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Abstract

The motivation behind the thesis lies in the growing range of open-source soft-
ware packages available for solving constrained dynamic optimization problems.
The thesis will investigate and promote the use of these software packages. More
specific, the software packages ACADO Toolkit, IPOPT, CppAD and JModel-
ica will be thoroughly presented and tested with respect to their ability to solve
constrained dynamic optimization problems. The solution methods for solving
these kinds of problems will be introduced and connected to the solution strate-
gies of the software packages. The thesis aim to enable the reader to get started
using the software packages immediately. A thorough guide on how to install
the software packages across operating systems is therefore provided. Further
more a virtual machine has been created based on open-source licenses, where
all software packages has been preinstalled. This virtual machine is available
on request as a OVF formatted preconfigured operating system. The Quadru-
ple Tank Process will serve as a test model for the softwares. This model will
enable me to demonstrate the capabilities of the softwares and the limitations
they contain.
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Resumé

Motivationen bag denne afhandling beror på det voksende udvalg af open source
software, der er tilgængeligt til at løse dynamiske optimerings problemer. Afhan-
dlingen vil undersøge og fremme brugen af disse softwares. Software pakkerne
ACADO Toolkit, IPOPT, CppAD og JModelica vil blive grundigt præsenteret
og testet med hensyn til deres egenskaber til at løse dynamiske optimerings
problemer.
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Preface

This thesis was prepared at Informatics Mathematical Modeling, the Technical
University of Denmark in fulfillment of the requirements for a master thesis.

The key goal of the thesis is to investigate, test, and supply a user guide for
using open source mathematical programming software for modeling and solving
non-linear dynamic optimization problems with fixed time horizon.

Open-source licensing is needed to manage costs associated with the deployment
of optimization solutions, and to facilitate the integration of modeling capabil-
ities from a broader technical community, open source software provides many
advantages beyond simple cost savings, including supporting open standards
and avoiding being locked in to a single vendor[1].

A key limitation of commercial modeling tools is the inability to customize
the modeling or optimization processes. These open source projects allows a
diverse range of developers to prototype new capabilities. Thus, developers can
customize the software for specific applications, and can prototype capabilities
that may eventually be integrated into future software releases.

Further, these open source projects work on a diverse range of computing plat-
forms and is written in general-purpose high-level languages, such as C, C++,
Fortran and Python, which supply transparency in software design and imple-
mentation. Because any developer can study and modify the software, bugs
and performance limitations can be identified and resolved by a wide range of
developers with diverse software experience.

A widely used high-level programming language provides a robust foundation
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for developing and solving mathematical programming models: these languages
has been well-tested in a wide variety of application contexts and deployed on a
range of computing platforms. Further, extensions almost never require changes
to the core language but instead involve the definition of additional classes and
compute routines that can be immediately leveraged in the modeling process.
Further, support of the modeling language itself is not a long-term factor when
managing software releases.

Modern high-level programming languages are typically well-documented, and
there is often a large on-line community to provide feedback to new users.

The softwares is not intended to facilitate modeling better than existing AML
tools. Instead, it supports a different modeling approach in which the software
is designed for flexibility, extensibility, portability, and maintainability.

The remainder of this thesis is organized as follows. Chapter 1 describes the
general types of models, which the software packages of this thesis aim to solve.
These models are Dynamic Optimizations Problems. Chapter 2 then introduce
the solution method for solving these types of problems in a detailed manner.
Chapter 3 goes through the formulation of the Quadruple tank process in terms
of a dynamic optimization problem. The purpose of this section is to supply
an adequate complex model to test the various softwares of the thesis. Chap-
ter 4,5,6 and 7 describes respectively ACADO Toolkit, the IPOPT solver, the
CppAD package and JModelica for the purpose of solving Dynamic Optimiza-
tions Problems. Finally, a chapter describing the creation of a preconfigured
operating system, where all software packages from the thesis is preinstalled.

Kgs. Lyngby, June 2010

Rune Brus
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Chapter 1

Introducing Dynamic
Optimization Problems

In this chapter, I introduce the notion of model based optimization of processes
with fixed horizon. The model elements will be described, including the model
variations within this field of problems. A simple Optimal Control Problem will
be stated. This will act as an introductory model implementation for the various
software packages of the thesis. The solution methods relevant for the thesis will
then be described and evaluated. These methods are Direct Single Shooting,
which is the foundation of ACADO Toolkit, Direct Multiple Shooting, which
is a future feature in JModelica, and Direct Collocation, which is the method
offered by IPOPT. The chapter will work as a short introduction to the types
of models, I am going to handle for the rest of this thesis.

References: Adaptive multiscale methods [2]

1.1 Dynamic Optimization Problems

Moving horizon optimization includes model predictive control (MPC) and re-
ceding horizon estimation (RHE). The basis for the majority of these models
are the principles of conservation of mass, momentum, and energy. The moving
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horizon process phenomenas is modeled using a wide variety of process models
which vary over a large range starting from simple algebraic equation systems,
to ordinary (ODE) or differential-algebraic (DAE) equations systems, and more
complicated (partial-) integro-differential equations. In my thesis, I will limit
myself to mathematical process models with fixed horizon, which can be repre-
sented as ODE systems by the compressed equation system

0 = f(ẋ, x(t), u(t), w(t), p, t), for all t ∈ I, (1.1)

where x(t) ∈ Rnx denotes the differential system state vector. u(t) ∈ Rnu are
operational variables which can be directly manipulator by process operators,
also called the control variables. Modeling uncertainties and disturbances are
concentrated without further specifications into a vector function w(t) ∈ Rnw .
p ∈ Rnp denotes a vector of time-invariant system parameters. The time interval
of interest is denoted in the sequel by I := [t0, tf ] where t0, tf are starting and
final times respectively.

This model can also be used for simulation. Given particular values of u∗(t), w∗(t), t ∈
I, p∗, where the star indicates that these should be specific but arbitrary values.
Using appropriate initial conditions the process model (1.1) can be solved using
a suitable integration routine.

Focusing on fixed horizon optimization models given as model predictive control
problems, these models consist of two solution phases. First phase is a sensor
model, estimating the model parameters based on the data input from physi-
cal process. Second phase is the actual model prediction on the time horizon
based on the measured model parameters formulated as a dynamic optimization
problem.

The softwares of the thesis have both capabilities, but I will only focus on the
second part of model predictive control, since this is the most difficult and solver
demanding part of model predictive control.

The problem of my interest require the minimization of an objective function
by adjusting the free operational variable u, in an appropriate manner within
the finite time interval Ir = [tr0, t

r
f ] which denotes an operational phase of the

process, such as the time required for a grade change of a continuous process.
Minimizing over a time interval with the purpose of stabilizing some process
variable is formulated as an integral over this time interval. The integrator of
this integral is called the Lagrange term and is typically given as a weighted
Euclidean norm of the difference between the measurements µ(t), with the par-
ticular weighting S. That is∫ tf

t0

L(x, u, p, t)dt =
∫ tf

t0

‖h(x(t), u(t), p, t)− µ(t)‖2Sdt
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where h is some sort of measurement function.

This is although not always sufficient to describe the optimization process. A
penalty term is therefore sometime added to the objective. This penalty term is
called the Mayor term and will typically take the final time value as input. For
example will a control process minimizing the time horizon of a process consist
of such a Mayor term. This will be seen in the simple Optimal Control Problem
stated further below in this chapter. The objective is fully described as

min
x(·),u(·),tf

M(x(tf ), p) +
∫ tf

t0

L(x, u, p, t)dt (1.2)

The controls u cannot be adjusted arbitrarily, since they might be restricted by
constraints which are typically with physical limits such as, e.g. restrictions on
valve position.

Further constraints on controls and states comprise, e.g. limits on component
capacities and other physical limits. Both types of restrictions are compressed
into a general constraint vector function c(x, u, p, t). The constraints c have to
be enforced during process operations at any time t ∈ I.

Finally, the model also can consist of initial and final condition on the model
variables. These are compressed into the functions s(x(t0), p) and r(x(tf ), p).

Optimal operations of the process with respect to the specific cost functional
could then be achieved through the solution of the following dynamic optimiza-
tion problem (provided that it is solvable)

min
x(·),u(·),tf

M(x(tf ), p) +
∫ tf

t0

L(x, u, p, t)dt (1.2)

s.t. 0 = f(ẋ, x(t), u(t), w(t), p, t), for all t ∈ I, (1.1)
0 = s(x(t0), p), (1.3)
0 ≤ c(x(t), u(t), w(t), p, t), for all t ∈ I, (1.4)
0 = r(x(tf ), p) (1.5)

A typical weighting matrix S is the inverse of the covariance matrix of the
measurement error, but also more general weights like time dependent operators
are possible too. The measurements mights as well be included point wise by
substituting the integral by a finite sum.
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1.2 Example Case

An example of this type of model is the Optimal Rocket Time Problem. The
problem is to minimize the travel time t of a rocket in such a way that the rocket
have velocity zero at the final destination. I enforce constraints on the positive
and negative acceleration of the rocket together with a maximum velocity. I
also consider fuel use. The parameters have no parallel to a real case and is
chosen for there convenience.

Position is given as s, velocity as v, force as u, and mass as m. The model looks
as follows

min
tf

tf (1.6a)

s.t. ṡ(t) = v(t) (1.6b)

v̇(t) =
u(t)− 0.2 ∗ v(t)2

m(t)
(1.6c)

ṁ(t) = −0.01 ∗ u(t)2 (1.6d)

s(t0) = 0.0 (1.6e)
v(t0) = 0.0 (1.6f)
m(t0) = 1.0 (1.6g)

v(t) ≤ 1.7 (1.6h)
v(t) ≥ 0.0 (1.6i)
u(t) ≤ 1.1 (1.6j)
u(t) ≥ −1.1 (1.6k)

s(tf ) = 10.0 (1.6l)
v(tf ) = 0.0 (1.6m)

This model have the following solution
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Figure 1.1: Position, Velocity, Mass, and Force of the Optimal Rocket Time
Problem
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1.3 Direct Solution Algorithms

The basic idea of direct methods for solution of optimal control problems in-
troduces above is to transcribe the original infinite dimensional problem into a
finite dimensional Nonlinear Programming Problem (NLP). Two basically dif-
ferent solution strategies for this finite reformulated problem exist.

(i) Sequential optimization: In every iteration step of the optimization method,
the model equations are solved exactly by a numerical integration method
for the current guess of control parameters.

(ii) Simultaneous optimization: The discretized differential equations enter
the transcribed optimization problem as nonlinear constraints that can be
violated during the optimization procedures. At the solution, however,
they have to be satisfied.

Three methods will be mentioned, which differ in the way the transcription
is achieved. These are Direct Single Shooting, - Collocation, and - Multiple
Shooting.

Direct Single Shooting represents a pure sequential approach, whereas Colloca-
tion is a pure simultaneous approach. Direct Multiple Shooting may be con-
sidered a hybrid method, as the model equations are solved "exactly" only on
intervals during the solution iterations.

The softwares of this thesis covers all these methods. ACADO Toolkit is a
Runge-Kutta based Direct Single Shooting solver. Using IPOPT requires a com-
plete discretized reformulation of ones optimal control problem, since this solver
only offers the Direct Collocation method. The descretization of the Quadruple
Tank Process model will be covered in the Chapter on IPOPT. JModelica uses
IPOPT and thereby uses the Direct Collocation method. JModelica will soon
provide an optional Direct Multiple Shooting solver, this option is although not
available in current stable version (see https://trac.jmodelica.org/ticket/526 to
follow the progress of developing this feature).



Chapter 2

Direct Solution Algorithms

In this chapter, I describe the direct solution methods introduced in chapter 1
in more details.

References: Adaptive multiscale methods [2]

2.1 Direct Solution Algorithms

The basic idea of direct methods for solution of optimal control problems is
to transcribe the original infinite dimensional problem into a finite dimensional
Nonlinear Programming Problem (NLP). Two basically different solution strate-
gies for this finite reformulated problem exist.

(i) Sequential optimization: In every iteration step of the optimization method,
the model equations are solved exactly by a numerical integration method
for the current guess of control parameters.

(ii) Simultaneous optimization: The discretized differential equations enter
the transcribed optimization problem as nonlinear constraints that can be
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violated during the optimization procedures. At the solution, however,
they have to be satisfied.

As mentioned in chapter 1, I will focus on three methods. These methods
differ in the way the transcription is achieved. The methods are Direct Single
Shooting, - Collocation, and - Multiple Shooting.

Direct Single Shooting represents a pure sequential approach, whereas Colloca-
tion is a pure simultaneous approach. Direct Multiple Shooting may be con-
sidered a hybrid method, as the model equations are solved "exactly" only on
intervals during the solution iterations.

2.1.1 Direct Single Shooting

In the direct single shooting method, the infinite many degrees of freedom u(t)
for t ∈ I are reduced by a control parameterization ũ(t, q) that depends on a
finite dimensional vector q ∈ Rnq . The parameterization of the control can be
based on general functions with local or global support or a mixture of both.
A representation of the last is a parameterization using a polynomial with N
coefficients q0, . . . , qN−1, given by

ũ(t, q0, . . . , qN−1) :=
N−1∑
i=0

qit
i, t ∈ I.

Another example is a localized parameterization obtained using a piecewise con-
stant control representation on a partition of the interval I into N subintervals
Ii, i = 0, 1, . . . , N − 1, such that

ũ(t, q0, . . . , qN−1) := qi, t ∈ Ii.

This last approach is employed by ACADO Toolkit. The parameterizations is
illustrated in Figure 2.1.

Besides these two explicit parameterizations of the controls one can also define
controls implicitly via additional parameterized ODE’s. An example of this is
the parameterization

˙̃u(t,q) := f̃(x(t), ũ(t,q), t,q), q = (q0, . . . , qN−1), t ∈ I,

ũ(t0,q) := ũ0(q), q = (q0, . . . , qN−1).
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✻

✲

u(t)

t
t0 t1 tk tN−1 tN = tf

piecewise constant
❆
❆❆

piecewise linear
✁

✁
✁

✁
✁

✁
✁

✁✁☛

piecewise cubic
✁

✁
✁

✁
✁

✁
✁

✁
✁

✁✁☛

1

Figure 2.1: Polynomial - and piecewise constant representation of a control.

The additional equations can be added to the model equations (1.2) - (1.5). In
this case, the parameterized controls ũ are reinterpreted as states.

Given an initial value x0 and a parameter vector q, the following Initial Value
Problem can be solved:

ẋ(t) := f̃(x(t), ũ(t,q), t), q = (q0, . . . , qN−1), t ∈ I,

x(t0) := x0.

The solution of this problem is a trajectory x(t) which is a function of q only.
To keep this dependency in mind we will denote this solution by x̃(t,q) in the
following. By substituting this trajectory into the objective functional defined
in (1.2) I can define the cost function J̃ : Rnq → R as

J̃(q) := M(x̃(tf ,q)) +
∫ tf

t0

L(x̃(t,q), ũ(t,q), t)dt

In order to incorporate the inequality constraints c into the NLP, different meth-
ods have been developed. I will mention two approaches.
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1. Introduction of a penalty term in the objective function:

Ĵ [u(·), x(·)] := J [u(·), x(·)] +
nh∑
j=1

kj ·
∫ tf

t0

(max(0,−cj(·)))2
dt

where kj ∈ R+, j = 1, . . . , nh are large positive constants. A difficulty
with the max operator is that it hides all information about a constraint
as long as it is inactive, and that its smoothness is limited.

2. Using a time grid t0 < t1 < · · · < tN = tf the infinite dimensional
inequality constraints (1.4) are reformulated into N + 1 vector inequality
constraints

0 ≤ c̃i(q) := c(x̃(ti,q), ũ(ti,q), ti), i = 0, . . . , N.

By construction, this method enforces the inequalities constraints at the
points on the time grid only. A sufficiently good approximation of the
original constraint can be obtained by a sufficiently fine grid. Also a
combination with the first method is possible.

In summary, the finite dimensional NLP in the direct single shooting parame-
terization is given as

min
q∈Rnq

J̃(q)

s.t. 0 ≤ c̃i(q), i = 0, . . . , N,
0 = r̃(q).

The numerical effort to solve this NLP is determined to a large extent by the
complexity of the parameterization of the control vector. The solution also re-
quires sensitivity information of the states with respect to the control parameter
q. The computation of these sensitivities should not be done by trying to gener-
ate derivatives by finite differences of independently computed approximations
of the solution of disturbed initial value problems, but rather by the principle of
Internal Numerical Differentiation. Many ODE and DAE solvers exist that can
efficiently compute sensitivities according to the principle of Internal Numerical
Differentiation.

2.1.2 Direct Multiple Shooting

In the direct multiple shooting method, the transcription of the optimal control
problem into an NLP starts similar to the direct single shooting method with a
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local control representation. First, the time horizon I = [t0, tf ] is divided into
N subintervals ii := [ti, ti+1], i = 0, 1, . . . , N − 1, with t0 < t1 < · · · < tn = tf .
Then, the control trajectory is parameterized by a piecewise representation

ũi(t,qi) for t ∈ [ti, ti+1]

with N local control parameter vectors q0,q1, . . . ,qN−1, qi ∈ Rnq . The trivial
example for such a parameterization is again the piecewise constant representa-
tion shown in Figure 2.1.

In a crucial second step, N + 1 additional vectors s0, s1, . . . , sN of the same
dimension nx as the system state are introduced. I will refer to these as the
multiple shooting node values. All but the last serve as initial value for N
independent Initial Value Problems on the interval Ii:

ẋi(t) := f(xi(t), ũi(t,qi), t), t ∈ [ti, ti+1],

xi(ti) := si.

The solution of these problems are N independent trajectories xi(t) on [ti, ti+1],
which are a function of si and qi only. I will denote these solutions by x̃i(t, si,qi).
These solutions are illustrated in Figure 2.2. By substituting the independent

✻

✲

x(t)

t
t0 t1 tk tN−1 tN = tf

s0

s1

sk

sN−1

sN

❞
❞

❞
❞

❞

1

Figure 2.2: Trajectories in the multiple shooting parameterization.

trajectories x̃i(t, si,qi) into the Lagrange term L in Equation (1.2) I can cal-
culate the objective contributions J̃i : Rnx × Rnq → R for i = 0, . . . , N − 1
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as

J̃i(si,qi) :=
∫ ti+1

ti

L(x̃i(t, si,qi), ũi(t,qi), t)dt

The decoupled Initial Value Problems are connected by matching conditions
which require that each node value should equal the final value of the preceding
trajectory:

si+1 = x̃i(ti+1, si,qi), i = 0, . . . , N − 1. (2.1)

The first multiple shooting node variable s0 is required to be equal to the initial
value x0 of the optimization problem:

s0 = x0. (2.2)

Together, the constraints (2.1) and (2.2) remove the additional degrees of free-
dom which were introduced with the parameters si, i = 0, . . . , N . It is by no
means necessary that the constraints (2.1) and (2.2) are satisfied during the
optimization iterations. On the contrary, it is a crucial feature of the direct
multiple shooting method that it can deal with infeasible initial guesses of the
variables si and qi.

Using the same grid as for the multiple shooting parameterization, the infinite
dimensional path inequality constraints (1.4) are transcribed into N + 1 vector
inequalities constraints

0 ≤ c̃i(si,qi) := c(si, ũi(ti,qi), ti), i = 0, . . . , N.

In summary, the finite dimensional NLP in the direct multiple shooting param-
eterization is given as

min
s0,...,sN ,q0,...,qN−1

M(sN ) +
N−1∑
i=0

J̃i(si,qi)

s.t. si+1 = x̃i(ti+1, si,qi), i = 0, . . . , N − 1,
s0 = x0,

0 ≤ c̃i(si,qi), i = 0, . . . , N,
0 = r(sN ).

An important feature of the direct multiple shooting method is the sparse struc-
ture of this large scale NLP. Its Hessian matrix ∇2

s,qL is block diagonal with
non-zero blocks ∇2

si,qi
L that correspond to local variables si,qi only.
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2.1.3 Direct Collocation

Last, I consider a general direct collocation discretization of the optimal control
problem Equations (1.2) - (1.5). For simplicity, I assume that the functional
Equation (1.2) is in Mayer form J [u, x] = M(x(tf )). This is no restriction of
generality, as the transcription of the Bolza functional (1.2) to Mayer form is
easily done.

As a first step, an additional state xnx+1 and an additional differential equation

ẋnx+1(t) = L(x(t), u(t), t), xnx+1(t0) := 0

are introduced. In the second step, the objective M(x(tf )) is redefined as
M(x(tf )) + xnx+1(tf ).

Both state and control variables are approximated by piecewise defined functions
x̃(t, ·) and ũ(t, ·) on the time grid

t0 < t1 < · · · < tN+1 = tf .

Within each collocation interval [ti, ti+1[, 0 ≤ i ≤ N , these functions are chosen
as parameter dependent polynomials of order k, l ∈ N respectively:

x̃(t, s)|[ti,ti+1[ := x̃i(t, si) := πxi (t, si) ∈ Πnx

k ,

ũ(t,q)|[ti,ti+1[ := ũi(t,qi) := πui (t,qi) ∈ Πnc

l .

Here, Πν
µ denotes the space of ν-dimensional vectors of polynomials up to degree

µ.

The coefficients of the polynomials are collected in the vectors

s := (sT0 , . . . , s
T
N )T ∈ RN ·(k+1)·nx , si ∈ R(k+1)·nx , i = 0, . . . , N,

q := (qT0 , . . . ,q
T
N )T ∈ RN ·(k+1)·nc , qi ∈ R(k+1)·nc , i = 0, . . . , N.

Matching conditions of the form

πi(t−i+1, ·) = πi(t+i+1, ·), i = 0, . . . , N − 1

have to be imposed at the boundaries of the subintervals to enforce continuity
of the approximating functions in [t0, tf ]. Additionally, higher order differentia-
bility may be imposed by

dk

dtk
πi(t−i+1, ·) =

dk

dtk
πi+1(t+i+1, ·),

{
k = 1, . . . , J
i = 0, . . . , N − 1
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where J denotes the desired order of differentiability.

In order to formulate a nonlinear optimization problem, the model equations
and the continuous constraints are explicitly discretized:

1. The model Equations (1.1) are only to be satisfied at the collocation points
ti,µ, µ = 1, . . . ,M , within each subinterval [ti, ti+1[, i = 0, . . . , N − 1, and
within [tN , tN+1]:

ti ≤ ti0 < · · · < tiM < ti+1, i = 0, . . . , N − 1

tN ≤ tN0 < · · · < tNM ≤ tN+1.

2. The inequality constraints c(·) are sampled on a second grid within [t0, tf ]:

t0 ≤ tc1 < · < tcL ≤ tf

Altogether, this leads to the formulation of the discretized optimal control prob-
lem derived from (1.2) - (1.5) (in Mayer form) by collocation:

min
s,q

M̃(s) = M(x̃(tf , s)) (2.3a)

s.t. f(x̃(til, s), ũ(til,q), t)− ˙̃x(til, s) = 0,
{
i = 0, . . . , N
l = 0, . . . ,M , (2.3b)

c(x̃(tcγ , s), ũ(tcγ ,q), tcγ) ≥ 0, γ = 1, . . . , L, (2.3c)

x̃(t0, s)− x0 = 0, (2.3d)
r(x̃(tf , s)) = 0. (2.3e)

If the solution is restricted to continuously differentiable state and control vari-
ables, the matching conditions have to be fulfilled additionally:

dk

dtk
πxi (t−i+1, si)−

dk

dtk
πxi+1(t+i+1, si+1) = 0,

{
k = 1, . . . , Js
i = 0, . . . , N − 1 (2.4a)

dk

dtk
πui (t−i+1,qi)−

dk

dtk
πui+1(t+i+1,qi+1) = 0,

{
k = 1, . . . , Jc
i = 0, . . . , N − 1 (2.4b)

where Js is the order of differentiability in the state variables and Js is the order
of differentiability in the control variables.

