
DOT/FAA/AR-06/35

Air Traffic Organization
Operations Planning
Office of Aviation Research
and Development
Washington, DC 20591

Software Development Tools for
Safety-Critical, Real-Time Systems
Handbook

June 2007

Final Report

This document is available to the U.S. public
through the National Technical Information
Service (NTIS), Springfield, Virginia 22161.

U.S. Department of Transportation
Federal Aviation Administration

NOTICE

This document is disseminated under the sponsorship of the U.S.
Department of Transportation in the interest of information exchange. The
United States Government assumes no liability for the contents or use
thereof. The United States Government does not endorse products or
manufacturers. Trade or manufacturer's names appear herein solely
because they are considered essential to the objective of this report. This
document does not constitute FAA certification policy. Consult your local
FAA aircraft certification office as to its use.

This report is available at the Federal Aviation Administration William J.
Hughes Technical Center's Full-Text Technical Reports page:
actlibrary.tc.faa.gov in Adobe Acrobat portable document format (PDF).

 Technical Report Documentation Page
1. Report No.

DOT/FAA/AR-06/35

2. Government Accession No. 3. Recipient's Catalog No.

5. Report Date

June 2007

 4. Title and Subtitle

SOFTWARE DEVELOPMENT TOOLS FOR SAFETY-CRITICAL, REAL-TIME
SYSTEMS HANDBOOK 6. Performing Organization Code

7. Author(s)

Andrew J. Kornecki
8. Performing Organization Report No.

10. Work Unit No. (TRAIS)

9. Performing Organization Name and Address

Department of Computer and Software Engineering, College of Engineering
Residential Campus
Embry-Riddle Aeronautical University
600 S. Clyde Morris Boulevard
Daytona Beach, FL 32114-3900

11. Contract or Grant No.

DTFA0301C00048

12. Sponsoring Agency Name and Address

U.S. Department of Transportation
Federal Aviation Administration
Air Traffic Organization Operations Planning
Office of Aviation Research and Development
Washington, DC 20591

13. Type of Report and Period Covered

Final Report
February 2005-September 2005

14. Sponsoring Agency Code

 AIR-130
15. Supplementary Notes

The Federal Aviation Administration Airport and Aircraft Safety R&D Division COTR was Charles Kilgore.
16. Abstract

Since the early years of computing, programmers, system analysts, and software engineers have sought ways to improve the
efficiency of the development process. Software development tools are programs that help software developers create other
programs or documentation. Their objective is to automate mundane operations and bring the level of abstraction closer to the
application engineer. In practice, software development tools have been in wide use among safety-critical system developers.
Examples of such use, in addition to aviation, include automotive, space, nuclear, railroad, medical, and military applications.
This Handbook is directed to the aviation industry and the Federal Aviation Administration to facilitate use of software
development tools on airborne projects developed under DO-178B certification criteria. This Handbook outlines the issues to be
considered while using development tools on software-intensive airborne systems in a regulated industry and formulates questions
applicable to related DO-178B objectives. This Handbook also addresses the progress of modern software engineering and its
impact on the safety-critical software development process and products.

17. Key Words

DO-178B, DO-248B, Software development tools, Safety-
critical systems, Tool assessment, Software development life
cycle, Tool qualification

18. Distribution Statement

This document is available to the public through the National
Technical Information Service (NTIS) Springfield, Virginia
22161.

19. Security Classif. (of this report)

 Unclassified

20. Security Classif. (of this page)

 Unclassified

21. No. of Pages

 39
22. Price

Form DOT F1700.7 (8-72) Reproduction of completed page authorized

TABLE OF CONTENTS

Page

EXECUTIVE SUMMARY vii

1. INTRODUCTION 1

1.1 Purpose and Scope 1
1.2 Background 1
1.3 Audience 1
1.4 Document Structure 2
1.5 Using the Handbook 2

2. DO-178B FRAMEWORK 2

2.1 Definitions and Interpretations 3
2.2 Need for Qualification 4
2.3 Qualification Process 5
2.4 Development Tool Software Versus Target Software 6

3. USE OF TOOLS ON CERTIFIED PROJECTS 8

3.1 Types of Development Tools 8
3.2 Control Versus Software Paradigm 9

3.2.1 Structural-Based Software Design and Modeling Tools 10
3.2.2 Functional-Based Software Design and Modeling Tools 10

3.3 Development Tool Operations 11

4. ISSUES 11

5. FUTURE TRENDS 14

6. COMMENTS AND QUESTIONS ABOUT DEVELOPMENT TOOLS 15

6.1 Qualification Criteria 15
6.2 Qualification Data 18
6.3 Tool Operational Requirements Questions 18
6.4 General DO-178B Questions 19
6.5 Tool Evaluation: Concerns and Questions 27

7. SUMMARY 28

8. REFERENCES 30

iii

LIST OF TABLES

Table Page

1 Criteria Applicable to Development Tool Qualification 16
2 Data Required for Development Tool Qualification 18
3 Evaluating Acceptability of TOR 19
4 DO-178B Statements Related to the Development Tools 20
5 Software Development Tool Qualification—Evaluation Matrix 27

iv

LIST OF ACRONYMS

AC Advisory Circular
ACG Automatic code generation
CAST Certification Authorities Software Team
CI Configuration index
COTS Commercial off-the-shelf (software or hardware)
DER Designated engineering representative
FAA Federal Aviation Administration
HLR High-level requirements
LLR Low-level requirements
MBD Model-based development
OS Operating system
PSAC Plan for software aspects of certification
RTCA formerly Radio Technical Commission for Aeronautics
SAS Software accomplishment summary
SC Special committee
SCM Software configuration management
SLCE Software Life Cycle Environment
SQA Software quality assurance
TOR Tool Operational Requirements
TQAS Tool qualification accomplishment summary
TQDD Tool qualification development data
TQP Tool qualification plan
TVR Tool verification record

v/vi

EXECUTIVE SUMMARY

Safety-critical, real-time systems, prominent in the aviation industry, continue to become more
complex. They often operate in uncertain environments and must provide reliability, fault
tolerance, and deterministic timing guarantees. The software for such systems may be developed
using a variety of tools that must be selected to meet the needs of each specific project.

Software development tools are programs that help developers create software development
artifacts (documentation, design models, source code, machine/assembly code, downloadable
binary files, memory tables, etc.). Their objective is to automate mundane translation and
document creation operations and bring the level of abstraction closer to the application
engineer. In practice, software development tools have been in wide use among safety-critical
system developers. Examples of such use, in addition to aviation, include automotive, space,
nuclear, railroad, medical, and military applications.

The main objective of this Handbook and its related research project is to assess the evolving
nature of software development tools for safety-critical, real-time systems and to identify how
the changing nature and importance of these tools may need to be considered in the preparation
of today’s (and tomorrow’s) guidelines for tool qualification and their use in systems
certification. The Handbook organizes criteria that allow both developers and certifying
authorities to evaluate specific software development tools from the system/software safety
perspective with respect to their use in aviation systems undergoing the certification process.
The long-term objective is to provide a basis for future software development tool qualification
guidelines.

This Handbook is directed to the aviation industry and the Federal Aviation Administration to
facilitate use of software development tools on airborne projects developed under DO-178B
certification criteria. It outlines the issues to be considered while using development tools on
software intensive systems in a regulated industry and formulates questions applicable to related
DO-178B objectives. The Handbook also addresses the progress of modern software
engineering and its impact on the safety-critical software development process and products.

vii/viii

1. INTRODUCTION.

1.1 PURPOSE AND SCOPE.

This Handbook, produced under a contract sponsored by the Federal Aviation Administration
(FAA), is designed to identify assessment criteria that allow developers and certifying authorities
to evaluate specific safety-critical, real-time software development tools from the
system/software safety perspective.

The scope of this Handbook has been limited to software development tools that have been used,
or have a potential to be used, in airborne applications. The FAA Advisory Circular (AC) 20-
115B [1] introduced the principal document guiding software consideration for airborne systems,
DO-178B [2], which defines a software tool as: “A computer program used to help develop, test,
analyze, produce or modify another program or its documentation. Examples are an automated
design tool, a compiler, test tools and modification tools.” Subsequently, the document defines
software development tools as: “Tools whose output is part of airborne software and thus can
introduce errors.” The software development tools are the focus of this research. The Handbook
concentrates on development tools providing translation of design solutions into a readable
version of computer code in one of the high-level language notations.

1.2 BACKGROUND.

The market of commercial software development tools is rather volatile and confusing to the
developers. It often happens that, even within the same organization, one division may not be
aware of the tools, either commercial off-the-shelf (COTS) or in-house developed, that are used
in another division. The tools may produce artifacts in a variety of formats, requiring manual
and often error-prone translation of data between the tools. The developers may face a variety of
problems in an attempt to create a consistent description of the system/software properties. It
should also be stressed that many general-purpose, computer-aided software engineering tools
were created without understanding of or considering the DO-178B process, practically
preventing tool qualification under the current guidelines. The associated research report, DOT-
FAA/AR-06/36, “Assessment of Software Development Tools for Safety-Critical, Real-Time
Systems,” describes these issues while presenting the state-of-the-art in software development
tools (as of 2003) used in safety-critical, real-time systems and providing ideas for future
software development tool qualification guidelines.

