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Abstract 

 
This paper discusses the analysis of stochastic Petri nets using the proxel-based simulation method. 
The paradigm of the proxel ("probability element") was recently introduced in order to provide a 
new algorithmic approach to analysing discrete-state stochastic models such as are represented by 
stochastic Petri nets (SPNs) or queueing systems. Proxel-based simulation is not related to either of 
the standard simulation approaches: it is in no way analogous to discrete-event simulation, and, 
although it is based on the model’s underlying stochastic process and makes use of supplementary 
variables, it does not require the use of differential equations. Instead, the proxels trace the 
movement of probability from one state of the model to another using discretized time steps. Since 
stochastic Petri nets are a powerful and widespread tool for modelling stochastic processes, we are 
interested in finding out how the proxel-based method applies to them. The formal foundations of 
the analysis of SPNs with the use of the proxel-based method are the subject of this paper. 
 

1 Goals of the Paper 
The goal of this paper is to present a new way of analysing stochastic Petri nets using the 
recently introduced proxel-based method. The formal connections between the proxel-
based method and stochastic Petri nets will be established, so that the analysis of the Petri 
nets can based upon them. Because of the novelty of the proxel-based method, an 
extensive description of the method will be presented, as well as a short description of the 
formalism of stochastic Petri nets. We will show that the proxel-based simulation can be 
interpreted as a discrete-time Markov chain (DTMC). Petri Nets were interesting for us 
because of their popularity and power for describing stochastic processes. Their broad 
definition and this being the first attempt for their analysis using the proxel-based method 
are the reasons that we will focus on a restricted class of Petri nets. Results from 
experiments with an implementation of the method will be presented. 
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2 Introduction to SPNs and Proxels 

2.1 Modelling with Petri Nets 
Stochastic Petri nets are popular and powerful tool for modelling and analysing complex 
stochastic systems. A stochastic system is usually viewed as a  function of time, which 
means that we are interested in computing its dynamic behaviour. In many cases it is a 
discrete-event system, meaning that the changes in the system occur at certain points in 
time as consequences of the completion of certain activities in the system. Activities in 
SPNs are associated with transitions, which can either fire instantly, as soon as certain 
conditions become enabled (immediate transitions), or can be associated with probability 
distribution functions which determine the firing delays (timed transitions). Besides the 
transitions, an SPN is defined by a finite number of places, a finite number of arcs and an 
initial state (the initial marking of the Petri net). Note that our definition of SPNs is not 
restricted to exponential distributions. Formally, the class of SPNs that will be treated in 
this paper can be described in the following way: 

SPN = (P, T, A, G, m0) 
• P = {P1, P2, …, Pn}, the set of places, drawn as circles 
• T = { T1, T2, …, Tm }, the set of timed transitions along with their distribution 

functions, drawn as bars 
• A = AI ∪ AO ∪ AH, the set of arcs, where AO is the set of output arcs, AI is the set of 

input arcs and AH is the set of inhibitor arcs and each of the arcs has a multiplicity 
assigned to it,  

• G = {g1, g2, …, gr}, the set of guard functions which are associated with different 
transitions, 

• m0 – the initial marking of the Petri net. 
 
Each transition is represented as Ti = (F, mp), where mp ∈ {enabling, age} is the memory 
policy of the transition, and F is a cumulative distribution function. The sets of arcs are 
defined such that 

AO  = {ao
1, ao

2,…, ao
k},  AI  = {ai

1, ai
2,…, ai

j}, and AH  = {ah
1, ah

2,…, ah
i}, where 

AH, AO ⊆ P×T, AI ⊆ T×P. 
We denote by M = {m0, m1, m2, … } the set of all reachable markings of the Petri net. 
Each marking is a vector made up of the number of tokens in each place in the Petri net, 
mi = (#P1, #P2,…, #Pn). The set of all reachable markings is the discrete state space of the 
Petri net. The changes from one marking to another are consequences of the firing of 
enabled transitions which move (destroy and create) tokens, creating the dynamics in the 
Petri net. This makes the firing of a transition analogous to an event in a discrete-event 
system. The markings of a Petri net, viewed as nodes, and the possibilities of movement 
from one to another, viewed as arcs, form the reachability graph of the Petri net. 
 
