Xifaxan[®] (rifaximin) Tablets 550 mg for Hepatic Encephalopathy

United States Food and Drug Administration Gastrointestinal Drugs Advisory Committee February 23, 2010

Xifaxan[®] (rifaximin) Tablets 550 mg for Hepatic Encephalopathy Introduction

David Dobrowski Director, Regulatory Affairs Salix Pharmaceuticals, Inc.

Rifaximin Product Characteristics

- Antibiotic of rifamycin class
- Gut targeted; minimally absorbed
- Low risk of drug interactions
- Broad spectrum in vitro antibacterial activity
- Low risk of antibiotic resistance

Proposed Indication

• NDA 22-554 (550 mg tablet BID)

 Xifaxan[®] (rifaximin) is indicated for the maintenance of remission of hepatic encephalopathy (HE) in patients ≥ 18 years of age

Rifaximin Regulatory Overview

Approved in 33 countries for various GI indications including

- Hepatic encephalopathy and/or hyperammonemia
- 5 years US postmarketing experience

Major US development programs

Travelers' Diarrhea	NDA 21-361 Approved May, 2004	XIFAXAN [®] 200 mg tablets (TID)
Hepatic Encephalopathy	NDA 22-554 PDUFA: March 24, 2010	550 mg tablets (BID)
Hepatic Encephalopathy	Orphan drug status <i>Granted 1998</i>	n/a
Irritable Bowel Syndrome	Phase 3 complete NDA: 2Q 2010	550 mg tablets (TID)
Pediatric Acute Diarrhea	TBD	TBD

Rifaximin HE Development US Regulatory History and Interactions

CI-6

Initial FDA Interactions	 Orphan drug status granted 1998 IND filed 1999
RFHE3001 Study Design	 Consultation with ~25 experts 6 advisory boards
FDA Meeting 2004	 19 studies in acute treatment and 1 meta-analysis Proposed "maintenance of remission" indication Need confirmatory trial for "maintenance" indication
Primary Endpoint Agreement	An increase in Conn score to ≥ 2 (ie, 0 or 1 to ≥ 2) OR
	An increase of 1 for both Conn score and asterixis grade for patients with a baseline Conn score 0
FDA Meeting 2007	• PK study design in patients with advanced liver disease
NDA 2009	 FDA Guidance (1998): "Providing Clinical Evidence of Effectiveness for Human Drugs and Biological Products"
	 Priority review granted

US Treatment Options for HE

Lactulose (FDA approved 1976)

 Prevention and treatment of portal-systemic encephalopathy including the stages of pre-coma and coma **CI-7**

Neomycin (FDA approved 1970)

- Adjunctive therapy in hepatic coma by reduction of the ammonia-forming bacteria in the intestinal tract. The subsequent reduction in blood ammonia has resulted in neurological improvement
- Metronidazole and Vancomycin (not approved)
- Rifaximin (FDA review 2010)
 - For the maintenance of remission of hepatic encephalopathy (HE)

Rifaximin Development Timeline Hepatic Encephalopathy

CI-8

Highlights for Advisory Committee Meeting

- HE is a serious, debilitating condition
- HE is an unmet medical need
- Criteria for determining HE breakthrough
 - Conn is clinically relevant and endorsed by World Congress of Gastroenterology
 - Agreed upon by FDA and Salix
- Rifaximin is a meaningful advancement for HE treatment
 - Results are significant, robust, and confirmatory
 - Reduced risk of HE episodes
 - Reduced HE-related hospitalizations
 - Benefit correlates to known prognostic variables associated with HE
 - Well tolerated with a favorable safety profile

Today's Agenda

Rifaximin Pharmacology	Pamela L. Golden, PhD Director, Development Salix Pharmaceuticals, Inc.
Hepatic Encephalopathy and Current Management	Nathan M. Bass, MD, PhD Professor of Medicine Assoc. Medical Director, UCSF Liver Transplant Program University of California, San Francisco, School of Medicine
Rifaximin Efficacy	William P. Forbes, PharmD Senior Vice President, R&D Chief Development Officer Salix Pharmaceuticals, Inc.
Rifaximin Safety	Naga P. Chalasani, MD Professor of Medicine, Director of Gastroenterology and Hepatology Indiana University School of Medicine
Benefit/Risk Profile	Steven L. Flamm, MD Professor of Medicine and Surgery, Liver Transplantation Northwestern University

Consultants

- Roger Butterworth, PhD Faculty of Medicine University of Montreal Quebec, Canada
- Herbert L. DuPont, MD St. Luke Hospital Houston, TX
- Tarek Hassanein, MD University of California San Diego San Diego, California
- W. Ray Kim, MD Mayo Clinic Division of Gastroenterology and Hepatology Rochester, MN

- Colleen Johnson, MS, DABT Reno Associates *Hamilton, VA*
- Gary Koch, PhD Professor of Biostatistics University of North Carolina Chapel Hill, NC
- Kevin Mullen, MD Metro Health Center Case Western Reserve University Cleveland, OH
- Eugene R. Schiff, MD MACP, FRCP, MACG, AGAF University of Miami *Miami, FL*

Rifaximin Pharmacology

Pamela L. Golden, PhD

Director, Development Salix Pharmaceuticals, Inc.

Rifaximin ADMET Summary

- Poorly absorbed (< 0.4%)</p>
 - Low solubility and permeability (BCS 4)
 - P-glycoprotein efflux
- Clearance pathways
 - > 99% excreted unchanged in feces
 - First-pass biliary clearance
 - One known metabolite (~2.5% of parent)
 - Minimal renal clearance (0.32%)
- No nonclinical safety signals
 - Doses up to 125 × human dose
 - Nonclinical studies show no QT prolongation risk

Rifaximin Microbiology

 Binds to β-subunit of bacterial DNA dependent RNA polymerase, resulting in inhibition of RNA synthesis

In vivo

- Ameliorates bacterial diarrheal symptoms
 - Achieves concentrations ~ 8000 µg/g of stool^a
 - Modest alterations in normal intestinal flora and pathogen counts^{b,c}
- Reduced systemic exposure minimizes driving force for resistant bacteria

^a Jiang et al. Antimicrob Agents Chemother. 2000;44:2205-2206.

^b DuPont HL and Jiang ZD. *Clin Microbiol Infect*. 2004;10:1009-1011.

^c DuPont HL, et al. *Clin Infect Dis.* 2001;33:1807-1815.