1.3 AUDIENCE.

The Handbook is primarily intended for use by the Designated Engineering Representatives
(DER) and Aircraft Certification Office engineers directly involved in the certification process
and the certification authorities engaged in the development of policy and guidance. In addition,
the Handbook will also likely be of interest to program and procurement managers, project
leaders, system and software engineers, and all others directly involved in implementing
software-intensive, safety-critical, real-time systems.

1

1.4 DOCUMENT STRUCTURE.

The Handbook consists of the following sections:

• Section 1 provides introductory material including the purpose and scope, background,

audience, and directions for use.

• Section 2 includes the frame of reference based on DO-178B. It describes the key
definitions and discusses development tool qualification process. It also addresses the
differences between tool software and target application software.

• Section 3 presents the analysis of development tools on certified projects and discusses
the tool categories and their operations.

• Section 4 focuses on the issues related to use of development tools, namely the model-
driven development methodology and code generation.

• Section 5 outlines the future trends in the application of development tools.

• Section 6 is the main body of the Handbook, which includes several tables with practical
comments and questions to support certification activity on projects using development
tools.

• The summary in section 7 and references in section 8 close the main body of the
Handbook.

1.5 USING THE HANDBOOK.

The Handbook has been designed to help the aviation industry and certifying authorities handle
situations when in-house developed or COTS software development tools are used on a safety-
critical, real-time system developed under DO-178B guidelines. The starting point is to review
sections 2 to 5 of the Handbook to rediscover the issues related to the software development
tools and their qualification, and to review the tool use from the broader modern software
development perspective. Section 6 provides a practical collection of issues and questions to be
raised when developing/reviewing a project which uses software development tools.

Note: This Handbook is the result of and complements the related research effort. It does not, in
and of itself, constitute policy or guidance. The FAA may use this Handbook in the creation of
future policy or guidance.

2. DO-178B FRAMEWORK.

In 1980, the Radio Technical Commission for Aeronautics, now RTCA, convened a special
committee (SC-145) to establish guidelines for developing airborne systems and equipment
software. They produced a report: “Software Considerations in Airborne Systems and
Equipment Certification,” which was subsequently approved by the RTCA Executive Committee
and published in January 1982 as RTCA document DO-178. After gaining further experience in

2

airborne software certification, the RTCA decided to revise the previously published document.
Another committee (SC-152) drafted DO-178A, which was published in 1985.

Due to rapid advances in technology, the RTCA established a new committee (SC-167) in 1989.
Its goal was to update, as needed, DO-178A. SC-167 focused on five major areas:

• Documentation integration and production
• System issues
• Software development
• Software verification
• Software configuration management (SCM) and software quality assurance (SQA)

The resulting document, DO-178B, provides guidelines for these areas. Also, a key addition to
this updated version was the concept of tool qualification.

Subsequently, two other documents were created that have a critical bearing on the subject.
RTCA DO-248B [3] clarifies some of the material in DO-178B. FAA Order 8110.49 [4]
compiles a variety of guidelines related to the use of software in airborne systems. Specifically,
chapter 9 is dedicated to tool qualification.

2.1 DEFINITIONS AND INTERPRETATIONS.

The interpretation of the term tool qualification might vary from one organization to another.
According to the definition given in DO-178B:

“Tool Qualification - The process necessary to obtain certification credit for a software
tool within the context of a specific airborne system.”

While:

“Certification credit - Acceptance by the certification authority that a process, product or
demonstration satisfies a certification requirement.”

Explanation of the purpose and the need for tool qualification (DO-178B, Section 12.2):

“The objective of the Tool Qualification is to ensure that the tool provides
confidence at least equivalent to that of the process(es) eliminated, reduced, or
automated.”

“A tool may be qualified only for use on a specific system …Use of the tool for
other systems may need further qualification.”

“Only those functions that are used to eliminate, reduce, or automate software life
cycle process activities, and whose outputs are not verified, need be qualified.”

Tool Qualification is a supplementary process the applicant may elect to follow in a course of
certification for the airborne system. It is the certification authority that decides the outcome of

3

the qualification process. Moreover, qualification, if claimed, is considered as a requirement to
get the system certified. There is a significant amount of work involved to qualify a
development tool. Note that numerous development tools have been used successfully in
certification projects without being qualified.

One often-repeated statement regarding development tool qualification is the requirement that
“only deterministic tools can be qualified.” The DO-178B refers to tool determinism as “…
tools which produce the same output for the same input data when operating in the same
environment.” This definition does not take into account how the output is generated. One may
interpret that it is not required to provide proof on the internal behavior of the tool. An example
of this can be found in a tool running on a host workstation in a multitasking, multiuser,
networked environment. The problem is one of defining the object code for the tool. Does it
include the operating system (OS) of the host workstation? A tool clearly needs to make explicit
calls to the OS routines, and any verification of these would require full visibility of the host OS
and related high assurance of its operation.

A recommendation on this subject could be: If the usage of OS routines is necessary for a tool,
such routines should be identified and verified. The tool software structural coverage analysis at
source level must include the coverage of these calls. Any activity on the object code level
would include the impact of compiler and demonstration of traceability to the object code level
for multitasking. Pipelined architecture with multilevel processor cache may be too difficult to
verify.

DO-248B section 3.61 introduces the question: “What constitutes a development tool and when
should it be qualified?” The interpretation, based on section 12.2 of DO-178B, provides the
following answer: “Examples of tools are: compilers, automated code generators, linkers, GUI
builders, automated database construction, and graphical modeling tools that generate source
code.” Such tools all have something in common: they take one artifact as input and produce
another as an output. They are basically translators.

The problems with development tool qualification typically originate from the fact that the
modern tool—typically a complex software development environment—has the translation
component hidden deeply within the tool. These tools usually provide a variety of other
functions, which are not directly related to the translation process. This is why the qualification,
if applicable, should be focusing on this translation component of the tool functionality. In
practice, the actual translation algorithm is considered intellectual property and rarely can be
disclosed. There is no data available on the requirements, design, or code for this internal tool
feature. Unless the tool is of an in-house variety, or the details of its design can be disclosed, the
qualification efforts are most likely doomed.

2.2 NEED FOR QUALIFICATION.

Typical use of a software development tool—called a software producer—is to transform an
input artifact into an output, thus creating another software artifact. Is there a need to qualify the
translating software for every step in the lifecycle? If this transformation has an impact on the
final airborne product, the producer needs to be qualified, but only if the transformation output
would not be verified. The current process mandates verification after each transformation.

4

Hence, there are no incentives to expend a significant effort on qualification of the development
tool when a much smaller effort on output verification leads to the same outcome.

FAA Order 8110.49 describes conditions when a tool requires qualification:

“There are three questions to ask to determine if a tool needs qualification. If the
answer is “Yes” to all of the questions below, the tool should be qualified:

(a) Can the tool insert an error into the airborne software or fail to detect an

existing error in the software within the scope of its intended usage?

(b) Will the tool’s output not be verified as specified in Section 6 of DO-
178B?

(c) Are processes of DO-178B eliminated, reduced, or automated by the use
of the tool? That is, will the output from the tool be used to either meet an
objective or replace an objective of DO-178B, Annex A?”

The business case might be made for qualification if it would be possible to qualify a tool one
time, to be used on multiple projects. However, the current language of DO-248B states:

“The certification authority considers the software as part of the airborne system
or equipment installed on the certified aircraft or engine; that is, the certification
authority does not approve the software as a unique, stand-alone product.”

This is interpreted that no software, and by extension no software development tool, could be
certified or qualified by itself. Software must be associated with a specific certified airborne
system. Contrarily, FAA Order 8110.49, chapter 12 and AC 20-148 [5] on reusable components
promote the need for reusability of software components, as well as tools. However, the current
practices of not packaging tool data separately, lack of comprehensive tool lifecycle
documentation, and close coupling of the tool and the application make reusability much less
feasible.

2.3 QUALIFICATION PROCESS.

Tool qualification is permitted only for a tool used as part of a specific certification project, e.g.,
part of a Type Certificate, Supplemental Type Certificate, or Technical Standard Order approval.
The tool data are referenced within the Plan for Software Aspects of Certification and Software
Accomplishment Summary (SAS) documents for the original certification project. The applicant
should make the Tool Operational Requirements (TOR) available for review. The TOR
describes tool functionality, environment, installation, operation manual, development process,
and expected responses (also those in abnormal conditions). Two tool-specific documents must
be submitted: Tool Qualification Plan (TQP) and Tool Qualification Accomplishment Summary
(TQAS) (FAA Order 8110.49, chapter 9). To support qualification, the applicant must
demonstrate that the tool complies with its TOR under both normal and abnormal operating
conditions. This demonstration may involve a trial period during which a verification of the tool
output is performed and tool-related problems are analyzed, recorded, and corrected. The

5

document also states that software development tools should be verified to check the correctness,
consistency, and completeness of the TOR and to verify the tool against those requirements.
More data are required for the qualification of a development tool, including tool configuration
management index, TQAS, tool development data, tool verification data, tool quality assurance
records, tool configuration management records, etc. These requirements are also described in
chapter 9 of the FAA Order 8110.49. The tool qualification development data (TQDD) are
approved only in the context of the overall software development for the specific system where
the intention to use the tool is stated in the PSAC. The tool itself does not receive a separate
qualification stamp of approval. Use of the tool for other systems may need a separate
qualification, although some qualification credits may be reused.