In this paper, for reasons of simplicity, we describe the case for SPNs without immediate 
transitions. Proxel-based simulation of SPNs with immediate transitions is possible, and 
has been described in [Mol03]. 
 



Another issue that requires attention are the memory policies of the transitions. Every 
transition has a memory policy assigned to it, which determines the behaviour of the 
transition’s enabling time when it becomes disabled. It can either be age or enabling 
memory policy, which specifies whether the time one transition was enabled until another 
fired, will be remembered (age memory policy), or reset (enabling memory policy).  
 

2.2 The Proxel-based Approach to Simulation 
Proxels were recently introduced [Hor02] as a new technique for analysing discrete-state 
stochastic models such as queueing systems or stochastic Petri nets. For this class of 
models, the analysis is usually carried out using Monte Carlo simulation. By contrast, 
proxel-based simulation is deterministic, and works with the state-space of the model, 
which is extended to include supplementary variables that represent transition age 
intensities. Normally, this approach entails constructing and solving partial differential 
equations [Ger00], but proxels yield a purely algorithmic approach to the simulation, in 
which differential equations are avoided completely. The goal of the new approach is to 
develop an easily-understood, deterministic algorithm, which, for certain classes of 
models at least, may prove to be competitive with discrete-event simulation. 
 
A proxel is a basic computational unit for the simulation algorithm, which represents the 
probability that at a given time, the simulation model has reached a specific state via a 
specific path. We use the term "Proxel" as an abbreviation of "probability element" by 
analogy to the well-known "pixel" (picture element) in Computer Graphics. 
 
The idea behind the simulation algorithm is to discretise the continuous stochastic 
process of the SPN using a discrete time step dt. This yields a computational model 
consisting of a set of discrete states at each time point, each of which has a certain 
probability of occurring. The proxel simulation algorithm creates the discrete states on 
the fly and tracks probability as it is redistributed between these states as time progresses. 
 
We illustrate the idea intuitively using the simple SPN and its reachability graph shown 
in Figure 1. This Petri net has three markings, m0, m1, and m2. The delays for each 
transition are described by probability distributions and the initial marking is m0. 
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Figure 1: Example model 



We now choose a discrete time step dt. This user-defined parameter must be chosen 
carefully, since it affects the accuracy of the simulation; specifically, it must be chosen so 
that the probability of the model making two or more state changes during any time 
interval (t, t+dt) is significantly smaller than the probability of one state change only. The 
proxel-based method makes the approximating assumption that at most one state change 
occurs during a time interval of length dt. 
 
Figure 2 shows the states reached by the model at times 0, dt, and 2*dt. The state is 
composed of two parts - the marking of the SPN and the length of time that a transition 
has been enabled without firing. The latter is known as the age intensity; it is needed to 
compute the probabilities for each state change, as will be explained in the next section. 
For this simple model, only one age intensity variable is needed. For more general 
models, several age intensity variables will be necessary. 
 
At time t = 0, the model is in state (m0, 0), where the second component is the time that 
the enabled transitions have been enabled. At time t = dt, the model can have done any of 
three things – transition to marking m1 or m2, or remain in marking m0. The probability 
for each of these occurrences can be computed from the distribution functions describing 
the firing delays of the transitions. States at time t = 2*dt and later are generated 
correspondingly. Proxel-based simulation is the repeated computation of the new set of 
states and their probabilities as simulation time progresses. 

(m0, 0)

(m2, 0)(m0, dt)(m1, 0)

(m0, 2dt)(m2, 0)(m1, 0) (m2, dt)(m1, 0)(m0, 0)(m1, dt)

t = 0

t = dt

t = 2dt

 
Figure 2: The first few states reached by the model 

 
The set of reachable markings of the Petri net corresponds to the set of discrete states of 
the system. The state changes are associated with transitions. The state space is created 
based on the reachability graph. The analysis begins with the probability equal to 1 for 
the Petri net being in the initial marking at time zero. Based on the transitions enabled in 
the initial marking and their distribution functions, this probability of one is distributed 
among the successor states at subsequent time steps, as will be explained in detail in the 
next section. 

