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A technique is presented for the calibration of a 
hemispherical-tipped, five-hole probe having a 0.125- 
in. diameter. Equations are derived from the poten- 
tial flow over a sphere relating the flow angle and 
velocity to pressure differentials measured by the 
probe. The technique for acquiring the calibration 
data and the technique for calculating the calibra- 
tion coefficients are presented. The accuracy of the 
probe in both the uniform calibration flow field and 
the nonuniform flow field over a 75O-swept delta wing 
is discussed. 

b local span of 75O-swept delta 
wing, ft  

particle diameter, ft  DP 

Introduction 
The measurement of flow field quantities, such 

as flow velocity and angularity, has been conducted 
with the use of pressure probes with great success for 
many years. Through the years, a variety of pressure 
probe designs and calibration techniques have been 
developed. (See ref. 1 .) The hemispherical-tipped, 
five-hole probe is a good probe for the measurement 
of flow velocity and angularity in low-speed flows 
because of its high sensitivity to flow angle and its 
insensitivity to Reynolds number based on probe 
diameter Rd (i.e., 2 x lo3 < Rd < 150 X lo3). 

This report details the theoretical derivation of 
calibration equations and the calibration technique 
for a hemispherical-tipped, five-hole probe having a 
0.125-in. diameter. This probe is used in the Langley 
Basic Aerodynamics Research Tunnel (BART). The 
potential flow over a sphere is used to derive equa- 
tioris relating total-flow angle, roll angle, and velocity 
to pressure differences. These equations are general- 
ized and experimental data are then fit, in a least- 
squares sense, to obtain the calibration coefficients 
used to measure the flow over the 75O-swept delta 
wing. This calibration technique is an extension of 
the method used in reference 2, and the theoretical 
derivation of the calibration equations is also based 
on reference 2. 

f i  dimensionless pressure on 
port i defined as (pi  - p s ) / q  

root chord of 75O-swept delta 
wing (1.866 ft) 

Stokes number, 2 % 
pressure at  port i, lb/ft2 

static pressure of flow, lb/ft2 

difference in pressure between 
pitch ports, lb/ft2 

difference in pressure between 
yaw ports, lb/ft2 

dynamic pressure of flow, 
ipU&,, lb/ft2 

quantity defined by equa- 
tion (15), lb/ft2 

Reynolds number based on 
root chord, V L / u  
Reynolds number based on 
probe diameter, Vdlu  
vortex core radius, ft 

root mean square 

sensitivity of probe to pitch, 

sensitivity of probe to yaw, 
f2 /deg 

swirl velocity near vortex core, 
ft/sec 

free-stream velocity of flow, 
ft/sec 
streamwise, lateral, and 
vertical velocity components, 
respectively, in body axis 
system, ft/sec 

velocity of flow at surface of 
sphere, ft/sec 

distance from coordinate origin 
in tunnel axis system, ft 

pitch angle of total-pressure 
port to stagnation point, deg 

pitch error due to manufactur- 
ing, deg 

yaw angle of total-pressure 
port to stagnation point, deg 

yaw error due to manufactur- 
ing, deg 
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Subscripts: 

a 

meas 

P 

total angle of total-pressure 
port to stagnation point, deg 

angle between the i th port and 
stagnation point, deg 

total angle where qp becomes 
zero, singularity point of 
equation (19), deg 

kinematic viscosity, ft2/sec 

density, slugs/ft3 

roll angle at total-pressure 
port from lower a port to 
stagnation point, deg 

fixed roll-angle error between 
probe calculation and sting, 

yaw angle of probe, deg 

misalignment in pitch between 
probe and free stream, deg 

misalignment in yaw between 
probe and free stream, deg 

deg 

air 

measured 

particle 

Calibration Technique 
The probe to be calibrated is a yaw-pitch probe 

with a total-pressure port at  the forward point of a 
hemispherical tip and a ring of six interconnected 
static ports approximately eight probe diameters 
from the tip. Details of the probe are presented in 
figure 1. To measure the angle of the velocity vec- 
tor, four ports are placed at approximately 45' to the 
total-pressure port in the directions of yaw and pitch. 
The total-pressure port and static-pressure port are 
numbered ports 1 and 2, respectively. (See fig. 2.) 

vector, the difference between these pressures gives 
the standard incompressible measurement of the dy- 
namic pressure. When looking upwind, the right and 
left ports are called the /3 ports and are labeled 3 
and 4, respectively. These will give the angle of yaw, 
which is the angle p. The top and bottom ports are 
called the a ports and are labeled 5 and 6, respec- 
tively. These will give the angle of pitch, which is the 
angle a. 