The following steps are required:

a. The developer creates and submits to the Certification Authority the PSAC document

including specific reference to the TQP document.

b. The developer must specify as part of airborne product PSAC the intent to use the
development tool with references to the tool data, TQP, and baseline qualification
approach.

c. The TOR document, which includes references to the qualification tests conducted to
prove that the tool operates correctly and reliably in the development environment, is
made available to the Certification Authority.

d. To complete the certification process, the SAS document references the TQAS, which in
turn is based on the tool verification record (TVR) and the TQDD with the tool-related
data including tool software design, code, test cases and procedures, and the references to
the activities for evaluating the qualification variables on the avionic hardware and the
software platforms.

e. The qualification process is complete when the submitted TQP and TQAS documents are
approved as evidence that the tool complies with the TOR under normal and abnormal
operation conditions. The TOR, TVR, and TQDD documents must be available for
review. Additional documents, such as tool version description, configuration index (CI),
requirements document, verification procedures and results, may be also required.

2.4 DEVELOPMENT TOOL SOFTWARE VERSUS TARGET SOFTWARE.

The main difference between tool software and embedded target software is that the tool does
not execute on embedded hardware. Typically, the tool operates in a general-purpose
workstation environment. The tool is not embedded, and instead, it runs typically under
conventional COTS operating system. In fact, the development tool may be considered a
ground-based system, and the critical consideration for the tool is the integrity and correctness of
the generated artifact. In this respect, the tool software is similar to software used in ground-
based systems.

6

In the case of embedded software, if untested (and faulty) code is executed, the behavior of the
software could be erroneous, which could impact the system behavior and ultimately system
safety. A consequence of an unintended activation of untested code for a tool may have a safety
consequence only when erroneous code would be generated for future use on the target. To
avoid this impact, one of the development tool requirements must be to generate code only in
normal situations.

By definition, the tool’s output has an impact on the target software. Thus, it is imperative to
ensure the correctness of a tool’s output. Typically, there are no constraints related to timing as
long as the correct output will be produced. However, for example, the development tool may
exhibit errors and even crash during development due to OS hang-up or an outside factor (e.g.,
network traffic, virus). The code produced before the crash can still be correct for use in the
airborne system. Current DO-178B wording does not seem to consider the distinction between
errors exhibited in the development environment and errors exhibited in the target airborne
environment. Future guidelines should consider these characteristics using approaches
elaborated in DO-278 [6], which addresses nonairborne Communications, Navigation,
Surveillance, and Air Traffic Management systems and in DO-200A [7], which describes
processing of aeronautical data.

The objectives of the development tool’s software verification process are different from those of
the verification process for target software. The tool’s high-level requirements (HLR)
correspond to the TOR rather than the requirements of the target system. Verification of
software development tools may be achieved by (a) review of the TOR and demonstration that
the tool complies with its TOR under both normal and abnormal operating conditions (in the
latter case it is not producing output which could be used in the target software), (b)
requirements-based testing and structural coverage analysis, as appropriate, and (c) analysis of
potential errors produced by the tool.

According to the collected industry feedback, the following DO-178B requirement for the
development tool is overly restrictive:

“If a software development tool is to be qualified, the software development
processes for the tool should satisfy the same objectives as the software
development processes of airborne software.”

This requirement implies that the qualification process for a development tool is the DO-178B
process itself. The existing wording of DO-178B (section 12.2) and its further elaboration in
FAA Order 8110.49 (chapter 9) states that for a software development tool to be qualified, the
software development processes for the tool should satisfy the same objectives as the software
development processes of the target airborne software. To soften this restriction, the guidelines
allow applicants reduction of the software level, e.g., from level A to B. The document
postulates that such reduction must be justified, while leaving wide open the interpretation on
how such justification is to be made.

7

3. USE OF TOOLS ON CERTIFIED PROJECTS.

Due to various issues, including intellectual property and competitive advantage, there is no
central repository that maintains records of previously qualified tools. Only the applicant, who
qualified a tool within the scope of a specific certification project, retains the necessary data.
The research team made attempts to identify software development tools that have been qualified
and found only a handful. In addition, the obtained information was anecdotal based on personal
contacts and word of mouth rather than documented in a way that the research team could
examine in detail.

The research discovered that industry uses numerous simple tools of rather limited functionality,
which are developed in-house and which often are considered as an integral component of the
applicant project in terms of the certification activities. Such tools typically (a) support a simple
function like translating software artifact from one format to another, (b) are executed from a
command line or have a very simple interface, and (c) their documentation is not publicly
available. Due to intellectual property constraints and business practices, it is rather difficult to
obtain specific information about such tools.

Commercial tools are typically multifunctional development environments with very
sophisticated graphical interfaces. In the limited instances when a commercial tool has been
qualified, the actual qualification was limited to single functionality of the tool (e.g., code
generator). Certainly, the vendor and the applicant had to build a close relationship that allowed
applicants detailed access to tool intellectual property and cooperation in supporting claims for
satisfying the DO-178B objectives. Generic data about tools are abundant; however, the access
to the qualification data is again restricted.

3.1 TYPES OF DEVELOPMENT TOOLS.

Modern tools are rather complex and may be categorized in a variety of ways. Since these
categories may overlap, a single tool may belong to a number of categories. The following list
identifies tool categories by functionality and provides examples of specific functionalities that
they provide:

• The requirements category includes tools used early in the life cycle to identify and

specify the software requirements. Also included are the tools that help determine the
correctness of the requirements using semiformal models, even though some could argue
that such tools belong more to the analysis category (functionality examples: definition,
specification, interface analysis, requirements formal modeling, properties verification,
traceability, version management, etc.).

• The analysis category includes tools used for analysis of software behavior and timing,
typically before and after the product is developed. Since aviation software is always
developed within the system context, analysis tools typically deal with the system
requirements and performance (functionality examples: throughput, timing, sizing,
simulation, etc.).

8

• The testing category spans over the entire life cycle, since the testing must deal with all
software artifacts (functionality examples: coverage, test case generation, etc.).

• The design category includes tools that support executable models and are used for
requirements verification, design implementation, code generation, and the development
of documentation and test cases (functionality examples: modeling the system using
applicable graphical notation in form of blocks, objects, diagrams, code generation,
documentation, reuse, etc.).

• The implementation category includes all support required to take the computer code and
transfer it to the executable program (functionality examples: Integrated Development
Environment: editor, compiler, debugger, linker, loader, browser, target customization,
etc.).

• The target category includes application run-time support software components that are
not considered to be development tools in the sense of the DO-178B definition, since
they are clearly components of the target system (functionality examples: real-time OS
board support package, libraries, etc.).

Tools that can be classified into the above design, implementation, or target categories support
the DO-178B coding and integration phases. Many modern design tools generate code as well as
test cases. They frequently support executable models with options to verify various
requirements properties. It often happens that a system already produced may be reused or
reengineered, thus many tools provide a vehicle for architectural or design pattern use. The
boundary between the tool categories is frequently fuzzy. The growing tendency is to work at
higher levels of abstraction using design or analysis models as the source code relying on
automatic code generation (ACG) and compilers to produce target software. Model-based
development (MBD) has become the Lingua Franca of modern software engineering [8 and 9].

3.2 CONTROL VERSUS SOFTWARE PARADIGM.

During the design of a real-time system, it is important to be aware that there are two distinct
classes of modern systems exposed to environmental stimuli [10]:

• Interactive—the computer system determines the pace of operation by granting or

allocating resources to clients on request when feasible (OSs and data bases). The
concerns are deadlock avoidance, fairness, and data coherence.

• Reactive—the system environment determines the pace of operation while the computer
system reacts to external stimuli producing outputs in a timely way (process control,
avionics, and signal processing). The concerns are correctness and timeliness.

Software engineers are very familiar with the concepts of OSs, programming languages, software
development methodologies, and notations. The proliferation of object-oriented methodologies
is replacing previous procedural approaches. The graphic notations supported by these
techniques allow developers to represent the software of the target system as a set of components
that are easy to translate into programming constructs (modules, objects, methods, functions,

9

procedures, and data structures) using the ACG functionality of the tool. The developer needs to
have full understanding of the generated target code and often needs to fill in the framework
generated by the tool with specific code in the target language.

However, control engineers consider the system as a dynamic model consisting of well-defined
blocks of specific functionality (logic, arithmetic, and dynamic). The data-flow paradigm of the
model supports its simulation and analysis of behavior. Subsequently, the model can be
translated automatically into an equivalent code, typically without any additional developer
involvement.

