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Abstract—In this paper, we investigate the application of itera-
tive decoding algorithms to error correction of cyclic redundancy
check (CRC) codes widely used in low-energy communication
standards. We consider the case when traditional error correction
codes are not available due to energy constraints at the transmit-
ter. Using the CRC-24 code adopted by the Bluetooth Low Energy
standard as an example, we show how two iterative techniques
traditionally used for decoding of low-density parity check codes -
Belief Propagation (BP) and the Alternating Direction Method of
Multipliers (ADMM) - can be applied to the high-density parity
check matrix of the code. The performance of both techniques
is evaluated through simulation, and it is demonstrated that a
gain of up to 1.7 dB in terms of the SNR per bit and a total
reduction of the packet error rate by more than 70% can be
achieved compared with the non-correction scenario, at no extra
cost for the transmitter. We also compare the two techniques
and use the standard syndrome look-up method as a benchmark.
Both schemes enable the correction of multiple errors, with the
ADMM-based decoder demonstrating better overall performance
than BP.

I. INTRODUCTION

Since their invention by W. Peterson in 1961 [1], CRC codes
have been widely used in various communication systems to
provide data integrity. More recently, CRC codes were em-
ployed by a number of low-energy communication standards
such as Bluetooth Low Energy [2] and IEEE 802.15.4. The
popularity of CRC codes is due to their simple hardware
implementation and excellent error detection properties.

While CRC codes are traditionally used for error detection
only, they have an inherent error correction potential due to
redundancy they introduce to transmitted data. Even if a small
number of bit errors were corrected in the receiver, it would
reduce the number of retransmissions and therefore the energy
wasted by the transmitter. This is especially important for cases
when the energy of the transmitter is constrained, while some
additional energy and computational power is available for the
receiver.

Some error correction techniques for CRC codes have
been proposed over the years. A simple look-up algorithm
correcting all single errors was described by the inventors in
[1]. More sophisticated look-up techniques correcting some
of double-error codewords were also developed [3]. However,
all these techniques aim at correcting a particular number of
errors. To the best of knowledge of the authors, no unified
approach has been proposed to correct an arbitrary number of
errors, limited only by the error-correction capabilities of the
code itself.

Many state-of-the-art error correction codes employ iterative
decoding algorithms. One of those algorithms, known as belief
propagation (BP), was originally developed for low density
parity check (LDPC) codes [4], a special type of linear codes
that has a sparse parity check matrix. In general, BP can
be applied to any linear code, but its performance will be
determined by the presence of short cycles on the code’s
Tanner graph. CRC codes, while being linear, usually have a
dense parity check matrix with a high number of short cycles.
In [5] and [6], the authors proposed a technique to eliminate
short cycles from any linear code, demonstrating the results on
Hamming and Reed-Solomon codes. The same technique can
be applied to CRC codes, making them suitable to BP-based
error correction.

As an alternative to BP, the decoding of a linear code
can be viewed as a linear program (LP), the idea that was
first introduced in [7]. This resulted in an algorithm based
on the alternating direction method of multipliers (ADMM)
initially proposed in [8] and applied to LDPC codes in
[9]. Practical and computationally simple modifications were
further developed in [10], [11] and [12]. While the ADMM-
based algorithm has only been investigated in the context of
LDPC codes, it can also be applied to correct errors for any
linear code, such as a CRC one.

In this paper, we apply both decoding algorithms to the
problem of error correction of a CRC code in a situation when
no additional signal processing is available in the transmitter.
To the best of our knowledge, no iterative decoding techniques
have been investigated in the context of CRC codes before.
Compared with the previous work on CRC error correction, we
do not impose any limits on how many errors can be corrected.

The remainder of the paper is organized as follows. In
Section II, a CRC-based communication system is presented,
and a brief description of the CRC-24 code employed by the
Bluetooth Low Energy standard is given. In Section III, the
decoding strategies are described. First, it is shown how the
parity check matrix of the CRC-24 code can be sparsified.
BP and ADMM algorithms are then summarised. Simulation
results are presented in Section IV, followed by Section V that
concludes the paper.