The constrained nonlinear optimization problems Equations (2.3a)-(2.3e), (2.4a)-
(2.4b) can be efficiently solved using SQP algorithms[4]. SQP methods are based
on the availability of gradient information.
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Due to the full discretization of both control and state space, the NLPs gener-
ated by direct collocation tend to become very large for practically interesting
problems. Thus, special care has to be taken in the implementation of a collo-
cation algorithm to account for the special structure and the high sparsity of
the constraints Equations (2.3a)-(2.3e), (2.4a)-(2.4b).
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Chapter 3

The Quadruple Tank
Process

In this chapter, I present the quadruple tank process and develop a mathematical
model that describes its dynamics. This model will act as a benchmark model
for testing the various solvers and softwares. This means that this model will
be implemented in each of the softwares presented in the coming chapters, such
that outputs and software capabilities can be compared on the same foundation.
The outputs below will act as a the correct solution of the model with respect
to the parameters set for the model throughout the thesis.

The nature of the quadruple tank process is to some extent fabricated, its pur-
pose is solely to provide a theoretical example of an optimal control problem,
meaning that the problem enables me to model simple processes using differen-
tial equations which can be solved using various solving tools.

References: Constrained Predictive Control - A Computational Approach [3]
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3.1 The Quadruple Tank Process

The quadruple tank system consist of four interconnected tanks containing a
flow of a common water source using pumps an valves. The water flow can
be manipulated be altering the valves position in the tank setup. The setup
can be viewed in Figure 3.1. The variables F1 and F2 control the flow from the

Pump 1 ✍✌✎☞
✁✁ ❆❆ Pump 2✍✌✎☞

✁✁ ❆❆

Valve 1

F1

��❅❅
��❅❅

❄
Valve 2

F2

��❅❅
��❅❅

❄

❄❄

Tank 1 Tank 2

Tank 3 Tank 4

1

Figure 3.1: Diagram of the quadruple tank process

pumps as seen in Figure 3.1. I call these the manipulated variables and represent
them as the vector u. For measuring the state of the the system the process
is equipped with water level sensors in each tank. The vector y will represent
these measuring variables given as the height hi in each tank i ∈ {1, 2, 3, 4}.
The mechanical nature of the sensors also add the notion of measuring noise to
the output values y. z is then the output I want to control. The control element
of the problem is the water level in tank 1 and tank 2, in the sense that I wish
to stabilize these water levels.

For the manipulated variables u, measuring variables y and the control variables
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z assuming an ideal environment without noise I then state

u =
[
F1

F2

]
y =


h1

h2

h3

h4

 z =
[
h1

h2

]

Let the state of the system be denoted x. As the process evolve in continuous
time, the process modeled using differential equations. The model formulation
will use ordinary differential equations and can be stated as 3.1a

dx(t)
dt

= f(x(t), u(t)) x(t0) = x0 (3.1a)

y(t) = g(x(t)) (3.1b)
z(t) = h(x(t)) (3.1c)

t ∈ R is time, x ∈ Rnx is the state vector, u ∈ Rnu is the vector of manipulated
variables, y ∈ Rny is the measured (observed) values, and z ∈ Rnx is the outputs.
f : Rnx × Rnu 7→ Rnx is the model of the system, g : Rnx 7→ Rny is the sensor
function, and h : Rnx 7→ Rnx is the output function. As seen, f does not depend
directly on the time t. This kind of process is thus called an autonomous system.

3.1.1 Modeling a Single Tank

The four tank system will be modeled using the mass balance of water in each
tank and the valves will be placed as seen in figure 3.1.
The mass balance principle gives me that the mass of water in the system is
conserved. For a single tank this gives the water balance equation

Accumulated = In−Out

Let ∆t be a step in time, such that [t, t+ ∆t] is the time interval in which the
flow rate to and from the tank can be considered constant. For ∆t → 0 the
approximated time interval will eventually recede.
Let m1(t) be the mass of water in tank 1, ρ [g/cm3] be the density of water,
qin1 [cm3/s] the volumetric flow rate into tank 1 from valve 1, q3 [cm3/s] the
volumetric flow rate from tank 3 into tank 1, and q1 [cm3/s] the volumetric flow
rate out of tank 1 (see figure 3.2). Then

Accumulated = m1(t+ ∆t)−m1(t)
In = ρqin1 (t)∆t+ ρq3(t)∆t

Out = ρq1(t)∆t
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with the mass balance

m1(t+ ∆t)−m1(t)︸ ︷︷ ︸
Accumulated

= ρqin1 (t)∆t+ ρq3(t)∆t︸ ︷︷ ︸
In

− ρq1(t)∆t︸ ︷︷ ︸
Out

Dividing with ∆t this yields

m1(t+ ∆t)−m1(t)
∆t

= ρqin1 (t) + ρq3(t)− ρq1(t)

By letting ∆t→ 0 the balance equation finally becomes

d

dt
(m1(t)) = ρqin1 (t) + ρq3(t)− ρq1(t) (3.2)

It is here noted that the differential operator is defined as

d

dt
(m1(t)) , lim

∆t→0

m1(t+ ∆t)−m1(t)
∆t

(3.3)

✍✌✎☞
✁✁ ❆❆ ✍✌✎☞

✁✁ ❆❆

F1

��❅❅
��❅❅

qin
1

❄

F2

��❅❅
��❅❅

qin
2

❄

❄❄

❄q1

Tank 1

m1

❄q2

Tank 2

m2

❄q3

Tank 3

m3

qin
3

❄q2

Tank 4

m4

qin
4

1

Figure 3.2: Diagram of the quadruple tank process
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3.1.2 Mass Balances for the Four Tanks

As deduced above the mass balance principle now gives me that I can formulate
the mass balance for each of the four tanks as differential equations

d

dt
(m1(t)) = ρqin1 (t) + ρq3(t)− ρq1(t) (3.4a)

d

dt
(m2(t)) = ρqin2 (t) + ρq4(t)− ρq2(t) (3.4b)

d

dt
(m3(t)) = ρqin3 (t)− ρq3(t) (3.4c)

d

dt
(m4(t)) = ρqin4 (t)− ρq4(t) (3.4d)

The initial values for the mi’s, that is the mass of water in each tank at time
t0 are

m1(t0) = m1,0 (3.5a)
m2(t0) = m2,0 (3.5b)
m3(t0) = m3,0 (3.5c)
m4(t0) = m4,0 (3.5d)

I now lack to formulate the inflows and outflows (the variables q) in an appro-
priate mathematical way.

3.1.3 Inflows

The flow rate from the valves into each of the four tanks are obtained using
static balance around each of the two valves. Let γ1 be a constant expressing
the fraction of water from pump 1 that flows into tank 1

γ1 =
ρqin1 (t)
ρF1(t)

=
qin1 (t)
F1(t)

(3.6)

Since mass flowing into valve 1 equals the mass flowing out of valve 1, I have

ρF1(t) = ρqin1 (t) + ρq3(t)

which implies

qin4 (t) = F1(t)− qin1 (t) = F1(t)− γ1q
in
1 (t) = (1− γ1)F1(t)



22 The Quadruple Tank Process

This then determines the flow rates for γin1 (t) and γin4 (t) as

qin1 (t) = γ1F1(t) (3.7a)

qin4 (t) = (1− γ1)F1(t) (3.7b)

Similarly defining γ2 as the constant expressing the fraction of water from pump
2 that flows into tank 2

γ2 =
ρqin2 (t)
ρF2(t)

=
qin2 (t)
F2(t)

(3.8)

implying

qin2 (t) = γ2F2(t) (3.9a)

qin3 (t) = (1− γ2)F2(t) (3.9b)

Finally, this enables me to express the flow rates into each of the tanks from the
valves by the equations

qin1 (t) = γ1F1(t) (3.10a)

qin2 (t) = γ2F2(t) (3.10b)

qin3 (t) = (1− γ2)F2(t) (3.10c)

qin4 (t) = (1− γ1)F1(t) (3.10d)

3.1.4 Outflows

Each of the four tanks are equipped with a drain in the bottom in the form
of a small pipe. The water flows out of these drains completely controlled by
gravity. This water flow can therefore be described by Bernoulli’s Principle.
Bernoulli’s Principle states that mechanical energy of fluid along a stream line
is conserved, i.e. the sum of potential energy, kinetic energy, and work remains
constant along the stream line

ρgh+
1
2
ρv2 + p = constant

ρ is the density of the fluid, h is the liquid height above a baseline, v is the
velocity, and p is the pressure.
Again I consider the dynamics of tank 1. Let h1 be the liquid height above a
baseline in tank 1, where the baseline is the outlet of the tank. The pressure at
both the surface of the water and the pipe outlet is the same, and more precisely
it equals atmospheric pressure. Consider v1 as the linear velocity [m/s] of water
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flowing in the outlet pipe from tank 1. I now consider the velocity at the top
of the tank given as v1,top. I then have that v1,top � v1 as a1 � A1, in which
a1 is the cross section area of the pipe and A1 is the cross section area of the
tank, i.e. the water flows much faster through the outlet pipe than it sinks in
the tank. Then Bernoulli’s equation applied to the liquid level in the top and
the pipe outlet gives

ρgh1 +
1
2
ρv2

1,top + p = ρg0 +
1
2
ρv2

1 + p =
1
2
ρv2

1 + p

such that
v1 =

√
v2

1,top + 2gh1 ≈
√

2gh1

The volumetric flow rate in the outlet pipe from tank 1 is thus

q1 = a1v1 = a1

√
2gh1 (3.11)

For the whole system I then get the following volumetric flow rates when ap-
plying Bernoulli’s Principle

q1 = a1

√
2gh1 (3.12a)

q2 = a2

√
2gh2 (3.12b)

q3 = a3

√
2gh3 (3.12c)

q4 = a4

√
2gh4 (3.12d)

I will further assume that the cross section areas of the tanks is unchanged
depending on the height of the water levels. Given this, I have that the volume
in tank i ∈ {1, 2, 3, 4} is

Vi = Aihi i ∈ {1, 2, 3, 4},
implying that the mass of water is described as

mi = ρVi = ρAihi i ∈ {1, 2, 3, 4}
and last having the liquid height for each tank given as

h1 =
m1

ρA1
(3.13a)

h2 =
m2

ρA2
(3.13b)

h3 =
m3

ρA3
(3.13c)

h4 =
m4

ρA4
(3.13d)
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3.1.5 The Complete Model of the Four Tank System

The complete model to simulate the four tank system consist of the equations for
the flow from the valves to each tank (3.10), the relations for the liquid heights
(3.13), the relations for the outlet flow rates (3.12), the differential equations
(3.4), and their initial conditions (3.5).

Flow rates from the valves

qin1 = γ1F1 (3.10a)

qin2 = γ2F2 (3.10b)

qin3 = (1− γ2)F2 (3.10c)

qin4 = (1− γ1)F1 (3.10d)

Liquid heights

h1 =
m1

ρA1
(3.13a)

h2 =
m2

ρA2
(3.13b)

h3 =
m3

ρA3
(3.13c)

h4 =
m4

ρA4
(3.13d)

Flow rates out of each tank

q1 = a1

√
2gh1 (3.12a)

q2 = a2

√
2gh2 (3.12b)

q3 = a3

√
2gh3 (3.12c)

q4 = a4

√
2gh4 (3.12d)

Mass balances

d

dt
(m1(t)) = ρqin1 (t) + ρq3(t)− ρq1(t) (3.4a)

d

dt
(m2(t)) = ρqin2 (t) + ρq4(t)− ρq2(t) (3.4b)

d

dt
(m3(t)) = ρqin3 (t)− ρq3(t) (3.4c)

d

dt
(m4(t)) = ρqin4 (t)− ρq4(t) (3.4d)
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initial conditions for the state variables

m1(t0) = m1,0 (3.5a)
m2(t0) = m2,0 (3.5b)
m3(t0) = m3,0 (3.5c)
m4(t0) = m4,0 (3.5d)

3.1.6 The Objective of the Four Tank System

The four tank system is to be considered as a deterministic optimal control
problem in the Bolza form on a fixed horizon I := [t0, tf ] with

φ = M(x(tf )) +
∫ tf

t0

L(x, u, t)dt

subject to the initial conditions and differential state equations above.

Since my optimization goal is to keep the levels in tank 1 and 2, h1 and h2,
at the set points, µ1 and µ2, I will represent the Lagrange term as a weighted
Euclidean norm of the difference between these (equal weights) giving

φ =
∫ tf
t0
λ1‖h1(t)− µ1‖2 + λ2‖h2(t)− µ2‖2dt

=
∫ tf
t0
λ1(h1(t)− µ1)2 + λ1(h2(t)− µ2)2dt

In my case the variables h1(t) and h2(t) is dependent both of the masses m1(t),
m2(t) and the control variables F1(t) and F2(t) thereby determining the whole
system. Since I value the balance of h1 and h2 equal, I will use unit weights
such that

φ =
∫ tf

t0

(h1(t)− µ1)2 + (h2(t)− µ2)2dt
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3.1.7 The Four Tank System stated as an optimal control
problem

The entire optimal control problem of the Four Tank System can then be sum-
marized as

min
F1,F2,m1,m2,t

φ(t) =
∫ tf

t0

(h1(t)− µ1)2 + (h2(t)− µ2)2dt (3.19a)

s.t. ṁ1(t) = ρqin1 (t) + ρq3(t)− ρq1(t) (3.19b)

ṁ2(t) = ρqin2 (t) + ρq4(t)− ρq2(t) (3.19c)

ṁ3(t) = ρqin3 (t)− ρq3(t) (3.19d)

ṁ4(t) = ρqin4 (t)− ρq4(t) (3.19e)

h1(t) =
m1(t)
ρA1

(3.19f)

h2(t) =
m2(t)
ρA2

(3.19g)

h3(t) =
m3(t)
ρA3

(3.19h)

h4(t) =
m4(t)
ρA4

(3.19i)

qin1 (t) = γ1F1(t) (3.19j)

qin2 (t) = γ2F2(t) (3.19k)

qin3 (t) = (1− γ2)F2(t) (3.19l)

qin4 (t) = (1− γ1)F1(t) (3.19m)

q1(t) = a1

√
2gh1(t) (3.19n)

q2(t) = a2

√
2gh2(t) (3.19o)

q3(t) = a3

√
2gh3(t) (3.19p)

q4(t) = a4

√
2gh4(t) (3.19q)
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m1(t0) = m1,0 (3.20a)
m2(t0) = m2,0 (3.20b)
m3(t0) = m3,0 (3.20c)
m4(t0) = m4,0 (3.20d)
F1(t) ≤ F1,max (3.20e)
F2(t) ≤ F2,max (3.20f)
h1(t) ≤ h1,max (3.20g)
h2(t) ≤ h2,max (3.20h)
h3(t) ≤ h3,max (3.20i)
h4(t) ≤ h4,max (3.20j)
F1(t) ≥ F1,min (3.20k)
F2(t) ≥ F2,min (3.20l)

h1(t), h2(t),h3(t), h4(t) ≥ 0 (3.20m)
m1(t),m2(t),m3(t),m4(t) ≥ 0 (3.20n)

In order to have a sound foundation to compare the different softwares, I will
defined a fixed set of parameters for this model. These parameters will then be
used together with the model to test the softwares.

First of all, I set the physical dimensions of the tanks. The tanks will be of
equal size and have a cross section area of 380.1327 cm2. The hight of the tanks
is 20.0 cm and have an outlet cross section area of 1.2272 cm2.

The pumps has a maximum capacity of 300 cm3/s and is restricted to have
positive flow.

The valves in the system will have a fixed position. In order to created a
more interesting dynamic in the system, I will set the two valve position at two
different position, namely at 0.15 and 0.25 on a scale from 0 to 1.

The natural constant of the liquid density in the system will be that of water.
Hence a density of 1.00 g/cm3. The acceleration of gravity is 981 cm/s2

I aim at stabilizing the water levels in tank 1 and 2 at 12 cm.

The exact solution of this system is then



28 The Quadruple Tank Process

0 100 200 300
0

5

10

15

20
Tank 3

H
ei

g
h

t 
[c

m
]

0 100 200 300
0

5

10

15

20
Tank 4

0 100 200 300
0

5

10

15

20
Tank 1

H
ei

g
h

t 
[c

m
]

Time [sec]
0 100 200 300

0

5

10

15

20
Tank 2

Time [sec]

Figure 3.3: Height of liquid in tanks

0 50 100 150 200 250 300
0

50

100

150

200

250

300

350

400
Pump 1

F
lo

w
 [

cm
3/

s]

Time [sec]
0 50 100 150 200 250 300

0

50

100

150

200

250

300

350

400
Pump 2

Time [sec]

Figure 3.4: Control variables (pump flow)



3.1 The Quadruple Tank Process 29

It is seen that the solution leaves the stable state towards the end of the time
interval. This is caused by the fact that I have a fixed time horizon. Since the
model does not have to stabilize the system beyond the time horizon, the pumps
can be regulated, without the water level of tank 1 and tank 2 is effected, within
the time horizon.
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Chapter 4

ACADO Toolkit

In this chapter, I introduce the optimization and simulation software ACADO
Toolkit. A short introduction of the origin and main features will be provided.
Afterwards, I will go through the installation of the software, providing instal-
lation procedures for both Linux, Mac OS X and Windows. Then a guide to
producing and running a simple program will be given. Finally, I will go through
all elements on how to simulate and solve the Quadruple Tank Process model
using this software, also providing and explaining the outputs and plots of the
model compilation.

References: Sequential Quadratic Programming [4], Applications in Renew-
able Energy Systems [6], ACADO Toolkit - An Open-Source Framework
[7], Fast Pareto set generation [8], Embedded Optimisation [9], Scientific
- and Technical Software [10]

URL: [ACADO Home] http://www.acadotoolkit.org/

http://www.acadotoolkit.org/
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4.1 ACADO Toolkit - Getting Started

The ACADO Toolkit is a general Open-Source framework for using a variety of
algorithms i order to solve dynamic optimal control problem. These problems
include model predictive control, state and parameter estimation and general
non-linear optimization. The software environment of ACADO Toolkit is writ-
ten as object oriented C++ code language, which makes it ideal for the user
to implement self-written optimization routines as extensions. The program is
used by means of a unix user interface. ACADO Toolkit is provided under a
GNU General Public License and under a GNU Lesser General Public License.
The later of these licenses provide additional user rights and is even less restric-
tive than the GNU General Public License. These licenses include the freedom
to use the software for any purpose, the freedom to change the software to suit
ones needs, the freedom to share the software with anyone, and the freedom to
share the changes you make.

4.1.1 Installation

Before demonstrating, an installation guide will be provided for the most com-
mon used operating systems.

4.1.1.1 Installation under Linux

In order to install and run ACADO Toolkit models you need to make sure that
a C++ compiler is installed on the system. This can be checked by prompting
the unix command

> g++ -v

For graphical outputs Gnuplot is needed to be installed, however ACADO
Toolkit will run without, the plots will simply be turned of. This can be checked
by prompting the unix command

> which gnuplot

If Gnuplot or GCC is not installed, I recommendation using the APT repository
installation tool (Advanced Packages Tool, http://www.apt-get.org/). This
tool is preinstalled on UBUNTU. Alternatively the required compilers and soft-
wares source files can be downloaded at http://sourceforge.net/projects.

http://www.apt-get.org/
http://sourceforge.net/projects
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Using APT, begin by making a software update of the package tool. This is
done by the following prompt commands

> sudo apt-get update

> sudo apt-get install build-essential

This action should install GCC, else prompt

> sudo apt-get install g++

Gnuplot can then be installed using the prompt command

> sudo apt-get install gnuplot

The ACADO Toolkit program package can now be installed by going to

http://acadotoolkit.org/download/ACADOtoolkit-1.0beta.tar.gz.

Go to your download folder and extract the files

> tar xfvz ACADOtoolkit-1.0beta.tar.gz

Go to the directory ACADOtoolkit-1.0beta and build the package

> cd ACADOtoolkit-1.0beta

> make

4.1.1.2 Installation under Mac OS X

The dependencies is the same as on Linux and the same unix command can
to some extend be reused using the Mac Terminal. Installing Gnuplot can be
accompliced by installing MacPorts (http://www.macports.org/). Like APT
this is a package tool. A requirement is that Apple’s Xcode Developer Tool is
installed on your system. Installing MacPorts will take some time and requires
about 460 MB space. Gnuplot can use X11 as graphics terminal (X-server), but
AquaTerm is the default graphics terminal and should therefore be installed
before installing Gnuplot. Using macPorts, then prompt

> sudo port install aquaterm

http://acadotoolkit.org/download/ACADOtoolkit-1.0beta.tar.gz
http://www.macports.org/
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And when the installment is completed, prompt

> sudo port install gnuplot

From this point on install ACADO Toolkit by following the installment guide
for Linux.

4.1.1.3 Installation under Windows

In order to install ACADO Toolkit on Windows, you need to install a Linux envi-
ronment (emulator). This could for example be Cygwin (http://www.cygwin.
com/). As for the above operating systems a C++ compiler, Gnuplot and a
X-server is required to run ACADO Toolkit.

Using Cygwin select "gcc-g++" and "make" (Developer category), Gnuplot
(Graphics category) and xinit (X11 category) as optional add-intallments during
the installation procedure. Start Cygwin and run "c:/cygwin/bin/startwin.bat".
This will provide an environment for plotting.

Create a directory, where you want to install ACADOtoolkit.

> cd c:
> mkdir src
> cd src

Copy ACADOtoolkit-1.0beta.tar.gz to the installation directory (here c:/src)
and unpack it.

> tar xfvz ACADOtoolkit-1.0beta.tar.gz

Open the file include/include.mk in the ACADO directory and make sure
that the system is set to WIN32 and that the GNU compiler is used:

• COMPILER = GNU

• SYSTEM = WIN32

Finally, go to the directory ACADOtoolkit-1.0beta and build the package

> cd ACADOtoolkit-1.0beta
> make

http://www.cygwin.com/
http://www.cygwin.com/
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4.1.2 Running a program

A simple example of an OCP problem modeled in ACADO for optimization is
the Optimal Time of Rocket model introduced in chapter 1 of this thesis. The
model is a part of ACADO’s example library and the implementation looks as
follows

27 /∗∗
∗ \ f i l e examples / ge t t ing_sta r t ed / simple_ocp . cpp

29 ∗ \ author Bor i s Houska , Hans Joachim Ferreau
∗ \date 2009

31 ∗/

33

#include <acado_too lk i t . hpp>
35 #include <gnuplot / acado2gnuplot . hpp>

37

int main ( ) {
39

USING_NAMESPACE_ACADO
41

// the d i f f e r e n t i a l s t a t e s
43 D i f f e r e n t i a l S t a t e s , v ,m ;

// the con t r o l input u
45 Control u ;

// the time hor i zon T
47 Parameter T ;

// the d i f f e r e n t i a l equat ion
49 Di f f e r e n t i a lEqua t i on f ( 0 . 0 , T ) ;

51 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
OCP ocp ( 0 . 0 , T ) ; // time hor i zon o f the OCP: [ 0 ,T]

53 ocp . minimizeMayerTerm ( T ) ; // the time T should be opt imized

55 f << dot ( s ) == v ; // an implementation
f << dot (v ) == (u−0.2∗v∗v ) /m; // o f the model equat ions

57 f << dot (m) == −0.01∗u∗u ; // f o r the rocke t .