Software engineers, concentrating on computer operations, are more accustomed to interactive
systems, while control (or system) engineers, who are educated in control theory, focus on
reactive systems. This may be called software engineering and control engineering paradigms,
respectively. Unfortunately, most complex safety-critical, real-time systems include
characteristics of both paradigms. There is no unified theory to represent both paradigms in a
smooth way. This dualism is reflected in the variety of modern software development tools,
which attempt to bridge the gap. The challenge of the contemporary tool market is to cater to the
software and control engineers with the tool providing appropriate support for both paradigms.
The gap between software and control professionals makes communication of critical design
decisions difficult and may be one of the causes of misunderstandings that are unacceptable for
safety-critical system design.

Categorization of tools used for modeling the system reflects these diverse viewpoints of
safety-critical, real-time systems developers resulting from their different backgrounds. Two
viewpoints are exemplified in software development tools, which use either a function-based,
block-oriented approach, or a structure-based, object-oriented approach.

Both categories include a graphical user interface that allows the user to specify a design in a
graphical or textual manner and a set of functionalities to save, load, modify, and execute (or
animate) such representation. Both typically include target code generation capability and, thus,
they are not treated as separate categories.

3.2.1 Structural-Based Software Design and Modeling Tools.

Structural-based software design and modeling tools, preferred by engineers with software and
computer background, contain all commonly used design tools based on structural
decomposition. The tools from this category are based on object-oriented decomposition and
unified model language-like modeling of the system, allowing the software developers to create a
model describing both the structure and behavior. The structural-based tools are software
development oriented and match the interactive paradigm.

3.2.2 Functional-Based Software Design and Modeling Tools.

Functional-based software design and modeling tools, preferred by engineers with system and
control background, contain all commonly used design tools based on functional decomposition.
These tools allow the domain specialist (e.g., control engineer) to build a model describing the
system functionality represented as block diagrams with their input-output transformations. The

10

tools in this category are more system and control than software development oriented and
conform to the reactive paradigm.

3.3 DEVELOPMENT TOOL OPERATIONS.

DO-178B section 12.2 requires the development of a TOR for all tools to be qualified. For a
development tool, the TOR is a detailed requirements document that is traced to the design, code,
and test cases of the tool itself. Despite several attempts to obtain such data from industry, such
data was not available for this research. In the place of an actual TOR, four basic functionality
items for a design tool with ACG capability have been identified. The tool allows the developer
to

• create design by using notation supporting specific development methodology.
• verify correctness of the design.
• confirm the dynamic behavior of the design.
• generate code.

This is intended to be a generalized list of functions that can apply to several tools. Each item
can be further analyzed in detail to create a refined list of the functionalities, which in turn can be
assessed in practical evaluation experiments.

For the source code generated by a tool, one still needs a compiler to create the executable code
and a linker to link it with other executable objects. However, the compilers are usually not
qualified. To gain assurance and demonstrate that the compiler would not introduce errors in the
embedded software, the following characteristics must be incorporated, at minimum:

• The generated code should be very simple using a limited number of specific language

constructs, yielding a linear code in a form of a sequence of macro calls (procedure or
function).

• The compiler is used on a hand-coded software subset and fully tested for complete
coverage analysis.

• The compiler must be used in the same configuration, options, and environment as the
one used to compile the remaining hand-created objects.

4. ISSUES.

Qualification of development tools, even when proper guidelines are provided, is not an often
sought option in the airborne software industry. In fact, one could argue that qualification of
development tools is not a viable option. The current interpretation of guidelines makes
development tools qualification difficult from the technical viewpoint (if even possible) and
impractical from a managerial or cost viewpoint. The development tool needs to be qualified to
the same level of scrutiny as the appropriate application it is helping to develop—several DO-
178B objectives are not applicable to the tool software and can not be met. The intellectual
property of the specific development tool may need to be disclosed by the vendor to achieve
qualification. The tools that could be considered for qualification are usually very simple,

11

typically in-house created utilities, where the applicant holds all intellectual property, has all tool
development data, and can reuse the tool software artifacts in consecutive projects. The
simplicity of the in-house tools, based on a simple automatic transformation, allows the applicant
to perform nearly exhaustive testing and show the tool determinism. Modern COTS tools are
generally very large, complex, multifunctional tools that do not come with adequate tool data to
facilitate tool qualification.

The tool cannot be qualified as a stand-alone software artifact. The qualification is accomplished
within the scope of a specific certification project and, thus, is not clearly visible from the
outside as development tool qualification. The current proliferation of MBD and the wide use of
design tools with code generation capability make these tools prime candidates for qualification.

There seems to be a lack of consensus on the issue of what is to be considered source code in the
modern MBD-driven paradigm. What is considered as determinism when related to the
development tool is also open for discussion. However, there does seem to be an agreement that
the development tools must be very cautiously tested and verified before their output can be
trusted. The simplicity of tool function, separation of concerns, partitioning, and use of model
checking and formal evaluation are the leading factors to consider on how the development tools
could meet the safety needs.

The research showed that some interest exists to qualify software development tools classified in
the functional-based, block-oriented control engineering paradigm category. However, despite
the wide use of the software engineering paradigm, there was little to no interest to qualify the
tools classified in the structural-based, object-oriented category, although these tools have been
widely used to create software for safety-related systems over a range of industries. According
to several informal exchanges with industry, most commercially available control engineering
tools have been used in creation of software artifacts on certified projects. The research received
anecdotal information about few in-house tools qualified on various projects. Several tools were
developed internally and received early recognition with the user community, but failed to make
it in the commercial market.

The software industry is a volatile industry with companies both growing fast and declining fast.
Software products become obsolete due to frequent modification of the computer hardware and
OS platforms. For example, a tool working in a DOS environment may not be appropriate in a
Microsoft® Windows® environment. Software developers are changing their company
affiliations and taking the intelligence that is necessary to maintain and upgrade the tools and
development environments with them. Software products (including software development
tools) are overtaken by another company, e.g., after a merger or buyout, and software products
are reissued under different names with different logos and slightly modified sales pitches.

Overall—despite arguments to the contrary from a small group of developers, DER, and tool
vendors—the research indicates that, taking into account the current guidelines, the industry is
not considering the development tool qualification as a priority issue.

The days of handcrafting the entirety of source code seems to be nearing an end. As described,
regardless of the development approach, a design tool needs to have ACG capability in order to

12

compete on the market. The quality of the transformation is critical for overall assessment of
software development tool quality. Features such as determinism, correctness, robustness, and
conformance to standards will be considered as the assessment characteristics. The tool’s extent
in ensuring traceability between artifacts generated from one development phase to another can
be a starting point to make the arguments about tool quality [11].

In fact, code generators have become modern versions of compilers. As the compiler translates
high-level language source code into executable machine code, the code generator translates a
graphical model (or, to be more specific, its internal representation) into high-level language
code. The level of abstraction is now raised to the point where the system and software
architects and designers can contribute more to the engineering solution.

It is interesting to note that the issue of compiler acceptability may be associated with other
development tools, particularly those with code generation capability. DO-178B section 4.4.2
reads: “Upon successful completion of verification of the software product, the compiler is
considered acceptable for that product.” DO-248B Section 3.31 provides an interpretation of this
statement:

“The language and compiler selected need to support the achievement of the
verification objectives. Verification planning needs to take into account compiler
features, as they have impact on the verification process. The compiler is
considered acceptable once all of the verification objectives are satisfied, but the
compiler is only acceptable for that product and not necessarily for other
products. This does not qualify the compiler as a development tool.”

The code generation process feature of the tool must be analyzed under both normal and
abnormal operating conditions to determine likely causes of unintentional or erroneous code
generation. One conventional system hazard identification and assessment technique may be
used to identify hazardous failures. Identified failures need to be assessed for criticality, and
possible mitigating measures need to be proposed. Examples of failures may include:

• OS failure during code generation

• Improper code generator initialization and/or selection of parameters (code generation
options)

• Inconsistency between the generated software and the target hardware (due to incorrect
generation, tool deficiency, and/or selection of options/parameters mismatched with the
target)

• Problems related to memory overflow resulting in faulty code generated

• Incorrect code generation algorithm inserting or omitting the data (commission or
omission errors)

The code generation feature of a tool must also be analyzed to show direct mapping of the
artifacts entered by the developer conforming to the specific tool modeling paradigm and the

13

components of the resulting generated code. For many modern tools, which provide incredibly
complex and multifaceted views of the system, there may be a need to select only a subset of the
available modeling components to assure the easy mapping with the generated code and its
subsequent verification. It is necessary to analyze the limits and constraints in terms of the
number of components, connections, hierarchy levels, etc.

The design tools discussed in this research would allow the user to create graphical
representations of the software behavior that the tool would convert into modules of computer
code. An early approach was to create specific library of macroassembly modules for each
graphical functional block that could be placed on a diagram. Due to its simplicity, a framework
program that instantiates the macros and stitches together the inputs to the outputs of the
different blocks could be evaluated for correctness using the actual version of the certification
guidance. The assembly language representation was reasonably close to the machine execution
representation that the correctness could be reviewed. This introduced almost no uncertainty in
the correctness of the tool output, thus facilitating the qualification of several simple in-house
tools based on this principle. However, today’s complex approach for tool implementation
almost precludes such ease of review.