Rifaximin Microbiology and Pharmacology

In vitro

- Effects on bacteria at sub-MIC levels
 - Cured host cells of plasmids and reduced plasmid transfer^a

CM_4

- Reduced virulence of enteric bacteria^b
- Effects on mammalian cells
 - Upregulates detoxification pathways in intestinal epithelial cells^c
 - Stabilizes epithelial cells and inhibits subsequent bacterial attachment^d

Reduces gut-derived neurotoxins (eg, ammonia) which lead to HE in liver-impaired patients

^a Debbia EA, et al. *J Chemotherapy*. 2008;20:186-194; ^b Jiang ZD, et al. *Int J Antimicrob Agents*. 2009. ^c Ma X, et al. *J Pharmacol Exp Ther*. 2007;322:391-398; ^d Brown EL, et al. *Antimicrob Agents Chemo*. 2010;54:388-396.

Single Venous Ammonia Measurements Correlate With HE Grade

CM-5

of increasing venous ammonia

Rifaximin Effect on Blood Ammonia Over 10 Days

CM-6

Rifaximin 1200 mg/day decreased blood ammonia (p < 0.0001)

- Corresponding improvement in median HE grade (p < 0.0001)
- Correlation between ammonia and HE was examined in RFHE3001

Rifaximin Pharmacodynamics Dose Selection for Phase 3

- RFHE9702: HE
 - Double-blind, dose-ranging
 - Optimal dose of 1200 mg/day
- Lauritano et al: SIBO
 - Dose-finding in treatment of small intestinal bacterial overgrowth

CM-7

Optimal dose of 1200 mg/day

- Dose selection: Phase 3 HE
 - 550 mg maximizes dose and tablet size
 - BID regimen based on intestinal transit time and compliance

Lauritano et al. Aliment Pharmacol Ther. 2005;22:31-35.

Rifaximin PK in Liver Impairment

Rifaximin Exposure is Significantly Lower Than Other Antibiotics

CM-9

- Rifaximin exposure in advanced liver disease
 - > 200-fold lower than rifampin exposure
 - − ≥ 10-fold lower than neomycin exposure
 - > 35-fold lower than norfloxacin exposure

Well et al. International Journal of Antimicrobial Agents. 1998;10:31-38.

Low Risk of Drug Interactions

Inhibition

 No inhibition of CYP enzymes, P-glycoprotein, or BSEP in vitro

Induction

No clinically significant induction in vivo

Midazolam parameters, mean (SD)	Midazolam alone N = 24	Midazolam with 7 days rifaximin N = 24	Midazolam with 14 days rifaximin n = 20
C _{max} (ng/mL)	10.8 (3.56)	10.1 (2.64)	10.1 (3.10)
AUC _{0-t} (ng∙h/mL)	22.5 (9.19)	21.0 (7.54)	20.5 (8.40)

No dose adjustments are recommended

Rifaximin Pharmacology Summary

Mechanisms

- Bacteriostatic activity and bacterial virulence reduction
 - Results in ammonia reduction in HE

ADMET

- Poor absorption, minimal metabolism, moderate protein binding
- No clinically significant drug-drug interactions
- No nonclinical safety signals
- Important differences from rifampin
 - Lower systemic exposure for rifaximin (100- to 1000-fold)
 - Lower induction potential for rifaximin (~10-fold)
 - Lower potential for antibacterial resistance (TB, *C. difficile*)

Overview of Hepatic Encephalopathy and Current Management Practices

Nathan Bass, MBChB, PhD

Professor of Medicine & Associate Medical Director, UCSF Liver Transplant Program University of California, San Francisco, School of Medicine

What is Hepatic Encephalopathy?

- Complication of advanced liver disease
- Exclusion of other known brain diseases
- HE affects 30% to 45% of cirrhosis patients

CB-2

- Cirrhosis is the 12th leading cause of death (27,555 deaths in 2006)
- Characterized by disturbance in personality, cognitive, intellectual, and neuromuscular function
- Ranges from minimal disturbances to coma

Abou-Assi S et al. *Postgrad Med.* 2001;109:52-70 Ferenci P et al. *Hepatology.* 2002;35:716-721. Mas A et al. *J Hepatol.* 2003;38:51-58. Heron MP et al. *National Vital Statistics Reports.* 2009; 57 no 14.

Clinical Presentation of HE Classification by 1998 WCOG Working Group

CB-4

Туре	HE Associated With	Category	Subcatego	ry
Acute liver failure	<u>A</u> cute liver failure			
Bypass	Portal-systemic <u>B</u> ypass and no intrinsic hepatocellular disease	Episodic	Precipitated Spontaneous Recurrent	Overt
Cirrhosis	<u>C</u> irrhosis and portal hypertension or portosystemic shunts	Persistent	Mild Severe Treatment-dependent	
		Minimal		

Reprinted with permission from John Wiley & Sons, Inc. Ferenci P, et al. Hepatology. 2002;35:716-721.

Diagnosis/Presentation of Episodic HE

CR-5

- Episodic HE presents with impairment of
 - Consciousness
 - Intellectual function
 - Personality and behavior
 - Neuromuscular function
- Precipitating factors or spontaneous
- Reversible with treatment
- High rate of recurrence

Ferenci P, et al. *Hepatology*. 2002;35:716-721; Mas A. *Digestion*. 2006;73(Suppl1):86-93; Amodio et al. *J Hepatol*. 2001; 35(1):37-45; Guevara et al. *Am J Gastroenterol*. 2009;104(6):1382-1389; Poordad FF. *Aliment Pharmacol Ther*. 2006;25(Suppl 1):3-9; Arguedas MR, et al. *Dig Dis Sci*. 2003;48(8):1622-1626; Bustamante J, et al. *J Hepatol*. 1999;30:890-895; Fichet et al. *J Crit Care*. 2009;24(3):364-370.

CB-6

Key Diagnostic Strategies for HE

Patient presentation

- Advanced liver disease (PE, med Hx and clin labs)
- Rule out unrelated neurologic and metabolic abnormalities

Clinical assessment

- West Haven (Conn) score
- Asterixis grading
- Clinical labs
 - Blood ammonia
- Neurophysiological
 - Critical flicker frequency (CFF)
 - EEG

Blei AT, et al . *Am J Gastroenterol*. 2001 96:1968-1975; Hassanein TI, et al. *Dig Dis Sci*. 2008;53:529-538. Hassanein TI, et al. *Am J Gastroenterol*. 2009;104(6):1392-400; Conn HO, et al. *Gastroenterology*. 1977;72:573-583. Timmermann L, et al. *Clin Neurophysiol*. 2008;119:265-272.