To specify the orientation of the velocity vector 
with respect to the probe, the usual coordinates are 

I 

I When the probe is lined up with the local velocity 

the angles a and p, which are rotated about the y- 
and z-axes of the probe as shown in figure 2. For 
a complete solution of the calibration problem to 
large angles, it is more convenient to use the angles 8 
and 4. Since the pressures on the hemispherical tip 
are assumed to be symmetrical about the stagnation 
point, the significant angle is the total angle 8 that 
the probe makes with the velocity vector. To spec- 
ify the direction of the velocity vector relative to the 
probe, a polar angle q5 is taken about the probe and 
referenced to the lower a port. Spherical trigonom- 
etry yields the following conversion between the two 
coordinate systems: 

t a n a  = tan8cosq5 ( 14 
sin p = sin 8 sin q5 (W 
cos e = cos a cos p (14 
tan q5 = tan p/ sin a (14 

Calibration Based on the Potential Flow 
Over a Sphere 
This calibration technique closely follows the 

method described in reference 2. The pressure on a 
sphere is a function only of the total angle 0 from the 
stagnation point. A nondimensional quantity f; may 
be defined as the pressure at  port i ( p i )  minus the 
static pressure ( p s ) ,  divided by the dynamic pressure 
(q) :  

This quantity can be determined theoretically by 
using the potential-flow theory for uniform flow over 
a sphere. If axisymmetric flow is assumed, the 
superposition of a free stream and a doublet flow 
gives the velocity on the surface of the sphere as 

(3) 
3 V(0)  = -U, sin8 
2 

Bernoulli's equation is then used to obtain the pres- 
sure distribution on the sphere as 

(4) 
1 1 2  p;  + -pv2 = p s  + -pu, 2 2 

By using this equation and the definition of fi, one 
obtains 

9 2  5 fi(ei) = -COS e, - - 
4 4 ( 5 )  

The most important quantities are the differences 
in pressure between the two a ports and the two p 
ports. These are labeled A p ,  and A p p ,  respectively, 
with the convention that they are positive in the 
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a- and @-directions. From the definition of fi, the 
following relations are obtained: 

By using the functional form of fi, one obtains the 
relations 

(9) 

These relations can be converted to functions of 6' 
and + by reference to figure 2. The law of cosines for 
spherical triangles yields 

cos 06 = COS e cos 45' + sin e sin 45' cos + (loa) 

COS 05 = cos 8 cos 45' - sin 0 sin 45' cos + 
cos e4 = cos e cos 45' - sin e sin 45' cos + 
cos 83 = cos 8 cos 45' + sin 8 sin 45' cos + 

(lob) 

( 1 0 ~ )  

(10d) 

By substituting these equations into the equations 
for Ap, (eq. (8)) and Apg (eq. (9)), one obtains 

(11) 

(12) 

9 
4 

9 
4 

Ap, = -qsin28cos+ 

App = -q sin 28 sin + 
The dependence on t9 and + can be separated by 
taking the ratio and the square root of the sum of 
the squares of these two equations: 

The square-root quantity may be nondimension- 
alized by dividing by the quantity qp, defined as the 
pressure on port 1 minus the average of the pressures 
on the four angle ports. This relation can be written 
in terms of fi as 

Substituting equations (5) and (10) into (15) 
reduces equation (15) to 

qp = q(- 27 cos2e + -1 9 
32 32 

Substituting equation (16) into equation (14) 
yields 

It should be noted that this has a singularity at 
54.7'. The technique given here does not use the 
measurements made on the static-pressure ports, 
which can have significant errors at  large angles to 
the velocity. However, once the dynamic pressure q 
and the total angle 0 are known, the static pressure 
can be calculated from the quantity f1 by using the 
following formula: 

9 2  5 pl - p ,  = q(-  cos e - -1 
4 4 

Equations (13), (16), (17), and (18) determine the 
primary quantities from which the angles 8 and + and 
the pressures q and p, can be found. 