II. SYSTEM DESCRIPTION

Fig. 1 depicts a general CRC-based communication system.
Prior to transmission, each packet is processed by a systematic
CRC encoder which adds redundant bits to the packet. For
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Fig. 1. CRC-based communication system.

the BLE CRC-24 code, the encoder adds 24 redundant bits
to 312 data bits such that the length of the encoded packet is
336 bits1. The generator polynomial of the CRC-24 has the
following form [2]:

g(x) = x24 + x10 + x9 + x6 + x4 + x3 + x+ 1. (1)

At the receiver, CRC check is performed over each group
of 336 demodulated bits by calculating a syndrome. This can
be expressed in terms of the parity check matrix H of the
code that can be obtained from its generator polynomial as
s = Hr, where s is the syndrome and r is the received vector
of demodulated bits. If s is a zero vector, the corresponding
packet is correct. If at least one element of s is non-zero, the
packet contains errors and is discarded.

The system between the output of the CRC encoder and
the input of the CRC check block in Fig. 1 can be viewed
as a binary symmetric channel (BSC). The probability of bit
error, or the crossover probability, of such a channel can be
computed as

p = Q
(√

2Eb/N0

)
, (2)

where Eb/N0 is the equivalent signal to noise ratio (SNR)
calculated per bit and Q is the Q-function defined as

Q(x) = Pr [N (0, 1) > x] =
1

2π

ˆ ∞
x

e−t
2/2dt, . (3)

whereN (0, 1) is a Gaussian random variable with a zero mean
and the variance equal to one.

The parity check matrix H and the equivalent channel model
described by (2) will now be used to introduce and simulate
decoding algorithms.

III. DECODING

It is known that the performance of iterative decoding
techniques such as BP applied to a general linear code is
affected by the presence of short cycles on the Tanner graph
of the code [5]. In particular, cycles of length four, or four-
cycles, should be avoided. As shown in [6], the total number
of four-cycles for an m × n parity check matrix H can be
calculated as

m∑
i=1

m∑
j=i+1

((
HHT

)
ij

2

)
. (4)

Based on (4), the number of four-cycles of the BLE CRC-
24 code is 813816. Therefore, direct application of BP would
result in poor decoding performance.

The maximum cycle strategy (MCS) algorithm to sparsify
the parity check matrix of a general linear code by removing
all four-length cycles was presented in [5]. In this algorithm,

1We assume the maximum packet length defined by the BLE standard.

auxiliary variable and check nodes are added to the Tanner
graph for every four-cycle such that all parity check equations
remain intact. Compared with the original approach given in
[6], the MCS algorithm significantly reduces the number of
auxiliary nodes. When applied to the parity check matrix
of the CRC-24 code, the MCS algorithm results in only
276 additional variable and check nodes, making the size of
the sparsified matrix 300 × 612. This matrix does not have
any cycles of length four and therefore iterative decoding
techniques can now be applied.

A. Belief Propagation Decoding

BP decoding in the form of the sum-product algorithm is
a standard approach to decode LDPC codes. We will use the
log-likelihood version of the algorithm presented, for example,
in [13]. The input of the algorithm are the log-likelihood ratios
(LLRs) of the bits at the input of the decoder. For a BSC with
the crossover probability p given in (2), the LLR corresponding
to the i-th received bit ri can be calculated as

γi = (2ri − 1) ln

(
1− p
p

)
. (5)

We note that (5) assumes hard inputs at the decoder, which is
relevant to a practical scenario where CRC error correction is
applied outside the physical layer of the receiver.

For auxiliary variable nodes added after sparsifying the
parity check matrix, the LLRs are set to zeros [6]. After each
iteration, hard decisions are made on the vector of updated
LLRs and the syndrome is calculated using the original, non-
sparse parity check matrix neglecting the bits corresponding
to the auxiliary variables. If the syndrome is a zero vector,
the original packet bits are extracted and the algorithm stops.
The algorithm also stops if a maximum number of iterations
is achieved.