Conn Score and Management Options

CB-7

Reprinted with permission from Elsevier. Conn HO, et al. Gastroenterology. 1977;72;573-583.

HESA Mapping of Conn Score

	State of consciousness	Intellectual function	Personality/ behavior	Neuromotor function
Conn score = 0	• Alert and oriented X 3			
Conn score = 1	– Trivial lack of attention	 Shortened attn. span Impaired addition 	 Euphoria or depression 	– Asterixis
HESA criteria	 Sleep disorder 	 Impaired complex computations Shortened attention span 	 Euphoria or depression 	 Tremor Impaired construction
Conn score = 2	– Lethargy	 Minimal disorientation to time and place Impaired subtraction 	– Bizarre behavior	– Asterixis
HESA criteria	• Lethargy	 Disorientation to time Mental control = 1 - 4 Amnesia Impaired simple computations 	 Inappropriate behavior Anxiety 	 Slurred speech Hyperactive reflexes
Conn score = 3	– Somnolence/stupor	 Confusion gross disorientation 	– Bizarre behavior	– Clonus/rigidity
HESA criteria	Somnolence	 Confusion Disorientation to place Mental control = 0 	 Bizarre behavior/anger rage 	 Clonus/rigidity
Conn score = 4	– Coma	– N/A	- N/A	– N/A
HESA criteria	 No eyes opening; No verbal responses; No reaction to simple commands 			

Adapted. Reprinted by permission from Macmillan Publishers Ltd: American Journal of Gastroenterology. Hassanein TI, et al. *Am J Gastroenterol.* 2009;104(6):1392-1400.

HESA Mapping of Conn Score

	State of consciousness	Intellectual function	Personality/ behavior	Neuromotor function
Conn score = 0	• Alert and oriented X 3			
Conn score = 1	- Trivial lack of attention	- Shortened attn. span - Impaired addition	 Euphoria or depression 	– Asterixis
HESA criteria	 Sleep disorder 	 Impaired complex computations Shortened attention span 	• Euphoria or depression	• Tremor • Impaired construction
Conn score = 2	– Lethargy	Minimal disorient ation to time and place	– Bizarre behavior	– As erixis
HESA HES neuropsyce	A for the star Num	Arithmetic sub of the Wide Rai Achievement T	test I nge Tr Test	BVMT-R Copy rial or can write name legibly
Conn HESA	Sequencing (Adult Intelligen	Wechsler ce Scale)	7 point Likert scale	
Conn score = 4	– Coma	– N/A	- N/A	- N/A
HESA Criteria	 No eyes opening, No ve 	rbal responses, No react	ion to simple comm	ands

Adapted. Reprinted by permission from Macmillan Publishers Ltd: American Journal of Gastroenterology. Hassanein TI, et al. *Am J Gastroenterol*. 2009;104(6):1392-1400. BVTM-R = Brief Visuospatial Memory Test-Revised

CB-10

Asterixis Grading

Grade 0 = No tremors

Grade 1 = Rare flapping motions

Grade 2 = Occasional, irregular flaps

Grade 3 = Frequent flaps

Grade 4 = Almost continuous flapping motions

Reprinted from Elsevier. Conn HO, et al. Gastroenterology. 1977;72;573-583.

Impact of HE on the Patient and Caregiver

CB-11

CB-12

Goals of Therapy for Episodic HE

- Resolve the acute episode
- Prevent recurrent HE episodes
 - Decrease the impact of HE on patient's health and quality of life
 - Decrease the impact of HE on the healthcare system

An effective, well-tolerated and safe therapy for long-term treatment

Currently Approved HE Therapies

	Lactulose	Neomycin
Mechanism	 Traps ammonia and inhibits production Purging effect (frequent bowel movements) 	 Antibacterial action Prevention of bacterial ammonia production
Limitations	 Reliance on self-titration Unpredictable, severe diarrhea Dehydration and hypernatremia Nausea, abdominal pain, flatulence 	 Nephrotoxic and ototoxic Increased risk in advanced liver disease
Long-term Limitations	 Poor tolerance, compliance and varying efficacy 	• Toxicity

CB-14

Rifaximin as a Treatment Option for Hepatic Encephalopathy
Antibiotics as a Treatment Option for HE Cochrane Meta-Analysis

CB-15

No of patients without improvement/ Total No in group			ient/			
Study	Non-absorbable disaccharides	Antibiotics	;	Rel (9	ative risk)5% CI)	
Aminoglycosides						
Conn 1977 ⁵	3/18	2/15				
Atterbury 1978 ⁶	4/22	3/23				
Orlandi 1981 ³⁰	63/91	48/82			┼══╌	
Russo 1989 ³¹	1/8	1/7	≺		-	
Blanc 1993 ³²	9/29	10/31			-	
Subtotal (95% CI)	168	158			•	P=0.16
Total events: 80 (non-absorbable disaccharides), 64 (a	ntibiotics)					
Test for heterogeneity: χ^2 =0.39, df=4, P=0.98, / ² =0%						
Test for overall effect: z=1.42, P=0.16						
Rifaximin						
Fera 1993 ³⁴	4/20	0/20				
Massa 1993 ³⁶	0/20	0/20				
Song 2000 ³⁷	7/25	8/39				
Loguercio 2003 ³⁸	11/13	6/14				
Mas 2003 ³⁹	12/53	10/50				-
Subtotal (95% CI)	131	143				P=0.04
Total events: 34 (non-absorbable disaccharides), 24 (a	ntibiotics)					
Test for heterogeneity: χ^2 =2.75, df=3, P=0.43, / ² =0%						
Test for overall effect: z=2.08, P=0.04						
Total (95% CI)	299	301			•	P=0.03
Total events: 114 (non-absorbable disaccharides), 88 ((antibiotics)					
Test for heterogeneity: χ^2 =4.69, df=8, P=0.79, I^2 =0%		0	.1 0.2	0.5	1 2	5 10
Test for overall effect: z=2.20, P=0.03		F	avours non-a isaccharides	absorbab	le	Favours antibiotics

Reprinted with permission from BMJ Publishing Group Ltd. Als-Nielsen B, et al. BMJ. 2004;328:1046-1050.

ho

CB-16

Efficacy of Rifaximin for the Treatment of HE Episodes

Study	Design	Results
RFHE9702 Williams, 2000 N = 54	 Double blind, 7 days Dose ranging 600, 1200, 2400 mg/day 	 Dose response (p = 0.056) for PSE Index 1200 mg/day (400 mg TID) optimal dose
RFHE9701 Mas, 2003 N = 104	 Double blind, 10 days Rfx (1200 mg/day) Lactitol (60 g/day) 	 Rfx vs lactitol (<i>p</i> < 0.05) for PSE index, HE grade, ammonia
RFHE9901 Bass, 2004 N = 93	 Double blind, PBO controlled, 14 days Rfx (1200 mg/day) 	 Rfx vs PBO for asterixis (p < 0.01)

Williams R, et al. *Eur J Gastroenterol Hepatol.* 2000;12:203-208. Mas A, et al. *J Hepatol.* 2003;38:51-58. Bass N, et al. Presented at: 55th Annual Meeting of the American Association for the Study of Liver Diseases; October 29-November 2, 2004; Boston, Mass.