Generalization of Calibration Technique 
For a number of reasons, the potential-flow cali- 

bration may not be satisfactory for a given yaw-pitch 
probe. The decrease in pressures with 8 given by 
the potential-flow theory is ideal for a sphere only 
while the probe is a hemispherical-tipped cylinder, 
and thus the decreased pressures differ from experi- 
mental values at  large distances from the stagnation 
point. The placement of the ports may be in error 
because of manufacturing problems. This means that 
there will be fixed errors in the a- and @-directions, in 
the rotation angle +, and in the sums and differences 
of the pressures on the a and @ ports. For these 
reasons the theoretical calibration is generalized to 
include some experimentally determined parameters. 
While maintaining the same form, the constants of 
the 8 dependence are made arbitrary so that equa- 
tions (16), (17), and (18) are generalized to become 

(19) 
sin 28 2 112 

= A  
(AP2, + APp) 

q P  cos 2e - cos 2e0 

qp = [qcOs 28 - cos 2e0) + D(COS e - COS eo)] (20) 
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The constant 80 is the singularity point of equa- 
tion (19) and must be the same for equation (20) 
to determine correct values for q. The calculation 
for + (eq. (13)) is made arbitrary by the subtraction 
of a constant +O and the multiplication by a constant 
B as follows: 

-- A ' ~  - tan(+ - do) 
APCX 

It should be noted that the constants B and $0 do 
not appear in the generalization of reference 2. 

Determination of Calibration Constants 
The experimental technique for acquiring the five- 

hole probe calibration data and the calculation of the 
calibration constants are described in this section. 
The 0.125-in-diameter five-hole probe was mounted 
in the test section of the Langley Basic Aerodynamics 
Research Tunnel on a C-strut so that the probe tip 
was always positioned at the same location when 
the probe was yawed. Pressure data were obtained 
using an electronic scanning pressure system with 
f l  lb/in2 transducers. Four sets of calibration data 
were obtained at eight free-stream velocities. A set 
of calibration data was obtained by yawing the probe 
between -90' and 90' in 1' increments. The four 
data sets were obtained by rolling the probe through 
90' increments. (Positive roll is counterclockwise 
when looking downstream at the probe tip.) A 
typical data set is presented in figure 3 for a free- 
stream velocity of 160 ft/sec and a roll of 0'. These 
data sets were then used to calculate the calibration 
coefficients. The procedure used to calculate the 
calibration coefficients involved six computer codes 
and is described below. 

Before the discussion of the methods used to 
Calculate the probe errors and calibration coefficients, 
a few comments about the experimental procedure 
are necessary. When the probe is rolled 0' or 180°, 
the data acquired are for the calibration of the p 
ports (ports 3 and 4). When the probe is rolled 90' or 
270°, the data acquired are for the calibration of the 
a ports (ports 5 and 6). The probe is always yawed 
in the same direction; therefore, when the probe is 
rolled O', 

when rolled 90°, 

when rolled 180°, 

and when rolled 270°, 

P = + $  

a=-$ 

P = - $  

a = + $  

There are two sets of values for the constants 
80,  $0, A,  B, C, D, E ,  F,  and G. One set is derived 
for the a ports and the other set for the p ports. 
Each set of constants is used to calculate a value of 
8 and 4 from the pressures measured by the five-hole 
probe. These two independent measures of 8 and + 
are converted into a and /3 and then are combined 
by using a cosine weighting function based on the 
roll angle 4. The final values of 8 and 4 are obtained 
using equations (lc) and (Id), respectively. 

Step 1-Calculation of probe manufacturing errors 
and misalignment errors between the probe and the free 
stream. The first step in the probe calibration proce- 
dure is the determination of the probe manufactur- 
ing errors and the misalignment errors between the 
probe and the free stream. These errors are defined 
as a0 and PO (the errors caused by improper place- 
ment of the pressure orifices) and $o,yaw and 
(the misalignment errors of the probe with the free 
stream). Roll data that are 180' out of phase are 
used to calculate these errors. 

