EX function translates the ASCII codes in buffers F0 thru F7 into binary in buffers E0 and E1.
It relies on the mode set in buffer register b01 (BIN, OCT, DEC, HEX). For BIN, OCT, and HEX modes

this is easy. It takes the info from each ASCII code in the F0 thru F7 buffers and shifting it into buffer

E0 (overflow bumping into buffer E1). In decimal, a special multiply by 10 and add value routine is
required to perform the translation into binary (instead of shifting by 1 [BIN], 3 [OCT], or 4 [HEX]).

Every math or logic routine will use the info in buffers E1/E0 as the 16X argument. The result that

should be in the 16X argument at the end of the routine is placed into buffers E1/E0, and a routine is

called to move that into the 16X register and displayed. The internal routine E01OUT is used to do
this. The EX2FX routine is at the core of this process. The display functionality of E01OUT is

reproduced with the SHOW function.

EX2FX is the mirror of the FX2EX routine. It takes the info in E0 and E1 and translates it into
buffers F0 thru F7. Again it relies on the mode set in buffer 01 (BIN, OCT, DEC, HEX). For BIN, OCT,

and HEX modes this is straightforward, bits are shifted into the buffers and changed into ASCII codes.

For DEC mode, a special routine to divide by 10 also has to be implemented. The sign of the decimal
value has to be considered as well (it is the only mode we have to worry about the sign). As digits

are found, the contents of buffer F0 thru F7 are shifted, and a proper count is maintained for each
buffer. Buffer register F0 also contains the negative indicator if DEC mode and the value represents a

negative value (only occurs in 1’s or 2’s complement mode).

Similar to the previous one, there is also a sub function available to execute the internal routine for

diagnostic cases. It will assume the information is already in binary format in the EX registers to move
it up to the FX registers in ASCII form.

The hierarchical levels amongst the input registers are shown again in the figure below, with the
sequence of routines needed to move the data up and down the different stages:

16X->{E0,E1}; [EX2FX] ; [SHOW]

16X<-{E0,E1}; [FX2EX] ; [A2FX]; 16NPT

HP16C Emulator Module for the HP-41CX

(c) Martin-McClure Page 57 of 63 September 2015

Multiplication routine

The multiplication routine covers both 16* and DBL* in one routine. When the code needs to be

specific, it uses an internal system flag (specifically system flag 5) to perform the unique code for the
specific function. The beginning of the routine is basically the same:

1) 16LastX is performed to save the value of buffer 13 and stack register X into buffer 14 and

stack register L. The binary value of Y and contents of buffer 12 (16* multiplier) are moved
to buffers E2 and E3. The binary value of X and buffer 13 (multiplicand) are already in E0

and E1.

2) If in 1’s complement or 2’s complement mode, take the absolute value of both the

multiplicand and the multiplier, saving the state of the combined signs in one of the CPU
internal registers (G in case you’re curious).

3) The high order of the absolute values of the multiplicand and multiplier are saved back to
buffers 13 and 12, the low order bits are saved to buffers F0 and F1 respectively. Thus

multiplicand is now in buffers 13/F0, multiplier is now in buffers 12/F1.

4) Now a full cross multiply is performed (using 16 bits at a time, thus 16 total cross
multiplications) into buffers E0 (low order) thru E3 (high order); this is the core part of the

multiplication routine. This routine is explained later in this section.

5) Notwithstanding a lot of weird code that checks for overflow or carry flag conditions, the

routine then divides into single precision (16*) and double precision (DBL*) result sections.
Here are the two possible paths:

a) For SINGLE PRECISION, the result may need a sign change (1’s complement or 2’s
complement mode); then an extended stack drop is performed (including buffers 10 thru

12 dropping down to buffers 11 thru 13) and the contents of the result in buffers E1 and
the BCD expansion of E0 are placed into buffer 13 and stack register X respectively

b) For DOUBLE PRECISION, three steps are required:

1) The result needs to be shifted so that the proper bits are separated into E3/E2 for
high order and E1/E0 for low order (based on word size); both buffer register pairs

need to contain values within the word size required.

2) The routine first checks to see if it may need a sign change (1’s complement or 2’s

complement mode); this check changes the order of the result to buffer order
E1/E0/E3/E2 (from high order to low order).

