
WEIGHTED LIMITS AND COLIMITS

EMILY RIEHL

Abstract. Assuming only a very rudimentary knowledge of enriched category

theory — V-categories, V-functors, and V-natural transformations for a closed,

symmetric monoidal, complete and cocomplete category V — we introduce
weighted limits and colimits, the appropriate sort of limits for the enriched

setting. This “modern” approach was introduced to the author through talks

by Mike Shulman at the Category Theory Seminar at the University of Chicago
in Fall 2008. These notes were written in an attempt to understand and

internalize the many wonderful things that he said.

1. Homs and Tensor Products of V-functors

A one object category enriched in Ab is a ring, which we call R. A Ab-functor
from R to Ab is a left R-module if it is covariant and a right R-module if it is
contravariant. Let M : Rop → Ab and N : R → Ab be two such functors, and
let M and N also denote the respective objects of Ab in their image. A slight
modification of the usual functor tensor product to account for the fact that R and
Ab are Ab-categories yields the following coequalizer in Ab:

M ⊗Z R⊗Z N
(m,r,n)7→(m,rn) //

(m,r,n) 7→(mr,n)
// M ⊗Z N // M ⊗R N.

This constructs the tensor product over R of a right R-module with a left R-module
using the monoidal structure (Ab,⊗Z,Z).

More generally, let (V,⊗, I) be a closed, symmetric monoidal category that is
complete and cocomplete. Given a V-category C and V-functors F : Cop → V and
G : C → V a generalization of the above construction yields the V-tensor product
of F and G, an object F ⊗C G of V:∐

a,b∈C Fb⊗ C(a, b)⊗Ga
//
//
∐
c∈C Fc⊗Gc // F ⊗C G. 1

The top map of the parallel pair is induced by the composite

Fb⊗ C(a, b)⊗Ga
1⊗Fa,b⊗1// Fb⊗ V(Fb, Fa)⊗Ga

ev⊗1 // Fa⊗Ga ↪→
∐
c Fc⊗Gc,

where Fa,b is the arrow of V given because F is a V -functor and ev is the evaluation
map, the counit of the adjunction on V of the monoidal product with the internal-
hom. The bottom map is induced by a similar composite with G in place of F .

The dual notion gives an enriched hom of V-functors G : C→ D and H : C→ D

between V-categories C and D (note that the codomain category need no longer

Date: July 9, 2009.
1The C(a, b) that appears on the left is the internal-hom, an object of V. This is the default;

hom-sets will explicitly noted as such.
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be V). As with the tensor product, the hom is an object of V, defined to be the
equalizer

HomC(G, H) //
∏
c∈C D(Gc, Hc)

//
//
∏
a,b∈C V(C(a, b), D(Ga, Hb)).

The top arrow in the parallel pair is induced by the adjunct map to the composite(∏
c∈C

D(Gc, Hc)

)
⊗ C(a, b)

projb⊗Ga,b−→ D(Gb, Hb)⊗D(Ga, Gb) ◦−→ D(Ga, Hb)

under the adjunction −⊗C(a, b) a V(C(a, b),−) in V. The bottom arrow is defined
similarly with H in place of G.

When V = D = Ab and C has one object, this gives the usual construction of the
abelian group HomR(N, P ) for two left R-modules N : R → Ab and P : R → Ab
as the equalizer

HomR(N, P ) // HomZ(N, P )
φ7→[r 7→φ(r−)] //

φ7→[r 7→rφ(−)]
// HomZ(R, HomZ(N, P )).

The hom of V-functors constructed above gives the category [C, D] of V-functors
and V-natural transformations the structure of a V-category (modulo size issues).

2. Bimodules aka Profunctors aka Distributors

Let A and B be V-categories, with V as above. Note that Bop and A ⊗ B are
also V-categories when V is symmetric, with Bop(b, b′) := B(b′, b) and

(2.1) A⊗B((a, b), (a′, b′)) := A(a, a′)⊗B(b, b′).

Definition 2.2. A A-B-bimodule or profunctor or distributor is a V-functor

J : A⊗Bop → V.

That is, an A-B-bimodule consists of an object function (a, b) 7→ J(a, b) together
with arrows A ⊗ B((a, b′), (a′, b)) → V(J(a, b), J(a′, b′)) in V that are compatible
with identities and composition.