To understand how the misalignment error of 
the probe with the free stream in yaw ($o,yaw) is 
calculated, assume that the probe is made perfectly 
(i.e., no probe error) and that we are looking at data 
for the /3 ports (rolls of 0' and 180'). If the probe is 
misaligned in yaw by some positive increment, then 
the probe reading App at zero yaw will be negative 
for the roll of 0' and positive for the roll of 180' 
(fig. 4(a)). The probe will have the same magnitude 
of sensitivity to flow angle in either roll; however, 
the sign of the sensitivity will be the opposite for 
the roll of 180'. Plotting the two roll data sets 
on the same plot yields figure 4(b), and the probe 
misalignment error is found at the intersection of the 
two curves. One should note that this error should 
be the same for both the p calibration data sets and 
the a calibration data sets because of the method of 
obtaining the calibration data. 

Probe error due to manufacturing is found by 
a similar method. Assume that the probe is per- 
fectly aligned with the free-stream direction, but the 
p ports have been incorrectly placed as illustrated 
in figure 5(a). For the roll of O', the five-hole probe 
would measure some flow angle at 0' yaw (+App). 
For the roll of 180°, the five-hole probe would mea- 
sure the same value of +App. Once again the sensi- 
tivity of the probe to flow angle would have the same 
magnitude but would differ in sign for the two roll 
cases. If one uses this information, a figure can be 
constructed that allows the probe manufacturing er- 
ror to be calculated (fig. 5(b)). This technique is also 
used for the a ports. 
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Because the probe is not rotated in pitch, the 
only method for calculating the misalignment of the 
probe in pitch is by using the flow angle predicted by 
the probe and the probe error due to manufacturing. 
Figure 6 presents sketches that help in the under- 
standing of this pitch misalignment. The measured 
Ap, is a function of the error in manufacturing of 
the a ports and the misalignment of the probe with 
the free stream in pitch so that 

for the rolls of 0' and 180', where Sa is determined 
by the slope of the calibration data. (Determination 
of Sp is demonstrated in fig. 5.) 

Figure 7 presents the runs for rolls of 0' and 180' 
for the five-hole probe with a free-stream velocity of 
160 ft/sec and shows the combined effect of probe er- 
ror due to manufacturing and misalignment. These 
errors can be measured directly off the plot; however, 
the code used for step 1 of the probe calibration cal- 
culates the errors by fitting a least-squares linear fit 
to the data in the yaw range from -12' to 12' and 
calculates the intersection of the two curves with each 
other and with the horizontal axis. These intersec- 
tions yield the information required to deduce the 
probe manufacturing and misalignment errors. One 
last point, because the probe is rolled, the combina- 
tion of probe errors due to manufacturing and mis- 
alignment with free stream is different for each roll 
angle to correct the calibration data properly. Thus, 
for a roll of O', 

for a roll of go', 

for a roll of MOO, 

P = -(+ - +o,yaw + Po) 

a = -+O,pitch aO 

and for a roll of 270°, 

Step 2- Calculation of calibration coefficients Bo 
and A .  Once the probe manufacturing errors and the 
probe misalignment with the free stream are sub- 
tracted from the calibration data, the calibration co- 
efficients Bo and A are found by fitting the calibra- 
tion data to equation (19). Although yaw data are 
obtained between -90' and 90°, only yaw data be- 
tween -45' and 45' are used for the curve fit. The 
data are fit in a least-squares sense by using the dif- 
ferential correction method detailed in reference 3. 
It is assumed for the first iteration that B and 40 
are equal to their theoretical values (1 and 0, respec- 
tively). 

Step 3-Calculation of calibration coefficients $0 
and B. Once Bo and A are obtained from step 2, 
the calibration coefficients $0 and B are found by 
fitting the calibration data to equation (22) in a least- 
squares sense by using the differential correction 
method. Once these constants have been found, they 
are used in the step 2 calculations to yield a better 
fit for Bo and A. Steps 2 and 3 are iterated until the 
constants Bo, A, B ,  and 40 have converged (usually 
requiring three iterations). The iteration technique 
is required by the software used to calculate the yaw 
and pitch from the differential pressures measured by 
the five-hole probe. (See the appendix.) 