3 Proxel-based Simulation of SPNs 

3.1 Definitions 
Proxels are elements that completely define the state of the system at discrete points in 
time. We assume that the system is modelled as a stochastic Petri net, having the 



restrictions that we specified in the second section. Let PN be a stochastic Petri net, 
defined as follows: 

PN = (P, T, A, mo), with 

P = {P1, P2, …, Pn}, T = {T1, T2, …, Tm}. 

A proxel Px is defined as the following: 
Px = (S, t, R, Pr). 

S = (m, τ ) is the state of the system, where m is the marking and τ  is the age intensity 
vector, which contains the elapsed enabling time of a set of transitions. t is the global 
simulation time and Pr denotes the probability that the model is in state S at time t, given 
that it has been reached through the sequence of states R = (S1, S2, …, Ss). The null 

sequence is denoted by ∅ = ().  The age intensity vector τ is needed for a complete 
definition of the state of the Petri net, because the firing rate of each transition is 
dependent on how long it has been enabled. The instantaneous rate function IRF, denoted 
by µ(τ), is used for this purpose. It takes as a parameter τ, the enabling time of the 
transition that caused the change from the previous to the current marking, and is 
computed from the distribution function that is associated with the transition. Henceforth, 

the term “state” will refer to the vector S = (m, τ ).  
 
For each transition ti = (Fi, mpi) with distribution function Fi and memory policy mpi, the 
IRF µi(τ) is calculated according to: 

µi (τ) = 
)(1

)(
τ

τ

i

i

F
F
−

′
 

The instantaneous rate function is used for calculating the probability that the transition 
will fire within the time interval (τ, τ+dt), if it has been active for time τ. We approximate 
this probability by µi(τ)*dt. This is the fact that makes it possible to compute the 
probabilities for each state as time progresses. 
  
The proxel-based method distributes the initial probability of 1 for being in the initial 
state among all of the subsequent states of the model. The proxels are the computational 
units that store and keep track of the flow of probability from one state to another. This 
means that the proxel-based simulation repeatedly generates from each proxel the set of 
successive proxels, until the end of the simulation time has been reached. In this manner, 
a tree structure of proxels is created, which will be referred to as the “proxel tree”. The 
proxel tree is actually the state space of the model in terms of proxels. 
 
During the process of generating the proxel tree, at any discrete time step, the same state 
may be generated many times, each time via a different sequence of predecessors, i.e. a 
different route Ri. In order to obtain the total probability for that state and to optimise the 
storage of the proxels, the probabilities of all of that state’s instances are summed up and 
a new proxel that represents the state is generated. This proxel is stored as a 
representative of the corresponding state and its route parameter is set to the union of all 



the routes that lead to that state at the current discrete time step. This can be formally 
represented in the following way: 

Px = (S, t, , P(model in S at time t)) U
SRi

i
dtt

R
 → /

i:

P(model in state S at time t) = ∑
 → SRi dtt

i
/:

P(model in S at time t | S reached via Ri) 

→n
 = “leads to in n steps” 

Then, at each discrete time step, this procedure repeats. In many cases, after a certain 
number of discrete time steps, a steady state is reached, which means that the sums of the 
probabilities of the proxels that represent the same discrete state of the system converge 
to a stationary value. The formal representation of the probabilities of the different 
discrete states at different time steps as well as the calculation of the proxels’ 
probabilities in the next discrete time step based on the previous one is the following: 

P(Model in marking m at time t) = ∑
= ),(: ττ mSk

P(Model in state Sk  at time t) 

P(Model in state Sk  at time t+dt)= ∑
 → i
dtt

j SRji /:,

P(Model in state Si at time t)*µ(τik)*dt 

where τik is the age intensity of the transition that caused the state change from Si to Sk. 
µ(τik) is 0 if the state change from Si to Sk is not possible. 
 