2.1. Bimodule Tensor. Given bimodules J : A⊗Bop → V and K : B⊗Cop → V,
we can form their tensor product

J ⊗B K : A⊗ Cop → V,

which is also a bimodule. For any object (a, c) ∈ A⊗ Cop,

[J ⊗B K](a, c) := J(a,−)⊗B K(−, c)

is defined to be the tensor product of the V-functors J(a,−) and K(−, c) con-
structed in Section 1. Since we want J ⊗B K to be a V-functor, it remains to show
that for all (a, c), (a′, c′) ∈ A⊗ Cop there is an arrow

(2.3) A⊗ Cop((a, c), (a′, c′))→ V([J ⊗B K](a, c), [J ⊗B K](a′, c′))

in V. Using the isomorphism (2.1), the arrow (2.3) is adjunct to a map

A(a, a′)⊗ [J ⊗B K](a, c)⊗ C(c′, c)→ [J ⊗B K](a′, c′),

which we will construct below.
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The functor A(a, a′)⊗−⊗C(c′, c) is a left adjoint, so it preserves colimits. When
we apply it to the coequalizer that defines [J ⊗B K](a, c), we get the left column of∐

b,b′ A(a, a′)⊗ J(a, b′)⊗B(b, b′)⊗K(b, c)⊗ C(c′, c)

����

u
//
∐
b,b′ J(a′, b′)⊗B(b, b′)⊗K(b, c′)

����∐
b A(a, a′)⊗ J(a, b)⊗K(b, c)⊗ C(c′, c)

��

v
// ∐

b J(a′, b)⊗K(b, c′)

��
A(a, a′)⊗ [J ⊗B K](a, c)⊗ C(c′, c) //___________ [J ⊗B K](a′, c′)

We will define arrows u and v in V that make the two upper squares commute.
This induces the desired arrow along the bottom. Actually, defining these arrows
is easy2:

u = J(−, b′)#a,a′ ⊗ 1⊗K(b,−)#c′,c and v = J(−, b)#a,a′ ⊗K(b,−)#c′,c

ignoring the evident coproduct inclusions. Checking commutativity of the squares
is relatively straightforward. The unique map induced from the left coequalizer is
adjunct to the morphism that makes J ⊗B K a A-C-bimodule.

2.2. Bimodule Hom. A dual construction takes bimodules K : B⊗Cop → V and
L : A⊗ Cop → V and produces a bimodule

HomC(K, L) : A⊗Bop → V.

On objects,

[HomC(K, L)](a, b) := HomCop(K(b,−), L(a,−)),

using the definition of the enriched hom for V-functors from Section 1. A similar
construction is used to define the arrows in V that make HomC(K, L) a V-functor.

Note what happens to the indexing categories: a B-C-bimodule and a A-C-
bimodule yield a A-B-bimodule.

2.3. Bimodule Adjunction. Together the bimodule tensor product and the bi-
module hom form a V-adjunction

−⊗B K : [A⊗Bop, V]
//

⊥ [A⊗ Cop, V] : HomC(K,−)oo .

In particular, there exist isomorphisms

[A⊗ Cop, V](J ⊗B K, L) ∼= [A⊗Bop, V](J, HomC(K, L))

in V, natural in J and L. We will use this adjunction later.

2For those unfamiliar with this notation, the # means “the map that is the left adjunct to.”
So, for example, J(−, b)a,a′ : A(a, a′)→ V(J(a, b), J(a′, b)) is the map we get from J(−, b) being a

V-functor (using the notation from §1) and J(−, b)#
a,a′ : A(a, a′)⊗J(a, b)→ J(a′, b) is its adjunct

from the tensor-hom adjunction in V. If we move the other way across the adjunction, the notation
is [.
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3. J-weighted limits

All categories mentioned below are V-categories, unless otherwise specified, where
(V,⊗, I) is closed, symmetric monoidal, complete, and cocomplete. All functors are
V-functors, and so forth.

Definition 3.1. For a diagram D : A→ M and a bimodule J : A⊗ Bop → V the
J-weighted limit of D, if it exists, is a V-functor limJD : B→M with a V-natural
isomorphism of B-M-bimodules M(−, (limJD)−) and HomA(J(−,−), M(−, D−)).
This means that levelwise we have isomorphisms
(3.2)

M(m, (limJD)b) ∼= HomA(J(−, b), M(m, D−)) = [A, V](J(−, b), M(m, D−))

in V, natural in b and m.