B. ADMM

We begin by showing how a general decoding problem
can be converted to a convex optimisation problem. Let x ∈
{0, 1}N be a codeword transmitted through a memoryless BSC
with the crossover probability defined by (2). Let r ∈ {0, 1}N
be the received vector. We use H to denote the parity check
matrix of the code, which in general can be either the original
matrix or its sparsified version. Let ci, i = 1, .., N be the
degree of the i-th variable node and dj , j = 1, ...,M be the
degree of the j-th check node. Maximum likelihood (ML)
decoding finds a codeword that maximises the probability
p(r|x) that r was received given x was transmitted. Assuming
a memoryless channel, in the log domain this probability can
be expressed as

log p(r|x) = log

N∏
i=1

p(ri|xi) =

N∑
i=1

log p(ri|xi). (6)

By noting that

log p(ri|xi = 1) = γi + log p(ri|xi = 0),



where γi is the LLR for the i-th bit calculated by (5), the ML
problem can be restated as

arg max
x:Hx=0

(
N∑
i=1

[γixi + log p(ri|xi = 0)]

)

= arg max
x:Hx=0

(
N∑
i=1

γixi

)
. (7)

Finally, by introducing a negative LLR γ̄i , −γi, ML
decoding can be converted to a minimisation problem

minimise γ̄Tx, subject to Hx = 0. (8)

In [7], it was shown how the minimisation problem (8)
can be formulated as a linear program (LP) over the convex
hull of all codewords. Using an LDPC code as an example,
it was demonstrated that LP decoding performs similarly to
BP decoding. In addition, it was shown that LP decoding is
guaranteed to produce an ML codeword. However, the compu-
tational complexity of the original LP decoder is much higher
than that of BP, and as a result in [9] the authors introduced a
faster algorithm based on the alternating direction method of
multipliers (ADMM) which was originally developed in [8].
With this modification, the ADMM for ML decoding can be
formulated as follows:

minimise γ̄Tx

subject to∀j, Pjx = zj ,

zj ∈ PPdj . (9)

Here, Pj is the operation of selecting those bits of x that
participate in the j-th check; zj is a replica vector for the
j-th check; PPdj is the parity polytope of dimension dj [9].
Denoting y(x) the objective function to be minimised, the
augmented Lagrangian in the unscaled form [8] for (9) can be
written as

Lµ(x, z, λ) = y(x)+
∑
j

λj(Pjx−zj)+
µ

2

∑
j

‖Pjx− zj‖22 ,

(10)
where µ > 0 is the augmented Lagrangian parameter and
λj is an auxiliary variable. The solution to (9) is an iterative
algorithm with the k-th iteration being

x[k+1] = arg min
x
Lµ(x, z[k], λ[k]), (11)

z[k+1] = arg min
z
Lµ(x[k+1], z, λ[k]), (12)

λ[k+1] = λ
[k+1]
j + µ(Pjx

[k+1] − z[k+1]). (13)

In (11) and (12), the two primal variables - x and z - are
updated in an alternating fashion. Therefore, the ADMM can
be viewed as a message passing algorithm on a graph, with
xi, i = 1, ..., N and zj , j = 1, ...,M being variable and check
nodes respectively.

To improve the performance of the algorithm at low SNRs
and to avoid error floors at high SNRs, a penalty function was

Algorithm 1 ADMM-PD with over-relaxation.
Input: Vector of negative LLRs γ̄ and parity check matrix H.
Output: Decoded vector x.
1: Initialisation: Construct the selection matrix Pj for each
check node j based on H. Initialise λj as the all zeros vector
and zj as the all 0.5 vector.
2: Variable node update: For each variable node i, do:

Calculate z̄j = PT
j z

[k]
j , λ̄j = PT

j λ
[k]
j , ∀j.

Calculate ti =
∑
j

(
z̄j − λ̄j

µ

)
− γ̄i

µ .
Update

x
[k+1]
i ← 1

ci − 2α2
(ti −

α2

µ
).

Project x[k+1]
i onto [0, 1]: x[k+1]

i ← Π[0,1]x
[k+1]
i .

3: Check node update: For each check node j, do:
Calculate

v
[k+1]
j ← ρPjx

[k+1] + (1− ρ)z
[k]
j +

λ
[k]
j

µ
.

Update z
[k+1]
j ← ΠPPdj

(v
[k+1]
j ).

Update

λ
[k+1]
j ← λ

[k]
j + µ

[
ρPjx

[k+1] + (1− ρ)z
[k]
j − z

[k+1]
j

]
.