59 // minimize T s . t . the model , the i n i t i a l va lue s f o r s ,
// v and m,

61 ocp . subjectTo ( f ) ;
ocp . subjectTo ( AT_START, s == 0.0 ) ;

63 ocp . subjectTo ( AT_START, v == 0.0 ) ;
ocp . subjectTo ( AT_START, m == 1.0 ) ;

65

// the te rmina l c on s t r a i n t s f o r s , and v ,
67 ocp . subjectTo ( AT_END , s == 10 .0 ) ;

ocp . subjectTo ( AT_END , v == 0.0 ) ;
69

// as we l l as the bounds on v , the c on t r o l input u ,
71 // and the time hor i zon T.

ocp . subjectTo ( −0.1 <= v <= 1.7 ) ;
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73 ocp . subjectTo ( −1.1 <= u <= 1.1 ) ;
ocp . subjectTo ( 5 .0 <= T <= 15.0 ) ;

75 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

77 GnuplotWindow window ;
window . addSubplot ( s , "THE DISTANCE s" ) ;

79 window . addSubplot ( v , "THE VELOCITY v" ) ;
window . addSubplot ( m, "THE MASS m" ) ;

81 window . addSubplot ( u , "THE CONTROL INPUT u" ) ;

83 Optimizat ionAlgorithm algor i thm ( ocp ) ; // the opt imiza t i on
a lgor i thm

algor i thm << window ;
85 a lgor i thm . s o l v e ( ) ; // s o l v e s the problem .

87

return 0 ;
89 }

The model can be run with the following commands

> cd ACADOtoolkit-1.0beta/examples/getting_started

> ./simple_ocp

When building your own program, start by creating a folder under the direc-
tory "ACADOtoolkit-1.0beta/examples/" (placement of the folder is of course
optional). Copy the Makefile in the directory "examples" and place it in your
own folder. Open the Makefile and delete all filenames under

54

SRCS =
56

DEV_SRCS =

Type the name of your own C++ code-file under SRCS. If you have chosen a
different placement of the folder than suggested, then you should make sure that
the include-paths in the top of the Makefile reflect the directory of your own
newly created model library.

All the elements of a C++ library are declared within a namespace. In order to
access its functionality, I declare using this expression that I will be using these
entities. In our case the library namespace has the call "USING_NAMESPACE_ACADO".
It is recommended to use an existing example file as template for your code. A
standard code-file should have the form

#include <acado_optimal_control . hpp>
2 #include <gnuplot / acado2gnuplot . hpp>
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4 int main ( ) {

6 USING_NAMESPACE_ACADO

8 // Constants , Var iab les , Optimizat ion setup . . .

10 return 0 ;
}

You are now ready to build a Unix-Archive of your code-file. Go to your folder,
build, and run your program

> cd ACADOtoolkit-1.0beta/examples/myfolder

> make

> ./myprogram

4.2 Simulating the Four Tank System using ACADO
Toolkit

Referring back to the Four Tank System from chapter 3, I will start by sum-
marizing the model which is to be implemented. Then I will meticulously go
through the implementation of the model using ACADO toolkit, focusing on
attention demanding challenges and their solutions. A range of ACADO func-
tionalities and properties will be presented, when new objects and functions is
required while implementing the model.

The complete model is given as (3.19a) - (3.20n) and the parameter vector p in
the model is defined as

p = [a1 a2 a3 a4A1A2A3A4 γ1 γ2 g ρ r1 r2 s]T

Using this notation, the system of differential equations determining the evolu-
tion of the system can then be represented as

dx(t)
dt

= f(t, x(t), u(t), p) x(t0) = x0 t ∈ [t0, tend]
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4.2.1 Implementing the model in ACADO Toolkit

In the following I will build up the ACADO script file for solving the Four Tank
System seen as an optimal control problem. The following code is used as the
content of the template file above. First, I define the parameters for the system.

USING_NAMESPACE_ACADO
15

// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
17 // Parameters

// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
19

// Cross s e c t i o n a l area o f ou t l e t [ cm2 ]
21 const double a1 = 1 . 2272 ;

const double a2 = 1 . 2272 ;
23 const double a3 = 1 . 2272 ;

const double a4 = 1 . 2272 ;
25

// Cross s e c t i o n a l area o f i n l e t [ cm2 ]
27 const double A1 = 380 .1327 ;

const double A2 = 380 .1327 ;
29 const double A3 = 380 .1327 ;

const double A4 = 380 .1327 ;
31

// Height o f tank [ cm]
33 const double H1 = 20 ;

const double H2 = 20 ;
35 const double H3 = 20 ;

const double H4 = 20 ;
37

// Valve po s i t i o n
39 const double gamma1 = 0 . 1 5 ;

const double gamma2 = 0 . 2 5 ;
41

// Set po int ( water l e v e l goa l )
43 const double r1 = 12 ;

const double r2 = 12 ;
45

// Acce l e r a t i on o f g rav i ty [ cm/ s2 ]
47 const double g = 981 ;

49 // Density o f water [ g/cm3 ]
const double rho = 1 . 0 0 ;

Then the equations for the flow from the valves to each tank (3.10), the relations
for the liquid heights (3.13), the relations for the outlet flow rates (3.12), the dif-
ferential equations (3.4), and their initial conditions (3.5) will be implemented.

Since equations (3.10), (3.13) and (3.12) all are function values describing a
system state with respect to a given time point, these variables are declared
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as the data type "IntermediateState" (symbolic state variable) in ACADO.
Likewise, (3.5) describe a system state with respect to a given time point of
the differential equations (initial values). These are declared as the data type
"DifferentialState" (symbolic state variable) in ACADO. u is declared as
data type "Control" and the differential equations are declared as "DifferentialEquation".

When deriving the numerical solution to the system, the derivative of the out-
going flow rates of tanks will be calculated by the solver. The derivatives are

dq

dhi
=

aig√
2ghi

, i = 1, . . . , 4

If we set the initial hi’s to zero, we will get an error. To avoid this, I therefore
need an approximation of the hi’s to substitute these. For a sufficiently small
constant s and h ≥ 0, I can approximate h by the expression

s · log(exp(hs ) + 1) > 0

The validity of the approximation and influence of s can be shown by plotting
the absolute error of the approximation for different values of h and s (see figure
4.1).
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Figure 4.1: Absolute error using approximation of h
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I therefore use the following approximation of h

√
h u hs =

h√
s · log(exp(h/s) + 1)

As for the differential equations (3.4) I need to write all of them into the single
output f . The insertion operator "< <" is used for this in C++.

The implementation of these declarations and variable definitions looks as follow

// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
53 // Dec lare con t ro l s , equat ions , and s t a t e s

// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
55

// Mass in tanks [ g ]
57 D i f f e r e n t i a l S t a t e m1,m2,m3,m4;

// Equations c on s t r a i n t s
59 In te rmed ia t eSta te q1i , q2i , q3i , q4 i ;

In t e rmed ia t eSta te h1 , h2 , h3 , h4 ;
61 In te rmed ia t eSta te h1s , h2s , h3s , h4s ;

In te rmed ia t eSta te q1 , q2 , q3 , q4 ;
63

// Contro l s (Flow ra t e s in va lve s [ cm3/ s ] )
65 Control F1 , F2 ;

67 // System Equation
D i f f e r e n t i a lEqua t i on f ;

69

// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
71 // Equation De f i n i t i o n

// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
73 // Flow ra t e in va lve s [ cm3/ s ]

q1 i = gamma1∗F1 ;
75 q2 i = gamma2∗F2 ;

q3 i = (1−gamma2) ∗F2 ;
77 q4 i = (1−gamma1) ∗F1 ;

79 // Height o f l i q u i d [ cm ]
h1 = m1/( rho∗A1) ;

81 h2 = m2/( rho∗A2) ;
h3 = m3/( rho∗A3) ;

83 h4 = m4/( rho∗A4) ;

85 // Approximation v a r i a b l e s
const double s = 0 . 1 ;

87 h1s = h1/( sq r t ( s ∗ l og ( exp ( h1/ s )+1) ) ) ;
h2s = h2/( sq r t ( s ∗ l og ( exp ( h2/ s )+1) ) ) ;

89 h3s = h3/( sq r t ( s ∗ l og ( exp ( h3/ s )+1) ) ) ;
h4s = h4/( sq r t ( s ∗ l og ( exp ( h4/ s )+1) ) ) ;

91

// Flow ra t e in tanks [ cm3/ s ]
93 q1 = a1∗ s q r t (2∗ g ) ∗h1s ;

q2 = a2∗ s q r t (2∗ g ) ∗h2s ;
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95 q3 = a3∗ s q r t (2∗ g ) ∗h3s ;
q4 = a4∗ s q r t (2∗ g ) ∗h4s ;

97

// System Equations (Mass balance equat ion 1−4)
99 f << dot (m1) == rho∗ q1 i + rho∗q3 − rho∗q1 ;

f << dot (m2) == rho∗ q2 i + rho∗q4 − rho∗q2 ;
101 f << dot (m3) == rho∗ q3 i − rho∗q3 ;

f << dot (m4) == rho∗ q4 i − rho∗q4 ;

The optimization model of the quadruple tank process can now be implemented.
First, a time interval has to be defined. In my case the grid is chosen by the
solvers error control step method using the default options with initial step size
at 10−3, minimal step size 10−8, maximum step size 10+8, a step size tuning at
0.5, and a corrector tolerance at 10−14. These can all be altered by the user.
I will come back to this below. So using the default grid options I just define
a start and an end time point. These values are defined as constants and is
the first input of the ACADO OCP solver (see code below). In my case the time
interval of 5 minutes are chosen. The user can add more options to this call,
such as "number of discretization intervals", or the user can simple load her own
discretization intervals using the call

Var iab lesGr id measurements ;
2 measurements = readFromFile ( "data . txt " ) ;

4 OCP ocp ( measurements . getTimePoints ( ) ) ;

data.txt is a datafile, where the discretization values are the first column in the
file.

The type of objective function is assigned to the ocp object, including informa-
tion on whether it is a maximization or minimization problem. The problem
can consist of a Lagrange term, a Mayer term and a Least Square term (see
chapter 1 for more on this). The Least Square term has the optional input of a
weighting matrix, the least square function, and a right hand side vector. The
terms is assigned one at a time to the ocp object and has the calls

minimizeLagrangeTerm(z),
minimizeMayerTerm(z),

minimizeLSQ(z)

"minimize" can be replaced with "maximize" and z is the objective function.

The condition terms is then assigned to the ocp object using the call "subjectTo(c)",
where c is the condition equation. Boundaries are set using "==", "<=" or ">=".
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Further input to this call can also be added, such as initial condition informa-
tion. The options can be

AT_START,
AT_END,

AT_TRANSITION

The implementation of my optimal control problem then looks as follows

// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
105 // DEFINE AN OPTIMAL CONTROL PROBLEM:

// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
107

// Star t time [ s ec ]
109 const double t_start = 0 . 0 ;

// End time [ s ec ]
111 const double t_end = 60∗5 ;

113 OCP ocp ( t_start , t_end ) ;
ocp . minimizeLagrangeTerm ( (h1−r1 ) ∗(h1−r1 ) + (h2−r2 ) ∗(h2−r2 )

) ;
115

// S a t i s f y model dynamics .
117 ocp . subjectTo ( f ) ;

119 // i n i t i a l i z e masses .
ocp . subjectTo ( AT_START, m1 == 0 ) ;

121 ocp . subjectTo ( AT_START, m2 == 0 ) ;
ocp . subjectTo ( AT_START, m3 == 0 ) ;

123 ocp . subjectTo ( AT_START, m4 == 0 ) ;

125 // Only non−negat ive inputs .
ocp . subjectTo ( 0 <= F1 <= 300 ) ;

127 ocp . subjectTo ( 0 <= F2 <= 300 ) ;

129 // No tank underf low or over f l ow .
ocp . subjectTo ( 0 <= h1 <= H1 ) ;

131 ocp . subjectTo ( 0 <= h2 <= H2 ) ;
ocp . subjectTo ( 0 <= h3 <= H3 ) ;

133 ocp . subjectTo ( 0 <= h4 <= H4 ) ;

For plotting the results of the simulation and optimal solution I then declare a
"GnuplotWindow" object. The plots are then assigned to the plot object using
the call

addSubplot(x,"Title")
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x is one of the symbolic variables of the model or a system defined command
option. "Title" is the title text of the plotting window. The system defined
command inputs include plotting the various symbolic variables types, such as
the inputs

PLOT_LINESEARCH_STEPLENGTH,
PLOT_KKT_TOLERANCE,
PLOT_OBJECTIVE_VALUE

The implementation of my plotting outputs then looks as follows

135 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// Plot

137 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

139 GnuplotWindow window ;

141 window . addSubplot (h1 , "Height Tank 1 [ cm] " ) ;
window . addSubplot (h2 , "Height Tank 2 [ cm] " ) ;

143 window . addSubplot (h3 , "Height Tank 3 [ cm] " ) ;
window . addSubplot (h4 , "Height Tank 4 [ cm] " ) ;

145 window . addSubplot (F1 , "Flow Rate 1 [ cm3/ s ] " ) ;
window . addSubplot (F2 , "Flow Rate 2 [ cm3/ s ] " ) ;

147 window . addSubplot (PLOT_LINESEARCH_STEPLENGTH, "Step length " )
;

window . addSubplot (PLOT_KKT_TOLERANCE, "KKT Tolerance " ) ;

Finally, I ask ACADO to solve the problem. I declare a "OptimizationAlgorithm"
object. As with other ACADO objects I have the opportunity of adding user
defined options to the solver. In the following I will just mention the options, I
have chosen, namely, type of Hessian approximation (default is the block BFGS
update) and maximum number of iterations (default is 200) (a user set KKT
tolerance could also have been defined as "PLOT_LINESEARCH_STEPLENGTH" in-
stead of the default value of 10−6). The plotting object is written to the solver
object as output (insertion) and the problem is finally solved.

151 // DEFINE AN OPTIMIZATION ALGORITHM AND
// SOLVE THE OCP:

153 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

155 Optimizat ionAlgorithm algor i thm ( ocp ) ;
a lgor i thm . s e t ( MAX_NUM_ITERATIONS, 300 ) ;

157 a lgor i thm . s e t ( HESSIAN_APPROXIMATION, EXACT_HESSIAN ) ;

159 a lgor i thm << window ;
a lgor i thm . s o l v e ( ) ;
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The complete implementations thereby looks as follows

/∗∗
2 ∗ \ f i l e tank_system_control . cpp

∗ \ author Leo Emil Sokoler , Rune Brus
4 ∗ \date 25−01−2010

∗/
6 // Inc lude s .

8 #include <acado_optimal_control . hpp>
#include <gnuplot / acado2gnuplot . hpp>

10

int main ( ) {
12

// Acado namespace
14 USING_NAMESPACE_ACADO

16 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// Parameters

18 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

20 // Cross s e c t i o n a l area o f ou t l e t [ cm2 ]
const double a1 = 1 . 2272 ;

22 const double a2 = 1 . 2272 ;
const double a3 = 1 . 2272 ;

24 const double a4 = 1 . 2272 ;

26 // Cross s e c t i o n a l area o f i n l e t [ cm2 ]
const double A1 = 380 .1327 ;

28 const double A2 = 380 .1327 ;
const double A3 = 380 .1327 ;

30 const double A4 = 380 .1327 ;

32 // Height o f tank [ cm]
const double H1 = 20 ;

34 const double H2 = 20 ;
const double H3 = 20 ;

36 const double H4 = 20 ;

38 // Valve po s i t i o n
const double gamma1 = 0 . 1 5 ;

40 const double gamma2 = 0 . 2 5 ;

42 // Set po int ( water l e v e l goa l )
const double r1 = 12 ;

44 const double r2 = 12 ;

46 // Acce l e r a t i on o f g rav i ty [ cm/ s2 ]
const double g = 981 ;

48

// Density o f water [ g/cm3 ]
50 const double rho = 1 . 0 0 ;

52 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// Dec lare con t ro l s , equat ions , and s t a t e s
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54 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

56 // Mass in tanks [ g ]
D i f f e r e n t i a l S t a t e m1,m2,m3,m4;

58 // Equations c on s t r a i n t s
In te rmed ia t eSta te q1i , q2i , q3i , q4 i ;

60 In te rmed ia t eSta te h1 , h2 , h3 , h4 ;
In te rmed ia t eSta te h1s , h2s , h3s , h4s ;

62 In te rmed ia t eSta te q1 , q2 , q3 , q4 ;

64 // Contro l s (Flow ra t e s in va lve s [ cm3/ s ] )
Control F1 , F2 ;

66

// System Equation
68 Di f f e r e n t i a lEqua t i on f ;

70 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// Equation De f i n i t i o n

72 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// Flow ra t e in va lve s [ cm3/ s ]

74 q1 i = gamma1∗F1 ;
q2 i = gamma2∗F2 ;

76 q3 i = (1−gamma2) ∗F2 ;
q4 i = (1−gamma1) ∗F1 ;

78

// Height o f l i q u i d [ cm ]
80 h1 = m1/( rho∗A1) ;

h2 = m2/( rho∗A2) ;
82 h3 = m3/( rho∗A3) ;

h4 = m4/( rho∗A4) ;
84

// Approximation v a r i a b l e s
86 const double s = 0 . 1 ;

h1s = h1/( sq r t ( s ∗ l og ( exp ( h1/ s )+1) ) ) ;
88 h2s = h2/( sq r t ( s ∗ l og ( exp ( h2/ s )+1) ) ) ;

h3s = h3/( sq r t ( s ∗ l og ( exp ( h3/ s )+1) ) ) ;
90 h4s = h4/( sq r t ( s ∗ l og ( exp ( h4/ s )+1) ) ) ;

92 // Flow ra t e in tanks [ cm3/ s ]
q1 = a1∗ s q r t (2∗ g ) ∗h1s ;

94 q2 = a2∗ s q r t (2∗ g ) ∗h2s ;
q3 = a3∗ s q r t (2∗ g ) ∗h3s ;

96 q4 = a4∗ s q r t (2∗ g ) ∗h4s ;

98 // System Equations (Mass balance equat ion 1−4)
f << dot (m1) == rho∗ q1 i + rho∗q3 − rho∗q1 ;

100 f << dot (m2) == rho∗ q2 i + rho∗q4 − rho∗q2 ;
f << dot (m3) == rho∗ q3 i − rho∗q3 ;

102 f << dot (m4) == rho∗ q4 i − rho∗q4 ;

104 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// DEFINE AN OPTIMAL CONTROL PROBLEM:

106 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

108 // Star t time [ s ec ]
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const double t_start = 0 . 0 ;
110 // End time [ s ec ]

const double t_end = 60∗5 ;
112

OCP ocp ( t_start , t_end ) ;
114 ocp . minimizeLagrangeTerm ( (h1−r1 ) ∗(h1−r1 ) + (h2−r2 ) ∗(h2−r2 )

) ;

116 // S a t i s f y model dynamics .
ocp . subjectTo ( f ) ;

118

// i n i t i a l i z e masses .
120 ocp . subjectTo ( AT_START, m1 == 0 ) ;

ocp . subjectTo ( AT_START, m2 == 0 ) ;
122 ocp . subjectTo ( AT_START, m3 == 0 ) ;

ocp . subjectTo ( AT_START, m4 == 0 ) ;
124

// Only non−negat ive inputs .
126 ocp . subjectTo ( 0 <= F1 <= 300 ) ;

ocp . subjectTo ( 0 <= F2 <= 300 ) ;
128

// No tank underf low or over f l ow .
130 ocp . subjectTo ( 0 <= h1 <= H1 ) ;

ocp . subjectTo ( 0 <= h2 <= H2 ) ;
132 ocp . subjectTo ( 0 <= h3 <= H3 ) ;

ocp . subjectTo ( 0 <= h4 <= H4 ) ;
134

// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
136 // Plot

// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
138

GnuplotWindow window ;
140

window . addSubplot (h1 , "Height Tank 1 [ cm] " ) ;
142 window . addSubplot (h2 , "Height Tank 2 [ cm] " ) ;

window . addSubplot (h3 , "Height Tank 3 [ cm] " ) ;
144 window . addSubplot (h4 , "Height Tank 4 [ cm] " ) ;

window . addSubplot (F1 , "Flow Rate 1 [ cm3/ s ] " ) ;
146 window . addSubplot (F2 , "Flow Rate 2 [ cm3/ s ] " ) ;

window . addSubplot (PLOT_LINESEARCH_STEPLENGTH, "Step length " )
;

148 window . addSubplot (PLOT_KKT_TOLERANCE, "KKT Tolerance " ) ;

150 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// DEFINE AN OPTIMIZATION ALGORITHM AND

152 // SOLVE THE OCP:
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

154

Optimizat ionAlgorithm algor i thm ( ocp ) ;
156 a lgor i thm . s e t ( MAX_NUM_ITERATIONS, 300 ) ;

a lgor i thm . s e t ( HESSIAN_APPROXIMATION, EXACT_HESSIAN ) ;
158

a lgor i thm << window ;
160 a lgor i thm . s o l v e ( ) ;
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162 return 0 ;

164 }

I then compile the code file (make) and run the unix-archive of the code. As a
way of comparing the various Hessian approximations, I here display Table 4.1,
stating the terminal outputs of a number of these.

Hessian Approx. # Iterations KKT tolerance Objective value
Exact Hessian 11 2.355e-07 5.3518e+03
Gauss Newton with 27 8.487e-07 5.3518e+03.. Block BFGS update
Gauss Newton 27 8.487e-07 5.3518e+03
Block BFGS update 27 8.487e-07 5.3518e+03
Full BFGS update 78 6.868e-07 5.3518e+03
Constant (1) 300 9.860e-06 5.3518e+03
Unknown 300 2.996e-01 2.1989e+04

Table 4.1: Iterations Statistics of ACADO Toolkit

As it appears from the table. The algorithm was not able to converge using a
constant - or no Hessian (unknown). The KKT tolerance becomes asymptotic
around 10−6 using a constant Hessian.

Using the exact hessian I get the outputs Figure 4.2, 4.3 and 4.4.
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Figure 4.2: Height of liquid in tanks
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Figure 4.3: Control varibles. Flow rate in pumps

Figure 4.4: Iteration information. Step sizes and KKT values

It is seen that the difference in valve flow rate effects the optimal flow rates from
the pumps and the required water level in tank 3 and 4.