Example 3.3. Suppose V = Set, B = 1, the terminal category. Let J : A→ Set
be a functor that sends every object of A to a fixed terminal object ∗ of Set. An
element of the right hand side of (3.2) consists of maps ∗ → M(m, Da) in Set for
each a ∈ A. In other words, we get an arrow m→ Da of M for each a ∈ A, subject
to naturality conditions that say that these arrows form a cone with summit m
over the diagram D. So (3.2) expresses the usual universal property of an ordinary
limit in this case.

Recall that the unit object of V can be used to define an underlying category
functor V-Cat → Cat. Given a V-category C, we write C0 for its underlying
category with ob C0 = ob C and

(3.4) C0(x, y) := V0(I, C(x, y))

for all x, y ∈ ob C. In (3.4), the enriching category V is taken to be first an ordinary
category with the additional closed symmetric monoidal structure that makes V

into a V-category. So V0(−,−) is a hom-set while V(−,−) denotes the internal
hom. With these conventions V0(I,−) is a functor from V to Set. Nice things
happen when this functor is faithful or conservative, but this is often not the case.

The functor V0(I,−) has a left adjoint which takes a set A to the copower
A · I = tAI in V. This induces a left adjoint to the underlying category functor,
called the free V-category functor V[−] : Cat→ V-Cat. Given an ordinary category
C, V[C] has the same objects as C with

V[C](x, y) := C(x, y) · I
for all x, y ∈ C.3

Let I denote the V-category V[1] with one object ∗ and one hom-object I.

Example 3.5. Let A be an ordinary Set-category, let B = I, and let D : V[A]→M

be a diagram in M. Let J : V[A]⊗ Iop ∼= V[A]→ V be the functor that sends each
object to I ∈ V and with each Ja,a′ : A(a, a′) · I → I the “fold” map induced by
identities on each component. Applying the functor V0(I,−) to (3.2), we get

M0(m, limJD) ∼= [V[A], V]0(J−, M(m, D−)) ∼= [A, V0](J−, M(m, D−))

where the last isomorphism comes from the adjunction described above. Levelwise,
the transformations on the right consist of arrows I → M(m, Da), i.e., elements

3Note this construction only works when the tensor ⊗ preserves these colimits, e.g., when V is
closed.
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of M0(m, Da). So a J-weighted limit is in particular a limit of D[ : A → M0.
Weighted limits of this sort are called conical limits.

Example 3.6. Recall that a Cat-category is a (strict) 2-category. Let V = Cat
and let A be the ordinary Set-category with three objects - a, b, c - and two non-
identity morphisms: a→ c and b→ c. Let B = I and define J : V[A]→ V to be the
V-functor adjunct to the ordinary functor A→ V0 = Cat such that a, b 7→ 1 = (•),
c 7→ 2 = (• → •), and a→ c, b→ c map to the inclusions of 1 as the left and right
objects of 2, respectively.

Given a 2-category M and a diagram D : Cat[A]→M, a J-weighted limit is an
object of M called a comma object over D. The category [Cat[A], M](J−, M(m, D−))
is by definition the end

[Cat[A], M](J−, M(m, D−)) =
∫
x∈Cat[A]

Cat(Jx, M(m, Dx))

= lim



Cat(Ja, M(m, Da))
,,XXXXX

Cat(Ja, M(m, Dc))

Cat(Jc, M(m, Dc))

22fffff

,,XXXXX

Cat(Jb, M(m, Dc))

Cat(Jb, M(m, Db))

22fffff


Concretely, the data of this category consists of 1-cells m→ Da and m→ Db in

M such that

(3.7) m //

��

Da

��y� zz
zz

zz
z

zz
zz

zz
z

Db // Dc

commutes and the 2-cell between the upper right and lower left composites as
shown. The isomorphism (3.2) tells us that this data corresponds to that category
M(m, limJD) of 1-cells in M between m and the object limJD and 2-cells betwen
these 1-cells. The enriched Yoneda lemma (see 6.1) tells us that a 2-cell of the
form (3.7) factors as its corresponding 2-cell of M(m, limJD) followed by the 2-
cell adjunct to the identity 2-cell of the identity arrow at limJD. This sounds
complicated, but it is simply the universal property one would expect.