Step 4-Calculation of calibration coefficients C 
and D. Once the constants Bo, A , B ,  and 40 have 
converged, they are used to calculate the calibration 
coefficients C and D. These coefficients relate the 
pressures measured at  the tip of the probe to the 
local dynamic pressure of the flow and are found in 
a manner similar to the others. The calibration data 
are fit in a least-squares sense to equation (20) by 
using the differential correction method. 

Step 5-Calculation of calibration coefficients E, 
F, and G.  The last step in the probe calibration is the 
calculation of the calibration coefficients E ,  F, and G. 
These coefficients relate the pressures measured on 
the probe tip to the static pressure in the flow. The 
best-fit values for the calibration coefficients Bo, $0, 
A, B ,  C, and D are used while the calibration data 
are fit, in a least-squares sense, to equation (21) by 
using the differential correction technique mentioned 
previously. 

Technique for Measuring Unknown Flow 
Velocity and Angularity 

Once the calibration coefficients are obtained, 
their dependence on free-stream velocity (Reynolds 
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number) can be assessed. Figure 8 presents the cali- 
bration coefficients 80, 40, A ,  B,  C, and D as a func- 
tion of free-stream velocity. (This set of calibration 
data did not allow for the calibration of the static 
pressure.) A third-order polynomial curve fit was 
made to each of the calibration coefficients, and these 
polynomials were incorporated into the subroutine 
that calculates the flow angularity and velocity from 
the measured pressures. This subroutine is presented 
in the appendix. The flow angularity and velocity 
were found in an iterative manner. The free-stream 
velocity is used to calculate the first set of calibra- 
tion coefficients, and on the subsequent iterations the 
velocity predicted by the five-hole probe is used to 
calculate the calibration coefficients. The flow angu- 
larity and velocity are found when the velocity pre- 
dicted by the probe has converged to one value. 

Accuracy of Five-Hole Probe 
The measured flow angle and velocity have been 

compared with the known values of flow angle and 
velocity for the calibration data. The probe error 
was calculated by taking the root mean square (rms) 
of the difference between the known and the mea- 
sured flow angle and velocity. These rms errors are 
presented as the solid lines in figure 9. The figures 
indicate that the probe measurements for 0 < 50' 
are as follows: the pitch angle a within 0.5', the 
yaw angle /3 within 1.5', and the dynamic pressure q 
within 0.02 lb/ft2. Figure 9 also presents the effect 
of Reynolds number for the range of Reynolds num- 
ber that the probe was calibrated over. These data 
(the dashed lines in fig. 9) were found by taking the 
calibration constants for the highest Reynolds num- 
ber and applying them to the data acquired for the 
lowest Reynolds number and vice versa. These data 
indicate little effect due to Reynolds number in the 
mewurements of a and /3; however, the error in the 
measurement of the dynamic pressure increases by a 
factor of 3. 

These characteristics were measured with a uni- 
form onset flow. When the probe is introduced into 
the flow over a model, the flow field seen by the 
probe is no longer uniform. The gradients in the 
flow field can affect the accuracy of the probe and 
the probe may disturb the flow field. To help under- 
stand the magnitude of the errors caused by the five- 
hole probe in a nonuniform flow field, a comparison 
has been conducted (ref. 4) between flow field data 
obtained over a 75O-swept delta wing with the five- 
hole probe and data obtained by a three-component 
laser Doppler velocimeter (LDV). The LDV is ca- 
pable of obtaining accurate velocity measurements 
in flow fields with reverse flows, large shear gradi- 
ents, and velocity fluctuations. The BART LDV 
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system is a three-color, orthogonal, cross-fringe con- 
figuration with the receiving optics package mounted 
90' off-axis. The 514.5-, 496.5-, and 476.5-nm wave- 
lengths are used to measure the lateral (v), stream- 
wise (u) ,  and vertical (w) velocity components, re- 
spectively. Bragg cells are used to provide directional 
measurement capability in all three velocity compo- 
nents. The sample volume is spherical in shape and 
has been calculated to be approximately 150 pm in 
diameter. The optics and laser move as a unit on a 
traversing system that provides 1 m of travel, with 
10 pm of resolution, in all three axes. 