Rifaximin Reduces Hospitalizations Compared With Lactulose

CB-17

**p* < .0001

^a Neff GW, et al. Transplant Proc. 2006;38:3552-3555; ^b Leevy CB, Phillips JA. Dig Dis Sci. 2007;52:737-741.

CB-18

Summary

- HE is a serious, debilitating condition resulting from advanced liver disease
- HE causes significant cognitive impairment that
 - Disrupts ability for self-care, compliance, and quality of life
 - Results in frequent intervention and hospitalization
- There remains an unmet medical need for effective, safe, and well-tolerated therapies
- Rifaximin represents a significant, therapeutic advancement in treatment of HE

Efficacy of Rifaximin for Treatment of Hepatic Encephalopathy

William P. Forbes, PharmD

Senior Vice President, Research & Development Chief Development Officer Salix Pharmaceuticals, Inc.

CE-2

Overview of Topics Covered Pivotal Study 3001

Study design

- Reliability of determining Conn at baseline (HESA)
- Subject disposition and baseline characteristics

Study results

- Primary endpoint (time to breakthrough)
 - Subgroup analysis (consistency of effect)
 - FDA Issues: validity of endpoint
- Key secondary endpoint (time to HE-related hosp)
- Secondary and exploratory endpoints
 - Conn, asterixis, PRO, ammonia, CFF
- Long-term efficacy

Conclusion

Study 3001

Design

Randomized, placebo-controlled, double-blind

Study objective

 Evaluate efficacy and safety of Rifaximin for 6 months in maintenance of remission in patients with documented episodic, overt HE as result of liver disease CE-3

Dose: 550 mg BID

299 patients enrolled in 70 study centers in the US, Canada, and Russia

Study Design Studies 3001 and 3002

Key Entry Criteria Study 3001

Inclusion

- HE associated with advanced liver disease
- 2 episodes of HE (Conn score ≥ 2) within 6 months of screening (1 documented in medical record)
- Conn score 0 or 1 at screening and randomization
- MELD score ≤ 25
- Signed informed consent/assent of patient <u>and</u> caregiver

• Exclusion

- Medical/psychiatric condition interfering with assessments
- Use of alcohol within 14 days, sedatives within 7 days, current drug dependence
- HE due to GI hemorrhage, CNS insult, medications, renal failure
- TIPS placement or revision within 3 months prior to screening
- Renal insufficiency, anemia, hypovolemia, electrolyte abnormality

Primary Efficacy Endpoint Study 3001

Time to first breakthrough HE episode

Breakthrough HE episode:

 An increase in Conn score^a to ≥ 2 (ie, 0 or 1 to ≥ 2)

OR

 An increase of 1 for both Conn score and asterixis grade for patients with a baseline Conn score 0

^a Definition of Breakthrough HE mirrors Final Report of the Working Party at the 11th World Congresses of Gastroenterology, Vienna, 1998.

Breakthrough HE Surveillance Study 3001

HE breakthrough always adjudicated by principal investigator

- During clinic visits
 - HESA
 - Conn and Asterixis
- Between clinic visits
 - Conn score only (no asterixis)
 - Weekly or unscheduled phone calls
 - Initiated by site/patient/caregiver
 - Changes in patient's routine, behavior or demeanor
 - Adverse events
 - Concomitant medication (including lactulose) changes
 - ER or hospitalization
 - Physician observed HE symptoms

Assessment at Baseline and Postbaseline Visits Conn and HESA

The Conn (West Haven Criteria)

- Conn is the most widely used HE grading method
- Grading relies solely on clinical judgment
 - HE Grade Conn Criteria

3

4

- 0 No personality or behavioral abnormality detected
- 1 Trivial lack of awareness Euphoria or anxiety Shortened attention span Impairment of addition or subtraction
 - 2 Lethargy Disorientation for time Obvious personality change Inappropriate behavior
 - Somnolence to semistupor Responsive to stimuli Confused Gross disorientation
 - Bizarre behavior

Coma (Unresponsive to verbal or noxious stimuli)

Atterbury, Maddey, & Conn, 1978; Conn et al., 1977; Huda et al., 1998; Quero Guillen et al., 2003; RFHE3001 protocol

Worsening Impairment

CE-10

Asterixis Grading

Worsening Impairment

Grade 0 = No tremors

Grade 1 = Rare flapping motions

Grade 2 = Occasional, irregular flaps

Grade 3 = Frequent flaps

Grade 4 = Almost continuous flapping motions

Reprinted with permission from Elsevier. Conn HO, et al. *Gastroenterology*. 1977;72;573-583.

HESA Components Assessed by Study Coordinator

HESA <u>Clinical</u> Assessments REQUIRED

- Sleep disorder
- Tremor
- Lethargy
- Loss of time
- Slurred speech
- Hyperactive reflexes
- Inappropriate behavior
- Somnolence
- Confusion
- Disoriented to place
- Bizarre behavior/Anger/Rage
- Clonus/Rigidity/ Nystagmus/Babinsky
- No eyes opening
- No reaction to simple commands
- No verbal response

Neuropsychological testing REQUIRED

- Counting numbers and saying alphabet
 - Mental Control
- Word Recognition and Recall
 - Hopkins Verbal Learning Test (HVLT)

- Simple and complex computations
- Depression rating
- Anxiety rating
- # digits remembered
 - Digit span
- Analysis of ability to draw
 - Copy trial