In particular, suppose M is the 2-category Cat of categories, functors, and nat-
ural transformations and let D be the diagram that takes the morphisms a → c,
b→ c of A to functors f, g, respectively. Then the usual comma category (f ↓ g) is
a J-weighted limit of D, and the isomorphism (3.2) expresses precisely its universal
property.

3.1. Powers. When A = B = I, an A-B-bimodule J : A ⊗ Bop → V picks out an
object J ∈ V. The identity condition on the V-functor map I → V(J, J) requires
that this just be the identity map in the V-category structure on V, i.e., the adjunct
to the identity on J in V0. So the only data in the bimodule J is the object J of V

in its image.
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For the same reasons, a diagram D : I → M is just an object D of M. In this
case, the isomorphism (3.2) reduces to

M(m, limJD) ∼= V(J, M(m, D)).

When V = Set the right hand side is isomorphic to
∏
J M(m, D) = M(m, D)J and

limJD =
∏
J D = DJ is called the J-th power of the object D. This gives us the

terminology in the following definition.

Definition 3.8. A power or cotensor of D ∈ M by J ∈ V is an object t(J, D) of
M such that there is a V-natural isomorphism

M(−, t(J, D)) ∼= V(J, M(−, D))

of V-functors Mop → V. Other notation in use is J t D (in [1]), F (J, D), or DJ .

The upshot is that powers are weighted limits.

4. J-weighted colimits

The following definition gives the dual notion. Note that in what follows J is
now a B-A-bimodule.

Definition 4.1. For a diagram D : A→M and a bimodule J : B⊗Aop → V the J-
weighted colimit of D, if it exists, is a V-functor colimJD : B→M with a V-natural
isomorphism of M-B-bimodules M(colimJD)−,−) and HomAop(J(−,−), M(D−,−)).
Levelwise, we have isomorphisms
(4.2)
M(colimJD)b, m) ∼= HomAop(J(b,−), M(D−, m)) = [Aop, V](J(b,−), M(D−, m))

in V, natural in b and m.

4.1. Copowers. When A = B = I, colimJD reduces to the notion of a copower of
D ∈M by J ∈ V, defined below.

Definition 4.3. A copower or tensor of D ∈M by J ∈ V is an object of M written
variously as J ⊗D, D ⊗ J , J �D, and D � J (we choose J �D) such that there
is a V-natural isomorphism

M(J �D,−) ∼= V(J, M(D,−))

of V-functors M→ V.

When V = Set, J �D = tJD = J ·D is the familiar notion of a copower of an
object D of M by a set. Again, the upshot is that a copower is a weighted colimit.

Putting together the defining isomorphisms of the power and copower for K, L ∈
M and J ∈ V, we see that

M(J �K, L) ∼= V(J, M(K, L)) ∼= M(K, t(J, L)).

This defines an adjunction J � − a t(J,−) on M. A category M with powers is
called cotensored and a category M with copowers is called tensored. Tensored and
cotensored categories are particularly nice for homotopy theory.
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5. The Adjunction

Let J : A⊗ Bop → V be an A-B-bimodule and let D : B → M and E : A → M

be diagrams. The defining isomorphisms for J-weighted limits and colimits give us
the following adjunction

(5.1) [A, M](colimJD,E) ∼= [A⊗Bop, V](J, M(D,E)) ∼= [B, M](D, limJE).

When we take A = B = I, (5.1) reduces to the copower-power adjunction of Section
4.1, but it is vastly more general.

Example 5.2. Let A = I, B = V[C] for an ordinary Set-category C and let J :
V[C]op → V be the functor described in Example 3.5. As we saw above, a diagram
E : I → M is just an object E ∈ M, and accordingly the functor limJE : B → M

is constant at E everywhere. In other words, limJE = ∆E, where ∆ : M→ [B, M]
is the diagonal functor. The isomorphism (5.1) gives us that

[B, M](D, ∆E) ∼= M(colimJD,E)

for any diagram D : B→M, which implies the familiar result that, when it exists,
the colimit functor is left adjoint to the diagonal functor. If we switch the roles of
A and B, we obtain the dual statement for the limit functor.