The flow field was seeded with 0.8-pm polystyrene 
latex microspheres. The seed particles were sus- 
pended in a mixture of alcohol and water and were 
injected into the flow upstream of the honeycomb by 
using an atomizing spray nozzle. Typically, 500 to 
4096 velocity samples were obtained at each measure- 
ment location in the flow field. The actual number of 
samples depended on the particular location in the 
flow field and the particle seeding rate. 

The ability of a particle to track the streamlines 
in the flow field, and thus the accuracy of the LDV, is 
directly related to the size of the particle. Theoretical 
predictions of particle trajectories in various flows 
were reported in references 5 through 7. Dring and 
Suo (ref. 5) concluded that the particle trajectory in a 
free-vortex swirling flow is governed primarily by the 
Stokes number (Ns t ) ;  and when the Stokes number 
is less than 0.01, the particle will follow the circular 
streamlines of the free vortex. 

The 0.8-pm particles used during this test have a 
density p p  of 2.03727 slugs/ft3. The Stokes number 
for the particles is 0.007, based on the radius and the 
swirl velocity at the edge of the vortex core. The 
numerical procedure described by Dring (ref. 7) was 
used to predict the particle trajectories for the vor- 
tices that were measured during this investigation. 
The predictions show that the particles used during 
this test will follow the streamlines of the vortex with 
an accuracy of about 1 percent. 

The velocity surveys were made over a 75O-swept 
delta wing at  an angle of attack of 20.5' and a 
Reynolds number of 1 x lo6 based on the root chord. 
These velocity surveys are presented in figure 10. 
The differences in the u, v, and w components of the 
flow field are presented in figure 11. In the core of the 
vortex the five-hole probe has errors in the u, v, and 
w components of velocity of 25, 17, and 35 percent, 
respectively. The errors were calculated assuming 
that the LDV measurements were the reference. The 



equation used to calculate the u-component error is 

where the subscript FH denotes the five-hole probe. 
The errors in w and w are calculated in a similar 
fashion. 

Figure 12 presents the gradients in the w and 
w components of velocity measured by the five-hole 
probe for the same data set. A comparison of fig- 
ures 11 and 12 shows that the probe does a reason- 
able job of measuring the flow field quantities in re- 
gions of low gradients (with a probe error less than 
5 percent when the velocity gradient is less than 
800&/ft). However, in the vortex core, very high 
gradients (> 3000&/ft) yield differences of more 
than 20 percent between the two measurement tech- 
niques. 

Concluding Remarks 
A technique has been presented for the calibration 

of a hemispherical-tipped, five-hole probe with a 
0.125-in. diameter. Equations were derived from 
the potential flow over a sphere relating the flow 
angle and velocity to pressure differentials measured 
by the probe. Four sets of calibration data were 
acquired at eight free-stream velocities. A set of 
calibration data was obtained by yawing the probe 
between -90' and 90' in 1' increments. The four 

data sets were obtained by rolling the probe through 
90' increments. The calibration data are fit to the 
equations derived from the potential flow over a 
sphere to obtain the calibration coefficients, which 
are then used to convert measured pressures into flow 
angularity and velocity data. 

To assess the ability of the five-hole probe to mea- 
sure flow angularity and velocity, the known calibra- 
tion data were compared with those measured by the 
five-hole probe. For the uniform flow field measured 
for the probe calibration, the probe measurements 
were as follows for a total angle of total-pressure 
port to stagnation point less than 50': the pitch an- 
gle within 0.5', the yaw angle within 1.5', and the 
dynamic pressure within 0.02 lb/ft2. For the non- 
uniform flow over a 75O-swept delta wing, com- 
parisons between the five-hole probe and a three- 
component laser Doppler velocimeter showed that 
the probe performed a reasonable job of measuring 
the flow field quantities in regions of low gradients 
(with a probe error less than 5 percent when the ve- 
locity gradient is less than 800&/ft). However, in 
the vortex core, very high gradients (> 3000&/ft) 
yielded differences of more than 20 percent between 
the two measurement techniques. 