4: Make a tentative hard decision on x[k+1]: if x[k+1]
i ≥ 0.5,

x̂i = 1; otherwise x̂i = 0.
5: If Hx̂ = 0, then return x = x̂. Otherwise, if k + 1 is
smaller then the maximum number of iterations Tmax, do k ←
k + 1 and loop to Variable node update. Otherwise, declare
decoding failure and Stop.

introduced in [10] such that the modified objective function
y(x) can be rewritten as

γ̄Tx +
∑
i

f(xi), (14)

where f : [0, 1] 7→ R ∪ {±∞} is a penalty function. Two
penalty functions are proposed in [10]:

f1(x) = −α1 ‖x− 0.5‖1 , (15)

f2(x) = −α2 ‖x− 0.5‖22 . (16)

They are called l1 and l2 penalty functions respectively, with
α1, α2 > 0 being the penalty coefficients. As shown in [10],
the l2 penalty function provides better PER performance than
the l1 penalty function.

To finalise the algorithm, we also adopt the over-relaxation
technique advocated in [8] to improve decoding convergence.
Denoting ρ > 1 the over-relaxation parameter, the ADMM-PD
algorithm with with the l2 penalty function is summarised in
Algorithm 1.

In the update for zj in Algorithm 1, ΠPPdj
(·) is the projec-

tion onto the parity polytope PPdj [9]. In our implementation,
we use the original projection algorithm proposed by [9]. More
computationally effective techniques were derived in [11] and
[12].



It can be observed that the ADMM-PD algorithm has
four parameters: the augmented Lagrangian parameter µ, the
penalty coefficient α (for a given penalty function), the over-
relaxation parameter ρ and the maximum number of iterations
Tmax. Investigation into the selection of these parameters for
some LDPC codes and the AWGN channel was carried out in
[10], resulting in the following recommendations:
• µ ∈ [3, 5] provide optimal results for both the l1 and l2

penalty functions;
• α1 = 0.6 and α2 = 0.8 are good choices for the l1 and
l2 penalty functions respectively;

• ρ = 1.9 is optimal for decoding performance and con-
vergence;

• Increasing Tmax improves the probability of error cor-
rection, at the expense of decoding speed; up to 1000
iterations are usually considered.

As noted in [10], however, the ADMM-PD algorithm is rather
sensitive to parameters settings, and extra care should be
taken when selecting the parameters for a particular code and
channel.

IV. SIMULATION RESULTS

In this section, we demonstrate the performance of BP and
ADMM decoding applied to the CRC-24 code operating in
the BSC based on Monte Carlo simulation. The total number
of encoded bits is 336, corresponding to the maximum packet
size defined by BLE and the worst case scenario from the error
correction point of view. BP decoding is implemented as the
sum-product algorithm in the log-likelihood domain [13]. The
ADMM-based decoder is implemented as the ADMM-PD al-
gorithm with the l2 penalty function according to Algorithm 1.
The ADMM-PD parameters were selected as described in the
previous section, with the exception of the penalty coefficient
and the over-relaxation parameter: we noticed that α2 = 1 and
ρ = 1.8 provide better performance for the CRC-24 code than
the values recommended in [10].

Fig. 2 illustrates the PER performance of the two decoders
as a function of the equivalent SNR per bit Eb/N0 of the
BSC (2), for two values of the maximum number of decod-
ing iterations Tmax, 200 and 1000. The PER without error
correction is plotted as a reference. Both ADMM-based and
BP decoders iterate until either a correct codeword is found
or the maximum number of iterations is achieved. It can be
observed that when Tmax = 200, the BP decoder outperforms
the ADMM in the high SNR region by up to 0.5 dB. At the
same time, when Tmax is increased to 1000, the ADMM-
based decoder provides better performance. To illustrate this
further, Table I lists the probability of successful correction,
or success rate, for different numbers of errors per packet.
For the ADMM decoder, the success rate rises significantly
when Tmax is increased to 1000, while for the BP decoder
the benefit is almost negligible. Based on Table I, it is clear
that the ADMM-based decoder is superior in terms of single-
and double-error packets. Both decoders fail to correct more
than four errors per packet due to the high code rate used in
the simulation. All in all, it can be seen that error correction
enables up to 1.7 dB benefit in terms of Eb/N0 and 72% total
reduction in the PER.
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Fig. 2. PER performance of ADMM and BP decoding of the CRC-24 code
in the BSC.