A great influence on the convergence of the model is the choice of Hessian
approximation.
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Chapter 5

IPOPT

In this chapter, I introduce the optimization software IPOPT (Interior Point
Optimizer (pronounced "I-P-Opt"). A short introduction of the origin and
main features will be provided. Afterwards, I will go through the installation
of IPOPT, providing installation procedures for both Linux, Mac OS X and
Windows. Then I will give a guide on how to interface IPOPT, spanning from
standard programming languages, such as C++ and Fortran, to actual algebraic
modeling languages (AML’s) . Then I will go through all elements on how to
simulate and solve the Quadruple Tank Process model using IPOPT together
with some of the interfaces introduces in the previous section. Finally, I will
present ways of visualizing the results.

References: Sequential Quadratic Programming [4], Numerical Computa-
tion [5], Adaptive Barrier Strategies [11], Combinatorial Approaches [12],
Interior-Point Filter Line-Search Algorithm [13], Line Search Filter Meth-
ods [14], Interior Point Algorithm [15], Damped Newton Methods [16],
Interior point methods [17]

URLs: [IPOPT Home] http://www.coin-or.org/projects/Ipopt.xml,

[IPOPT Documentation] http://www.coin-or.org/Ipopt/documentation/

http://www.coin-or.org/projects/Ipopt.xml
http://www.coin-or.org/Ipopt/documentation/
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5.1 IPOPT - Getting Started

IPOPT is an Open-Source package for large-scale nonlinear optimization, pro-
vided under a Common Public License. Unlike ACADO toolkit, IPOPT only
provides the solver and not an entire framework with interface. IPOPT is writ-
ten in C++ and provides a large range of user setting options. IPOPT is
developed, such that it supports 5 different sparse linear solvers (this will be
elaborated below). It can be used for general nonlinear optimization of the
form

min
x∈Rn

f(x) (5.1)

s.t. gL ≤ g(x) ≤ gU (5.2)

xL ≤ x ≤ xU (5.3)

x ∈ Rn are the optimization variables, f : Rn → R is the objective function,
and g : Rn → Rm are the general nonlinear constraints. The functions f(x)
and g(x) have to be twice differentiable, but can be linear or nonlinear and
convex or non-convex.

5.1.1 Installation

The IPOPT code package is available from IPOPT Home under a Common
Public License, meaning that it is available free of charge both for private and
commercial purposes.

The installation of IPOPT requires some third party components. The first
requirement is some algorithm libraries. These libraries are BLAS (Basic Linear
Algebra Subroutines), these are used for dense linear algebra, and LAPACK
(Linear Algebra PACKage), with is used for the quasi-Newton solver options in
IPOPT. The second requirement is a sparse symmetric indefinite linear solver.
The following solvers is supported and are available for this purpose.

• MA27 - http://www.cse.clrc.ac.uk/nag/hsl/ (the HSL package)

• MA57 - http://www.cse.clrc.ac.uk/nag/hsl/ (the HSL package)

• MUMPS (MUltifrontal Massively Parallel sparse direct Solver) -
http://graal.ens-lyon.fr/MUMPS/ (the MUMPS package)

• PARDISO (The parallel Sparse Direct Solver) -
http://www.computational.unibas.ch/cs/scicomp/software/pardiso/

http://www.opensource.org/licenses/cpl1.0.php
https://projects.coin-or.org/Ipopt
http://www.cse.clrc.ac.uk/nag/hsl/
http://www.cse.clrc.ac.uk/nag/hsl/
http://graal.ens-lyon.fr/MUMPS/
http://www.computational.unibas.ch/cs/scicomp/software/pardiso/
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• WSMP (The Watson Sparse Matrix Package) -
http://www-users.cs.umn.edu/$\sim$agupta/wsmp.html

The best choice of linear solver depends entirely on ones application, but IPOPT
can be compiled with all options.

If the MUMPS or MA57 solver is used, then it is also recommended to include
the METIS (Linear System Ordering package) package in the installation of
IPOPT. This is a recommendation, but not a requirement, meaning that IPOPT
works fine without METIS using MUMPS or MA57 as solver. METIS is able to
reduce the storage and computational requirements of sparse matrix factoriza-
tion and is recommended for large-scale problems in order to reduce computa-
tion time (see http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
to learn more).

Finally, the ASL (AMPL Solver Library) package should be included in the
installation, if the user wishes to use the AMPL interface with IPOPT as solver
(more about this below).

The IPOPT download package include unix-installation scripts for most of the
above requirements, so the user should just download, unpack IPOPT, and run
these, before compiling the IPOPT solver package (guidance provided below).

Before demonstrating the use of the solver, an installation guide will be provided
for Linux, Mac OS X and Windows.

5.1.1.1 Installation under Linux

In order to install and run IPOPT you need to make sure that a C++ and
Fortran compiler are installed on the system. This can be checked by prompting
the unix commands

> g++ -v

The compiler contains a version of the gfortran compiler and can be enabled to
run fortran f77. The IPOPT installation script may not be able to recognize
the fortran compiler. In this case gfortran can be installed separately. If one
of these compilers is missing or unrecognized, they can be installed using APT
(see 4.1.1.1 for information). Install gfortran by prompting

> sudo apt-get install gfortran

http://www-users.cs.umn.edu/$\sim $agupta/wsmp.html
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
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IPOPT does not provide a direct plotting function package, but outputs can
be produced to be plotted using Gnuplot (installation see 4.1.1.1) or ones own
favorite plotting tool.

The IPOPT program package can now be downloaded and unpacked from

http://www.coin-or.org/download/source/Ipopt/ - Latest stable version is
3.8.0.

Go to your download folder and extract the files

> gunzip IPOPT-3.8.1.tgz

> tar xvf IPOPT-3.8.1.tar

Move the directory to a preferred system directory.

IPOPT also provide a subversion repository for downloading the file package.
Using this option, start by checking, if your system support subversion. If this
is not the case, subversion support can be installed using APT (see 4.1.1.1). Go
to a preferred system directory and prompt

> sudo apt-get install subversion

> svn co https://projects.coin-or.org/svn/Ipopt/stable/3.8.1 CoinIpopt

Go to the newly created IPOPT directory and install the solver dependencies

> cd Thirdparty/Blas

> ./get.Blas

> cd ../Lapack

> ./get.Lapack

> cd ../Mumps

> ./get.Mumps

> cd ../ASL

> ./get.ASL

For installing the HSL, PARDISO or WSMP package see the IPOPT Documen-
tation.

The IPOPT solver can now be installed. Create a build folder for compiling

> mkdir build

http://www.coin-or.org/download/source/Ipopt/
http://www.coin-or.org/Ipopt/documentation/
http://www.coin-or.org/Ipopt/documentation/
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> cd build

Run the configure script

> ../configure

Build the code

> make

Check if all executables work

> make test

Install IPOPT

> make install

5.1.1.2 Installation under Mac OS X

The dependencies is the same as on Linux and the same unix command can
to some extend be reused using a Mac Terminal. The user should though be
warned that installing IPOPT can have problem issues with mac OS X (see
IPOPT Current Issues).

In my own case I installed it on mac OS X 10.6 (Snow Leopard). This OS is
a 64-bit operating system. As C and C++ compiler I used GCC which default
produces 64-bit code strings. As Fortran compiler I used gfortran which default
produces 32-bit code strings. This caused a fatal building error for my sparse
linear solvers (Mumps and MA27). The problem was solved by forcing gfortran
to produce 64-bit code stings during the code configuration, i.e. I used the
configuration command

> ../configure ADD_FFLAGS="-arch x86_64"

See 4.1.1.1 for more tips on mac OS X.

https://projects.coin-or.org/BuildTools/wiki/current-issues
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5.1.1.3 Installation under Windows

In order to install IPOPT on Windows, you need to install a Linux environment
(emulator). This could for example be Cygwin. Although it is also possible
to use IPOPT through MS Visual Studio. See the instructions from 4.1.1.1,
but be aware that IPOPT need some further Cygwin add-ons. See the IPOPT
Documentation for an extensive guide to the unix installation and installation
under MS Visual Studio.

5.1.2 Interfacing IPOPT

IPOPT supports a range of optimization interfaces, but I will only go into details
with the C++ interface.

A simple test model is provided in the IPOPT installation

min
x

x0 · x3 · (x0 + x1 + x2) + x2

s.t. x0 · x1 · x2 · x3 ≥ 25

x2
0 + x2

1 + x2
2 + x2

3 = 40
x0, x1, x2, x3 ≥ 1
x0, x1, x2, x3 ≤ 5

This test model (using C++ interface) can be run with the following commands

> cd build/Ipopt/test/

> ./hs071_cpp

5.1.2.1 General-Purpose Programming Languages

With these interfaces the model code is all constructed the same way, containing
the same methods. The user will need to hardcode the complete model and all
the mathematical objects needed to solved a nonlinear optimization problem.
Examples of how to construct models in these interfaces can be seen in the
installation directory "build/Ipopt/tutorial/CodingExercise". IPOPT supports
models in

http://www.coin-or.org/Ipopt/documentation/
http://www.coin-or.org/Ipopt/documentation/
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• C

• C++

• Fortran

• Python

The Python interface is not included in the default installation package of
IPOPT, but can be downloaded at http://code.google.com/p/pyIPOPT/. A
Java support package is also under developments, but is not yet available (see
IPOPT Home).

5.1.2.2 The C++ interface

Start by creating a new folder in the directory "build/MyIPOPT/", where your
C++ code program can be stored. Copy the Makefile in the folder
"build/Ipopt/tutorial/CodingExercise/Cpp/3-solution" and place it in your own
folder. Open the Makefile and delete all filenames under

12 # This should be the name o f your executab l e
EXE =

14

# Here i s the name o f a l l ob j e c t f i l e s cor re spond ing to the source
16 # code that you wrote in order to d e f i n e the problem statement

OBJS =

Type the preferred name of your C++ code execution script under EXE. The
execution script has no file extension. Then type the name of your C++ ob-
ject files under OBJS. These names should match the source file names of your
program code and be given the extension .o.

It is of course possible to compile and create C++ code executables without
using such a make script. In our case though, we wish to use the IPOPT
namespace and the executable need to know, what this is and where it can be
found. Thus, we need to use a carefully written make script.

Before we can compile and create an executable file, the C++ program need to
be written. First of all, a C++ header-file need to be created. This file specifies
what member functions (methods) and data members (fields) the class will have.
This header file can be used almost unchanged in all your C++ IPOPT models.
Only the class name has to be changed to fit the name used in the two source
code files. The methods in the header file will be explained in detail, when I

http://code.google.com/p/pyIPOPT/
http://www.coin-or.org/projects/Ipopt.xml
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implement the Four tank system. The first source file then contains the function
bodies of the methods from the header file and the second source file (the main
source file) contains the remaining fields and methods for creating the problem
and finally solving it.

A header file looks as follows

//
2 // Author : Rune Brus 17−02−2010

//
4

#ifndef __My_NLP_HPP__
6

#define __My_NLP_HPP__
8

#include "IpTNLP . hpp"
10

using namespace Ipopt ;
12

class My_NLP : public TNLP
14 {

public :
16 // con s t ruc to r

My_NLP( Index N, const Number∗ c ) ;
18

// de s t ru c t o r
20 virtual ~My_NLP( ) ;

22 virtual bool get_nlp_info ( Index& n , Index& m, Index& nnz_jac_g ,
Index& nnz_h_lag ,

24 IndexStyleEnum& index_sty le ) ;

26 virtual bool get_bounds_info ( Index n , Number∗ x_l , Number∗ x_u ,
Index m, Number∗ g_l , Number∗ g_u) ;

28

virtual bool get_start ing_point ( Index n , bool init_x , Number∗ x ,
30 bool in it_z , Number∗ z_L ,

Number∗ z_U, Index m,
32 bool init_lambda ,

Number∗ lambda ) ;
34

virtual bool eval_f ( Index n , const Number∗ x , bool new_x ,
36 Number& obj_value ) ;

38 virtual bool eval_grad_f ( Index n , const Number∗ x , bool new_x ,
Number∗ grad_f ) ;

40

virtual bool eval_g ( Index n , const Number∗ x , bool new_x ,
42 Index m, Number∗ g ) ;

44 virtual bool eval_jac_g ( Index n , const Number∗ x , bool new_x ,
Index m, Index nele_jac , Index∗ iRow ,

46 Index ∗ jCol , Number∗ va lue s ) ;
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48 virtual bool eval_h ( Index n , const Number∗ x , bool new_x ,
Number obj_factor , Index m,

50 const Number∗ lambda ,
bool new_lambda , Index nele_hess ,

52 Index∗ iRow , Index∗ jCol ,
Number∗ va lue s ) ;

54

virtual void f i n a l i z e_ s o l u t i o n ( SolverReturn status ,
56 Index n , const Number∗ x ,

const Number∗ z_L ,
58 const Number∗ z_U,

Index m, const Number∗ g ,
60 const Number∗ lambda ,

Number obj_value ,
62 const IpoptData∗ ip_data ,

IpoptCa l cu la t edQuant i t i e s ∗ ip_cq ) ;
64

private :
66 // Methods to block d e f au l t compi le r methods .

// The compi le r automat i ca l l y gene ra t e s
68 // the f o l l ow i ng three methods .

My_NLP( ) ;
70 My_NLP( const My_NLPP&) ;

My_NLP& operator=(const My_NLP&) ;
72

Index N_;
74 Number∗ c_ ;

76 } ;

78

#endif

5.1.2.3 Mathematical Modeling Languages

With mathematical modeling interfaces the model can be implemented in a sim-
pler and more intuitive way. A common denominator for this group of interfaces
is though that they are traditionally licensed, meaning that they are Non-Free
and can be very expensive. Because of this, mathematical modeling interfaces
have little interest of this thesis. Examples of how to construct models in these
interfaces can be seen in the installation directory

"build/Ipopt/tutorial/CodingExercise"

IPOPT is supported by the following mathematical modeling interfaces

• Matlab



60 IPOPT

• AMPL

• GAMS

As a way of getting started with IPOPT it is although easier to start out writing
models in a mathematical modeling interfaces. I will therefore give a short
introduction of the use of AMPL and GAMS. AMPL and GAMS receive my
attention, because they both provide a free demo license.

5.1.2.4 The AMPL interface

The AMPL interface is a very intuitive way to access the IPOPT solver. A free
student/demo licensed version of AMPL can be downloaded from the AMPL
Download page. This license is limited to 300 variables. An unrestricted trail
license or full license can by attained by contacting the AMPL company (see
AMPL Vendors).

In order for AMPL to recognize the IPOPT solver, a system environmental
variable has to be created pointing to the solver. Alternatively, a copy (or a
soft link) of the IPOPT solver can be moved to an existing system environmen-
tal variable directory. To see the the existing system environmental variable
directories prompt

> echo $PATH

A program formulated in the AMPL language only has 2 types of objects.
"param" meaning parameters and "var" meaning variables. The user need to
specify that the IPOPT solver should be used by the code line "option solver
ipopt" in the top of the program. A "var" can not be defined using another
"var" object, "var" is only a declaration, where the name, dimension and re-
strictions of the variables can be defined. The model is then formulated using
first a command such as "minimize z:" or "subject to x {i in 1..N}:" fol-
lowed by an equation. The program is finalized by the command line "solve".

As a way of exemplifying the implementation of an Optimal Control Problem
in AMPL, I here present a complete implementation of the Four Tank System.
I present this without going into further details.

1 # Author : Rune Brus
# Date : 05−02−2010

3

# This AMPL s c r i p t i n c l ud e s a model , the " s o l v e " command , and a
c a l l

http://www.ampl.com/DOWNLOADS/details.html
http://www.ampl.com/DOWNLOADS/details.html
http://www.ampl.com/vendors.html
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5 # to gnuplot . You can "run" a l l t h i s by j u s t typing
#

7 # $ ampl Four_tank_system . run
#

9 # in your s h e l l . Or , in an ongoing AMPL se s s i on , you can do
#

11 # ampl : r e s e t ;
# ampl : i n c lude Four_tank_system . run ;

13

opt ion s o l v e r ipopt ;
15

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
17 # −−−−−−−−−−−−−−−−−−− PARAMETERS −−−−−−−−−−−−−−−−−−−

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
19

# Number o f d i s c r e t i z a t i o n i n t e r v a l s
21 param N := 300 ;

23 # Cross s e c t i o n a l area o f ou t l e t [ cm2 ]
param a1 := 1 . 2272 ;

25 param a2 := 1 . 2272 ;
param a3 := 1 . 2272 ;

27 param a4 := 1 . 2272 ;

29 # Cross s e c t i o n a l area o f i n l e t [ cm2 ]
param A1 := 380 . 1327 ;

31 param A2 := 380 . 1327 ;
param A3 := 380 . 1327 ;

33 param A4 := 380 . 1327 ;

35 # Height o f tank [ cm]
param H1 := 20 ;

37 param H2 := 20 ;
param H3 := 20 ;

39 param H4 := 20 ;

41 # Valve po s i t i o n
param gamma1 := 0 . 1 5 ;

43 param gamma2 := 0 . 2 5 ;

45 # Acce l e r a t i on o f g rav i ty [ cm/ s2 ]
param g := 981 ;

47

# Density o f water [ g/cm3 ]
49 param rho := 1 . 0 0 ;

51 # Approximation constant ( f o r he i gh t s )
param s := 0 . 1 ;

53

# Optimizat ion goa l ( water l e v e l )
55 param r1 := 12 ;

param r2 := 12 ;
57

# I n i t i a l p re sure va lue f o r pumps
59 param F1_init := 300 ;
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param F2_init := 300 ;
61

# time hor i zont
63 param t f := 300 ;

65 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# −−−−−−−−−−−−−−−−−−− Var iab l e s −−−−−−−−−−−−−−−−−−−−

67 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

69

# Size o f d i s c r e t i z a t i o n i n t e r v a l s
71 param h = t f /N;

73 # Control Var i ab l e s
var F1{ i in 0 . .N} >= 0 , <= 300 , := F1_init ;

75 var F2{ i in 0 . .N} >= 0 , <= 300 , := F2_init ;

77 # Masses
var m1{ i in 0 . .N} >= 0 ;

79 var m2{ i in 0 . .N} >= 0 ;
var m3{ i in 0 . .N} >= 0 ;

81 var m4{ i in 0 . .N} >= 0 ;

83 # Height o f l i q u i d [ cm]
var h1{ i in 0 . .N} >= 0 , <= H1 ;

85 var h2{ i in 0 . .N} >= 0 , <= H2 ;
var h3{ i in 0 . .N} >= 0 , <= H3 ;

87 var h4{ i in 0 . .N} >= 0 , <= H4 ;

89 # Flow ra t e in va lve s [ cm3/ s ]
var q1 i { i in 0 . .N} ;

91 var q2 i { i in 0 . .N} ;
var q3 i { i in 0 . .N} ;

93 var q4 i { i in 0 . .N} ;

95 # Flow ra t e in tanks [ cm3/ s ] .
var q1{ i in 0 . .N} ;

97 var q2{ i in 0 . .N} ;
var q3{ i in 0 . .N} ;

99 var q4{ i in 0 . .N} ;

101 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# −−−−−−−−−−−− OPTIMAL CONTROL PROBLEM −−−−−−−−−−−−−

103 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

105 # Object ive func t i on
minimize Water_level : h ∗0 . 5∗ ( ( h1 [0]− r1 ) ∗( h1 [0]− r1 ) + (h2 [0]− r2 ) ∗( h2

[0]− r2 ) ) + h∗sum{ i in 1 . . (N−1)} ( ( h1 [ i ]− r1 ) ∗( h1 [ i ]− r1 ) + (h2 [ i
]− r2 ) ∗( h2 [ i ]− r2 ) ) + h ∗0 . 5∗ ( ( h1 [N]− r1 ) ∗( h1 [N]− r1 ) + (h2 [N]− r2 ) ∗(
h2 [N]− r2 ) ) ;

107

109 # D i f f e r e n t i a l equat ions . Mass ba lances
sub j e c t to dm1 { i in 1 . .N} : (m1[ i ]−m1[ i −1]) /h = rho∗ q1 i [ i ] + rho∗q3

[ i ] − rho∗q1 [ i ] ;
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111

sub j e c t to dm2 { i in 1 . .N} : (m2[ i ]−m2[ i −1]) /h = rho∗ q2 i [ i ] + rho∗q4
[ i ] − rho∗q2 [ i ] ;

113

sub j e c t to dm3 { i in 1 . .N} : (m3[ i ]−m3[ i −1]) /h = rho∗ q3 i [ i ] − rho∗q3
[ i ] ;

115

sub j e c t to dm4 { i in 1 . .N} : (m4[ i ]−m4[ i −1]) /h = rho∗ q4 i [ i ] − rho∗q4
[ i ] ;

117

# Boundary cond i t i on s f o r masses
119 sub j e c t to m10 : m1 [ 0 ] = 0 . 0 ;

121 sub j e c t to m20 : m2 [ 0 ] = 0 . 0 ;

123 sub j e c t to m30 : m3 [ 0 ] = 0 . 0 ;

125 sub j e c t to m40 : m4 [ 0 ] = 0 . 0 ;

127 # Equation cond i t i on s system
sub j e c t to tank1 { i in 0 . .N} : h1 [ i ] = m1[ i ] / ( rho∗A1) ;

129

sub j e c t to tank2 { i in 0 . .N} : h2 [ i ] = m2[ i ] / ( rho∗A2) ;
131

sub j e c t to tank3 { i in 0 . .N} : h3 [ i ] = m3[ i ] / ( rho∗A3) ;
133

sub j e c t to tank4 { i in 0 . .N} : h4 [ i ] = m4[ i ] / ( rho∗A4) ;
135

sub j e c t to in f l ow1 { i in 0 . .N} : q1 i [ i ] = gamma1∗F1 [ i ] ;
137

sub j e c t to in f l ow2 { i in 0 . .N} : q2 i [ i ] = gamma2∗F2 [ i ] ;
139

sub j e c t to in f l ow3 { i in 0 . .N} : q3 i [ i ] = (1−gamma2) ∗F2 [ i ] ;
141

sub j e c t to in f l ow4 { i in 0 . .N} : q4 i [ i ] = (1−gamma1) ∗F1 [ i ] ;
143

sub j e c t to out f low1 { i in 0 . .N} : q1 [ i ] = a1∗ s q r t (2∗ g∗h1 [ i ] ) ;
145

sub j e c t to out f low2 { i in 0 . .N} : q2 [ i ] = a2∗ s q r t (2∗ g∗h2 [ i ] ) ;
147

sub j e c t to out f low3 { i in 0 . .N} : q3 [ i ] = a3∗ s q r t (2∗ g∗h3 [ i ] ) ;
149

sub j e c t to out f low4 { i in 0 . .N} : q4 [ i ] = a4∗ s q r t (2∗ g∗h4 [ i ] ) ;
151

# Solve the opt imiza t i on problem
153 s o l v e ;

155 # wri t e the data in to a f i l e f o r gnuplot
for { i in 0 . .N}

157 p r i n t f : "%16.4 e %16.4 e %16.4 e %16.4 e %16.4 e %16.4 e %16.4 e \n" , i
∗h , h1 [ i ] , h2 [ i ] , h3 [ i ] , h4 [ i ] , F1 [ i ] , F2 [ i ] > p l o t f t s . dat ;

159 s h e l l " gnuplot f t s . gp" ;
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5.1.2.5 The GAMS interface

Like AMPL, GAMS is a somewhat intuitive way to access the IPOPT solver.
A free student/demo licensed version of GAMS can be downloaded from the
GAMS Download page. This license is limited to 300 variables, an academic-
or commercial license can be attained by contacting the GAMS Development
Corporation (see GAMS Vendors).