One important aspect when constructing the proxel tree are the memory policies of the 
transitions in the Petri net. Age policy transitions “remember” their activation times when 
they become disabled owing to another transition firing. When re-enabled, the clock that 
measures the time until the transition fires resumes from where it left off. For this reason, 
every age policy transition may require an additional component in the age intensity 
vector, which adds to the complexity of the simulation.  

3.2 Example 
In this section an example will be presented of how the proxel-based method functions 
when the Petri net contains both types of transition memory policies. For this purpose, the 
Petri net model shown in Figure 3 will be used. This SPN represents a round-robin 
approach to processing three queues of jobs, under the assumption that there is always at 
least one job in each queue. This example was chosen because it contains three age-
policy transitions, which lead to a large age intensity vector. 
 
The initial marking m0=(1, 0, 0) is used. There are six transitions, defined as follows: 

• Ti  = (Fi, enabling), i = 1, 2, 3 
• Ti  = (Fi, age), i = 4, 5, 6  

Three of the transitions are of age policy, and at each point in time there is one enabled 
transition of enabling policy, which means that the dimension of the age intensity vector 
will be four. The reachability graph of the Petri net is shown in Figure 4. 



 
P1=First

Job Queue
P3=Third

Job Queue

T1
P2=Second
Job Queue

T3
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Figure 3: SPN model of round-robin processing of three queues 

m0=(1,0,0) m1=(0,1,0)
T1 T2 m2=(0,0,1)

T3

T5
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Figure 4: Reachability graph of the Petri net in Figure 3 

The age intensity vector is created with the following mapping (T1/T2/T3 , T4, T5, T6), i.e. 
the first three transitions which have enabling memory policy are all mapped to the first 
component of the vector, while each of the three age policy transitions is mapped to a 
different component. 
 
The beginning part of the proxel-tree for this model is presented in Figure 5. The values 
of the probabilities are not stated explicitly in the figure, but are replaced by asterisks. In 
Figure 6, a result from a proxel-based simulation of this Petri net is presented. The value 
that was used for dt is 0.05, and the simulation was run up to time t = 30, i.e. there were 
600 discrete time steps. The computation took 59 seconds on a 1.2 GHz Pentium III 
notebook. The distribution functions associated with the transitions that were used in the 
simulation are the following:  

• F1 ~ Uniform(0.2, 0.3), F2 ~ Deterministic(0.7), F3 ~ Uniform(0.15, 0.35), 
• F4~Deterministic(2.5), F5~Uniform(3.5, 4.5), F6~Uniform(2.0, 3.0).  

 



(S 0  =  (m 0, (0 , 0 , 0 , 0 )), 0 , Ø , 1 .0 ) (S 2  =  (m 0, (dt, d t, 0 , 0 )), d t , (m 0), *)

(S 1 =  (m 1, (0 , d t, 0 , 0 )), d t , (m 0), * )

((m 0, (2d t, 2d t, 0 , 0 )), 2dt , (S 0, S 2), * )

((m 1, (0 , 2d t, 0 , 0 )), 2d t , (S 0, S 2), * )

((m 1, (d t, d t, d t, 0)), 2d t , (S 0, S 1), * )

((m 2, (0 , d t, d t, 0)), 2dt , (S 0, S1), * )

(S 3 =  (m 0, (0 , 0 , 0 , 0 )), d t , (m 0), * )

((m 1, (0 , d t, 0 , 0 )), 2d t , (S 0, S 3), * )
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Figure 5: The first three levels of the proxel tree based on the SPN in Figure 3 
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Figure 6: Solution of the example SPN obtained by proxel-based simulation 

 

4 Markov Chain Interpretation of the Proxel-Based 
Method 

Markov chains are one of the most popular tools for modelling and analysing stochastic 
systems. They possess both simplicity and the ability to model various classes of 
stochastic systems. It can be shown using a supplementary variable approach that the 
proxel-based simulation method can be interpreted as a discrete-time Markov chain 

π k = πk-1 P 
where P is the transition probability matrix for one step and πk is the state occupancy 
probability row-vector at the k-th time step. 
 