3) The result in buffers E3 and the BCD expansion of E2 (low order) are placed into

buffer 12 and stack register Y respectively (since that is where the low order piece is

stored for DBL*) and buffers E1 and the BCD expansion of E0 (high order) are placed
into buffer 13 and stack register X respectively.

6) The multiplication routine returns via a routine that translates the values in buffers E0/E1 into

buffers F0 thru F7, and displays the result.

Some of the seemingly redundant moves of values are explained by the fact that the change sign

routine (described later) works on data in buffers E1 and E0. Routines exist for easy exchange of
buffers E1 and E0 with E3 and E2, and for taking buffer 13 and the binary of stack X and putting it

back into buffers E1 and E0. Taking advantage of these routines dictated these moves. Also note
that for DBL* no stack drop is required at the end, since the multiplicand and multiplier are replaced

with the double precision result.

HP16C Emulator Module for the HP-41CX

(c) Martin-McClure Page 58 of 63 September 2015

The cross multiplication step is carried out by taking the multiplicand and multiplier and separating
them into 16 bit chunks. This is required because there is no multiply instruction for the internal chip

of the 41C. The actual multiply workhorse routine takes a 16 bit multiplier and 16 bit multiplier and
yields a 32 bit result. This result is then moved or summed into the required locations in buffers E0

thru E3. The multiplicand saved in buffers F0/13 and multiplier saved in buffers F1/12 can be

represented as hex digit groups as follows:

F0: aaaa bbbb 13: cccc dddd
F1: eeee ffff 12: gggg hhhh

The 16 cross multiplications are:

1) dddd x hhhh into buffer E0 (moved)

2) cccc x hhhh + dddd x gggg into low 16 bits of buffer E1 (moved) and high 16 bits of buffer E0
(summed)

3) bbbb x hhhh + cccc x gggg + dddd x ffff into buffer E1 (summed)

4) aaaa x hhhh + bbbb x gggg + cccc x ffff + dddd x eeee into low 16 bits of buffer E2 (moved)
and high 16 bits of buffer E1 (summed)

5) aaaa x gggg + bbbb x ffff + cccc x eeee into buffer E2 (summed)

6) aaaa x ffff + bbbb x eeee into low 16 bits of buffer E3 (moved) and high 16 bits of buffer E2
(summed)

7) and finally aaaa x eeee into buffer E3 (summed)

Thus 16 total cross multiplications are performed. The last section of the multiply core normalizes
buffers E0 thru E3 (handles carries from E0 to E1, E1 to E2, etc). Thus, when double multiply is

performed with the max word size of 64 bits, a full 128 bit result can be calculated.

Change Sign Routine

An important part of both the multiplication and division routines when working in 1’s complement or

2’s complement mode is the subroutine [CHSUB], also used in function 16CHS. It basically takes the
value in buffer E1/E0 and performs a 1’s complement or 2’s complement on it. Buffer E1 is then

copied to buffer 13 and the BCD of E0 is copied to stack register X.

Such a seemingly simple task has however its quirks as a result of the definition of a value’s

complement. The maximum negative signed value in particular is an interesting boundary that needed
to be single-cased for this routine to work correctly in 2CMP mode.

HP16C Emulator Module for the HP-41CX

(c) Martin-McClure Page 59 of 63 September 2015

Division routine

The division routine actually covers 16/, RMD, DBL/, and DBLR in one routine. Whether a divisor

or remainder is required, division must still be performed. When the code needs to be specific, it uses
two internal system flags (specifically system flags 0 and 5) to perform the unique code for the

specific function.

Since there is no division instruction for the internal chip of the 41C, it was necessary to figure out
how to do division of values bigger than the max size of the 41C registers. This was accomplished by

the method of partial division. The core routine used takes a dividend and divisor up to 40 bits, and

the result yields both a quotient and remainder.

Partial division takes progressive high order pieces of the dividend and a shortened divisor (usually 20
to 24 bits) and uses the core routine to yield a partial quotient. The full divisor is multiplied by the

partial quotient and subtracted from the dividend. Occasionally this results in a negative value of the

remaining dividend, so the partial quotient is adjusted to allow a positive difference. The final
dividend after subtraction is used for the next partial division.