6. All Concepts are Weighted Limits or Colimits4

6.1. The Yoneda Lemma. First we recall the two versions of the enriched Yoneda
lemma:

Lemma 6.1. Let C be a V-category and let F : Cop → V be a V-functor. Then for
any x ∈ C we have isomorphisms

V1. [Cop, V]0(C(−, x), F ) ∼= V0(I, Fx) in Set
V2. [Cop, V](C(−, x), F ) ∼= Fx in V

natural in x and F .

6.2. All Concepts. Given a V-functor j : B→ A, we define an A-B-bimodule j•

and a B-A bimodule j• by

j•(a, b) := A(jb, a), j•(b, a) := A(a, jb).

A j•-weighted limit for E : A→M satisfies the isomorphisms

M(m, limJEb) ∼= [A, V](j•(−, b), M(m, E−))
∼= [A, V](A(jb,−), M(m, E−))
∼= M(m, Ejb)

for all b ∈ B and m ∈ M, the last isomorphism given by the Yoneda lemma.
Applying Yoneda again, we obtain an isomorphism

limJE ∼= Ej in [B, M].

So precomposition is a j•-weighted limit. The isomorphism (5.1) is

[B, M](D,Ej) ∼= [A, M](colimj•D,E)

in this case, which is the defining isomorphism of the left Kan extension LanjD of
D : B→M along j : B→ A. So left Kan extensions are j•-weighted colimits.

4Assuming MacLane’s famous assertion that “all concepts are Kan extensions” in [2, ch. 10].
See below.
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Repeating this argument for j•, we see that precomposition is also a j•-weighted
colimit and the right Kan extension RanjD of D : B → M along j : B → A is a
j•-weighted limit. Hence, all concepts are weighted limits or colimits.

6.3. Fubini and Applications. Let D : A→M be a diagram and J : A⊗Bop →
V and K : B⊗Aop → V be bimodules. For all m ∈M, we have isomorphisms

M(m, limK limJD) ∼= HomB(K, M(m, limJD))
∼= HomB(K, HomA(J, M(m, D)))
∼= HomA(J ⊗B K, M(m, D))
∼= M(m, limJ⊗BKD)

by three applications of the defining isomorphism for weighted limits and one use
of the adjunction of Section 2.3. By the Yoneda Lemma, we conclude that

limK limJD ∼= limJ⊗BKD,

a Fubini theorem of sorts for weighted limits.
There is a dual theorem for weighted colimits. Let J, K,D be as above. Again,

for all m ∈M, we have isomorphisms

M(colimJcolimKD,m) ∼= HomBop(J, M(colimKD,m))
∼= HomBop(J, HomAop(K, M(D,m)))
∼= HomAop(J ⊗B K, M(D,m))
∼= M(colimJ⊗BKD,m)

and all isomorphisms are natural. By Yoneda, we conclude that

colimJcolimKD ∼= colimJ⊗BK .

In the special case of A = B = I, the Fubini theorem for weighted limits gives
us the following isomorphism for powers

t(K, t(J, D)) ∼= t(J ⊗K, D),

where J, K ∈ V and D ∈ M. The dual statement for weighted colimits has the
corollary that

K � (J �D) ∼= (K ⊗ J)�D.

For another important application, let j : B→ A be a functor and let a : B→ A

be a constant functor at some object a ∈ A. Let D : B→M be a diagram. As we
saw above, colimj•D is the left Kan extension LanjD of D along j. An a• weighted
colimit is precomposition, so

colima•colimj•D ∼= (LanjD)(a),

the left Kan extension of D along j evaluated at a ∈ A. The Fubini isomorphism

colima•colimj•D ∼= colimj•⊗a•D

tells us that Kan extensions can be calculated pointwise.



WEIGHTED LIMITS AND COLIMITS 9

References

[1] M. Kelly, Basic Concepts of Enriched Category Theory,Reprints in Theory and Applications
of Categories, No. 10, 2005.

[2] S. Mac Lane, Categories for the Working Mathematician, Second Edition, Graduate Texts

in Mathematics 5, Springer-Verlag, 1997.

Department of Mathematics, University of Chicago, 5734 S. University Ave., Chicago,
IL 60637

E-mail address: eriehl@math.uchicago.edu