5. FUTURE TRENDS.

The obvious question is: Why were there only a few attempts to qualify development tools?
The research shows that more verification tools are qualified than development tools. This may
be due to less stringent criteria for qualifying verification tools than for development tools.
Another issue is that of economics. In the aviation industry, methodologies and design
approaches typically do not last longer than two airplane programs. Therefore, making a large
investment in a tool cannot be spread over a large number of programs to get a good return on
investment. Some companies began development tool qualification, but stopped their efforts
after realizing that under current guidelines and regulations it is not justifiable from a cost
perspective.

The industry and certifying authorities are actively engaging in discussions on the topic of
development tool qualification. Several software tool vendors are working with avionics
developers, certification authorities, and DERs to identify approaches to practically address
development tool qualification. The international Certification Authorities Software Team
(CAST) has documented several related position papers (available on the FAA website at
http://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/). The CAST position
papers were coordinated among the software specialists of certification authorities from the
United States, Europe, and Canada. However, they do not constitute official policy or guidance
from any of the authorities. These documents are provided for educational and informational
purposes only and should be discussed with the appropriate certification authority when
considering use for actual projects. Specifically, CAST Paper 13 [12] reflects observations
closely related to those described in this report.

“More precisely, the primary issue for an ACG [Automatic Code Generation] tool
is the production of source code that does not comply with its requirements, but
can still be compiled without any error detected and is executable. For airborne
software, the same event can occur, but it’s not the only one. Halts during

14

execution, overflows, variations in time response, hardware and software
incompatibilities, hardware failures, unbounded recursive algorithms, bad stack
usage, resource contention, tasks conflicts, bad interaction with others systems,
etc., are examples of issues which may jeopardize flight safety, if they appear in
aviation software. However, these types of errors may not have any influence on
the flight safety, if they occurred in the ACG tool that generated the aviation
software.”

And subsequently:

“The applicant should demonstrate that the tool is designed and developed in such
a way that erroneous functioning of the operating system cannot produce
unintended or erroneous code (e.g., showing tool operational requirements in
abnormal conditions). Neither can it jeopardize determinism properties of the tool
(i.e., the produced code should not differ when the input data does not, as
previously mentioned).”

Using service history as an alternate qualification method is addressed both in DO-178B section
12.3.5 and DO-248B DP 11 and is also referenced in section 9-6.i of FAA Order 8110.49. This
method can be used only for software that has been used for an extended time without being
previously qualified. These original documents are not clear what the applicant has to supply to
get that type of qualification. CAST Paper 1 [13] elaborates on product service history attributes
such as duration, amount and quality of data, number of errors, number of modifications, change
control, and contributing to the product acceptability and, thus, to obtaining certain certification
and qualification credit. New research on service history [14] provides additional guidance on
this topic. However, implementation of such an approach is still a matter of interpretation and
must be agreed upon between the applicant and the certifying authority on a case-by-case basis.
CAST Paper 22 [15] explores potential reuse of software components to tool qualification data.
The rapid evolution of tools, the long duration of projects, and the requirement to requalify tool
versions make the use of service history difficult.

Another consideration for development tool qualification is the increasing interaction between
airborne and ground-based systems due to the data up and downlink capability. The increasing
tendency of using COTS systems is noticeable in military, medical, transportation, and space
applications [16 and 17]. The similarities are visible since the tool’s operating environment is
typically COTS and certainly the tool output has an impact on target software operation.

6. COMMENTS AND QUESTIONS ABOUT DEVELOPMENT TOOLS.

This section is designed to provide practical guidance for applicants and certification personnel
when dealing with application of software development tools on certification projects.

6.1 QUALIFICATION CRITERIA.

Table 1 presents criteria applicable to development tool qualification. It also includes comments
reflecting the research results based on analysis of relevant documentation and feedback received
from industry.

15

Table 1. Criteria Applicable to Development Tool Qualification

DO-178B
Reference DO-178B Criteria Development Tool Handbook Comment
12.2 Only deterministic tools

may be qualified.
There are wide and narrow interpretations of determinism.
For a wide interpretation, an argument has been made that
determinism holds for a tool that may produce different
outputs for the same input providing all the outputs can be
shown to be correct. For a narrow interpretation, the output
must be unique. The combined definition would be that a
tool is deterministic if its output reflects correctly and
uniquely a defined input sequence. An argument about
determinism should be a critical part of a tool’s qualification
package.

12.2 Qualification should be
only for a specific system;
the intention should be
stated in the PSAC.

The industry would like to see tools qualified for easy reuse
on different projects. The term qualifiable has been used to
describe tools that have been qualified earlier and whose
qualification documents could be made available. This goal
is attainable if the tool qualification package includes
specific descriptions and limitations of the tool operational
environment and qualification is limited only to selected
feature(s) of the tool with precise description of the intended
functionality and the produced output. Such a package could
be reused on different projects providing the conditions are
not changed.

12.2 b Combined tools should be
qualified to comply with
paragraph DO-178B
12.2.1 unless partitioning
can be shown.

For a combined development and verification of a tool, it is
critical to separate and partition tool feature(s) related to the
development activity. Qualification will address this (these)
feature(s) only.

12.2 c SCM and SQA process
objectives should be
applied to tools being
qualified.

With the rapid progress of technology, most hardware
platforms and software versions are upgraded in nearly
monthly cycles. It is of utmost importance to keep track of
the tool operational environment and version control. Only
rigorous SCM and SQA can provide arguments for tool
qualification. On a practical side, many software tool
vendors are not familiar with the airborne software
guidelines, and they lack proper mechanisms to maintain the
configuration data supporting their claims.

16

Table 1. Criteria Applicable to Development Tool Qualification (Continued)

DO-178B
Reference DO-178B Criteria Development Tool Handbook Comment
12.2.1.a Qualification should

satisfy the same
objectives as the airborne
software.

This is a difficult and restrictive requirement for tool
qualification. A software tool works in a different environment
than the target software and has different operational
requirements. The tool may crash due to interference from the
underlining operating system (e.g., Microsoft Windows) but
which may not impact the produced target code. For tool
qualification, several objectives can potentially be eliminated.

12.2.1.b The software level of the
tool may be reduced.

In reference to 12.2.1.a, this item should be applied with less
restriction.

12.2.1.d
(1)

TOR should be reviewed. The tool for developing the target software is used under a limited
set of operational scenarios defining the constraints of the
operational requirements. The operational requirements will
define the specific tool functionalities, which are qualifiable tool
features.

12.2.1.d
(2)

Compliance with TOR
under normal operating
conditions should be
demonstrated.

This is the critical element in tool qualification activity.

12.2.1.d
(3)

Compliance with TOR
under abnormal operating
conditions should be
demonstrated.

The potential hazards should be identified to determine likely
causes of unintentional or erroneous tool outputs. A standard
hazard identification and assessment technique may be used to
identify hazardous failures, which need to be assessed for
criticality and possible mitigating measures.

12.2.1.d
(4)

Requirements-based
coverage should be
analyzed.

This may be one of the most challenging items to comply with
since both COTS vendors and in-house software developers are
reluctant to provide detailed and specific development tool
requirements documentation (due to the intellectual property
issues, business drivers, lack of availability, etc.).

12.2.1.d
(5)

Structural coverage
appropriate for the tool’s
software level should be
completed.

The access to the development tool source code is limited to very
narrow group of the original developers. Opening such to
external scrutiny could be too much of a challenge.

12.2.1.d
(6)

Robustness testing
appropriate for the tool’s
software level should be
completed.

Robustness and testing the consistency of development tool
operation, the ability to evolve, and fault tolerance should be
fundamental criteria for the tool evaluation. It needs to be noted
that the robustness for the tool is different than robustness for the
target software, see 12.2.1.a.

12.2.1.d
(7)

Potential errors should be
analyzed.

The tool hazard analysis should be a base for these analyses, see
12.2.1.d (3).

Based on FAA Order 8110.49, figure 9-1.

17

6.2 QUALIFICATION DATA.

Table 2 presents the data required for the development tool qualification by FAA Order 8110.49
(figure 9.2). It shows that there are two formal documents to be submitted by applicants to
support the qualification claim: TQP and TQAS. These documents must be referenced in the
applicant certification package documents: PSAC and SAS, respectively. In addition, for the
development tools TOR, TVR, and TQDD must be available for review. All required documents
must be complete and distinctively related to the environment and configuration of the specific
application.

Table 2. Data Required for Development Tool Qualification

Data/Document Available/Submit DO-178B Reference
PSAC referencing TQP of the tool to be
qualified

Submit 12.2, 12.2.3.a, and
12.2.4

TQP Submit 12.2.3.a(1),
12.2.3.1, and 12.2.4

TOR Available 12.2.3.c(2) and
12.2.3.2

SAS referencing TQAS of the tool to be
qualified

Submit 12.2.4

TQAS Submit 12.2.3.c(3) and
12.2.4

TVR e.g., test cases, procedures used to
test the tool with their results

Available 12.2.3

TQDD e.g., tool requirements, design,
and code

Available 12.2.3

6.3 TOOL OPERATIONAL REQUIREMENTS QUESTIONS.

TOR are critical to provide information about what a tool does, how it is to be used, and its
operational environment. Table 3 lists several questions addressing the guidelines for evaluating
acceptability of TOR as described in section 9.6 of FAA Order 8110.49.