Patient Disposition Study 3001 - Intent-to-Treat Population

Demographics Studies 3001 and 3002

		Patients, n (%)		
		Stu	Study 3001	
		Placebo	Rifaximin	All rifaximin
Category		n = 159	n = 140	n = 348
Sex	Male	107 (67)	75 (54)	203 (58)
	Female	52 (33)	65 (46)	145 (42)
Age	Mean (SD)	57 (9)	56 (10)	57 (9)
	< 65 yr	128 (81)	113 (81)	277 (80)
	≥ 65 yr	31 (19)	27 (19)	71 (20)
Race	White	139 (87)	118 (84)	310 (89)
	Non-White	20 (13)	21 (15)	37 (11)
Ethnicity	Hispanic or Latino	28 (18)	21 (15)	45 (13)
	Not Hispanic or Latino	131 (82)	119 (85)	303 (87)
Country	United States	112 (70)	93 (66)	269 (77)
	Canada	6 (4)	8 (6)	15 (4)
	Russia	41 (26)	39 (28)	64 (19)

CE-14

Baseline Disease Characteristics Study 3001

		Placebo n = 159	Rifaximin n = 140
Liver	Duration CLD, mo, mean (range)	61 (2.0 - 323.4)	51 (1.7 - 260.5)
	MELD, mean (range)	12.7 (6 - 23)	13.1 (6 - 24)
	TIPS, n (%)	20 (13)	12 (9)
HE	Time since last HE, days (range)	73 (12 - 205)	69 (8 - 222)
	HE episodes, past 6 mo, n (%)		
	n = 2	111 (70)	97 (69)
	n > 2	47 (30)	43 (31)
	Conn at baseline, n (%)		
	Score = 0	107 (67)	93 (66)
	Score = 1	52 (33)	47 (34)
	Ammonia, µg/dL, mean (range)	90.3 (20 - 465)	87.9 (20 - 290)
	CFF, Hz, mean (range)	37.4 (15 - 50)	36.9 (18 - 48)

CE-15

Results RFHE3001

Primary Endpoint Kaplan-Meier of Time to First HE Breakthrough Study 3001 - ITT Population

Lactulose Use – Did Not Influence Study Outcome Study 3001

	Placebo	Rifaximin
Parameter	N = 159	N = 140
Lactulose at baseline		
Yes, n (%)	145 (91)	128 (91)
No, n (%)	14 (9)	12 (9)
Average daily lactulose use (cups/d [15 mL/cup])		
Mean ± SD	3.51 ± 2.59	3.14 ± 2.10
Median (min - max)	2.8 (0 - 11.8)	2.8 (0 - 9.0)

Components of Primary Endpoint Are Significant Study 3001 - ITT Population

	Patients, n (%)			
	Placebo N = 159	Rifaximin N = 140	Hazard ratio (95% CI)	<i>p</i> value
Conn score ≥ 2	57 (35.8)	28 (20.0)		0.0027 ^a
Increase in Conn and asterixis of 1 each if baseline Conn score = 0	16 (10.1)	3 (2.1)		0.0055 ^a
Primary endpoint	73 (45.9)	31 (22.1)	0.421 (0.28, 0.64)	< 0.0001 ^b

CE-18

^a Cochran-Mantel-Haenszel Test ^b Log rank test

Consistency of Treatment Effect Across Subgroups Study 3001 - Primary Endpoint

Rfx **PBO** N=159 N=140 **US and Canada** 118 101 39 41 Russia Male 75 107 65 52 **Female** < 65 years 113 128 27 31 \geq 65 years White 118 139 **Non-White** 22 20 Conn score 0 93 107 Conn score 1 47 52 **Prior lactulose use** 128 145 3.324 No prior lactulose use 14 12 56 **Diabetic** ΔΔ Not diabetic 96 103 ≤ 90 days remission 100 110 > 90 days remission 39 **48** 2 episodes w/in 6 mo 97 111 > 2 episodes w/in 6 mo 43 47 1° endpoint (time to HE) 140 159 0.5 0 3.5 1_0 ← Rifaximin superior Placebo superior \rightarrow

Consistency of Treatment Effect Across Subgroups Study 3001 - Primary Endpoint

PBO Rfx N=140 N=159 $MELD \leq 10$ 34 **48 MELD 11 - 18** 96 94 **MELD 19 - 24** 12 14 **Child-Pugh A 46** 56 **Child-Pugh B** 65 72 **Child-Pugh C** 17 14 1° endpoint (time to HE) 140 159 0.5 1.0 1.5 0 ← Rifaximin superior Placebo superior \rightarrow

FDA Questions: Validity of Primary Endpoint Study 3001

- Is Conn score a valid endpoint?
 - Standard assessment tool for over 30 years
 - Easily identifiable clinical changes
 - Endorsed by WCOG and medical experts?
 - Agreed upon endpoint between FDA and Sponsor
 - No substitute proposed
- Accuracy of Conn score at baseline?
 - HESA confirmation of Conn scoring

Accuracy of Conn score at visits and breakthrough?

- HESA confirmation of Conn scoring
- Symptoms vs source (PI/Hospital/Caregiver)
- Correlation of primary endpoint with time dependent prognostic factors
 - Ammonia and CFF
 - Patient-reported outcome
 - All-cause mortality

Accuracy of Conn Score at baseline HESA Confirmation of Conn Scoring

		Patients, n (%)			_
HESA category	HESA indicator	Conn score = 0 N = 129	Conn score = 1 N = 43	Conn score = 2 N = 0	* <i>p</i> value Conn 0 vs 1
Clinical	Sleep disorder/ Impaired sleep pattern	32 (25)	27 (63)	—	< 0.0001
Clinical	Tremor	17 (13)	21 (49)	—	< 0.0001
Clinical	Inappropriate/ Bizarre behavior	0	0	—	
Clinical	Disorientation to place	0	0	_	
Neuropsychological	Amnesia of recent events	64 (50)	32 (74)	_	0.0047
Neuropsychological	Impaired simple computations	4 (3)	6 (14)	—	0.0167
Neuropsychological	Impaired complex computations	31 (24)	18 (42)	—	0.0320
Neuropsychological	Depression	17 (13)	13 (30)	_	0.0186

Method of Diagnosing Breakthrough HE FDA Ad Comm Briefing Document, Tables 1, 9

CE-23

	· · · · · · · · · · · · · · · · · · ·		
	Placebo	Rifaximin	
	N = 159	N = 140	
Category (% of 104)	73 breakthrough HE	31 breakthrough HE	
Direct, at site (37)	30 / 73 (43)	8 / 31 (27)	
Indirect, hospitalized (30)	19 / 73 (27)	12 / 31 (40)	
Indirect, other ER or caregiver (30)	21 / 73 (29)	10 / 31 (32)	
Post-study F/U (4) (168 days)	3 / 73 (4)	1 / 31 (3)	

Patients, n / N (%)

Symptoms Associated With Diagnostic Class FDA Ad Comm Briefing Document

CE-24

^a % based on number of reported symptoms within a category.