NASA Langley Research Center 
Hampton, VA 23665-5225 
September 20, 1988 
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i Appendix 

Listing of Five-Hole-Probe Subroutine 
i 

This subroutine is used to convert the pressures measured by the yaw-pitch probe into flow velocity and 
angularity. 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

I C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

‘ 

SUBROUTINE FIVEHOLE(P,ALPHA,BETA,THETA,PHI,Q,PS,VELJ’REV) 

FIVEHOLE CONVERTS MEASURED PRESSURES INTO FLOW ANGLES 
AND VELOCITY DATA USING THE CALIBRATION EQUATIONS DERIVED 
IN APPENDIX A OF REFERENCE 2 

SUBROUTINE WRITTEN BY KJELGAARD IN AUGUST 1986 
DESCRIPTION OF VARIABLES 
INPUT 

P - ARRAY CONTAINING PRESSURES MEASURED BY 5-HOLE PROBE 
P(l) CONTAINS PRESSURE AT PORT 1 
P(2) CONTAINS PRESSURE AT PORT 2, ETC. 

OUTPUT 
ALPHA - PITCH ANGLE MEASURED BY PROBE 
BETA 
THETA - TOTAL FLOW ANGLE MEASURED FROM PORT 1 TO STAGNATION 

- YAW ANGLE MEASURED BY PROBE 

POINT 
- FLOW ROLL ANGLE MEASURED FROM LOWER ALPHA PORT TO 
STAGNATION POINT 

PHI 

Q 
PS 
VEL-PREV - VELOCITY USED TO CALCULATE PROBE CONSTANTS 

- DYNAMIC PRESSURE OF THE FLOW AT THE PROBE TIP 
- STATIC PRESSURE MEASURED AT THE PROBE TIP 

c- 
C 

REAL P(*) 
REAL ALPH(2) ,BET(2) ,THET(B) ,QT(2) ,PST(2) 
REAL A(2) ,THETAO( 2) ,PHIO( 2) ,B( 2) ,C( 2) ,D( 2) ,E( 2) ,F (2) ,G(2) 
EXTERNAL POLY 
DPA=P (6)-P (5) 
DPB=P(3)-P(4) 
QP=P( 1)-.25* (P( 3)+P(4) +P( 5)+P(6)) 
Al=SQRT(DPA**2+DPB**2)/QP 

PROBE CONSTANTS 

A( l)=POLY (VELPREV,.l3930,-2.5727E-3,1.43414E-5,0) 
A(2)=POLY (VELPREV,3.1607,-8.1927E-3,7.175OE-5,-1.8642E7) 
THETAO( l)=POLY (VELPREV,55.595,-5.862lE2,4.7727E4,- 1.14273-6) 
THETAO( 2)=POLY (VEL-PREV,57.134,-9.3249E-2,8.0274E-4,-2.0331E6) 
B ( l)=POLY (VELPREV, .31547,2.4019E2 ,-2.0699E4,5.5 1563-7) 
B( 2)=POLY (VELPREV , .67481,9.7006E-3,-7.1074E5,1.4787E-7) 
PHIO( 1)zPOLY (VELJ’REV,-.48446,-4.9767E2,4.5553E-4,-1.2265E-6) 
PHIO(S)=POLY (VELPREV,-4.2108,4.5463E-2,-2.7104E-4,4.4549E-7) 
C( 1)EPOLY (VELPREV,.25419,-1.674lE-3,9.327OE6,-8.6405E9) 
C(2)=POLY (VELPREV,.38568,-5.2703E-3,3.7782E5,-8.2944E-8) 
D( l)=POLY (VELJ’REV,.74529,1.7064E-2,-1.1424E4,2.2726E7) 
D(2)zPOLY (VELPREV,.23948,2.9862E2,-2.1885E4,5.0793E-7) 

C 
C ITERATIVELY SOLVE FOR THETA 



DO 1 I=1,2 
THET(I)=O. 
THSTEP=10. 