18

Table 3. Evaluating Acceptability of TOR

FAA Order 8110.49
Reference TOR-Related Questions for Development Tools

9.6 a (1) Do the tool qualification tests allow verification of the tool
functionality in terms of requirements as specified in the TOR?

9.6 a (2) Is the operational environment of the tool specified in the TOR? Is
there a clear and complete description of the OS, version, hardware,
and interfaces? Is there a clear description of tool limitations in
terms of what the tool will not do?

9.6 a (3) Is the tools user’s manual available and included in the TOR
package? Does the user’s manual match the used version of the
tool?

9.6 b (1) Does TOR document include a clear description of the software
development process performed by the tool?

9.6 b (2) Are abnormal operating conditions specified? Are the tool
responses under abnormal conditions tested?

9.6 c Does the TOR identify the tool features that are directly related to
the activity for which the qualification is being sought? Is there an
argument presented that the features not directly related to the
qualification activity have no adverse effect on the features used?

9.6 c Is it possible to provide arguments that the tool output produced as a
result of a defined input sequence is correct and reflects this input?
Note: Even though there could be two or more different outputs
produced, it needs to be shown that all outputs are correct.

6.4 GENERAL DO-178B QUESTIONS.

DO-178B includes a dedicated Section 12.2, dealing exclusively with tools. This section was
later clarified in chapter 9 of FAA Order 8110.49. The previous tables 1, 2, and 3 presented the
compilation of development tool issues extracted from these documents. However, in addition to
section 12.2, other sections of DO-178B make multiple references to the use of tools. Table 4
identifies these references and proposes additional questions related to the use of development
tools to be asked by the certification authorities.

19

Table 4. DO-178B Statements Related to the Development Tools

DO-178B
Reference DO-178B Statement

Related Questions for
Development Tools

2.1.2 Information Flow from Software Processes to
System Processes
The system safety assessment process determines
the impact of the software design and
implementation on system safety using
information provided by the software life cycle
processes. This information includes fault
containment boundaries, software requirements,
software architecture, and error sources that may
have been detected or eliminated through
software architecture or by the use of tools or by
other methods used in the software design
process. Traceability between system
requirements and software design data is
important to the system safety assessment
process.

Does the software development
tool provide means to trace the
design elements to the system
safety requirements?

Does the tool provide means to
provide information on software
requirements, architecture, fault
containment boundaries, and
error sources?

Are there data available
supporting claims of traceability
between the artifacts on the tool
input and output?

4.1 Software Planning Process Objectives

c. The software life cycle environment, including
the methods and tools to be used for the activities
of each software life cycle process have been
selected (subsection 4.4).

Are all development tools to be
used on the project identified in
the PSAC and software
planning documents? See 4.3.b
(3)

4.2 Software Planning Process Activities

c. Methods and c. tools should be chosen that
provide error prevention in the software
development processes.

f. When multiple-version dissimilar software is
used in a system, the software planning process
should choose the methods and tools to achieve
the error avoidance or detection necessary to
satisfy the system safety objectives.

i. If user-modifiable code is planned, the process,
tools, environment, and data items substantiating
the guidelines of paragraph 5.2.3 should be
specified in the software plans and standards.

Are there any data available and
referenced in software plan to
support claims that the
development tool does not
introduce errors?

4.3 Software Plans

b. The software plans should define the criteria
for transition between software life cycle
processes by specifying:

(3) Availability of tools, methods, plans and
procedures.

Do software plans address
development tools in terms of
availability, support,
maintenance, and training?

20

Table 4. DO-178B Statements Related to the Development Tools (Continued)

DO-178B
Reference DO-178B Statement

Related Questions for
Development Tools

4.4 Software Life Cycle Environment Planning

The purpose of the planning for the software life
cycle environment is to define the methods, tools,
procedures, programming languages and
hardware that will be used to develop, verify,
control and produce the software life cycle data
(section 11) and software product.

The basic principle is to choose requirements
development and design methods, tools, and
programming languages that limit the
opportunity for introducing errors, and
verification methods that ensure that errors
introduced are detected.

The considerations presented above may affect:
• The software development environment

tools.

Is there a long enough track
record for using the
development tool to justify
claims that errors introduced by
the tool are limited?

Are the means of verification of
the development tool output
identified and explained?

4.4.1 Software Development Environment

Guidance for the selection of software
development environment methods and tools
includes:

b. The use of qualified tools or combinations of
tools and parts of the software development
environment should be chosen to achieve the
necessary level of confidence that an error
introduced by one part would be detected by
another. An acceptable environment is produced
when both parts are consistently used together.

d. If certification credit is sought for use of the
tools in combination, the sequence of operation
of the tools should be specified in the appropriate
plan.

e. If optional features of software development
tools are chosen for use in a project, the effects of
the options should be examined and specified in
the appropriate plan.

Note: This is especially important where the tool
directly generates part of the software product. In this
context, compilers are probably the most important
tools to consider.

Is there data available to show
that the intermediate artifacts
created by a tool are correct
before they are made available
to the subsequent life cycle
phase?

If the tool generates an artifact
constituting part of the target
software product, have the
options for generating this
artifact been recorded and used
consistently?

21

Table 4. DO-178B Statements Related to the Development Tools (Continued)

DO-178B
Reference DO-178B Statement

Related Questions for
Development Tools

7.2.9

Software Life Cycle Environment Control

The objective of SLCE is to ensure that the tools
used to produce the software are identified,
controlled, and retrievable. The software life
cycle environment tools are defined by the
software planning process and identified in the
Software Life Cycle Environment Configuration
Index (subsection 11.15). Guidance includes:

a. Configuration identification should be
established for the Executable Object Code (or
equivalent) of the tools used to develop, control,
build, verify, and load the software.

b. The SCM process for controlling qualified
tools, should comply with the objectives
associated with Control Category 1 or 2 data
(subsection 7.3), as specified in paragraph 12.2.3,
item b.

c. Unless 7.2.9 item b applies, the SCM
process for controlling the Executable Object
Code (or equivalent) of tools used to build and
load the software (for example, compilers,
assemblers, and linkage editors) should comply
with the objectives associated with Control
Category 2 data, as a minimum.

Is the development tool included
in the SLCE CI. Is the
executable code of the
development tool under
configuration control?

If the development tool is
qualified, does it comply with
SCM Control Category 1?

11.1 Plan for Software Aspects of Certification

g. Additional considerations: This section
describes specific features that may affect the
certification process, for example, alternative
methods of compliance, tool qualification,
previously developed software, option-selectable
software, user-modifiable software, COTS
software, field-loadable software, multiple-
version dissimilar software, and product service
history.

Are the tools to be qualified
identified in the project PSAC
and, if a development tool(s) is
to be qualified, are the
qualification means described in
the TQP and is the TQP
referenced in the PSAC?

22

Table 4. DO-178B Statements Related to the Development Tools (Continued)

DO-178B
Reference DO-178B Statement

Related Questions for
Development Tools

11.2 Software Development Plan

c. Software development environment: A
statement of the chosen software development
environment in terms of hardware and software,
including:

(1) The chosen requirements development
method(s) and tools to be used.

(2) The chosen design method(s) and tools to be
used.

(3) The programming language(s), coding tools,
compilers, linkage editors, and loaders to be
used.

(4) The hardware platforms for the tools to be
used.

Are all development tools used
on the project described in the
software development plan?
Does the description include the
development tools operational
environment and the hardware
platforms?

11.4 Software Configuration Management Plan

(a) Environment: A description of the SCM
environment to be used, including procedures,
tools, methods, standards, organizational
responsibilities, and interfaces.

(b) Activities: A description of the SCM process
activities in the software life cycle that will
satisfy the objectives for:

(9) Software life cycle environment
controls: Controls for the tools used to
develop, build, verify and load the software.
This includes control of tools to be qualified.

Does the SCM Plan include
description of the tool(s) with
respect to their operating
environment and the means of
control of this environment?

11.5 a. Environment: A description of the SQA
environment, including scope, organizational
responsibilities and interfaces, standards,
procedures, tools and methods.

Does the SQAP include a
description of SQA environment
as related to the development
tool(s) used on the project?

23

Table 4. DO-178B Statements Related to the Development Tools (Continued)

DO-178B
Reference DO-178B Statement

Related Questions for
Development Tools

11.6 Software Requirements Standards

The purpose of Software Requirements Standards
is to define the methods, rules, and tools to be
used to develop the high-level requirements.
These standards should include:

a. The methods to be used for developing
software requirements, such as structured
methods.

b. Notations to be used to express requirements,
such as data flow diagrams and formal
specification languages.

c. Constraints on the use of the requirement
development tools.

d. The method to be used to provide derived
requirements to the system process.