Breakthrough HE Basis of Information Used for PI Adjudication

	Patients, n / N (%)		
Category (% of 104)	Placebo N = 159 73 breakthrough HE n / n (%)	Rifaximin N = 140 31 breakthrough HE n / n (%)	
PI (41) PI observed and adjudicated breakthrough HE in clinic or hospital	32 / 73 (44)	11 / 31 (35)	
ER/Hospital (38) PI adjudicated breakthrough HE after review of medical records and caregiver testimony	26 / 73 (36)	13 / 31 (42)	
Caregiver reported (21) PI adjudicated breakthrough HE based on caregiver / patient testimony	15 / 73 (21)	7 / 31 (23)	

Breakthrough HE Symptoms Used for PI Adjudication

^a % based on number of reported symptoms within a category.

Correlation of Primary Endpoint With Time ^{CE-27} Dependent Prognostic Factors Ammonia and CFF

Correlation of Primary Endpoint With Time CE-28 **Dependent Prognostic Factors** Patient Reported Outcomes

Correlation of Primary Endpoint With Time ^{CE-29} Dependent Prognostic Factors Association Between Conn and Mortality

Kaplan-Meier plot of survival estimates of hospitalized patients with cirrhosis according to grade of hepatic encephalopathy (HE)

Reprinted with permission from John Wiley & Sons, Inc. Stewart et al. Liver Transplantation. 2007;13:1366.

Correlation of Primary Endpoint With Time ^{CE-30} **Dependent Prognostic Factors** Study 3001 - Association Between Conn and Mortality

CE-31 Correlation of Primary Endpoint With Time Dependent Prognostic Factors Studies 3001/3002 - Association Between Conn and Mortality

Key Secondary Endpoint Time to HE-Related Hospitalization Study 3001 - ITT Population

CE-32

Time to HE-related hospitalization Hospitalization directly resulting from HE OR

HE occurring during hospitalization
Key Secondary Endpoint Time to HE-Related Hospitalization Study 3001 - ITT Population

Supplementary Analyses of Time to HE-related Hospitalizations Study 3001 - ITT Population

Time to <u>HE-caused</u> hospitalizations

 <u>56%</u> reduction in risk of first HE-caused hospitalization (HR = 0.436, 95% CI: 0.238, 0.807; *p* = 0.0064 rifaximin vs placebo)

- Time to <u>all-cause</u> hospitalizations
 - <u>30%</u> reduction in risk of first all-cause hospitalization (HR = 0.706, 95% CI: 0.478, 1.044; *p* = 0.0793 rifaximin vs placebo)

CE-35

Prespecified Secondary Analyses Study 3001 - ITT Population

- Other secondary endpoints in hierarchical order
 - Time to first worsening Conn score
 - Time to first worsening Asterixis grade
 - Patient Reported Outcome: fatigue
 - Blood ammonia

Secondary Endpoint Time to Any Worsening Conn Score Study 3001 - ITT Population

Secondary Endpoint Time to Any Worsening Asterixis Grade Study 3001 - ITT Population

Disease-Specific Patient Reported Outcome Study 3001 - CLDQ

CE-39

Ammonia and CFF Study 3001

Changes from	Placebo	Rifaximin	
baseline to EOT	N = 159	N = 140	<i>p</i> value
Ammonia concentration, µmol/L	n = 131	n = 125	
Mean	-1.2	-5.7	0.0391
Min - max	-334 - 189	-156 - 236	
Critical flicker frequency, Hz	n = 155	n = 139	
Mean	0.355	0.945	0.0320
Min - max	-12.43 - 15.84	-13.88 - 11.30	

Support of Primary Endpoint: Long-Term Efficacy Study 3002

- Long-term dosing in
 - Rifaximin-treated patients from Study 3001
 - Crossover placebo-treated patients from Study 3001

CE-40

– New HE patients

Support of Primary Endpoint: Durability of Treatment Effect Studies 3001 and 3002

Support of Primary Endpoint: Repeatability of Treatment Effect Studies 3001 and 3002

Efficacy Conclusions Rifaximin 550 mg BID (1100 mg/day)

- Clinically meaningful benefit
 - Reduces risk of overt HE episode by 58%
 - Reduces risk of HE-related hospitalizations by 50%

- Reduces risk of HE-caused hospitalization by 56%
- Effect is consistent across subgroups and other secondary endpoints
- High degree of precision of breakthrough definition
 - Convergent results seen across all analyses: Subgroups, hospitalization, ammonia, CFF, PRO, allcause mortality
- Long-term effect is durable and repeats 3001 result
- Rifaximin is effective in maintaining remission from HE breakthrough, the indication sought today

Safety of Rifaximin Treatment of Hepatic Encephalopathy

Naga P. Chalasani, MD, FACG

Professor & Director Division of Gastroenterology and Hepatology Indiana University School of Medicine

Presentation Overview

CS-2

- Safety database
 - Exposure and follow-up
- Adverse events
 - Most Frequent AEs/SAEs
 - AEs by MELD
 - Infections
 - C. difficile
- All-cause mortality
- Conclusion

IBS = Irritable Bowel Syndrome; TD = Traveler's Diarrhea ^a Rifaximin all doses or placebo as of September 14, 2009 CS-3

HE Breakthrough Discontinuations: Follow-up

- Evaluated by investigator as soon as possible
- Phone follow-up in 2 weeks
- Patients remained under investigators care
- SAEs within 30 days after stopping study drug were captured
- ~ 50% were enrolled into Study 3002

Exposure to Study Medications Studies 3001 and 3002

	Stud	3001/3002	
	Placebo	Rifaximin	All Rifaximin
Patients, n	159	140	348
Person-years exposure ^a	46	50	347
Mean, days	106	130	364
Median, days (range)	110 (6 - 176)	168 (10 - 178)	403 (7 - 1008)

BID = Twice daily ^a Person-years of exposure was computed as the sum of exposure days for all patients included in the analysis divided by 365.25.

Adverse Events Overview Studies 3001 and 3002

	Patients, n (%)		
	Stuc		
	Placebo	Rifaximin	All Rifaximin
	PEY = 46	PEY = 50	PEY = 347
Eventa	N = 159	N = 140	N = 348
Any AEs	127 (80)	112 (80)	307 (88)
SAEs	63 (40)	51 (36)	190 (55)
AEs resulting in discontinuation	45 (28)	30 (21)	88 (25)
Deaths	11 (7)	9 (6)	47 (14)

CS-6

^a Events are defined on drug or within 30 days of last dose.