The IPOPT solver is not part of the standard installation of GAMS. The addi-
tional library GAMSlinks has to installed afterwords. This library can be down-
loaded and installed by following the guide at https://projects.coin-or.
org/GAMSlinks.

The user is suggested to look at the extensive model library at GAMS Model
Library in order to learn how to use the GAMS programming languages.

A complete implementation of the Four Tank System can be seen in the appendix
(A.1).

5.2 Simulating the Four Tank System using IPOPT

Referring back to the Four Tank System from chapter 3, I will start by sum-
marizing the model which is to be implemented. Then I will meticulously go
through the implementation of the model using the C++ interface and IPOPT,
focusing on attention demanding challenges and their solutions. A range of
IPOPT functionalities and properties will be presented, when new objects and
functions is required while implementing the model.

The complete model is given as (3.19a) - (3.20n) and the parameter vector, p,
in the model is defined as

p = [a1 a2 a3 a4A1A2A3A4 γ1 γ2 g ρ r1 r2 s]T

IPOPT does not offer a way of defining differential equations or integration
expressions exact. The system therefore has to be discretized and these types
of expression has to be approximated.

There are many ways of defining differential equations as difference equations. I
will not go into detail about what to choose in respect to the Four tank System.
My method of choice will be the forward Euler method with fixed time step.
Let the system state be given as (3.1a). The system of differential equations

http://www.gams.com/download/
http://www.gams.com/sales/sales.htm
https://projects.coin-or.org/GAMSlinks
https://projects.coin-or.org/GAMSlinks
http://www.gams.com/modlibs/
http://www.gams.com/modlibs/
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determining the evolution of the system can then be represented as

0 = (x(ti)− x(ti−1))− h · f(ti, x(ti), u(ti), p) x(t1) = x1 t ∈ [t1, tend]

As for differential equations, there are many ways of approximating integration
expressions. My method of choice will be Eulers’ method (the trapezoidal rule).
Let the objective be given as (3.19a). The objective S(h) for the system can
then be represented as

S(h) = h · ( 1
2 · (h1(t0)− r1)2 + (h2(t0)− r2)2)

+
∑

i=t1,...,tf−1

((h1(i)− r1)2 + (h2(i)− r2)2)

+ 1
2 · (h1(tf )− r1)2 + (h2(tf )− r2)2))

5.2.1 Implementing the model in C++

In the following I will build up the two C++ source files for solving the Four
Tank System seen as an optimal control problem. The following code is used
as the content of the main code file. First, I present the main structure of the
program, where I will fill code into. I need the IPOPT solver, my header file
and a package for output printing.

1 #include " IpIPOPTApplication . hpp"
#include "FourTankSystem . hpp"

3 #include <s td i o . h>

5 using namespace ipopt ;

7 int main ( int argv , char∗ argc [ ] ) {

9 }

Secondly, I declare and define the parameters for the system.

12 // −−−−−−−−− Dec l a ra t i on s −−−−−−−−−

14 // Problem s i z e
Index N = 300 ;

16

// parameters
18 Number∗ c = new double [ 2 1 ] ;

// Time hor i zont
20 c [ 0 ] = (double ) (300) ;

// Cross s e c t i o n a l area o f ou t l e t [ cm2 ]
22 c [ 1 ] = (double ) ( 1 . 2272 ) ;
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c [ 2 ] = (double ) ( 1 . 2272 ) ;
24 c [ 3 ] = (double ) ( 1 . 2272 ) ;

c [ 4 ] = (double ) ( 1 . 2272 ) ;
26 // Cross s e c t i o n a l area o f i n l e t [ cm2 ]

c [ 5 ] = (double ) (380 .1327) ;
28 c [ 6 ] = (double ) (380 .1327) ;

c [ 7 ] = (double ) (380 .1327) ;
30 c [ 8 ] = (double ) (380 .1327) ;

// Height o f tank [ cm]
32 c [ 9 ] = (double ) (20) ;

c [ 1 0 ] = (double ) (20) ;
34 c [ 1 1 ] = (double ) (20) ;

c [ 1 2 ] = (double ) (20) ;
36 // Valve pre sure

c [ 1 3 ] = (double ) ( 0 . 1 5 ) ;
38 c [ 1 4 ] = (double ) ( 0 . 2 5 ) ;

// Acce l e r a t i on o f g rav i ty [ cm/ s2 ]
40 c [ 1 5 ] = (double ) (981) ;

// Density o f water [ g/cm3 ]
42 c [ 1 6 ] = (double ) ( 1 . 0 0 ) ;

// Water s t a b i l i t y l e v e l
44 c [ 1 7 ] = (double ) (12) ;

c [ 1 8 ] = (double ) (12) ;
46 // Step s i z e

c [ 1 9 ] = (double ) ( c [ 0 ] ) /(double ) (N) ;
48 // Approximation constant

c [ 2 0 ] = (double ) ( 0 . 1 ) ;

Now the input model has to be created and various options for the solver has to
be set. The constructor from the header file receives the parameter input, and
together with the IPOPT solver method, is declared and created. The SmartPtr
class is an IPOPT specific template class that takes care of deleting objects for
us. Consequently we need not to be concerned about memory. This replaces the
task of pointing to an object with a raw C++ pointer (e.g. FourTankSystem
NLP*). It is a requirement when using IPOPT to only use this type of class.

The C++ interface for IPOPT offers many types of solver settings (see section
5 and appendix C of the IPOPT Documentation). In my case I wish to set the
convergence tolerance and iteration method. As part of defining the function
bodies of the second source file, the gradient of the objective, the Jacobian
matrix for the constraints and the Karush-Kuhn-Tucker matrix for the whole
system model (second-derivatives) need to be supplied. This can be a vast
assignment and some feedback on the correctness of this implementation would
be desired. For this purpose IPOPT provide the option "derivative_test".
This option compares numerical values of the first derivatives ("first-order"),
or both the first derivative and the second derivatives ("second-order"), with
the ones defined in the source file. See section 4.1 of the IPOPT Documentation
to learn how to read the outputs of this option.

http://www.coin-or.org/Ipopt/documentation/
http://www.coin-or.org/Ipopt/documentation/
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Last, the solver object is initialized and the options is processed. The final
status of the solver algorithm is then outputted.

51 // −−−−−−−−−−−−−− Create the Problem −−−−−−−−−−−−−−−−
SmartPtr<TNLP> mynlp = new FourTankSystem_OCP(N, c ) ;

53

SmartPtr<IpoptAppl i cat ion> app = new IpoptApp l i ca t ion ( ) ;
55

// Set some opt ions
57 app−>Options ( )−>SetNumericValue ( " t o l " , 1e−7) ;

app−>Options ( )−>SetStr ingValue ( "mu_strategy" , " adapt ive " ) ;
59 // app−>Options ( )−>SetStr ingValue (" de r i v a t i v e_te s t " , " second−

order ") ;
app−>Options ( )−>SetStr ingValue ( " output_f i l e " , "4 tank . out" ) ;

61

// I n t i a l i z e the IpoptApp l i ca t ion and proce s s the opt ions
63 app−>I n i t i a l i z e ( ) ;

65 // −−−−−−−−−−−−−−− Solve the Problem −−−−−−−−−−−−−−−−
Appl icat ionReturnStatus s t a tu s = app−>OptimizeTNLP(mynlp ) ;

This "status" output is then used to determine whether or not the algorithm
converged to a feasible solution or not.
// −−−−−−−−−−−−−−−− Output s o l u t i o n −−−−−−−−−−−−−−−−−

69 i f ( s t a tu s == Solve_Succeeded ) {
p r i n t f ( "\n\n∗∗∗ The problem so lved ! \ n" ) ;

71 }
else {

73 p r i n t f ( "\n\n∗∗∗ The problem FAILED!\ n" ) ;
}

75

delete [ ] c ;
77

return ( int ) s t a tu s ;

The C++ script containing the actual content of the header methods, now needs
to be created.

I call the header file, a package for output printing and a package for using
mathematical functions. I use the IPOPT namespace.
#include "FourTankSystem . hpp"

6 #include <s td i o . h>
#include <math . h>

8

using namespace Ipopt ;

The constructor then receives my system size (N), that is the number of time
steps in my model, i.e. the fineness of my descretization. The space for the
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parameters is allocated and parameter names are given. The destructor need to
release the allocated space of the parameters, when the algorithm has finalized.

11 // Constructor
FourTankSystem_OCP : : FourTankSystem_OCP( Index N, const Number∗ c )

13 :
N_(N)

15 {
// Copy the va lue s f o r the cons tant s appear ing in the c on s t r a i n t s

17 c_ = new Number [ 2 1 ] ;
for ( Index i =0; i <21; i++) {

19 c_ [ i ] = c [ i ] ;
}

21 }

23 // Destructor
FourTankSystem_OCP : : ~ FourTankSystem_OCP( )

25 {
// make sure we d e l e t e everyth ing we a l l o c a t e d

27 delete [ ] c_ ;
}

The general model information is provided. The total number of model variables
is 22. Further, each model variable consist of N subvariables representing each
time step. I have 5 times 4 constraints (differential equations, heights, inflows,
outflows, height approximations). Again, I then have N of each of these. I
only have N − 1 of each of the differential equations. In order to to simplify
indexation later on, when I construct the model derivates, I compensate this
index asymmetry by introducing 4 zero constraints (dummy constraints). This
will then give me N of each of the differential equations.

The numbers of elements in the Jacobian is hard to comprehend, before it has
actually been implemented. Easing this task, I only need to allocate and provide
the non-zero elements of the Jacobian. I supply the input by first allocating the
specific location of derived value. Then by assigning the derived value to the
beforehand allocated matrix location. My chosen sparse linear equation solver
then takes care of interpreting this input as an actual matrix. I have 5 different
variables in each of the two first differential equations and 4 in next two and 2
in the last 16 constraints. Most of my constraints are linear, giving me only 4
times N non-zero elements in the KKT matrix.

Last, I declare that indexing starting in zero should be used.

bool FourTankSystem_OCP : : get_nlp_info ( Index& n , Index& m,
32 Index& nnz_jac_g ,

Index& nnz_h_lag ,
34 IndexStyleEnum& index_sty le )

{
36 // number o f v a r i a b l e s i s g iven in con s t ruc to r
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n = 22∗N_;
38

// number o f c on s t r a i n t s i s g iven in con s t ruc to r
40 m = 20∗N_;

42 // number o f e lements in the c on t r a i n t s j acob ian i s g iven
// in the con s t ruc to r

44 nnz_jac_g = (5+5+4+4)∗(N_−1) + (4∗2+4∗2+4∗2+4∗2)∗N_;

46 // number o f e lements in the complete he s s i an i s g iven
// in the con s t ruc to r

48 nnz_h_lag = 4∗N_;

50 // use the C s t y l e index ing (0−based ) f o r the matr i ce s
index_sty le = TNLP: :C_STYLE;

52

return true ;
54 }

The bounds for each variable and constraints then have to be set. A lower and
upper bound has to supplied for all. IPOPT has a default absolute maximum
and minimal numerical value of 1e19. Any absolute values above this is consid-
ered to be infinity by the algorithm. The setting command "nlp_lower_bound_inf"
and "nlp_upper_bound_inf" of the main file can regulate this system bound.
An equality constraint is declared by applying the same lower and upper bound
for a variable or equation constraint.

bool FourTankSystem_OCP : : get_bounds_info ( Index n , Number∗ x_l ,
58 Number∗ x_u , Index m,

Number∗ g_l , Number∗ g_u)
60 {

62 // masses (m1 − m4)
x_l [ 0 ] = x_u [ 0 ] = 0 . 0 ;

64 x_l [ 1∗N_] = x_u[1∗N_] = 0 . 0 ;
x_l [ 2∗N_] = x_u[2∗N_] = 0 . 0 ;

66 x_l [ 3∗N_] = x_u[3∗N_] = 0 . 0 ;

68 for ( Index i =0; i<N_; i++) {
i f ( i > 0) {

70 // masses (m1 − m4)
x_l [ i ] = 0 . 0 ; x_u [ i ] = 2e19 ;

72 x_l [ 1∗N_+i ] = 0 . 0 ; x_u[1∗N_+i ] = 2e19 ;
x_l [ 2∗N_+i ] = 0 . 0 ; x_u[2∗N_+i ] = 2e19 ;

74 x_l [ 3∗N_+i ] = 0 . 0 ; x_u[3∗N_+i ] = 2e19 ;
}

76 // water l e v e l s ( h1 − h4 )
x_l [ 4∗N_+i ] = 0 . 0 ; x_u[4∗N_+i ] = c_ [ 9 ] ;

78 x_l [ 5∗N_+i ] = 0 . 0 ; x_u[5∗N_+i ] = c_ [ 1 0 ] ;
x_l [ 6∗N_+i ] = 0 . 0 ; x_u[6∗N_+i ] = c_ [ 1 1 ] ;

80 x_l [ 7∗N_+i ] = 0 . 0 ; x_u[7∗N_+i ] = c_ [ 1 2 ] ;
// i n f l ow s ( q1 i − q4 i )
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82 x_l [ 8∗N_+i ] = −2e19 ; x_u[8∗N_+i ] = 2e19 ;
x_l [ 9∗N_+i ] = −2e19 ; x_u[9∗N_+i ] = 2e19 ;

84 x_l [10∗N_+i ] = −2e19 ; x_u[10∗N_+i ] = 2e19 ;
x_l [11∗N_+i ] = −2e19 ; x_u[11∗N_+i ] = 2e19 ;

86 // non−z e ro s approximations ( h1s − h4s )
x_l [12∗N_+i ] = −2e19 ; x_u[12∗N_+i ] = 2e19 ;

88 x_l [13∗N_+i ] = −2e19 ; x_u[13∗N_+i ] = 2e19 ;
x_l [14∗N_+i ] = −2e19 ; x_u[14∗N_+i ] = 2e19 ;

90 x_l [15∗N_+i ] = −2e19 ; x_u[15∗N_+i ] = 2e19 ;
// out f l ows ( q1 − q4 )

92 x_l [16∗N_+i ] = −2e19 ; x_u[16∗N_+i ] = 2e19 ;
x_l [17∗N_+i ] = −2e19 ; x_u[17∗N_+i ] = 2e19 ;

94 x_l [18∗N_+i ] = −2e19 ; x_u[18∗N_+i ] = 2e19 ;
x_l [19∗N_+i ] = −2e19 ; x_u[19∗N_+i ] = 2e19 ;

96 // va lve pre sure (F1 − F2)
x_l [20∗N_+i ] = 0 . 0 ; x_u[20∗N_+i ] = 300 . 0 ;

98 x_l [21∗N_+i ] = 0 . 0 ; x_u[21∗N_+i ] = 300 . 0 ;
}

100

// a l l c o n s t r a i n t s are equa l i t y c on s t r a i n t s with
102 // r i gh t hand s i d e zero

for ( Index i =0; i<N_; i++) {
104 g_l [ i ] = g_u [ i ] = 0 . 0 ;

g_l [ 1∗N_+i ] = g_u[1∗N_+i ] = 0 . 0 ;
106 g_l [ 2∗N_+i ] = g_u[2∗N_+i ] = 0 . 0 ;

g_l [ 3∗N_+i ] = g_u[3∗N_+i ] = 0 . 0 ;
108 // Water l e v e l equat ions

g_l [ 4∗N_+i ] = g_u[4∗N_+i ] = 0 . 0 ;
110 g_l [ 5∗N_+i ] = g_u[5∗N_+i ] = 0 . 0 ;

g_l [ 6∗N_+i ] = g_u[6∗N_+i ] = 0 . 0 ;
112 g_l [ 7∗N_+i ] = g_u[7∗N_+i ] = 0 . 0 ;

// In f low equat ions
114 g_l [ 8∗N_+i ] = g_u[8∗N_+i ] = 0 . 0 ;

g_l [ 9∗N_+i ] = g_u[9∗N_+i ] = 0 . 0 ;
116 g_l [10∗N_+i ] = g_u[10∗N_+i ] = 0 . 0 ;

g_l [11∗N_+i ] = g_u[11∗N_+i ] = 0 . 0 ;
118 // Non−z e ro s approximation equat ions

g_l [12∗N_+i ] = g_u[12∗N_+i ] = 0 . 0 ;
120 g_l [13∗N_+i ] = g_u[13∗N_+i ] = 0 . 0 ;

g_l [14∗N_+i ] = g_u[14∗N_+i ] = 0 . 0 ;
122 g_l [15∗N_+i ] = g_u[15∗N_+i ] = 0 . 0 ;

// Outflow equat ions
124 g_l [16∗N_+i ] = g_u[16∗N_+i ] = 0 . 0 ;

g_l [17∗N_+i ] = g_u[17∗N_+i ] = 0 . 0 ;
126 g_l [18∗N_+i ] = g_u[18∗N_+i ] = 0 . 0 ;

g_l [19∗N_+i ] = g_u[19∗N_+i ] = 0 . 0 ;
128 }

130 return true ;
}

An initial value is needed for all model variables in order to initiate the algo-
rithm. It is also possible to supply initial values for the dual variables of the LP
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solver and for the Lagrange variables of the KKT matrix, but only if these have
been declared. I have not supplied these variables. I confirm this by using the
"assert" statement. When initializing variables of a difference approximation
it is wise to avoid a zero difference as initial guess. I circumvent this issue by
separating each of the initial values with a small value.

134 bool FourTankSystem_OCP : : get_start ing_point ( Index n , bool init_x ,
Number∗ x , bool in it_z ,

136 Number∗ z_L , Number∗
z_U,

Index m,
138 bool init_lambda ,

Number∗ lambda )
140 {

// I only have s t a r t i n g va lue s f o r x
142 a s s e r t ( in i t_x == true ) ;

a s s e r t ( in i t_z == false ) ;
144 a s s e r t ( init_lambda == false ) ;

146 // i n i t i a l i z e to the g iven s t a r t i n g po int
for ( Index i =0; i<N_; i++) {

148 // masses (m1 − m4)
x [ i ] = x [1∗N_+i ] = x [2∗N_+i ] = x [3∗N_+i ] = 0.0+0.1∗ i /N_;

150 // water l e v e l s ( h1 − h4 )
x [4∗N_+i ] = x [5∗N_+i ] = x [6∗N_+i ] = x [7∗N_+i ] = 0 . 0 ;

152 // i n f l ow s ( q1 i − q4 i )
x [ 8∗N_+i ] = x [9∗N_+i ] = x [10∗N_+i ] = x [11∗N_+i ] = 0 . 0 ;

154 // non−z e ro s approximations ( h1s − h4s )
x [12∗N_+i ] = x [13∗N_+i ] = x [14∗N_+i ] = x [15∗N_+i ] = 0 . 0 ;

156 // out f l ows ( q1 − q4 )
x [16∗N_+i ] = x [17∗N_+i ] = x [18∗N_+i ] = x [19∗N_+i ] = 0 . 0 ;

158 // va lve pre sure (F1 − F2)
x [20∗N_+i ] = x [21∗N_+i ] = 300 . 0 ;

160 }

162 return true ;
}

The next step is to define the objective. Using the definition from (3.1.6) I store
the objective in the object "obj_value".

166 bool FourTankSystem_OCP : : eval_f ( Index n , const Number∗ x ,
bool new_x , Number& obj_value )

168 {
obj_value = c_ [ 1 9 ] ∗ 0 . 5 ∗ ( ( x [4∗N_] − c_ [ 1 7 ] ) ∗( x [4∗N_] − \

170 c_ [ 1 7 ] ) + (x [5∗N_] − c_ [ 1 8 ] ) ∗( x [5∗N_] − c_ [ 1 8 ] ) ) ;
for ( Index i =1; i<N_−1; i++) {

172 obj_value += c_ [ 1 9 ] ∗ ( ( x [ 4∗N_+i ] − c_ [ 1 7 ] ) ∗( x [4∗N_+i ] − \
c_ [ 1 7 ] ) + (x [5∗N_+i ] − \

174 c_ [ 1 8 ] ) ∗( x [5∗N_+i ] − c_ [ 1 8 ] ) ) ;
}

176 obj_value += c_ [ 1 9 ] ∗ 0 . 5 ∗ ( ( x [ 5∗N_−1] − c_ [ 1 7 ] ) ∗( x [ 5∗N_−1] − \
c_ [ 1 7 ] ) + (x [6∗N_−1] − \
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178 c_ [ 1 8 ] ) ∗( x [6∗N_−1] − c_ [ 1 8 ] ) ) ;
return true ;

180 }

As part of the first derivatives the gradient of the objective is then defined. The
gradient need to have the correct dimension.

bool FourTankSystem_OCP : : eval_grad_f ( Index n , const Number∗ x ,
184 bool new_x , Number∗ grad_f )

{
186 grad_f [ 0 ] = grad_f [1∗N_] = \

grad_f [2∗N_] = grad_f [3∗N_] = 0 . ;
188 grad_f [4∗N_] = c_ [ 1 9 ] ∗ ( x [4∗N_] − c_ [ 1 7 ] ) ;

grad_f [5∗N_] = c_ [ 1 9 ] ∗ ( x [5∗N_] − c_ [ 1 8 ] ) ;
190 grad_f [6∗N_] = grad_f [7∗N_] = \

grad_f [8∗N_] = grad_f [9∗N_] = 0 . ;
192 grad_f [10∗N_] = grad_f [11∗N_] = \

grad_f [12∗N_] = grad_f [13∗N_] = 0 . ;
194 grad_f [14∗N_] = grad_f [15∗N_] = \

grad_f [16∗N_] = grad_f [17∗N_] = 0 . ;
196 grad_f [18∗N_] = grad_f [19∗N_] = \

grad_f [20∗N_] = grad_f [21∗N_] = 0 . ;
198

for ( Index i =1; i<N_−1; i++) {
200 grad_f [ i ] = grad_f [1∗N_+i ] = \

grad_f [2∗N_+i ] = grad_f [3∗N_+i ] = 0 . ;
202 grad_f [4∗N_+i ] = c_ [ 1 9 ] ∗ 2 ∗ ( x [ 4∗N_+i ] − c_ [ 1 7 ] ) ;

grad_f [5∗N_+i ] = c_ [ 1 9 ] ∗ 2 ∗ ( x [ 5∗N_+i ] − c_ [ 1 8 ] ) ;
204 grad_f [6∗N_+i ] = grad_f [7∗N_+i ] = \

grad_f [8∗N_+i ] = grad_f [9∗N_+i ] = 0 . ;
206 grad_f [10∗N_+i ] = grad_f [11∗N_+i ] = \

grad_f [12∗N_+i ] = grad_f [13∗N_+i ] = 0 . ;
208 grad_f [14∗N_+i ] = grad_f [15∗N_+i ] = \

grad_f [16∗N_+i ] = grad_f [17∗N_+i ] = 0 . ;
210 grad_f [18∗N_+i ] = grad_f [19∗N_+i ] = \

grad_f [20∗N_+i ] = grad_f [21∗N_+i ] = 0 . ;
212 }

grad_f [N_−1] = grad_f [2∗N_−1] = \
214 grad_f [3∗N_−1] = grad_f [4∗N_−1] = 0 . ;

grad_f [5∗N_−1] = c_ [ 1 9 ] ∗ ( x [5∗N_−1] − c_ [ 1 7 ] ) ;
216 grad_f [6∗N_−1] = c_ [ 1 9 ] ∗ ( x [6∗N_−1] − c_ [ 1 8 ] ) ;

grad_f [7∗N_−1] = grad_f [8∗N_−1] = \
218 grad_f [9∗N_−1] = grad_f [10∗N_−1] = 0 . ;

grad_f [11∗N_−1] = grad_f [12∗N_−1] = \
220 grad_f [13∗N_−1] = grad_f [14∗N_−1] = 0 . ;

grad_f [15∗N_−1] = grad_f [16∗N_−1] = \
222 grad_f [17∗N_−1] = grad_f [18∗N_−1] = 0 . ;

grad_f [19∗N_−1] = grad_f [20∗N_−1] = \
224 grad_f [21∗N_−1] = grad_f [22∗N_−1] = 0 . ;

226 return true ;
}
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The constraints are then defined. This is the actual model.