CALCULATE PHI 

IF (DPA .EQ. 0) DPA=.00001 
PHIM=ATAND(B(I) *DPB/DPA) 
IF (DPA .LT. 0) PHIM=180.+PHIM 
IF (PHIM .LT. 0) PHIM=PHIM+360. 
PHIT=PHIM-PHIO( I) 
A2=1 
DO 2000 ILOOP=1,50 

IF (ILOOP .EQ.50) THEN 
WR"E(G,'('' TOO MANY ITERATIONS IN CALB")') 
THET(I)=.5*ACOSD(A(I)*SIND(2.*THETAO(I))/Al+ 

GO TO 3170 
* COSD(2.*THETAO(I))) 

END IF 
THET(I)=THET(I) + THSTEP 
A3=COSD(2.*THET(I))-COSD(2.*THETAO(I)) 
IF (A3.EQ.0.0) THEN 

WR"E(G,'('' PROBLEM IN CALIB")') 
WRITE( 6, ' (4F 10.5) ') THET( I) ,THSTEP 
A3=1E-5 

END IF 

IF (A2 .LT. 0) THEN 
AP=Al-A(I)*SIND(2.*THET(I))/AS 

THET( I) =THET (1)-THSTEP 
THSTEP=THSTEP*.5 
GO T O  3160 

END IF 
IF (A2 .LE. .02) GO T O  3170 

3160 CONTINUE 
2000 CONTINUE 
3170 ALPH(1) =ATAND( TAND (THET(1)) *COSD( PHIT)) 

BET(I)=ASIND( SIND( THET(I)) *sIND (PHIT)) 
QT(I)~QP/(C(I)*(COSD(2.*THET(I))-COSD(2.*THETAO(I)))+ 

PST(I)~P(1)-QT(I)*(E(I)*COSD(2.*THET(I))+F(I)*COSD(THET(I)) 
* D(I)*(COSD(THET(I))-COSD(THETAO(1)))) 

* +G(I)) 
1 CONTINUE 
C 
C 
C 
C 

USE PHI FOR WEIGHTING FUNCTION FOR COMBINATION OF ALPHA 
AND BETA CONSTANTS AND COMBINE 

WGHT=COSD(PHI) **2 

BETA=BET( 1)* WGHT+BET(2)* WGHTl 
ALPHA=ALPH( l)*WGHT+ALPH(2)*WGHTl 
Q=QT( 1) * WGHT+QT(2) * WGHTl 
PS=PST( 1)* WGHT+PST(2)* WGHTl 

USE THESE TO CALCULATE THETA AND PHI 

WGHT1=1- WGHT 

C 
C 
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C 
THETA=ACOSD(COSD(ALPHA)*COSD(BETA)) 
IF (ALPHA .EQ. 0) THEN 

PHI=SIGN(SO.,BETA) 
ELSE 

PHI=ATAND (TAND (BETA) /SIND (ALPHA)) 
END IF 
IF (ALPHA .LT. 0) PHI= PHI+180. 
IF (PHI .LT. 0) PHI= PHI+360. 

! 

RETURN 
END 

FUNCTION POLY (V,A,B,C,D) 
POLY = A + B*V + C*V*V + D*V*V*V 
RETURN 
END 

10 
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Figure 3. Typical set of calibration data. 
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(a) Section illustrating probe misalignment with free stream. View looking down from above. 

(b) Plot illustrating probe misalignment in yaw with free stream. 

Figure 4. Yaw error due to misalignment with free stream. 
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(a) Sketch illustrating manufacturing error. View looking down from above. 
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(b) Plot illustrating probe manufacturing error in ,B ports. 

Figure 5. Manufacturing error in p ports. 
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Figure 6 .  Sketch illustrating probe error in pitch due to misalignment with free stream. 
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Figure 7. Typical data set presenting uncorrected calibration data. 
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Figure 9. Characteristics of probe calibrated in this investigation. 
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(a) Crossflow velocity vectors measured with five-hole probe. 
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I (b) Crossflow velocity vectors measured with three-component laser Doppler velocimeter. 

Figure 10. Velocity surveys obtained over 75O-swept delta wing at an angle of attack of 20.5’, x / L  = 0.9, and 
R = 1 x lo6. 
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Figure 11. Differences in measured velocities between LDV and five-hole probe. x / L  = 0.9; R = 1 x lo6. 
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(a) Gradient of lateral component of velocity nondimensionalized by maximum of 6111 &/ft. 
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(b) Gradient of vertical component of velocity nondimensionalized by maximum of 7074 &/ft. 

Figure 12. Velocity gradients calculated from five-hole-probe results. 
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