The length of the partial divisor and piece of dividend depends on the length of the full divisor. For

divisors less than up to 24 bits the full divisor is used and no multiply and subtraction adjustment is
required.

Here is the division process in detail. In actual code, the process is divided into multiple sections
based on divisor length, and whether single or double dividend length.

1) 16LastX is performed to save the value of buffer 13 and stack register X into buffer 14 and

stack register L.

2) For 16/ and RMD, the binary value of Y and contents of buffer 12 (dividend) are moved to

buffers E2 and E3. The binary value of X and buffer 13 (divisor) are already in E0 and E1.

3) For DBL/ and DBLR, the binary value of Y and contents of buffer 12 (high order dividend) are

moved to buffers F0 and F1. The binary value of Z and contents of buffer 11 (low order
dividend) are moved to buffers E2 and E3. The binary value of X and buffer 13 (divisor) are

already in E0 and E1.

4) For DBL/ and DBLR, the values in buffers F0 and F1 need to be shifted down into buffers E2
and E3 depending on word size. This allows the division process to basically be the same for

all word sizes.

5) If in 1’s complement or 2’s complement mode, take the absolute value of both the dividend

and the divisor, saving the state of the combined signs in one of the CPU internal registers (G
in case your curious). This process also involves using buffers F2 and F3.

6) The (partial) division process is performed until all of the dividend is used and a final
remainder is left in buffers E0 and E1.

7) Notwithstanding a lot of weird code that checks for overflow or carry flag conditions (carry

always indicates a remainder is left, no carry means no remainder), the high order quotient
and BCD conversion of the low order quotient is put into either buffer 12 and stack register Y

for 16/ and RMD, or buffer 11 and stack register Z for DBL/ and DBLR. If the remainder was

desired (RMD or DBLR) then buffers E1 and BCD conversion of buffer E0 replaces the
quotient.

8) If 1’s complement or 2’s complement, the proper change sign is performed.

HP16C Emulator Module for the HP-41CX

(c) Martin-McClure Page 60 of 63 September 2015

9) For 16/ and RMD, one extended stack drop is performed (buffers 10 thru 12 are dropped to
buffers 11 thru 13 in addition to the standard stack drop). For DBL/ and DBLR, TWO extended

stack drops are performed. Thus the quotient or remainder is now in buffer 13 and stack
register X, as well as E1/E0.

10) The division routine returns via a routine that translates the values in buffers E0/E1 into
buffers F0 thru F7, and displays the result.

Addition/Subtraction Routines

Addition and subtraction may be much simpler functions, but the complication for these functions

comes from the complement modes and their influence on the carry flag status, overflow flag status,
and adjustment of the final answer. One routine handles both 16+ and 16-, it uses an internal

system flag (specifically system flag 9) to perform the unique code for the specific function. Here is
the addition/subtraction function in detail:

1) 16LastX is performed to save the value of buffer 13 and stack register X into buffer 14 and
stack register L.

2) The result of buffer 12 added/subtracted from buffer E1 replaces E1. The result of the binary

value of Y added/subtracted from buffer E0 replaces E0. Carry/borrow from E0 propagates to
E1, carry from E1 is left in E1.

3) If 1’s complement mode, a special internal flag (specifically flag 6) is set to show we may
have to bump the result.

4) A special carry and overflow flag set routine is called to determine which flags to set. This is

described in more detail below.

5) An extended stack drop is performed and buffer E1 replaces buffer 13, and BCD of buffer E0

replaces register X.

6) The addition/subtraction routine returns via a routine that translates the values in buffers

E0/E1 into buffers F0 thru F7, and displays the result.

The routine that handles carry and overflow (or out of range) flags uses the following algorithms:

Assume that w represents the word size in use (1 thru 64). Assume that the lowest bit of the result is
bit 0, thus the highest bit of the result is n (OV bit) and for 1’s complement and 2’s complement the

n-1th bit signifies positive or negative value (CY bit). Z = X+Y for addition, or X-Y for subtraction. So

we have three CY bits to consider, XCY, YCY, and ZCY, and one overflow bit, ZOV.

For no complement mode the carry and overflow bits are set identically, they represent the value of
the ZOV bit.