230 bool FourTankSystem_OCP : : eval_g ( Index n , const Number∗ x ,
bool new_x , Index m, Number∗ g )

232 {
g [ 0 ] = 0 ;

234 g [1∗N_] = 0 ;
g [2∗N_] = 0 ;

236 g [3∗N_] = 0 ;

238 for ( Index i =1; i<N_; i++) {
// Diff_Masses equat ions

240 g [ i ] = (x [ i ]−x [ i −1]) − c_ [ 1 9 ] ∗ ( c_ [ 1 6 ] ∗ x [8∗N_+i ] + \
c_ [ 1 6 ] ∗ x [18∗N_+i ] − c_ [ 1 6 ] ∗ x [16∗N_+i ] ) ;

242 g [1∗N_+i ] = (x [1∗N_+i ]−x [1∗N_+i −1]) − \
c_ [ 1 9 ] ∗ ( c_ [ 1 6 ] ∗ x [9∗N_+i ] + \

244 c_ [ 1 6 ] ∗ x [19∗N_+i ] − c_ [ 1 6 ] ∗ x [17∗N_+i ] ) ;
g [ 2∗N_+i ] = (x [2∗N_+i ]−x [2∗N_+i −1]) − \

246 c_ [ 1 9 ] ∗ ( c_ [ 1 6 ] ∗ x [10∗N_+i ] − \
c_ [ 1 6 ] ∗ x [18∗N_+i ] ) ;

248 g [3∗N_+i ] = (x [3∗N_+i ]−x [3∗N_+i −1]) − \
c_ [ 1 9 ] ∗ ( c_ [ 1 6 ] ∗ x [11∗N_+i ] − \

250 c_ [ 1 6 ] ∗ x [19∗N_+i ] ) ;
}

252 for ( Index i =0; i<N_; i++) {
// Water l e v e l equat ions

254 g [4∗N_+i ] = x [4∗N_+i ] − x [ i ] / ( c_ [ 1 6 ] ∗ c_ [ 5 ] ) ;
g [ 5∗N_+i ] = x [5∗N_+i ] − x [1∗N_+i ] / ( c_ [ 1 6 ] ∗ c_ [ 6 ] ) ;

256 g [6∗N_+i ] = x [6∗N_+i ] − x [2∗N_+i ] / ( c_ [ 1 6 ] ∗ c_ [ 7 ] ) ;
g [ 7∗N_+i ] = x [7∗N_+i ] − x [3∗N_+i ] / ( c_ [ 1 6 ] ∗ c_ [ 8 ] ) ;

258 // In f low equat ions
g [8∗N_+i ] = x [8∗N_+i ] − c_ [ 1 3 ] ∗ x [20∗N_+i ] ;

260 g [9∗N_+i ] = x [9∗N_+i ] − c_ [ 1 4 ] ∗ x [21∗N_+i ] ;
g [10∗N_+i ] = x [10∗N_+i ] − (1−c_ [ 1 4 ] ) ∗x [21∗N_+i ] ;

262 g [11∗N_+i ] = x [11∗N_+i ] − (1−c_ [ 1 3 ] ) ∗x [20∗N_+i ] ;
// non−z e ro s approximation equat ions

264 g [12∗N_+i ] = x [12∗N_+i ] − x [4∗N_+i ]/\
sq r t (c_ [ 2 0 ] ∗ l og ( exp (x [4∗N_+i ] /c_ [ 2 0 ] ) +1) ) ;

266 g [13∗N_+i ] = x [13∗N_+i ] − x [5∗N_+i ]/\
sq r t (c_ [ 2 0 ] ∗ l og ( exp (x [5∗N_+i ] /c_ [ 2 0 ] ) +1) ) ;

268 g [14∗N_+i ] = x [14∗N_+i ] − x [6∗N_+i ]/\
sq r t (c_ [ 2 0 ] ∗ l og ( exp (x [6∗N_+i ] /c_ [ 2 0 ] ) +1) ) ;

270 g [15∗N_+i ] = x [15∗N_+i ] − x [7∗N_+i ]/\
sq r t (c_ [ 2 0 ] ∗ l og ( exp (x [7∗N_+i ] /c_ [ 2 0 ] ) +1) ) ;

272 // out f low equat ions
g [16∗N_+i ] = x [16∗N_+i ] − c_ [ 1 ] ∗ s q r t (2∗c_ [ 1 5 ] ) ∗x [12∗N_+i ] ;

274 g [17∗N_+i ] = x [17∗N_+i ] − c_ [ 2 ] ∗ s q r t (2∗c_ [ 1 5 ] ) ∗x [13∗N_+i ] ;
g [18∗N_+i ] = x [18∗N_+i ] − c_ [ 3 ] ∗ s q r t (2∗c_ [ 1 5 ] ) ∗x [14∗N_+i ] ;

276 g [19∗N_+i ] = x [19∗N_+i ] − c_ [ 4 ] ∗ s q r t (2∗c_ [ 1 5 ] ) ∗x [15∗N_+i ] ;
}

278

return true ;
280 }
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The big task of creating the Jacobian of the constraints has three types of value
input. Since the Jacobian is supplied as a sparse matrix, first, the matrix entry
has to be allocated defining the row and column value of the entry. Secondly,
the actual value is assigned to the allocated matrix location. To keep track of
this task I do this in two stages, each followed by an assertion statement. I
have N of each constraint, so I loop through all N steps of each variable and
constraint.

bool FourTankSystem_OCP : : eval_jac_g ( Index n , const Number∗ x ,
284 bool new_x , Index m,

Index nele_jac , Index∗ iRow ,
286 Index ∗ jCol , Number∗ va lue s )

{
288 i f ( va lue s == NULL) {

// re turn the s t r u c tu r e o f the jacob ian
290 Index inz = 0 ;

for ( Index i =1; i<N_; i++) {
292 // Diff_Mass 1

iRow [ inz ] = i ; jCo l [ i nz ] = i −1;
294 i n z++;

iRow [ inz ] = i ; jCo l [ i nz ] = i ;
296 i n z++;

iRow [ inz ] = i ; jCo l [ i nz ] = 8∗N_+i ;
298 i n z++;

iRow [ inz ] = i ; jCo l [ i nz ] = 18∗N_+i ;
300 i n z++;

iRow [ inz ] = i ; jCo l [ i nz ] = 16∗N_+i ;
302 i n z++;

// Diff_Mass 2
304 iRow [ inz ] = 1∗N_+i ; jCo l [ i nz ] = 1∗N_+i −1;

inz++;
306 iRow [ inz ] = 1∗N_+i ; jCo l [ i nz ] = 1∗N_+i ;

inz++;
308 iRow [ inz ] = 1∗N_+i ; jCo l [ i nz ] = 9∗N_+i ;

inz++;
310 iRow [ inz ] = 1∗N_+i ; jCo l [ i nz ] = 19∗N_+i ;

inz++;
312 iRow [ inz ] = 1∗N_+i ; jCo l [ i nz ] = 17∗N_+i ;

inz++;
314 // Diff_Mass 3

iRow [ inz ] = 2∗N_+i ; jCo l [ i nz ] = 2∗N_+i −1;
316 i n z++;

iRow [ inz ] = 2∗N_+i ; jCo l [ i nz ] = 2∗N_+i ;
318 i n z++;

iRow [ inz ] = 2∗N_+i ; jCo l [ i nz ] = 10∗N_+i ;
320 i n z++;

iRow [ inz ] = 2∗N_+i ; jCo l [ i nz ] = 18∗N_+i ;
322 i n z++;

// Diff_Mass 4
324 iRow [ inz ] = 3∗N_+i ; jCo l [ i nz ] = 3∗N_+i −1;

inz++;
326 iRow [ inz ] = 3∗N_+i ; jCo l [ i nz ] = 3∗N_+i ;

inz++;
328 iRow [ inz ] = 3∗N_+i ; jCo l [ i nz ] = 11∗N_+i ;
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i n z++;
330 iRow [ inz ] = 3∗N_+i ; jCo l [ i nz ] = 19∗N_+i ;

inz++;
332 }

for ( Index i =0; i<N_; i++) {
334 // Water l e v e l 1

iRow [ inz ] = 4∗N_+i ; jCo l [ i nz ] = 4∗N_+i ;
336 i n z++;

iRow [ inz ] = 4∗N_+i ; jCo l [ i nz ] = i ;
338 i n z++;

// Water l e v e l 2
340 iRow [ inz ] = 5∗N_+i ; jCo l [ i nz ] = 5∗N_+i ;

inz++;
342 iRow [ inz ] = 5∗N_+i ; jCo l [ i nz ] = 1∗N_+i ;

inz++;
344 // Water l e v e l 3

iRow [ inz ] = 6∗N_+i ; jCo l [ i nz ] = 6∗N_+i ;
346 i n z++;

iRow [ inz ] = 6∗N_+i ; jCo l [ i nz ] = 2∗N_+i ;
348 i n z++;

// Water l e v e l 4
350 iRow [ inz ] = 7∗N_+i ; jCo l [ i nz ] = 7∗N_+i ;

inz++;
352 iRow [ inz ] = 7∗N_+i ; jCo l [ i nz ] = 3∗N_+i ;

inz++;
354 // In f l ow 1

iRow [ inz ] = 8∗N_+i ; jCo l [ i nz ] = 8∗N_+i ;
356 i n z++;

iRow [ inz ] = 8∗N_+i ; jCo l [ i nz ] = 20∗N_+i ;
358 i n z++;

// In f l ow 2
360 iRow [ inz ] = 9∗N_+i ; jCo l [ i nz ] = 9∗N_+i ;

inz++;
362 iRow [ inz ] = 9∗N_+i ; jCo l [ i nz ] = 21∗N_+i ;

inz++;
364 // In f l ow 3

iRow [ inz ] = 10∗N_+i ; jCo l [ i nz ] = 10∗N_+i ;
366 i n z++;

iRow [ inz ] = 10∗N_+i ; jCo l [ i nz ] = 21∗N_+i ;
368 i n z++;

// In f l ow 4
370 iRow [ inz ] = 11∗N_+i ; jCo l [ i nz ] = 11∗N_+i ;

inz++;
372 iRow [ inz ] = 11∗N_+i ; jCo l [ i nz ] = 20∗N_+i ;

inz++;
374 // Approx 1

iRow [ inz ] = 12∗N_+i ; jCo l [ i nz ] = 12∗N_+i ;
376 i n z++;

iRow [ inz ] = 12∗N_+i ; jCo l [ i nz ] = 4∗N_+i ;
378 i n z++;

// Approx 2
380 iRow [ inz ] = 13∗N_+i ; jCo l [ i nz ] = 13∗N_+i ;

inz++;
382 iRow [ inz ] = 13∗N_+i ; jCo l [ i nz ] = 5∗N_+i ;

inz++;
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384 // Approx 3
iRow [ inz ] = 14∗N_+i ; jCo l [ i nz ] = 14∗N_+i ;

386 i n z++;
iRow [ inz ] = 14∗N_+i ; jCo l [ i nz ] = 6∗N_+i ;

388 i n z++;
// Approx 4

390 iRow [ inz ] = 15∗N_+i ; jCo l [ i nz ] = 15∗N_+i ;
inz++;

392 iRow [ inz ] = 15∗N_+i ; jCo l [ i nz ] = 7∗N_+i ;
inz++;

394 // Outflow 1
iRow [ inz ] = 16∗N_+i ; jCo l [ i nz ] = 16∗N_+i ;

396 i n z++;
iRow [ inz ] = 16∗N_+i ; jCo l [ i nz ] = 12∗N_+i ;

398 i n z++;
// Outflow 2

400 iRow [ inz ] = 17∗N_+i ; jCo l [ i nz ] = 17∗N_+i ;
inz++;

402 iRow [ inz ] = 17∗N_+i ; jCo l [ i nz ] = 13∗N_+i ;
inz++;

404 // Outflow 3
iRow [ inz ] = 18∗N_+i ; jCo l [ i nz ] = 18∗N_+i ;

406 i n z++;
iRow [ inz ] = 18∗N_+i ; jCo l [ i nz ] = 14∗N_+i ;

408 i n z++;
// Outflow 4

410 iRow [ inz ] = 19∗N_+i ; jCo l [ i nz ] = 19∗N_+i ;
inz++;

412 iRow [ inz ] = 19∗N_+i ; jCo l [ i nz ] = 15∗N_+i ;
inz++;

414 }
/∗ s an i ty check ∗/

416 a s s e r t ( inz==nele_jac ) ;
}

418 else {
// re turn the va lue s o f the jacob ian o f the c on s t r a i n t s

420 Index inz = 0 ;
for ( Index i =0; i <(N_−1) ; i++) {

422 // Diff_Mass 1
va lue s [ i nz ] = −1;

424 i n z++;
va lue s [ i nz ] = 1 ;

426 i n z++;
va lue s [ i nz ] = −c_ [ 1 9 ] ∗ c_ [ 1 6 ] ;

428 i n z++;
va lue s [ i nz ] = −c_ [ 1 9 ] ∗ c_ [ 1 6 ] ;

430 i n z++;
va lue s [ i nz ] = c_ [ 1 9 ] ∗ c_ [ 1 6 ] ;

432 i n z++;
// Diff_Mass 2

434 va lue s [ i nz ] = −1;
inz++;

436 va lue s [ i nz ] = 1 ;
inz++;

438 va lue s [ i nz ] = −c_ [ 1 9 ] ∗ c_ [ 1 6 ] ;
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i n z++;
440 va lue s [ i nz ] = −c_ [ 1 9 ] ∗ c_ [ 1 6 ] ;

i nz++;
442 va lue s [ i nz ] = c_ [ 1 9 ] ∗ c_ [ 1 6 ] ;

i nz++;
444 // Diff_Mass 3

va lue s [ i nz ] = −1;
446 i n z++;

va lue s [ i nz ] = 1 ;
448 i n z++;

va lue s [ i nz ] = −c_ [ 1 9 ] ∗ c_ [ 1 6 ] ;
450 i n z++;

va lue s [ i nz ] = c_ [ 1 9 ] ∗ c_ [ 1 6 ] ;
452 i n z++;

// Diff_Mass 4
454 va lue s [ i nz ] = −1;

inz++;
456 va lue s [ i nz ] = 1 ;

inz++;
458 va lue s [ i nz ] = −c_ [ 1 9 ] ∗ c_ [ 1 6 ] ;

i nz++;
460 va lue s [ i nz ] = c_ [ 1 9 ] ∗ c_ [ 1 6 ] ;

i nz++;
462 }

for ( Index i =0; i<N_; i++) {
464 // Water l e v e l 1

va lue s [ i nz ] = 1 ;
466 i n z++;

va lue s [ i nz ] = −1/(c_ [ 1 6 ] ∗ c_ [ 5 ] ) ;
468 i n z++;

// Water l e v e l 2
470 va lue s [ i nz ] = 1 ;

inz++;
472 va lue s [ i nz ] = −1/(c_ [ 1 6 ] ∗ c_ [ 6 ] ) ;

i nz++;
474 // Water l e v e l 3

va lue s [ i nz ] = 1 ;
476 i n z++;

va lue s [ i nz ] = −1/(c_ [ 1 6 ] ∗ c_ [ 7 ] ) ;
478 i n z++;

// Water l e v e l 4
480 va lue s [ i nz ] = 1 ;

inz++;
482 va lue s [ i nz ] = −1/(c_ [ 1 6 ] ∗ c_ [ 8 ] ) ;

i nz++;
484 // In f l ow 1

va lue s [ i nz ] = 1 ;
486 i n z++;

va lue s [ i nz ] = −c_ [ 1 3 ] ;
488 i n z++;

// In f l ow 2
490 va lue s [ i nz ] = 1 ;

inz++;
492 va lue s [ i nz ] = −c_ [ 1 4 ] ;

i nz++;



78 IPOPT

494 // In f l ow 3
va lue s [ i nz ] = 1 ;

496 i n z++;
va lue s [ i nz ] = −(1−c_ [ 1 4 ] ) ;

498 i n z++;
// In f l ow 4

500 va lue s [ i nz ] = 1 ;
inz++;

502 va lue s [ i nz ] = −(1−c_ [ 1 3 ] ) ;
i nz++;

504 // Approx 1
va lue s [ i nz ] = 1 ;

506 i n z++;
va lue s [ i nz ] = −1/(2∗ s q r t (c_ [ 2 0 ] ∗ l og ( exp (x [4∗N_+i ] /c_ [ 2 0 ] ) +1) )

) ;
508 i n z++;

// Approx 2
510 va lue s [ i nz ] = 1 ;

inz++;
512 va lue s [ i nz ] = −1/(2∗ s q r t (c_ [ 2 0 ] ∗ l og ( exp (x [5∗N_+i ] /c_ [ 2 0 ] ) +1) )

) ;
i nz++;

514 // Approx 3
va lue s [ i nz ] = 1 ;

516 i n z++;
va lue s [ i nz ] = −1/(2∗ s q r t (c_ [ 2 0 ] ∗ l og ( exp (x [6∗N_+i ] /c_ [ 2 0 ] ) +1) )

) ;
518 i n z++;

// Approx 4
520 va lue s [ i nz ] = 1 ;

inz++;
522 va lue s [ i nz ] = −1/(2∗ s q r t (c_ [ 2 0 ] ∗ l og ( exp (x [7∗N_+i ] /c_ [ 2 0 ] ) +1) )

) ;
i nz++;

524 // Outflow 1
va lue s [ i nz ] = 1 ;

526 i n z++;
va lue s [ i nz ] = −c_ [ 1 ] ∗ s q r t (2∗c_ [ 1 5 ] ) ;

528 i n z++;
// Outflow 2

530 va lue s [ i nz ] = 1 ;
inz++;

532 va lue s [ i nz ] = −c_ [ 2 ] ∗ s q r t (2∗c_ [ 1 5 ] ) ;
i nz++;

534 // Outflow 3
va lue s [ i nz ] = 1 ;

536 i n z++;
va lue s [ i nz ] = −c_ [ 3 ] ∗ s q r t (2∗c_ [ 1 5 ] ) ;

538 i n z++;
// Outflow 4

540 va lue s [ i nz ] = 1 ;
inz++;

542 va lue s [ i nz ] = −c_ [ 4 ] ∗ s q r t (2∗c_ [ 1 5 ] ) ;
i nz++;

544 }
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a s s e r t ( inz==nele_jac ) ;
546 }

548 return true ;
}

I use the same strategy when defining the KKT matrix. In the case of the Four
Tank System, almost all constraints are linear, making most of the values in the
KKT matrix zero. My sparse linear equation solver is able to handle symmetric
matrices, so only the upper or lower triangle of the matrix need to be supplied.

IPOPT offers a way of avoiding the implementation of the KKT matrix. Us-
ing the option "SetStringValue("hessian_test","limited-memory")" will
approximate this hessian using the L-BFGS (sparse quasi-Newton) method [4].
This will of course slow down the algorithm compared to using the exact Hessian.
Iterations statistics is compared in Table 5.1.