Does the Software
Requirements Standard define
constraints on tools used for
development of the
requirements?

11.7 Software Design Standards

The purpose of Software Design Standards is to
define the methods, rules, and tools to be used to
develop the software architecture and low-level
requirements. These standards should include:

a. Design description method(s) to be used.

b. Naming conventions to be used.

c. Conditions imposed on permitted design
methods, for example, scheduling, the use of
interrupts and event-driven architectures,
dynamic tasking, re-entry, global data, exception
handling, and rationale for their use.

d. Constraints on the use of the design tools.

e. Complexity restrictions, for example,
exclusion of recursion, dynamic objects, data
aliases, and compacted expressions.

Does the Software Design
Standard define constraints on
tools used for development of
the software architecture and
low-level requirements?

Does the tool documentation
explicitly list the modeling
constructs and operations that
the developers can use?

Are the limitations (i.e.,
constructs and operations that
cannot be used) identified?

24

Table 4. DO-178B Statements Related to the Development Tools (Continued)

DO-178B
Reference DO-178B Statement

Related Questions for
Development Tools

11.8 Software Code Standards

The purpose of Software Code Standards is to
define the programming languages, methods,
rules and tools to be used to code the software.
These standards should include:

e. Constraints on the use of the coding tools.

Does the Software Code
Standard define constraints on
tools used for development of
the code? Does the tool
documentation list the command
sequences and operations that
can be used to generate the
code? Are the parameters,
configuration data, etc., defined
and kept under version control?

11.15 Software Life Cycle Environment Configuration
Index

The Software Life Cycle Environment
Configuration Index (SECI) identifies the
configuration of the software life cycle
environment. This index is written to aid
reproduction of the hardware and software life
cycle environment, for software regeneration,
reverification, or software modification, and
should:

a. Identify the software life cycle environment
hardware and its operating system software.

b. Identify the software development tools, such
as compilers, linkage editors and loaders, and
data integrity tools (such as tools that calculate
and embed checksums or cyclical redundancy
checks).

c. Identify the test environment used to verify
the software product, for example, the software
verification tools.

d. Identify qualified tools and their associated
tool qualification data.

Note: This data may be included in the Software
Configuration Index.

Does the SLCE CI identify the
configuration of development
tools used on the project?

Does the tool documentation
explicitly define the tool
environment in terms of the
operating system and version
used, file structure,
environmental variables, paths,
configuration files, options,
data, etc.?

Does the SLCE CI identify the
qualified tools and their
qualification data?

25

Table 4. DO-178B Statements Related to the Development Tools (Continued)

DO-178B
Reference DO-178B Statement

Related Questions for
Development Tools

12.1.3 Change of Application or Development
Environment

Use and modification of previously developed
software may involve a new development
environment, a new target processor or other
hardware, or integration with other software than
that used for the original application.

New development environments may increase or
reduce some activities within the software life
cycle. New application environments may
require activities in addition to software life cycle
process activities which address modifications.
Guidance for change of application or
development environment includes:

a. If a new development environment uses
software development tools, the guidelines of
subsection 12.2, Tool Qualification, may be
applicable.

If a development tool is used in
a new development
environment, does the tool
comply with the certification
objectives? Are there data to
support claims for meeting the
objectives in case of using a
new hardware or operating
system version for the
development tool? Are there
data to support claims for
meeting the objectives in case of
the tool integration with other
software than that used for the
original application?

12.3 Alternative Methods

Alternative Methods may be used to support one
another. For example, formal methods may
assist tool qualification or a qualified tool may
assist the use of formal methods.

Are there data to support
justification of alternative
methods to be used for tool
qualification? Are the data
describing clearly and
completely the approach and
supporting evidence?

12.3.3.4 Tool Qualification for Multiple-Version
Dissimilar Software: If multiple-version
dissimilar software is used, the tool qualification
process may be modified, if evidence is available
that the multiple software development tools are
dissimilar. This depends on the demonstration of
equivalent software verification process activity
in the development of the multiple software
versions using dissimilar software development
tools. The applicant should show that:

a. Each tool was obtained from a different
developer.

b. Each tool has a dissimilar design.

Are there data to show that
development tools used for
multiple version were obtained
from different sources and they
have different designs? Can it
be demonstrated for dissimilar
software that equivalent
verification activity was carried
out for each version?

Section 12.2 is not included in this table. SQA = Software Quality Assurance
SQAP = Software Quality Assurance Plan SDP = Software Development Plan
SLCE = Software Life Cycle Environment SCM = Software Configuration Management
CI = Configuration index

26

6.5 TOOL EVALUATION: CONCERNS AND QUESTIONS.

Airborne software, as any other software installed in safety-critical, real-time systems, must meet
high-level criteria of dependability and safety assurance. For software development tools from
the qualification perspective, the research identified five critical concerns to be addressed when
evaluating the tool for use on certification projects:

• Determinism
• Robustness
• Traceability
• Correctness
• Conformance to Standards

Table 5 presents these concerns with their related DO-178B references. The table includes
potential questions related to the objectives the tool needs to achieve to address these concerns.
The table may be used to support qualification activity in a situation when there is full access to
tool software artifacts and the tool was developed in conformance with DO-178B guidelines.

Table 5. Software Development Tool Qualification—Evaluation Matrix

Concerns Subcategory Software Development Tool Question
DO-178B
Reference

Determinism Source code Does analysis of the tool code structure
provide coverage appropriate to the assurance
level?

6.4.4.2a
6.4.4.2b

 Does analysis of the tool code structure
confirm data and control coupling appropriate
to the assurance level?

6.4.4.2c

Robustness HLR Is the tool executable object code robust with
HLR?

6.4.2.2
6.4.3

 LLR Is the tool executable object code robust with
LLR?

6.4.2.2
6.4.3

 Source code Is the software development tool partitioning
integrity confirmed?

6.3.3f

Traceability SR to HLR Are the tool HLR traceable to the TOR? 6.3.1f

 HLR to LLR Are the tool LLR traceable to the tool HLR? 6.3.2f

 LLR to code Is tool source code traceable to the tool LLR? 6.3.4e

 HLR to test Is test coverage of the tool HLR achieved? 6.4.4.1

27

Table 5. Software Development Tool Qualification—Evaluation Matrix (Continued)

Concerns Subcategory Software Development Tool Question
DO-178B
Reference

 LLR to test Is test coverage of the tool LLR achieved? 6.4.4.1

Correctness HLR Are the tool HLR accurate and consistent? 6.3.1b

 LLR Are the tool LLR accurate and consistent? 6.3.2b

 Source code Is the tool source code accurate and
consistent?

6.3.4f

Conformance
to Standards

HLR Do the tool HLR conform to standards? 6.3.1e

 LLR Do the tool LLR conform to standards? 6.3.2e

 Source code Does the tool source code conform to
standards?

6.3.4d

SR = System requirements HLR = High-level requirements LLR = Low-level requirements

The related research on assessment of software development tools for safety-critical, real-time
systems explored literature on software quality [18, 19, and 20] and software evaluation [21, 22,
23, and 24]. The investigation identified several useful questions for the development team
related to the tool adaptation, from both the perspectives of the manager and the developer. They
address the issues of resource adaptation, tool reputation, vendor support, usability, self-
documentation, teamwork support, analysis capability, and safety and conformance. They are
not included in this Handbook. Any interested reader may refer to section 4 of the associated
report DOT/FAA/AR-06/36, “Assessment of Software Development Tools for Safety-Critical,
Real-Time Systems.”

7. SUMMARY.

The use of software development tools is a reality for all facets of software development. Use of
such tools in the highly regulated aviation industry is more cautious, and justifiably so. When a
development tool is used on a certification project, a large number of questions must be asked
and adequate responses received to assure the certifying authorities that the tool performs as
intended. Typically, verification activities perform this task. Alternatively, software
development tools may be qualified although, currently, they must satisfy the same criteria as the
airborne software in which they are used and may not be qualified as a stand-alone product.

To encourage feasibility of a development tool’s stand-alone qualification, concepts such as
component-based software, software reuse, and service history may be explored. For complex
multifunctional tools, partitioning of the separate functionalities must be clearly defined and the
specific internal tool software data must be available. The issues of software development tool
version control and precise definition of operational environment, constraints, and limitations are

28

the basis for starting discussion about tool qualification. The availability of extensive tool
software development data, often scarce for COTS products, may be a challenge to
accomplishing COTS tools qualification (although re-engineering may help).

The issues identified in this Handbook are regulatory and managerial in nature. The major
hurdle is the current state of regulations and guidelines. The secondary obstacle is the business
model and lack of incentives, i.e., prohibitive costs of tool qualification. The existing tools,
often used in certification projects, lack appropriate data to be used as artifacts in meeting the
objectives of DO-178B. The applicant’s objective is system certification rather than tool
qualification. The system integrator is concerned with the target software and not with the
intermediate tool-supported transformations. A tool seller may not see a business advantage in
tool qualification since that may require disclosing proprietary information to potential
competitors, and a tool developer may not be familiar with the requirements and the rigors of
airborne software. In reality, development tool qualification typically requires close
collaboration of all interested parties: application developer, system developer, system
integrator, the tool vendor (potentially including an access to the actual tool software developer’s
team), and the applicant.