We begin by once again considering a discrete time interval dt of the stochastic process 
of the SPN. If dt is sufficiently small, then the probability that more than one state change 



occurs during this interval is negligible. Recall that the state S = (m, τ ) of the SPN is 

defined by a marking m and a vector of age intensities τ . For two states Si, Sj, where Si is 
defined at discrete time step k and Sj is defined at discrete time step k+1, we may 
compute the probability pij for the change of state from Si to Sj as follows: 

(1) 
where µij(τ) denotes the instantaneous rate function of the transition leading from 
marking mi to marking mj and τ is the age intensity of that transition. The probability that 
the SPN remains in marking mi is then one minus the sum of all such probabilities. 

dtp ijij )(τµ=

 
For a given SPN we can thus define a DTMC in which the unknowns correspond to the 
discretised states of the SPN and the coefficients of the matrix P are given by (1). For 
simplicity, we will describe the case where the dimension of the age intensity vector is 
one; this is not a limitation of the proxel-based method.  
 
We consider as an example a simple system which consists of a cashier who can be either 
free or busy. The Petri net representation together with its reachability graph is shown in 
Figure 7.  

P1=Free
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T2T1

m0 = (1,0)

m1 = (0,1)

T 1 T 2

 
Figure 7: SPN model of the cashier with its reachability graph 

We assume for simplicity that transition T1 and T2 have exponential delays with rates λ 
and µ, respectively. This means that the instantaneous rate functions for the both 
transitions have constant values λ and µ. We also assume, for brevity, that the maximum 
length of time that each transition can be enabled is τmax = 3*dt. The transition probability 
matrix for this example is as follows: 
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We will denote by πi,j the variable of the DTMC which corresponds to the Petri net being 
in marking mi and the age intensity of the transition being j*dt. Then, πk is given by 
 [ ]121110020100 πππππππ =k



When the DTMC is explicitly created, then a decision on the maximum age intensity τmax 
must be made. It is obvious that when this point is reached, the transition is forced to fire, 
which is unrealistic. The proxel-based method avoids this difficulty by adapting the 
length of the solution vector as needed; when probabilities for states at a new discrete 
time step would be generated whose value falls below a certain threshold, then these are 
simply ignored. On the other hand, the proxel simulator will continue to prolong the 
enabling times of transitions which are still producing non-negligible probabilities. The 
DTMC for more complex SPNs can be generated analogously. The number of states of 
the chain can grow exponentially in the number of concurrently enabled transitions – a 
well-known drawback of the supplementary variable approach. 

5 Discussion and Experimental Results 

5.1 Discussion of the Algorithm 
At first glance, it appears that the method has exponential complexity in time which 
would prohibit its use in practice. This, however, is not the case. The reasons are as 
follows:  
• the proxel-tree initially grows by a constant number of proxels at each time step; 

after a certain amount of simulation time has elapsed, it stops to grow altogether, and 
• at each time step, several proxels can which occur represent the same state. In the 

implemented program, these are mapped to one proxel (and their probabilities are 
summed). 

In its basic form, the method has an exponential complexity in the dimension of the age 
intensity vector. In certain cases, where the instantaneous rate functions associated with 
the transitions have finite support such as uniform or deterministic distributions, then the 
method takes advantage of this property and performs quite efficiently, since the value of 
0 for the IRF means that the proxel tree does not increase in size. This is one of the 
advantages of the proxel-based method – that it still performs economically for certain 
classes of problems. In order to demonstrate this, we present experimental results with 
respect to time and memory complexity for SPNs containing distributions with and 
without infinite support. In the latter case, uniform and deterministic distribution 
functions will be used instead.  