552 bool FourTankSystem_OCP : : eval_h ( Index n , const Number∗ x ,
bool new_x , Number obj_factor ,

554 Index m, const Number∗ lambda ,
bool new_lambda , Index nele_hess ,

556 Index∗ iRow , Index∗ jCol ,
Number∗ va lue s )

558 {
i f ( va lue s == NULL) {

560

Index inz = 0 ;
562 for ( Index i =0; i<N_; i++) {

// Outflows
564 iRow [ inz ] = 4∗N_+i ; jCo l [ i nz ] = 4∗N_+i ;

inz++;
566 iRow [ inz ] = 5∗N_+i ; jCo l [ i nz ] = 5∗N_+i ;

inz++;
568 iRow [ inz ] = 6∗N_+i ; jCo l [ i nz ] = 6∗N_+i ;

inz++;
570 iRow [ inz ] = 7∗N_+i ; jCo l [ i nz ] = 7∗N_+i ;

inz++;
572 }

a s s e r t ( inz == nele_hess ) ;
574 }

else {
576 // re turn the va lue s . This i s a symmetric matrix , f i l l i n g

// the upper r i g h t t r i a n g l e only
578

Index inz = 0 ;
580 // Outflows

va lue s [ i nz ] = obj_factor ∗ c_ [ 1 9 ] ;
582 va lue s [ i nz ] −= lambda [12∗N_] ∗ \

(−1/(4∗(c_ [ 2 0 ] ∗ l og ( exp (x [4∗N_]/c_ [ 2 0 ] ) +1) ) ∗\
584 s q r t (c_ [ 2 0 ] ∗ l og ( exp (x [4∗N_]/c_ [ 2 0 ] ) +1) ) ) ) ;

i nz++;
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586 va lue s [ i nz ] = obj_factor ∗ c_ [ 1 9 ] ;
va lue s [ inz ] −= lambda [13∗N_] ∗ \

588 (−1/(4∗(c_ [ 2 0 ] ∗ l og ( exp (x [5∗N_]/c_ [ 2 0 ] ) +1) ) ∗\
sq r t (c_ [ 2 0 ] ∗ l og ( exp (x [5∗N_]/c_ [ 2 0 ] ) +1) ) ) ) ;

590 i n z++;
va lue s [ inz ] = obj_factor ∗ 0 . ;

592 va lue s [ i nz ] −= lambda [14∗N_] ∗ \
(−1/(4∗(c_ [ 2 0 ] ∗ l og ( exp (x [6∗N_]/c_ [ 2 0 ] ) +1) ) ∗\

594 s q r t (c_ [ 2 0 ] ∗ l og ( exp (x [6∗N_]/c_ [ 2 0 ] ) +1) ) ) ) ;
i nz++;

596 va lue s [ i nz ] = obj_factor ∗ 0 . ;
va lue s [ inz ] −= lambda [15∗N_] ∗ \

598 (−1/(4∗(c_ [ 2 0 ] ∗ l og ( exp (x [7∗N_]/c_ [ 2 0 ] ) +1) ) ∗\
sq r t (c_ [ 2 0 ] ∗ l og ( exp (x [7∗N_]/c_ [ 2 0 ] ) +1) ) ) ) ;

600 i n z++;
for ( Index i =1; i<N_−1; i++) {

602 // Outflows
va lue s [ i nz ] = obj_factor ∗ c_ [ 1 9 ] ∗ 2 . ;

604 va lue s [ i nz ] −= lambda [12∗N_+i ] ∗ \
(−1/(4∗(c_ [ 2 0 ] ∗ l og ( exp (x [4∗N_+i ] /c_ [ 2 0 ] ) +1) ) ∗\

606 s q r t (c_ [ 2 0 ] ∗ l og ( exp (x [4∗N_+i ] /c_ [ 2 0 ] ) +1) ) ) ) ;
i nz++;

608 va lue s [ i nz ] = obj_factor ∗ c_ [ 1 9 ] ∗ 2 . ;
va lue s [ i nz ] −= lambda [13∗N_+i ] ∗ \

610 (−1/(4∗(c_ [ 2 0 ] ∗ l og ( exp (x [5∗N_+i ] /c_ [ 2 0 ] ) +1) ) ∗\
sq r t (c_ [ 2 0 ] ∗ l og ( exp (x [5∗N_+i ] /c_ [ 2 0 ] ) +1) ) ) ) ;

612 i n z++;
va lue s [ i nz ] = obj_factor ∗ 0 . ;

614 va lue s [ i nz ] −= lambda [14∗N_+i ] ∗ \
(−1/(4∗(c_ [ 2 0 ] ∗ l og ( exp (x [6∗N_+i ] /c_ [ 2 0 ] ) +1) ) ∗\

616 s q r t (c_ [ 2 0 ] ∗ l og ( exp (x [6∗N_+i ] /c_ [ 2 0 ] ) +1) ) ) ) ;
i nz++;

618 va lue s [ i nz ] = obj_factor ∗ 0 . ;
va lue s [ i nz ] −= lambda [15∗N_+i ] ∗ \

620 (−1/(4∗(c_ [ 2 0 ] ∗ l og ( exp (x [7∗N_+i ] /c_ [ 2 0 ] ) +1) ) ∗\
sq r t (c_ [ 2 0 ] ∗ l og ( exp (x [7∗N_+i ] /c_ [ 2 0 ] ) +1) ) ) ) ;

622 i n z++;
}

624 // Outflows
va lue s [ inz ] = obj_factor ∗ c_ [ 1 9 ] ;

626 va lue s [ i nz ] −= lambda [13∗N_−1] ∗ \
(−1/(4∗(c_ [ 2 0 ] ∗ l og ( exp (x [5∗N_−1]/c_ [ 2 0 ] ) +1) ) ∗\

628 s q r t (c_ [ 2 0 ] ∗ l og ( exp (x [5∗N_−1]/c_ [ 2 0 ] ) +1) ) ) ) ;
i nz++;

630 va lue s [ i nz ] = obj_factor ∗ c_ [ 1 9 ] ;
va lue s [ inz ] −= lambda [14∗N_−1] ∗ \

632 (−1/(4∗(c_ [ 2 0 ] ∗ l og ( exp (x [6∗N_−1]/c_ [ 2 0 ] ) +1) ) ∗\
sq r t (c_ [ 2 0 ] ∗ l og ( exp (x [6∗N_−1]/c_ [ 2 0 ] ) +1) ) ) ) ;

634 i n z++;
va lue s [ inz ] = obj_factor ∗ 0 . ;

636 va lue s [ i nz ] −= lambda [15∗N_−1] ∗ \
(−1/(4∗(c_ [ 2 0 ] ∗ l og ( exp (x [7∗N_−1]/c_ [ 2 0 ] ) +1) ) ∗\

638 s q r t (c_ [ 2 0 ] ∗ l og ( exp (x [7∗N_−1]/c_ [ 2 0 ] ) +1) ) ) ) ;
i nz++;

640 va lue s [ i nz ] = obj_factor ∗ 0 . ;
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va lue s [ i nz ] −= lambda [16∗N_−1] ∗ \
642 (−1/(4∗(c_ [ 2 0 ] ∗ l og ( exp (x [8∗N_−1]/c_ [ 2 0 ] ) +1) ) ∗\

sq r t (c_ [ 2 0 ] ∗ l og ( exp (x [8∗N_−1]/c_ [ 2 0 ] ) +1) ) ) ) ;
644 i n z++;

646 a s s e r t ( inz == nele_hess ) ;
}

648

return true ;
650 }

Finally, I finalize the algorithm by defining a self chosen output. Since I would
like to plot my result, I create a data file containing the solution of my favorite
variables. In the shell window I make the algorithm display the final optimal
value of the objective.

void FourTankSystem_OCP : : f i n a l i z e_ s o l u t i o n ( SolverReturn status ,
653 Index n ,

const Number∗ x ,
655 const Number∗ z_L ,

const Number∗ z_U,
657 Index m,

const Number∗ g ,
659 const Number∗ lambda ,

Number obj_value ,
661 const IpoptData∗ ip_data

,
IpoptCa l cu la t edQuant i t i e s

∗ ip_cq )
663 {

665 // Write output to dat− f i l e f o r p l o t t i n g
FILE ∗ fp ;

667 const char ∗name ;
const char ∗ opt ions ;

669

name=" plot4tank . dat" ;
671 opt ions="w" ;

673 fp=fopen (name , opt ions ) ;
for ( Index i =0; i<N_; i++) {

675 f p r i n t f ( fp ,
"%16.4 e %16.4 e %16.4 e %16.4 e %16.4 e %16.4 e %16.4 e\n" ,

677 i ∗c_ [ 1 9 ] , x [ 4∗N_+i ] , x [ 5∗N_+i ] , x [ 6∗N_+i ] ,
x [ 7∗N_+i ] , x [20∗N_+i ] , x [21∗N_+i ] ) ;

679 }
f c l o s e ( fp ) ;

681

/∗ Display s o l u t i o n ∗/
683 p r i n t f ( "\n\ nObject ive va lue \n" ) ;

p r i n t f ( " f ( x∗) = %e\n" , obj_value ) ;
685 }
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I then compile the code file (make) and run the unix-archive of the code. As a
way of comparing the various sparse linear equation solvers and Hessian approx-
imations, I here display Table 5.1, stating the terminal outputs of a number of
these. The table is sorted with respect to number of iterations steps and Total
CPU time.

Sparse linear Hessian Time # Iter. CPU Time Obj. valueeq. solver Approx. Steps [sec]
MA27 Exact 300 42 0.662 5.3798e+03
Mumps Exact 300 35 3.884 5.3798e+03
Mumps with Metis Exact 300 38 4.316 5.3798e+03
MA27 L-BFGS 300 324 10.184 5.3798e+03
Mumps L-BFGS 300 168 36.939 5.3798e+03
Mumps with Metis L-BFGS 300 231 52.113 5.3798e+03
MA27 Exact 100 39 0.218 5.4467e+03
Mumps with Metis Exact 100 37 1.565 5.4467e+03
Mumps Exact 100 37 1.605 5.4467e+03
MA27 L-BFGS 100 292 3.609 5.4467e+03
Mumps L-BFGS 100 140 11.269 5.4467e+03
Mumps with Metis L-BFGS 100 140 11.343 5.4467e+03
MA27 Exact 30 36 0.077 5.7126e+03
MA27 L-BFGS 30 73 0.305 5.7126e+03
Mumps Exact 30 32 0.388 5.7126e+03
Mumps with Metis Exact 30 32 0.391 5.7126e+03
Mumps L-BFGS 30 132 3.188 5.7126e+03
Mumps with Metis L-BFGS 30 132 4.006 5.7126e+03

Table 5.1: Iterations Statistics of IPOPT

For more information on the terminal output values see section 6 of the IPOPT
Documentation.

I use MatLab as plotting tool. The solution to the model, I just presented, is
provided in Figure 5.1 and 5.2.

http://www.coin-or.org/Ipopt/documentation/
http://www.coin-or.org/Ipopt/documentation/


5.2 Simulating the Four Tank System using IPOPT 83

0 100 200 300
0

5

10

15

20
Tank 3

H
ei

g
h

t 
[c

m
]

0 100 200 300
0

5

10

15

20
Tank 4

0 100 200 300
0

5

10

15

20
Tank 1

H
ei

g
h

t 
[c

m
]

Time [sec]
0 100 200 300

0

5

10

15

20
Tank 2

Time [sec]

Figure 5.1: Height of liquid in tanks
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Chapter 6

CppAD

In this chapter, I touch upon a package for differentiation of C++ algorithms,
CppAD (C++ Algorithmic Differentiation). This packages is a way to use
IPOPT without having to provide information on the derivatives of ones op-
timization model. The chapter will not be extensive, but just introduce the
package and how it can be used. I will go through the installation of CppAD,
providing an installation procedure only for unix systems. Then I will provide
an implementation of the four tank system model using CppAD.

URL: [CppAD Home] https://projects.coin-or.org/CppAD/wiki

6.1 CppAD - Getting Started

CppAD is an Open-Source package for differentiation of C++ algorithms, pro-
vided under a Common Public License. CppAD should be considered an add-on
package for IPOPT. CppAD is interfaced just like IPOPT C++ and provides
the same range of user setting options as IPOPT using the same syntax. The
software JModelica presented in the next chapter uses both IPOPT and CppAD
in order to solve optimization models.

https://projects.coin-or.org/CppAD/wiki
http://www.opensource.org/licenses/cpl1.0.php
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6.1.1 Installation

In order to use CppAD it is required that IPOPT has been installed (see 5.1)
and that the IPOPT shared libraries is located at a system environment variable
directory. The code package for CppAD is available from CppAD Home under
a Common Public License, meaning that it is available free of charge both for
private and commercial purposes.

In order to install and run CppAD you need to make sure that a C++ compiler
is installed on the system. This requirement is the same as for IPOPT and
further information on this subject can be found at 5.1.

As for IPOPT, CppAD does not provide a direct plotting function package, but
outputs can be produced to be plotted using Gnuplot (installation see 4.1.1.1)
or ones own favorite plotting tool.

The CppAD program package can now be downloaded (CppAD also provides
the option of subversion check out) and unpacked from

http://www.coin-or.org/download/source/CppAD/ - Latest stable version is
20100425.

Go to your download folder and extract the files

> tar -xvzf cppad-20100425.gpl.tgz

Move the directory to a preferred system directory.

CppAD can now be installed. Run the configure script

> ./configure IPOPT_DIR=path/to/IPOPT/build-dir

Build and install CppAD

> make install

Check if all executables work and run all examples

> make test

https://projects.coin-or.org/CppAD/wiki
http://www.coin-or.org/download/source/CppAD/
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6.2 Simulating the Four Tank System using Cp-
pAD with IPOPT

Referring back to the Four Tank System from chapter 3, I will start by sum-
marizing the model that is to be implemented. Then I will meticulously go
through the implementation of the model. A range of CppAD functionalities
and properties will be presented, when new objects and functions is required,
while implementing the model.

The complete model is given as (3.19a) - (3.20n) and the parameter vector, p,
in the model is defined as

p = [a1 a2 a3 a4A1A2A3A4 γ1 γ2 g ρ r1 r2 s]T

CppAD does not offer a way of defining differential equations or integration
expressions exact. The system therefore has to be discretized and these types
of expression has to be approximated. The implementation will follow the im-
plementation of IPOPT C++ and the syntax will be exactly the same. The
difference between CppAD and IPOPT is that I do not have to supply the
derivatives of the model, only the model itself. For more on the discretization
and equation approximation see section 5.1.

In the following I will build up the C++ source files for solving the Four Tank
System seen as an optimal control problem. First, I present the main structure
of the program, where I will fill code into.

I include the CppAD IPOPT non-linear problem solver, and a package for out-
put printing. Secondly, I construct a namespace containing the class FG_info.
This class is derived from the base class cppad_ipopt_fg_info. Certain virtual
member functions of fg_info are used to compute the value of fg(x). fg(x)
is a vector function containing the objective and constraints of the model. The
member function eval_r is a pure virtual function and must be defined in the
derived class FG_info as an ADVector object. This function computes the value
of rk(u) used in the representation for fg(x). rk(u) is a simple function rep-
resentations of fg(x) (for more on this see http://www.coin-or.org/CppAD/
Doc/cppad_ipopt_nlp.htm). ADVector is a SimpleVector class with elements
of type ADNumber. ADNumber is an AD type that can be used to compute deriva-
tives. The member function retape has type bool. retape is either set to true
or false. If retape is true, cppad_ipopt_nlp will retape the operation sequence
corresponding to rk(u) for every value of u. An cppad_ipopt_nlp object should
use much less memory and run faster if retape is false.

The main method then contains the lower and upper limits of the variables and

http://www.coin-or.org/CppAD/Doc/cppad_ipopt_nlp.htm
http://www.coin-or.org/CppAD/Doc/cppad_ipopt_nlp.htm
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constraints together with the initial values of the variables. Finally, an IPOPT
interface is created and solved just like an IPOPT problem.

1 /∗ $Id : FourTankSystem . cpp 2010−04−24 Rune Brus $ ∗/
// BEGIN PROGRAM

3

# include " . . / s r c /cppad_ipopt_nlp . hpp"
5 # include <s td i o . h>

7 namespace {

9 class FG_info : public cppad_ipopt_fg_info
{

11 private :
bool retape_ ;

13 public :
// der ived c l a s s part o f c on s t ruc to r

15 FG_info ( bool r e tape )
: retape_ ( retape )

17 { }
// Evaluat ion o f the ob j e c t i v e f ( x ) , and c on s t r a i n t s g (x )

19 // us ing an Algor i thmic D i f f e r e n t i a t i o n (AD) c l a s s .
ADVector eval_r ( s i ze_t k , const ADVector& x)

21 {
return f g ;

23 }

25 bool r e tape ( s i ze_t k )
{ return retape_ ; }

27

} ;
29 }

31 int main ( void )
{

33 // i n i t i a l va lue o f the independent v a r i a b l e s
NumberVector x_i (n) ;

35

// lower and upper l im i t s f o r x
37 NumberVector x_l (n) ;

NumberVector x_u(n) ;
39

// lower and upper l im i t s f o r g
41 NumberVector g_l (m) ;

NumberVector g_u(m) ;
43

// c r e a t e the Ipopt i n t e r f a c e
45 cppad_ipopt_solution s o l u t i o n ;

Ipopt : : SmartPtr<Ipopt : :TNLP> cppad_nlp = new cppad_ipopt_nlp (n , m
, x_i , x_l , x_u , g_l , g_u , fg_info , &s o l u t i o n ) ;

47

// Create an in s t anc e o f the IpoptApp l i ca t ion
49 using Ipopt : : IpoptApp l i ca t ion ;

Ipopt : : SmartPtr<IpoptAppl i cat ion> app = new IpoptApp l i ca t ion ( ) ;
51
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// I n i t i a l i z e the IpoptApp l i ca t ion and proce s s the opt ions
53 app−>I n i t i a l i z e ( ) ;

55 // Run the IpoptAppl i ca t ion
Ipopt : : Appl i cat ionReturnStatus s t a tu s = app−>OptimizeTNLP(

cppad_nlp ) ;
57

return ( int ) s t a tu s ;
59

}
61

// END PROGRAM

I will now supply the code and solver options for the program structure just
presented.

First, I declare a global variable, given as N , for defining the size of the problem.

/∗ $Id : FourTankSystem . cpp 2010−04−24 Rune Brus $ ∗/
2 // BEGIN PROGRAM

4 # include " . . / s r c /cppad_ipopt_nlp . hpp"
# include <s td i o . h>

6

// s i z e o f problem
8 int N = 300 ;

Before constructing the FG_info class within my namespace, I declare and
define a parameter function for the system.

10 namespace {

12 NumberVector Param( )
{

14 // parameters
NumberVector c (21) ;

16 // Time hor i zont
c [ 0 ] = 300 ;

18 // Cross s e c t i o n a l area o f ou t l e t [ cm2 ]
c [ 1 ] = 1 . 2 272 ;

20 c [ 2 ] = 1 . 2 272 ;
c [ 3 ] = 1 . 2 272 ;

22 c [ 4 ] = 1 . 2 272 ;
// Cross s e c t i o n a l area o f i n l e t [ cm2 ]

24 c [ 5 ] = 380 .1327 ;
c [ 6 ] = 380 .1327 ;

26 c [ 7 ] = 380 .1327 ;
c [ 8 ] = 380 .1327 ;

28 // Height o f tank [ cm]
c [ 9 ] = 20 ;

30 c [ 1 0 ] = 20 ;
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c [ 1 1 ] = 20 ;
32 c [ 1 2 ] = 20 ;

// Valve pre sure
34 c [ 1 3 ] = 0 . 1 5 ;

c [ 1 4 ] = 0 . 2 5 ;
36 // Acce l e r a t i on o f g rav i ty [ cm/ s2 ]

c [ 1 5 ] = 981 ;
38 // Density o f water [ g/cm3 ]

c [ 1 6 ] = 1 . 0 0 ;
40 // Water s t a b i l i t y l e v e l

c [ 1 7 ] = 12 ;
42 c [ 1 8 ] = 12 ;

// Step s i z e
44 c [ 1 9 ] = c [ 0 ] /N;

// Approximation constant
46 c [ 2 0 ] = 0 . 1 ;

48 return c ;
}

Then I construct the FG_info class described above. The syntax of the objective
and constraints follows the syntax from the IPOPT implementation from section
5.2.1.

51 class FG_info : public cppad_ipopt_fg_info
{

53 private :
bool retape_ ;

55 public :
// der ived c l a s s part o f c on s t ruc to r

57 FG_info ( bool r e tape )
: retape_ ( retape )

59 { }
// Evaluat ion o f the ob j e c t i v e f ( x ) , and c on s t r a i n t s g (x )

61 // us ing an Algor i thmic D i f f e r e n t i a t i o n (AD) c l a s s .
ADVector eval_r ( s i ze_t k , const ADVector& x)

63 {
s i ze_t i ;

65

// number o f independent v a r i a b l e s
67 // ( domain dimension f o r f and g )

s i ze_t n = 20∗N+1;
69

ADVector f g (n) ;
71

NumberVector c (21) ;
73 c = Param( ) ;

75 // f ( x )
f g [ 0 ] = c [ 1 9 ] ∗ 0 . 5 ∗ ( ( x [ 4∗N] − c [ 1 7 ] ) ∗( x [4∗N] − c [ 1 7 ] ) + (x [5∗N

] − c [ 1 8 ] ) ∗( x [ 5∗N] − c [ 1 8 ] ) ) ;
77

for ( i =1; i<N−1; i++) {
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79 f g [ 0 ] += c [ 1 9 ] ∗ ( ( x [ 4∗N+i ] − c [ 1 7 ] ) ∗( x [4∗N+i ] − c [ 1 7 ] ) + (x
[5∗N+i ] − c [ 1 8 ] ) ∗( x [ 5∗N+i ] − c [ 1 8 ] ) ) ;

}
81

f g [ 0 ] += c [ 1 9 ] ∗ 0 . 5 ∗ ( ( x [5∗N−1] − c [ 1 7 ] ) ∗( x [ 5∗N−1] − c [ 1 7 ] ) + (
x [6∗N−1] − c [ 1 8 ] ) ∗( x [6∗N−1] − c [ 1 8 ] ) ) ;

83

// g_1 (x ) − g_20 (x )
85 f g [ 1 ] = 0 ;

f g [ 1∗N+1] = 0 ;
87 f g [ 2∗N+1] = 0 ;

f g [ 3∗N+1] = 0 ;
89

for ( i =1; i<N; i++) {
91 // Diff_Masses equat ions

f g [ i +1] = (x [ i ]−x [ i −1]) − c [ 1 9 ] ∗ ( c [ 1 6 ] ∗ x [8∗N+i ] + c [ 1 6 ] ∗ x
[18∗N+i ] − c [ 1 6 ] ∗ x [16∗N+i ] ) ;

93 f g [ 1∗N+i +1] = (x [1∗N+i ]−x [1∗N+i −1]) − c [ 1 9 ] ∗ ( c [ 1 6 ] ∗ x [9∗N+i ]
+ c [ 1 6 ] ∗ x [19∗N+i ] − c [ 1 6 ] ∗ x [17∗N+i ] ) ;

f g [ 2∗N+i +1] = (x [2∗N+i ]−x [2∗N+i −1]) − c [ 1 9 ] ∗ ( c [ 1 6 ] ∗ x [10∗N+i
] − c [ 1 6 ] ∗ x [18∗N+i ] ) ;

95 f g [ 3∗N+i +1] = (x [3∗N+i ]−x [3∗N+i −1]) − c [ 1 9 ] ∗ ( c [ 1 6 ] ∗ x [11∗N+i
] − c [ 1 6 ] ∗ x [19∗N+i ] ) ;

}
97 for ( i =0; i<N; i++) {

// Water l e v e l equat ions
99 f g [ 4∗N+i +1] = x [4∗N+i ] − x [ i ] / ( c [ 1 6 ] ∗ c [ 5 ] ) ;

f g [ 5∗N+i +1] = x [5∗N+i ] − x [1∗N+i ] / ( c [ 1 6 ] ∗ c [ 6 ] ) ;
101 f g [ 6∗N+i +1] = x [6∗N+i ] − x [2∗N+i ] / ( c [ 1 6 ] ∗ c [ 7 ] ) ;

f g [ 7∗N+i +1] = x [7∗N+i ] − x [3∗N+i ] / ( c [ 1 6 ] ∗ c [ 8 ] ) ;
103 // In f low equat ions

f g [ 8∗N+i +1] = x [8∗N+i ] − c [ 1 3 ] ∗ x [20∗N+i ] ;
105 f g [ 9∗N+i +1] = x [9∗N+i ] − c [ 1 4 ] ∗ x [21∗N+i ] ;

f g [10∗N+i +1] = x [10∗N+i ] − (1−c [ 1 4 ] ) ∗x [21∗N+i ] ;
107 f g [11∗N+i +1] = x [11∗N+i ] − (1−c [ 1 3 ] ) ∗x [20∗N+i ] ;

// non−z e ro s approximation equat ions
109 f g [12∗N+i +1] = x [12∗N+i ] − x [4∗N+i ] / sq r t ( c [ 2 0 ] ∗ l og ( exp (x [4∗

N+i ] / c [ 2 0 ] ) +1) ) ;
f g [13∗N+i +1] = x [13∗N+i ] − x [5∗N+i ] / sq r t ( c [ 2 0 ] ∗ l og ( exp (x [5∗

N+i ] / c [ 2 0 ] ) +1) ) ;
111 f g [14∗N+i +1] = x [14∗N+i ] − x [6∗N+i ] / sq r t ( c [ 2 0 ] ∗ l og ( exp (x [6∗

N+i ] / c [ 2 0 ] ) +1) ) ;
f g [15∗N+i +1] = x [15∗N+i ] − x [7∗N+i ] / sq r t ( c [ 2 0 ] ∗ l og ( exp (x [7∗

N+i ] / c [ 2 0 ] ) +1) ) ;
113 // out f low equat ions

f g [16∗N+i +1] = x [16∗N+i ] − c [ 1 ] ∗ s q r t (2∗ c [ 1 5 ] ) ∗x [12∗N+i ] ;
115 f g [17∗N+i +1] = x [17∗N+i ] − c [ 2 ] ∗ s q r t (2∗ c [ 1 5 ] ) ∗x [13∗N+i ] ;

f g [18∗N+i +1] = x [18∗N+i ] − c [ 3 ] ∗ s q r t (2∗ c [ 1 5 ] ) ∗x [14∗N+i ] ;
117 f g [19∗N+i +1] = x [19∗N+i ] − c [ 4 ] ∗ s q r t (2∗ c [ 1 5 ] ) ∗x [15∗N+i ] ;

}
119

return f g ;
121 }

bool r e tape ( s i ze_t k )
123 { return retape_ ; }
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} ;
125 }

The main method is then constructed. I define the number of variables and the
number of constraints before calling the parameter function.