Internal trade studies1 have shown that, due to the more stringent assurance requirements, the
cost of the development tool qualification is higher than the cost of verification tool
qualification. The use of qualified verification tools can result in fast savings on the first
program where they are introduced. In contrast, the use of qualified development tools may
require several programs to make up the cost.

A second group of issues is related to the state of software evaluation. Currently, there is no
agreement on what metrics would allow developers to carry an independent and unbiased tool
assessment. It could be conceivable to create an independent laboratory dedicated to tool
qualification and encourage commercial tool vendors to submit their product for assessment.
Similar approaches are already operational in the general area of verification and validation.
Another idea would be to require certified product applicants to disclose information regarding
the development tool use and qualification effort by creating an FAA-sponsored database for
DO-178B certified products. This could be met with serious objections from industry due to
their apprehensiveness to disclose information that might cause the loss of a commercial
advantage. Another recommendation is to research the potential for development tool
qualification using an approach different than one outlined in section 12.2 of DO-178B. In
addition to service history, other options may include formal methods [25, 26, and 27],
dependability assessment [28], usage based assessment [29], etc. Another option would be to
consider development tools as ground-based software. Such an approach would allow focusing
on the tool’s software integrity and using guidelines in DO-278 and DO-200A. All of these may
contribute to a possible update of DO-178B considering the recent rapid progress in software
engineering as a discipline.

For a comprehensive solution, a new approach may be needed that would take into account some
new developments and facts in software engineering and safety-critical systems. For example,

1 Software development tools are claimed to cost 20 times more to qualify as verification tools (internal data from

Honeywell, ERAU/FAA Software Tool Forum, Bill Potter presentation, slide 13).

29

several vendors have announced new products based on the MBD principle, supporting the
development of graphical or textual models and subsequent ACG. Most of these products also
have means of model execution and verification. Such solutions move the process to where it is
most needed: the front end of the development life cycle.

Another issue is: how to handle tool evolution? Tools, as any software product, have a tendency
to evolve and change rapidly. Often, the development cycle of certification projects lasts much
longer than the lifespan of the tools used on the project. It forces developers to use earlier
versions of the tool while a new one would be available. In some cases, vendors are going out of
business or merging with others, and suddenly a tool re-emerges under a new name with a
slightly modified interface and functionality. The problem is that the original documentation
may not be maintained to provide a mechanism that prevents the tool from exhibiting some
idiosyncrasies or hidden features known only to the original tool developers. An upgrade
indicated by a new version to a previously qualified tool or the operating environment would be
a reason for re-qualification.

Research indicates that the pressing need of industry is to identify methods to qualify a tool that
is independent of a specific program and applications using it. This would require updating the
guidelines to consider the model-driven development paradigm, redefining the qualification
process, and allowing flexibility regarding qualification that is less dependent on the application
program using the tool. A more streamlined method to qualify development tools and to keep
them current as technology advances would be immensely useful. Better guidance on how to
apply service history, handle COTS tools, reuse qualification data, and how to address what has
to be done for incremental tool changes is also needed.

8. REFERENCES.

Almost 150 references were examined for this project. The complete list is in section 8 of the
related report DOT/FAA/AR-06/36, “Assessment of Software Development Tools for Safety-
Critical, Real-Time Systems.” The following is a subset selected to present the positions directly
related to the issues presented in this Handbook. They are representative of existing regulations,
guidelines, and trends in software engineering related to the software development tool
assessment and use.

1. U.S. Department of Transportation, Federal Aviation Administration, AC 20-115B,

“Advisory Circular – Subject: RTCA Inc., Document RTCA/DO-178B,” January 1993.

2. RTCA DO-178B, “Software Considerations in Airborne Systems and Equipment
Certification,” Radio Technical Commission for Aeronautics, RTCA SC-167, December
1992.

3. RTCA DO-248B, “Final Annual Report for Clarification of DO-178B ‘Software
Considerations in Airborne Systems and Equipment Certification,’” Radio Technical
Commission For Aeronautics, RTCA SC-190, October 2001.

30

4. U.S. Department of Transportation, Federal Aviation Administration, FAA Order
8110.49, “Software Approval Guidelines,” FAA, 2003 (Chapter 9 replaces FAA Notice
N8110.91 of 2001).

5. U.S. Department of Transportation, Federal Aviation Administration, AC 20-148,
“Advisory Circular: Reusable Software Components,” December 2004.

6. RTCA DO-278, “Guidelines for Communications, Navigation, Surveillance, and Air
Traffic Management (CNS/ATM) Systems Software Integrity Assurance,” Radio
Technical Commission for Aeronautics, RTCA SC-190, 2002.

7. RTCA DO-200A, “Standards for Processing Aeronautical Data,” Radio Technical
Commission for Aeronautics, RTCA SC-181, 1998.

8. Dickens, M., Sharp, J., and Ledin, J., “Integrated Modeling Environment Constructs
High-Fidelity Plant and Controller Models,” RTC Magazine, March 2004.

9. Bichler, L., Rademacher, A., and Schurr, A., “Evaluating UML Extensions for Modeling
Real-Time Systems,” Proceedings of 6th International Workshop on Object-oriented
Real-time Dependable Systems, WORDS2001, Roma, Italy, January 8-10, 2001.

10. Berry, G., The Foundation of Esterel: Essays in Honour of Robin Milner, MIT Press,
1998.

11. Whalen, M.W. and Heimdahl, M.P.E., “An Approach to Automatic Code Generation for
Safety Critical Systems,” Proceedings of the 14th IEEE International Conference on
Automated Software Engineering, Orlando, October 1999.

12. Certification Authorities Software Team (CAST) Paper 13, “Automatic Code Generation
Tools Development Assurance,” June 2002.

13. Certification Authorities Software Team (CAST) Paper 1, “Guidance for Assessing the
Software Aspects of Product Service History of Airborne Systems and Equipment,” June
1998.

14. Ferrel U.D. and Ferrel, T.K., “Software Service History Report,” FAA report
DOT/FAA/AR-01/125, January 2002.

15. “Reuse of Software Tool Qualification Data Across Company Boundaries (Applying the
Reusable Software Component Concept to Tools,” Certification Authorities Software
Team (CAST) Paper 22, March 2005.

16. Freeland, G.I., “COTS Tools Reduce DO-178B Software Development Impact,” COTS
Journal, February 2002, pg. 29-35.

17. Krodel, J., “Commercial Off-The-Shelf Avionics Software Study,” FAA report
DOT/FAA/AR-01/26, May 2001.

31

18. “Information Technology–Software Product Evaluation–Quality Characteristics and
Guidelines for Their Use,” ISO/IEC 9126, Geneva, Switzerland, 1991.

19. Barbacci, M., Klein, M.H., Longstaff, T.A., and Weinstock, C.B., “Quality Attributes,”
Software Engineering Institute, Technical Report, CMU/SEI-95-TR-021, Pittsburgh, PA,
December 1995.

20. VanSuetandael, N. and Elwell, D., “Software Quality Metrics,” FAA report
DOT/FAA/CT-91/1, August 1991.

21. “Information Technology – Guideline for the Evaluation and Selection of CASE Tools,”
IEEE Std. 1462-1998, IEEE Standards Board, March 1998.

22. Firth, R., Mosley, V., Pethia, R., Gold, R., and Wood, W., “A Guide to the Classification
and Assessment of Software Engineering Tools,” SEI, Technical Report CMU/SEI-87-
TR-10, ESD-TR-87-111, August 1987.

23. Wichmann, B., “Guidance for the Adoption of Tools for Use in Safety Related Software
Development,” British Computer Society, March 1999.

24. Cornella-Dorda, S., Dean, J., Lewis, G., Morris, E., Oberndorf, P., and Harper, E., “A
Process for COTS Software Product Evaluation,” Technical Report, Software
Engineering Institute, CMU/SEI-2003-TR-017, 2003.

25. Rushby, J., “Formal Methods and Their Role in the Certification of Critical Systems,”
SRI International Company, August 1995.

26. McDermid, J.A., “Software Safety: Where’s the Evidence?”, Proceedings of the 6th
Australian Workshop on Industrial Experience with Safety-Critical Software, Brisbane,
Australia, 2001.

27. Lawlis, P., Mark, K., Thomas, D., and Courtheyn, T., “A Formal Process for Evaluating
COTS Software Products,” Computer Magazine, May 2001, pp. 58-63.

28. Fenton, N.E., Littlewood, B., Neil, M., Strigini, L., Sutcliffe, A., and Wright, D.,
“Assessing Dependability of Safety-Critical Systems Using Diverse Evidence,” IEEE
Proceedings Software Engineering, 145(1), Limerick, Ireland, 2000, pp. 35-39.

29. Voas, J., “Developing a Usage Based Software Certification Process,” Computer
Magazine, August 2000, v.33, n.8, pp. 32-37.

32

	Abstract
	Key Words
	Table of Contents
	List of Tables