Table I
CORRECTION SUCCESS RATE FOR DIFFERENT NUMBERS OF ERRORS.

# of bit errors ADMM 200 ADMM 1000 BP 200 BP 1000

1 98.2% 100% 99.3% 99.5%
2 11.2% 24.2% 13.1% 13.2%
3 0% 0.2% 0.6% 0.6%
4 0% 0% 0.1% 0.1%

Total: 68.2% 72.3% 70.7% 70.7%

Fig. 3 shows the success rate of each decoder for each
SNR point. It can be observed that in the low and mid SNR
regions, the ADMM-based decoder can correct more packets,
even when Tmax = 200 . The BP decoder performs especially
poorly when the SNR is low. It can also be seen that at high
SNRs, the ADMM-based decoder benefits significantly from
the increase in Tmax, while the gain is only marginal for
the BP decoder at all SNR points. Both Fig. 2 and Fig. 3
suggest that although the ADMM-based decoder converges
slower, in the end its probability of successful correction is
higher than that of the BP decoder. This fully agrees with
the theoretical results presented in [7] which claim that the
ADMM is guaranteed to produce the optimum (i.e. ML)
codeword.

Finally, Fig. 4 shows how the iterative decoders perform
compared with the look-up method that can correct all single-
error packets. The number of corrected packets relative to the
number of single-error packets for each SNR point is shown.
In line with the previous plot, the BP decoder performs very
poorly in the low SNR region, with the look-up method being
able to correct up to 10 times more packets. Quite the opposite,
the ADMM-based decoder can correct up to two times as
many packets as the look-up method when the SNR is small.
At high SNRs, the performance of all decoders is the same,
since single-error packets prevail in that region. This suggest a
hybrid error correction scheme, where the ADMM decoder is
used at low and medium SNRs and the simple look-up method
to correct all single-error packets at high SNRs.

It should be noted that the simulation results presented in
this paper for the ADMM-based decoder were obtained for one
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set of the ADMM-PD parameters and one particular penalty
function. This suggests that there is some potential for further
improvement of the ADMM-based error correction, especially
in terms of convergence and the probability of correction of
multiple-error packets.

Comparison between the ADMM and BP decoders in terms
of their computational complexity is not presented in this
paper. The interested reader is referred to [11], where the
authors showed that the ADMM algorithm is faster than BP
for the same PER performance.

V. CONCLUSIONS

In this paper, we apply iterative decoding methods to CRC
codes in a situation when no additional encoding can be
done in the transmitter, exploiting the redundancy provided
by the codes themselves. The CRC-24 code employed by
the Bluetooth Low Energy standard is used as an example.
Two different iterative strategies are investigated - the classical
belief propagation, and a relatively new algorithm based on
convex optimisation in the form of the alternating direction
method of multipliers. Both strategies are traditionally ap-
plied to low-density parity check codes, so the problem of

sparsifying the parity check matrix of the CRC-24 was first
investigated, with the emphasis being put on the elimination
of cycles of length four on the code’s Tanner graph. It was
shown how all such cycles can be eliminated and an equivalent
representation of the parity check matrix of the CRC-24 code
can be obtained, without a significant increase in its size.
Simulations showed that the ADMM-based decoder has an
advantage over the BP decoder both in terms of the SNR per
bit and the number of packets corrected. This advantage is
particularly clear in the low SNR region, where the probability
of successful correction of the ADMM-based method is several
times higher than that of the BP decoder. Both methods were
also compared with the syndrome look-up algorithm that is
able to correct all single-error packets. Due to its ability to
correct multiple errors, the ADMM-based decoder showed
a better correction rate than the look-up method in the low
SNR region. Overall, CRC error correction enabled up to
1.7 dB benefit in terms of the SNR per bit and 72% total
reduction in the PER, with no extra cost for the transmitter.
This can significantly reduce the number of retransmissions,
therefore increasing the energy efficiency of the transmitter.
One of the potential applications of CRC error correction is
energy-efficient communication in wireless sensor networks,
where reliability can be improved by introducing additional
processing at the receiver.
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