Most Frequent AEs: ≥ 10% in 3001 Studies 3001 and 3002

	Patients, n (%)		
	Study	/ 3001	3001/3002
	Placebo	Rifaximin	All Rifaximin
Preferred Term	N = 159	N = 140	N = 348
Any AEs	127 (80)	112 (80)	307 (88)
Peripheral edema	13 (8.2)	21 (15.0)	64 (18)
Nausea	21 (13.2)	20 (14.3)	66 (19)
Dizziness	13 (8.2)	18 (12.9)	39 (11)
Fatigue	18 (11.3)	17 (12.1)	40 (11)
Ascites	15 (9.4)	16 (11.4)	55 (16)
Diarrhea	21 (13.2)	15 (10.7)	41 (11.8)
Headache	17 (10.7)	14 (10.0)	31 (8.9)

Most Frequent SAEs: ≥ 2% in 3001 Studies 3001 and 3002

	Patients, n (%)			
	Study	3001/3002		
	Placebo	Rifaximin	All Rifaximin	
Preferred Term	PEY = 46 N = 159	PEY = 50 N = 140	PEY = 347 N = 348	
All SAEs	63 (39.6)	51 (36.4)	190 (54.6)	
Anemia	0	4 (2.9)	16 (4.6)	
Ascites	4 (2.5)	4 (2.9)	14 (4.0)	
Esophageal variceal hemorrhage	2 (1.3)	4 (2.9)	8 (2.3)	
Pneumonia	1 (0.6)	4 (2.9)	11 (3.2)	
Vomiting	0	3 (2.1)	6 (1.7)	
Generalized edema	2 (1.3)	3 (2.1)	6 (1.7)	
Hepatic cirrhosis	6 (3.8)	3 (2.1)	15 (4.3)	
Cellulitis	2 (1.3)	3 (2.1)	14 (4.0)	
Acute renal failure	4 (2.5)	2 (1.4)	22 (6.3)	

Hepatobiliary Serious Adverse Events Studies 3001 and 3002

	Patients, n (%)			
	Study	Study 3001		
	Placebo	Rifaximin	All Rifaximin	
MedDRA system organ class	PEY = 46	PEY = 50	PEY = 347	
Preferred term	N = 159	N = 140	N = 348	
Hepatobiliary disorders	10 (6.3)	7 (5.0)	46 (13.2)	
Hepatic failure	1 (0.6)	1 (0.7)	19 (5.5)	
Hepatic cirrhosis	6 (3.8)	3 (2.1)	15 (4.3)	
Hepatorenal syndrome	0	0	4 (1.1)	
Cirrhosis alcoholic	0	1 (0.7)	2 (0.6)	
Biliary cirrhosis primary	0	1 (0.7)	3 (0.9)	
Cholecystitis acute	1 (0.6)	0	0	
Cholecystitis chronic	1 (0.6)	0	0	
Cholestasis	1 (0.6)	0	0	
Portal hypertension	1 (0.6)	0	1 (0.3)	
Portal vein thrombosis	0	1 (0.7)	1 (0.3)	

Hepatic Laboratory Changes ALT/AST and Hy's Law

	Patients, n (%)		
	Study 3001		
	Placebo	Rifaximin	
	PEY = 46	PEY = 50	
Laboratory variable limit	N = 159	N = 140	
ALT > 3 × ULN/BL	0/ 154	1/ 138 (1)	
> 5 × ULN/BL	0/ 154	0/ 138	
> 10 × ULN/BL	0/ 154	0/ 138	
AST > 3 × ULN/BL	1/ 154 (1)	6/ 138 (4)	
> 5 × ULN/BL	0/ 154	1/ 138 (1)	
> 10 × ULN/BL	0/ 154	1/ 138 (1)	
Total bilirubin > 2 × ULN/BL	11/ 154 (7)	7/ 138 (5)	
ALT > 3 × ULN/BL concurrent with total bilirubin > 2 × ULN/BL	0/ 154	0/ 138	

CS-10

Adverse Events by Baseline MELD Category

CS-11

CS-12

Infections

Infections - Serious Adverse Events Studies 3001 and 3002

	Patients, n (%)			
	Study	/ 3001	3001/3002	
	Placebo	Rifaximin	All Rifaximin	
MedDRA system organ class	PEY = 46	PEY = 50	$\mathbf{PEY} = 347$	
Preferred term	N = 159	N = 140	N = 348	
Infections	9 (5.7)	11 (7.9)	59 (17.0)	
Pneumonia	1 (0.6)	4 (2.9)	11 (3.2)	
Cellulitis	2 (1.3)	3 (2.1)	14 (4.0)	
Urinary tract infection	1 (0.6)	2 (1.4)	10 (2.9)	
Clostridium difficile infection	0	2 (1.4)	5 (1.4)	
Bacterial peritonitis	3 (1.9)	1 (0.7)	7 (2.0)	
Septic shock	0	0	5 (1.4)	
Sepsis	2 (1.3)	0	2 (0.6)	

CS-13

CS-14

Clostridium Difficile Infection Studies 3001 and 3002

- 5 episodes: 2 in 3001 and 3 in 3002 (1.4%)
- C. diff in rifaximin
 - All were taking PPIs and other antibiotics
 - 3/5 occurred while on rifaximin
 - 2 continued study participation
 - 2/5 occurred within 30 days of stopping rifaximin
 - All resolved with traditional antibiotic therapy

 Xifaxan[®] (rifaximin 200 mg tablets) includes class labeling in Warnings and Precautions for antibiotic associated colitis

CS-15

All-Cause Mortality

All-Cause Mortality Comparison Study 3001

CS-16

No Increased Mortality in Rifaximin Group All Rifaximin vs 3001 Placebo Group

CS-17

Analysis group	Death n	Patients N	Exposure person-yr	Event rate	Ratio of incidence (95% CI)
Placebo (3001)	11	159	46.0	0.2	
New Rifaximin (3002)	27	208	211.4	0.1	0.5858 (0.2833, 1.2112)
All Rifaximin (3001/3002)	47	348	346.7	0.1	0.5825 (0.3003, 1.1296)