5.2 Experimental Results 
A number of experiments were made based on the example in section 3.2 in order to 
show some of the features of the method in terms of computation time, accuracy and 
memory complexity, so that a better idea of the method can be obtained. The experiments 
were made on a workstation with a 2.26 GHz Pentium IV processor with 1 GB RAM. 
The results that are presented in Figure 8 show the probabilities for the model being in 
the three different markings when using time steps of different sizes. Based on this 
experiment, it can be concluded that the method is first order accurate with respect to dt. 
This is a valuable feature of the method, because it creates the possibility of calculating 
an accurate solution value by just linearly extrapolating two solution values obtained with 
greater values of dt to a solution value at dt = 0. In this manner, accurate solutions can be 



obtained at significantly reduced cost. It is worth noting that Monte Carlo simulations do 
not permit an analogous approach. 

0.000000

0.200000

0.400000

0.600000

0.800000

0 0.02 0.04 0.06 0.08 0.1 0.12
dt

Pr
ob

ab
ili

ty
 

m0 at time 0.6

m1 at time 0.6
m2 at time 0.6

 
Figure 8: Accuracy of the proxel-based method 

 

Figure 9 shows the times that were needed to run the simulation up to t = 5 using 
different sizes of time step dt for the SPNs with transitions with IRFs with infinite and 
finite support. In the first case (case A), one of the transitions, namely T4, has a Weibull 
distribution function assigned to it, and in the second case (case B) it has been replaced 
with a uniform distribution function whose mean value is approximately the same. 
 

Size of 
dt 

Computation Time in 
Case A 

Number of Proxels in 
Case A 

Computation Time in 
Case B 

Number of Proxels in 
Case B 

0.01 486.52 40778212 1.33 483881 
0.02 15.33 2547138 0.093 45639 
0.03 1.56 411357 0.015 10368 
0.04 0.31 114991 < 0.01 3764 
0.05 0.16 56606 < 0.01 2494 

Figure 9: Computation times and numbers of proxels needed in the two cases 
 

Figure 9 shows the beneficial effect of distributions with finite support: the total number 
of proxels generated by the algorithm is considerably smaller than for the computation 
that included the Weibull distribution. The number of proxels grows superlinearly with 
the number of time steps. This is due to the increase in the number of different values of 
the age intensities that are active concurrently. The table also shows that a highly 
accurate result could be obtained at small cost by extrapolating the solutions obtained, for 
example, with dt = 0.03 and dt = 0.05. 

6 Summary and Outlook 
The proxel based method is an alternative method for analysing the behaviour of discrete 
stochastic models such as stochastic Petri nets. It follows the behaviour of the model 
considering every possible development and calculating the probabilities of the state 
changes based on the distribution functions that describe them. The method is applied 
under the approximating assumption that just one state change occurs during any interval 
of length dt.  
 
In this paper, the analysis of stochastic Petri nets using the proxel-based method was 
described. There were formalities and relations that were necessary to be established in 
order to carry out this kind of analysis. The method was interpreted as a DTMC whose 
dimension is dynamically adapted. Experiments were carried out in order to test the 
method’s properties. The results obtained showed that the proxel-based method is of first-



order accuracy and exploits density functions with finite support, in which case it 
performs very efficiently. The method also performs well for models with rare events 
[Hor02][Laz03], for which Monte Carlo simulations can need a very large number of 
replications. 
 
The SPN specification presented in this paper excludes the use of immediate transitions. 
We believe that these can also be treated using proxels. The probabilities are computed 
directly from the transition probabilities and the simulation time is not advanced. This 
would, however, prohibit the use of vanishing loops in the SPN, which is, however, 
commonplace and not a serious limitation. 
 
The method, however, is still in its early stage, which leaves a large space for 
improvements, which we believe will extend the class of problems for which it performs 
efficiently. Many details with respect to its memory and computational complexity 
optimisation are subjects of future research. One of them is using an adaptable size of the 
time step [Hor03], which we believe can increase the method’s performance. 
 
We believe that the proxel-based method is useful when fast analysis and rough 
approximations of the solutions of stochastic systems are required (which can be 
controlled with the size of dt), as well as when a highly accurate solutions are needed and 
the time is not an issue. The extrapolation of the solutions obtained by using different 
values for dt is also an option that can lead to fast and efficient solutions. This shows that 
the proxel-based method is very flexible. 
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