For 1’s complement mode if CY is set then the result is bumped (+1 for addition, -1 for subtraction)

For 1’s and 2’s complement modes the algorithms are:

a) Carry = ZCY

b) OOR = ((XCY xor YCY) and not (ZCY xor ZOV)) or (not (XCY xor YCY) and (ZCY xor ZOV))

HP16C Emulator Module for the HP-41CX

(c) Martin-McClure Page 61 of 63 September 2015

Creating a Carry-Mask (“1” at the WS position)

This routine prepares a "1" mask located at the ws bit, in the E0/E1 register depending on the ws

value. The mask is stored in B, and the pointer to E0/E1 is left in C on exit. If the word size exceeds
32, the status of CPU F1 will be set as a marker for the following routines that the mask’s “1” bit is in

the bE1 register (higher bits) - or conversely, in the bE0 (lower bits) if CPU F1 is clear.

Two entry points exist, so CPU flag 7 controls whether the mask is also AND-ed with the original value

for a quicker execution of the job. If done, the result is then transferred to CPU F8 status – which will
be clear if zero or set if not zero. This also allows for faster branching points in the code downstream.

RLRR MWSPOS A177 284 CLRF 7 simple version

RLRR A178 013 JNC +02

RLRR MWSPS* A179 288 SETF 7 flag the AND action

RLRR A17A 198 C=M ALL buffer header

RLRR A17B 226 C=C+1 S&X pointer to b00

A17C 270 RAMSLCT select b00

This routine prepares a "1" mask A17D 038 READATA b00 contents

located at the ws bit, in the E0/E1 A17E 106 A=C S&X ws in A[S&X]

register depending on the ws value. A17F 304 CLRF 1 assumes ws<33

The mask is stored in B, and the A180 130 LDI S&X

pointer to E0/E1 is left in C on exit. A181 021 CON: 33 low bits limit

A182 306 ?A<C S&X is m# < 33?

RLRR A183 027 JC +04 yes , -> [LOWERB]

RLRR A184 308 SETF 1 flag higher bits case

RLRR A185 266 C=C-1 S&X "032"

RLRR A186 1C6 A=A-C S&X count = (ws - 32)

RLRR LOWERB A187 04E C=0 ALL blank s late

RLRR A188 23A C=C+1 M put "0001" in C<3> digi t

RLRR NXTBIT A189 1A6 A=A-1 S&X decrease counter

RLRR A18A 346 ?A#0 S&X

RLRR A18B 01B JNC +03 exit i f a l l done

RLRR A18C 1FA C=C+C M shifts the "1" one bi t left

RLRR A18D 3E3 JNC -04 do next

RLRR MASKOK A18E 0EE C<>B ALL mask Is "000.. 1.. 000"

RLRR WSRGPT A18F 198 C=M ALL buffer header

A190 106 A=C S&X put in A for math

gets pointer to reg with ws bit A191 130 LDI S&X

either E0 / E1 as per F1 A192 008 8 ABOVE HEADER location of bE0

A193 30C ?FSET 1 higher bi ts?

RLRR A194 013 JNC +02 no, skip l ine

RLRR A195 226 C=C+1 S&X location of bE1

RLRR A196 206 C=C+A S&X pointer to bE0 / bE1

RLRR A197 28C ?FSET 7 are we masking?

RLRR A198 3A0 ?NC RTN no, return here.

RLRR A199 270 RAMSLCT select bE0/bE1

A19A 104 CLRF 8 assume LSb is a zero

this exits with CY status A19B 038 READATA read ini tia l bE0/bE1

transferred to F8 - so it'll be A19C 19C PT= 11 hot-field delimiter

possible to adjust later using A19D 06E A<>B ALL mask to A

the C<>ST instruction A19E 08E B=A ALL keep mask in B

A19F 3B0 C=C AND A AND the mask

RLRR A1A0 2EA ?C#0 PT<-

RLRR A1A1 013 JNC +02 NO, skip process

RLRR A1A2 108 SETF 8 yes, set F8 for later check
RLRR A1A3 3E0 RTN

HP16C Emulator Module for the HP-41CX

(c) Martin-McClure Page 62 of 63 September 2015

To be continued...

HP16C Emulator Module for the HP-41CX

(c) Martin-McClure Page 63 of 63 September 2015