Low MELD Deaths

Subj #		TTO			
Age	Sc & BL	(Total	Day of	Relevant	
Sex	MELD	Exp)	Death	Med History	Event Detail and Autopsy Findings
351-0012 45 / F	17 & 11	Day 67 (67 d)	Day 67	HE, ESLD, HBV, Pul HTN, alcoholic cirrhosis, tricuspid valve regurgitation, esophageal varices, GI bleed, anxiety, depression, edema, smoker, alcohol abuse	Day 54: Gastroenteritis; Day 56: discharged; Day 57 readmitted N/V w/ abd pain in epigastric area; Day 62 band ligation for esoph varices. Autopsy Findings: alcoholic cirrhosis, pul HTN, dilated cardiomegaly. shock kidney, hemorrhagic ovaries & cystitis, atherosclerosis, cholelithiasis, diverticulosis
706-0002 69 / F	12	Last Dose +2 (48 d)	Last Dose +2	HE, cirrhosis, ESLD, myelodysplastic syndrome, ascites, breast cancer	Died at home; subject house-bound; refused doctor and hospital; palliative morphine treatment started on 8Feb06. No autopsy
679-0005	11& 7	Last Dose +10	Last Dose +10	HE, cirrhosis, ESLD, HCV, alcohol abuse, esophageal	Day 27: Initiated Vicodin and tramadol for headaches; Day 29: Dc'd study due to
3271		(29 u)		HTN, H/A, diabetes, obesity	dose died at home. No autopsy

Conclusions

- AE profile consistent with history of cirrhosis and HE
 - No unexpected SAEs
 - Hepatobiliary profile appears unaffected by rifaximin
 - Infections are comparable
 - C. diff Xifaxan[®] includes class labeling
 - All-cause mortality comparable to placebo

 5-year postmarketing experience in the US raised no safety issues (other than hypersensitivity)

 Δ 02/22/10

Benefit/Risk Profile Xifaxan[®] (rifaximin)

Steven L. Flamm, MD

Professor of Medicine and Surgery, Liver Transplantation Northwestern University Feinberg School of Medicine Δ 02/22/10

CR-2

Clinician's Perspective on Hepatic Encephalopathy

Impact of HE

- Impact on patients
- Impact caregivers
- Impact on the medical team

Current treatment limitations

- Limitations of lactulose
- Limitations of antibiotics (neomycin and metronidazole)

Rifaximin

- Favorable safety profile
- Therapeutic benefit

Symptoms of Breakthrough for Sites¹ with Placebo Only Breakthrough

¹Sites 106, 351, 547, 586, 743, 760, 761, 799, 876, 901, 938.

SP-1

Critical Flicker Frequency (CFF) for Assessment of HE Grade

 Basis: Retinal gliopathy (Muller cells) – cerebral cortical dysfunction

SP-2

- Ability to discriminate flickering light as a function of frequency (Hz)
- Discriminates HE grades 0, 1, 2
- Correlation with Conn score
- Objective, sensitive, reproducible

Correlation of CFF to HE

Kircheis et al., Hepatology, 35: 357, 2002

SP-3

Caregiver Responsibilities MARC

Monitor, Assist, Remind & Contact

- Monitor
 - changes in the subject's health and HE status.
- <u>A</u>ssist
 - Subject attending scheduled and unscheduled study visits
- <u>R</u>emind
 - Study medication
 - Diary
- <u>Contact the site</u>
 - Significant changes in subject's health and HE
 - Increase lactulose to prevent possible decline in mental status
 - Lactulose > 60 g of lactulose per day
- Caregiver must attend at least screening visit (Amendment)
K-M of Time to First HE Breakthrough or Death¹ Study 3001 – ITT population

Rifaximin and Resistance

- Rifaximin does not induce rifaximin-resistant or rifampin-resistant mutants of Mycobacterium tuberculosis
- Three days and 7 or 14 days of rifaximin therapy does not alter counts of coliforms or *Enterococcus* and MICs change insignificantly
- Two studies showed small number of resistant strains after courses of rifaximin that disappeared with discontinuance of treatment

Rifaximin and *Clostridium difficile* Infection and Diarrhea

- All antibiotics can predispose to C. difficile diarrhea
- Rifaximin preserves colonic flora which protects against *C. difficile* infection
- Rifaximin MICs of most *C. difficile* strains averages .01 µg/mL (while coliform flora MICs average 16-32 µg/mL)
- Rifaximin has been successfully used to treat acute C. difficile diarrhea and C. difficile recurrences

Daily Lactulose Use ITT Population

Days Post-Randomization

Multiple Breakthrough HE events RFHE3002

		Placebo		
	Continuing	Crossover	New	All
	Rifaximin	Rifaximin	Rifaximin	Subjects
Number of	N=70	N=82	N=128	N=280
Breakthrough HE	n (%)	n (%)	n (%)	n (%)
Subjects with at least one Breakthrough HE	25 (36)	26 (32)	42 (33)	93 (33)
1	11 (16)	12 (15)	18 (14)	41 (15)
2	5 (7)	8 (10)	8 (6)	21 (8)
>2	9 (13)	6 (7)	16 (13)	31 (11)

MELD Score Change from Baseline Study 3001

Assessment Time	Placebo (N = 159)	550mg Rifaximin BID (N = 140)	Total (N = 299)
Baseline			
n	158	140	298
Mean	12.70	13.08	12.88
SD	3.938	3.639	3.799
Median	12.35	13.08	12.56
Min	6.4	6.4	6.4
Max	23.2	23.5	23.5
EOT [1]			
n	146	131	277
Mean	12.80	13.05	12.92
SD	4.393	4.369	4.376
Median	12.79	12.63	12.76
Min	6.4	6.4	6.4
Max	33.2	27.0	33.2
Change from Baseline to EOT [1]			
n	145	131	276
Mean	0.20	0.06	0.14
SD	2.785	2.823	2.799
Median	0.00	-0.16	-0.11
Min	-7.1	-11.7	-11.7
Max	19.6	11.2	19.6

MELD Change Rate Over Time Study 3001 3002

	RCT		
MELD Change Rate [1]	$\frac{\text{Placebo}}{(N = 159)}$	550mg Rifaximin BID (N = 140)	All Rifaximir (N = 348)
n	156	136	343
Mean	0.0046	0.0055	0.0022
SD	0.06935	0.07910	0.04079
Median	0.0000	-0.0014	0.0000
Min	-0.317	-0.331	-0.324
Max	0.386	0.533	0.399
P-value [2]:	0	.9177	

[1] MELD score change rate was estimated using linear regression model. MELD was dependent variable and assessment time (defined as sample collect date – first dose date of study drug + 1) was independent Variable.

[2] P-value was for test of treatment difference in RCT study (T-test).

Symptoms Consistency Across Pooled Centers Study 3001