127 int main ( void )
{

129 // number o f independent v a r i a b l e s ( domain dimension f o r f and g )
s i ze_t n = 22∗N;

131 // number o f c on s t r a i n t s ( range dimension f o r g )
s i ze_t m = 20∗N;

133

s i ze_t i ;
135

NumberVector c (21) ;
137 c = Param( ) ;

I then define the initial values of the model variables

139 // i n i t i a l va lue o f the independent v a r i a b l e s
NumberVector x_i (n) ;

141 for ( i =0; i<N; i++) {
// masses (m1 − m4)

143 x_i [ i ] = x_i [ 1∗N+i ] = x_i [2∗N+i ] = x_i [3∗N+i ] = 0.0+0.1∗ i /N;
// water l e v e l s ( h1 − h4 )

145 x_i [ 4∗N+i ] = x_i [5∗N+i ] = x_i [6∗N+i ] = x_i [7∗N+i ] = 0 . 0 ;
// i n f l ow s ( q1 i − q4 i )

147 x_i [ 8∗N+i ] = x_i [9∗N+i ] = x_i [10∗N+i ] = x_i [11∗N+i ] = 0 . 0 ;
// non−z e ro s approximations ( h1s − h4s )

149 x_i [12∗N+i ] = x_i [13∗N+i ] = x_i [14∗N+i ] = x_i [15∗N+i ] = 0 . 0 ;
// out f l ows ( q1 − q4 )

151 x_i [16∗N+i ] = x_i [17∗N+i ] = x_i [18∗N+i ] = x_i [19∗N+i ] = 0 . 0 ;
// va lve pre sure (F1 − F2)

153 x_i [20∗N+i ] = x_i [21∗N+i ] = 300 . 0 ;
}

I then define the lower and upper limits of the variables

// lower and upper l im i t s f o r x
158 NumberVector x_l (n) ;

NumberVector x_u(n) ;
160 // masses (m1 − m4)

x_l [ 0 ] = x_u [ 0 ] = 0 . 0 ;
162 x_l [ 1∗N] = x_u[1∗N] = 0 . 0 ;

x_l [ 2∗N] = x_u[2∗N] = 0 . 0 ;
164 x_l [ 3∗N] = x_u[3∗N] = 0 . 0 ;

166 for ( i =0; i<N; i++) {
i f ( i > 0) {
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168 // masses (m1 − m4)
x_l [ i ] = 0 . 0 ; x_u [ i ] = 2e19 ;

170 x_l [ 1∗N+i ] = 0 . 0 ; x_u[1∗N+i ] = 2e19 ;
x_l [ 2∗N+i ] = 0 . 0 ; x_u[2∗N+i ] = 2e19 ;

172 x_l [ 3∗N+i ] = 0 . 0 ; x_u[3∗N+i ] = 2e19 ;
}

174 // water l e v e l s ( h1 − h4 )
x_l [ 4∗N+i ] = 0 . 0 ; x_u[4∗N+i ] = c [ 9 ] ;

176 x_l [ 5∗N+i ] = 0 . 0 ; x_u[5∗N+i ] = c [ 1 0 ] ;
x_l [ 6∗N+i ] = 0 . 0 ; x_u[6∗N+i ] = c [ 1 1 ] ;

178 x_l [ 7∗N+i ] = 0 . 0 ; x_u[7∗N+i ] = c [ 1 2 ] ;
// i n f l ow s ( q1 i − q4 i )

180 x_l [ 8∗N+i ] = −2e19 ; x_u[8∗N+i ] = 2e19 ;
x_l [ 9∗N+i ] = −2e19 ; x_u[9∗N+i ] = 2e19 ;

182 x_l [10∗N+i ] = −2e19 ; x_u[10∗N+i ] = 2e19 ;
x_l [11∗N+i ] = −2e19 ; x_u[11∗N+i ] = 2e19 ;

184 // non−z e ro s approximations ( h1s − h4s )
x_l [12∗N+i ] = −2e19 ; x_u[12∗N+i ] = 2e19 ;

186 x_l [13∗N+i ] = −2e19 ; x_u[13∗N+i ] = 2e19 ;
x_l [14∗N+i ] = −2e19 ; x_u[14∗N+i ] = 2e19 ;

188 x_l [15∗N+i ] = −2e19 ; x_u[15∗N+i ] = 2e19 ;
// out f l ows ( q1 − q4 )

190 x_l [16∗N+i ] = −2e19 ; x_u[16∗N+i ] = 2e19 ;
x_l [17∗N+i ] = −2e19 ; x_u[17∗N+i ] = 2e19 ;

192 x_l [18∗N+i ] = −2e19 ; x_u[18∗N+i ] = 2e19 ;
x_l [19∗N+i ] = −2e19 ; x_u[19∗N+i ] = 2e19 ;

194 // va lve pre sure (F1 − F2)
x_l [20∗N+i ] = 0 . 0 ; x_u[20∗N+i ] = 300 . 0 ;

196 x_l [21∗N+i ] = 0 . 0 ; x_u[21∗N+i ] = 300 . 0 ;
}

I then define the lower and upper limits of the constraints

198 // lower and upper l im i t s f o r g
NumberVector g_l (m) ;

200 NumberVector g_u(m) ;
for ( i =0; i<N; i++) {

202 g_l [ i ] = g_u [ i ] = 0 . 0 ;
g_l [ 1∗N+i ] = g_u[1∗N+i ] = 0 . 0 ;

204 g_l [ 2∗N+i ] = g_u[2∗N+i ] = 0 . 0 ;
g_l [ 3∗N+i ] = g_u[3∗N+i ] = 0 . 0 ;

206 // Water l e v e l equat ions
g_l [ 4∗N+i ] = g_u[4∗N+i ] = 0 . 0 ;

208 g_l [ 5∗N+i ] = g_u[5∗N+i ] = 0 . 0 ;
g_l [ 6∗N+i ] = g_u[6∗N+i ] = 0 . 0 ;

210 g_l [ 7∗N+i ] = g_u[7∗N+i ] = 0 . 0 ;
// In f low equat ions

212 g_l [ 8∗N+i ] = g_u[8∗N+i ] = 0 . 0 ;
g_l [ 9∗N+i ] = g_u[9∗N+i ] = 0 . 0 ;

214 g_l [10∗N+i ] = g_u[10∗N+i ] = 0 . 0 ;
g_l [11∗N+i ] = g_u[11∗N+i ] = 0 . 0 ;

216 // Non−z e ro s approximation equat ions
g_l [12∗N+i ] = g_u[12∗N+i ] = 0 . 0 ;

218 g_l [13∗N+i ] = g_u[13∗N+i ] = 0 . 0 ;
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g_l [14∗N+i ] = g_u[14∗N+i ] = 0 . 0 ;
220 g_l [15∗N+i ] = g_u[15∗N+i ] = 0 . 0 ;

// Outflow equat ions
222 g_l [16∗N+i ] = g_u[16∗N+i ] = 0 . 0 ;

g_l [17∗N+i ] = g_u[17∗N+i ] = 0 . 0 ;
224 g_l [18∗N+i ] = g_u[18∗N+i ] = 0 . 0 ;

g_l [19∗N+i ] = g_u[19∗N+i ] = 0 . 0 ;
226 }

I now create my IPOPT interface setting retape to false. This setting will limit
the memory requirements of the solver.

// ob j e c t in der ived c l a s s
229 bool r e tape = false ;

FG_info my_fg_info ( re tape ) ;
231 cppad_ipopt_fg_info ∗ f g_in fo = &my_fg_info ;

233 // c r e a t e the Ipopt i n t e r f a c e
cppad_ipopt_solution s o l u t i o n ;

235 Ipopt : : SmartPtr<Ipopt : :TNLP> cppad_nlp = new cppad_ipopt_nlp (n , m
, x_i , x_l , x_u , g_l , g_u , fg_info , &s o l u t i o n ) ;

I then create an instance of the IpoptApplication, supplying solver settings using
IPOPT syntax.

237 // Create an in s t anc e o f the IpoptApp l i ca t ion
using Ipopt : : IpoptApp l i ca t ion ;

239 Ipopt : : SmartPtr<IpoptAppl i cat ion> app = new IpoptApp l i ca t ion ( ) ;

241 // maximum number o f i t e r a t i o n s
app−>Options ( )−>Set IntegerVa lue ( "max_iter" , 300) ;

243

// approximate accuracy in f i r s t order nece s sa ry cond i t i on s ;
245 app−>Options ( )−>SetNumericValue ( " t o l " , 1e−7) ;

app−>Options ( )−>SetStr ingValue ( "mu_strategy" , " adapt ive " ) ;
247 app−>Options ( )−>SetStr ingValue ( " output_f i l e " , " f t s . out" ) ;

249 // I n i t i a l i z e the IpoptApp l i ca t ion and proce s s the opt ions
app−>I n i t i a l i z e ( ) ;

Finally, I solve the problem and write the results to an output file.

252 // Run the IpoptAppl i ca t ion
Ipopt : : Appl i cat ionReturnStatus s t a tu s = app−>OptimizeTNLP(

cppad_nlp ) ;
254

// −−−−−−−−−−−−−−−− Output s o l u t i o n −−−−−−−−−−−−−−−−−
256 i f ( s t a tu s == Ipopt : : Solve_Succeeded ) {

p r i n t f ( "\n\n∗∗∗ The problem so lved ! \ n" ) ;
258
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// Write output to dat− f i l e f o r p l o t t i n g
260 FILE ∗ fp ;

const char ∗name ;
262 const char ∗ opt ions ;

264 name=" f t s . dat" ;
opt ions="w" ;

266

fp=fopen (name , opt ions ) ;
268 for ( i =0; i<N; i++) {

f p r i n t f ( fp , "%16.4 e %16.4 e %16.4 e %16.4 e %16.4 e %16.4 e %16.4 e\
n" , i ∗c [ 1 9 ] , s o l u t i o n . x [ 4∗N+i ] , s o l u t i o n . x [5∗N+i ] ,
s o l u t i o n . x [ 6∗N+i ] , s o l u t i o n . x [7∗N+i ] , s o l u t i o n . x [20∗N+i ] ,
s o l u t i o n . x [21∗N+i ] ) ;

270 }
f c l o s e ( fp ) ;

272

}
274 else {

p r i n t f ( "\n\n∗∗∗ The problem FAILED!\ n" ) ;
276 }

278 return ( int ) s t a tu s ;

280 }

282 // END PROGRAM

I then compile the code file, using my own makefile and run the unix-archive of
the code. As a way of comparing computation times, I here displays Table 6.1
stating the terminal outputs of a number of different discretizations.

Sparse linear Algorithmic Time # Iter. CPU Time Obj. valueeq. solver Differentiation Steps [sec]
Mumps with Metis CppAD 300 36 724.607 5.3798e+03
Mumps with Metis CppAD 100 29 65.436 5.4467e+03
Mumps with Metis CppAD 30 24 5.198 5.7126e+03

Table 6.1: Iterations Statistics of CppAD

The long computation time stem from the large number of functions evaluations
CppAD have to compute in order to calculate the derivatives of the model. The
same phenomena is seen in section 5.2.1 when the IPOPT solver is set to use
the optional Hessian approximation instead of the exact Hessian. In CppAD’s
case, all derivatives have to be approximated which demand a lot of memory
and many function evaluation.

For more information on the terminal output values see section 6 of the IPOPT

http://www.coin-or.org/Ipopt/documentation/
http://www.coin-or.org/Ipopt/documentation/
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Documentation.

I use MatLab as plotting tool. The solution to the model, I just presented is
provided in Figure 6.1 and 6.2.
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Figure 6.1: Height of liquid in tanks
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Chapter 7

JModelica

In this chapter, I introduce the optimization software JModelica. A short in-
troduction of the origin and main features will be provided. Afterwards, I will
go through the installation of the software, providing installation procedures for
both Linux, Mac OS X and Windows. Then a guide to producing and running
a simple program will be given. Finally, I will go through all elements on how to
simulate and solve the Quadruple Tank Process using this software. In addition
I provide the outputs and plots of the model compilation. This presentation
should not be seen as a full user guide, only a presentation of how to simulate
the four tank system model using this software.

References: Sequential Quadratic Programming [4], Optimica and JModelica.org-
Languages [18], Tools for Optimization of Large-Scale Systems [19], Opti-
mica [20], Modelica and JastAdd [21], JModelica - an Open Source Plat-
form [22], Modelica and JastAdd [23], Modelica and Optimica [24], XML
Representation of DAE Systems [25], Multiple-Shooting and JModelica
[26], Numerical Methods for Dynamic Optimization [27]

URLs: [JModelica Home] http://www.jmodelica.org/,
[IPOPT Home] http://www.coin-or.org/projects/Ipopt.xml,
[SUNDIALS Home] https://computation.llnl.gov/casc/sundials/main.
html,

http://www.jmodelica.org/
http://www.coin-or.org/projects/Ipopt.xml
https://computation.llnl.gov/casc/sundials/main.html
https://computation.llnl.gov/casc/sundials/main.html
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[Python Home] http://www.python.org/

7.1 JModelica - Getting Started

JModelica.org is an open source platform for optimization using the Modelica
compiler. JModelica provide an environment to simulate and optimize com-
plex dynamic systems in a intuitive modeling language. JModelica is only a
language to express dynamic optimization problems and transcribe them into
code. As such, JModelica.org is intended to provide a platform where state of
the art algorithms can be propagated into industrial use. The JModelica devel-
opers currently suggest IPOPT as the NLP solver. For simulations of algebraic
systems the open-source software SUNDIALS is used. JModelica is a result of
research at the Department of Automatic Control, Lund University, and is now
maintained and developed by Modelon AB in collaboration with academia.

For the origin of the name of the software see the following article http://www.
jmodelica.org/faq/5.

7.1.1 Installation

The software package is available from the address http://www.jmodelica.
org/page/12 under the GNU Affero General Public License (see more at http:
//www.jmodelica.org/page/24). Modelon AB also offers complementing com-
mercial licenses, which is even less restrictive than GNU Affero General Public
License.

The interface of JModelica is Python user environment based and Python is
therefore a requirement. The version Python 2.6 is recommended and can
be installed from http://www.python.org/download/releases/2.6/. A Java
JRE/SDK installation is needed as well. A full overview of the architecture of
JModelica can be seen at http://www.jmodelica.org/page/25.

Besides the above, the Python user environment need the following extension
packages (a guide on how to install these is provided in the sections below)

• JPype (http://jpype.sourceforge.net/)

• lxml (http://codespeak.net/lxml/)

• NumPy 1.2.0 (http://numpy.scipy.org/)

http://www.python.org/
http://www.jmodelica.org/faq/5
http://www.jmodelica.org/faq/5
http://www.jmodelica.org/page/12
http://www.jmodelica.org/page/12
http://www.jmodelica.org/page/24
http://www.jmodelica.org/page/24
http://www.python.org/download/releases/2.6/
http://www.jmodelica.org/page/25
http://jpype.sourceforge.net/
http://codespeak.net/lxml/
http://numpy.scipy.org/
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• SciPy 0.7 (http://www.scipy.org/)

• PySundials 2.3 (http://sourceforge.net/projects/pysundials/)

• pyreadline >=1.5 (http://ipython.scipy.org/dist/)

• Matplotlib (http://matplotlib.sourceforge.net/)

• Nose (http://code.google.com/p/python-nose/)

Before demonstrating the use of the solver, an installation guide will be provided
for Linux, Mac OS X and Windows.

7.1.1.1 Installation under Linux

For all the below compilers and packages it is possible that they are already
installed on your system. If this is the case, it is of course not necessary to
install them.

In order to install and run JModelica you need to make sure that a C compiler is
installed on the system. This can be checked by prompting the unix command
(other C-compilers than GCC is just as fine)

> g++ -v

First of all, the IPOPT solver need to be installed. See section 5.1.1.1 for an
installation guide for this tool.

Secondly, SUNDIALS (SUite of Nonlinear and DIfferential/ALgebraic equation
Solvers) is needed. It is important to install the version of SUNDIALS that work
together with PySundials 2.3, hence the 2.3 version of SUNDIALS is needed
(PySundials 2.4 is not yet available).

Download the source file package of SUNDIALS 2.3 from
https://computation.llnl.gov/casc/sundials/download/download.html.

Go to your download folder and extract the files

> tar xfvz sundials-2.3.0.tar.gz

Move the directory to a preferred system directory. Go to your chosen system
directory of sundials-2.3.0 and create a build folder

http://www.scipy.org/
http://sourceforge.net/projects/pysundials/
http://ipython.scipy.org/dist/
http://matplotlib.sourceforge.net/
http://code.google.com/p/python-nose/
https://computation.llnl.gov/casc/sundials/download/download.html
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> mkdir build

> cd build

When building the package it is important that the sundials library files are
created as dynamic link libraries. Otherwise the JModelica installation script
will not be able to link the libraries to itself. An extensive example library, of
how to use SUNDIALS as standalone solver, can also be created in connection
with the SUNDIALS installation.

Run the configuration script, build the package, and install

> ../configure --enable-shared --enable-examples

> make

> sudo make install

The above configuration includes the example library and creates dynamic link
libraries.

Third, the Python packages need to be installed. Begin by installing the Python
Setuptools from http://pypi.python.org/pypi/setuptools. This will enable
you to use the "easy_install" unix command for installing Python packages. Use
APT (Advance Package Tool, see 4.1.1.1 for information) and prompt

> sudo apt-get install python-setuptools

JPype allows Python programs full access to Java class libraries. A requirement
is therefore that a Java JDK/SDK is installed. Check if this is the case and
locate the java home directory. On linux this directory typically is locate at
"/usr/lib/jvm/name_of_JDK" or "/usr/java/name_of_JDK". If Java is not
installed, a compiler can be installed using APT by prompting

> sudo apt-get install sun-java6

Download the JPype source-file package, go to the download folder, and unzip.

> unzip JPype-0.5.4.1.zip

Move the directory to a preferred system directory. Open the setup script
"setup.py" and change line 19 to reflect the path of your JDK installation (this
is only necessary on linux). Run the setup script.

> cd path/to/JPype-0.5.4.1

http://pypi.python.org/pypi/setuptools
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> sudo python setup.py install

Python can still have some problems importing JPype, if a JAVA_HOME
environmental variable is not set. This can be circumvented by adding the
JAVA_HOME path to the Python bash files, JModelica uses as startup Python
scripts.

The next package is lxml. lxml is a binder for libxml2 and libxslt . To install
lxml it is therefore required that libxml2, libxml2 developer package, libxslt,
and the libxslt developer package, is installed beforehand. libxml2 is a XML C
parser and toolkit and libxslt is a XSLT C library. They are needed because
JModelica produces and handles XML code. All these packages can easily be
installed using the Python setuptools. Install by prompting (the directory is
subordinate, easy_install will place the archives in the system Python library)

> sudo easy_install libxml2

> sudo easy_install libxml2-dev

> sudo easy_install libxslt

> sudo easy_install libxslt-dev

> sudo easy_install lxml

Next step is then the scientific computing package NumPy for Python and the
NumPy add-on library SciPy. These can be installed using APT. SciPy depends
on NumPy, so the installation order is not unimportant. Install by prompting
(as above, the directory is subordinate)

> sudo apt-get install python-numpy

> sudo apt-get install python-scipy

The PyReadline is a keyboard support package for Python. It is important
to mention that it only supports windows-pc keyboards. If you are using a
macintosh or third kind of keyboard, PyReadline can not be used. Install using
Python setuptools.

> sudo easy_install pyreadline

Matplotlib is a python 2D plotting library using Matlab-like syntax. This can
be installed using APT.

> sudo apt-get install python-matplotlib
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Nose is a unittest extension for Python that JModelica uses to test, whether
all Python packages are successfully installed and locatable. Install Nose using
Python setuptools.

> sudo easy_install nose

It is now time to link the SUNDIALS shared library files to Python. This is
done by retrieving the Pysundials source file package and installing it. The in-
stallation will only be successful if SUNDIALS has been installed correctly (see
above) and if the version numbers of SUNDIALS and Pysundials are the same.
Currently there are differences between the downloadable source-file package
and the Subversion checkout package of Pysundials. I recommend using the
Subversion checkout version. This of course requires Subversion support. Sub-
version can be installed using APT. Install Subversion and retrieve and install
Pysundials.

> sudo apt-get install subversion

> cd path/to/chosen/pysundials/directory

> svn co https://pysundials.svn.sourceforge.net/svnroot/pysundials pysundials

> cd pysundials

> sudo python setup.py install

To finalize the Pysundials installation make sure that the shared library in-
terpreter libsundials_core_aux.so has been placed among the SUNDIALS
shared library, otherwise move it there yourself.

The last Python package to be installed is the enhanced interactive Python shell
IPython. This can be used as a Python shell instead of Pythons’ default shell.
This installation is optional. The user is free to simply use Pythons’ default
shell. IPython can be installed using Python setuptools.

> sudo easy_install ipython

The JModelica program package can now be downloaded. Subversion support
is needed for this (Subversion is preinstall for mac OS X users). Go to a chosen
installation directory and download by prompting the unix command

> svn co https://svn.jmodelica.org/trunk JModelica

JModelica requires the Java-based build tool Apache Ant to be installed. APT
supports Apache Ant.

> sudo apt-get install ant
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JModelica can now be installed. Create a build folder for compiling

> mkdir build

> cd build

Run the configure script

> ../configure –with-ipopt=/path/to/ipopt-install-dir

Build the code

> make

Install

> make install

It is possible that JModelica is not able to locate the lapack library, this can be
solved by installing liblapack-dev using APT and reinstalling JModelica. When
reinstalling JModelica start by prompting

> make clean

> make distclean

The documentation can then be generated. The documentation is xml based
and requires Doxygen to be installed. Install both by prompting

> sudo apt-get install doxygen

> make docs

7.1.1.2 Installation under Mac OS X

IPOPT, SUNDAILS, JPype and PySundials need to be installed just like on
Linux, but there are two easy ways to get around installing the rest of required
Python packages.

Using the first method, you begin by installing the Python package setuptools
from http://pypi.python.org/pypi/setuptools. This will enable you to use
the "easy_install" unix command. Then install lxml by prompting the unix
command

http://pypi.python.org/pypi/setuptools
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> easy_install lxml

The rest of the packages can be be install using the Scipy Superpack from
http://macinscience.org/.

The second method is even simpler. Use MacPorts (Macintosh packing tool, see
4.1.1.1 for information) and prompt

> sudo port install py26-lxml py26-numpy py26-scipy py26-matplotlib py26-nose

This method will though be expected to take some time, since the ports auto-
matically installs all dependencies. You can use the prompt

> port deps py26-lxml py26-numpy py26-scipy py26-matplotlib py26-nose

to get an overview of these dependencies.

7.1.1.3 Installation under Windows

A SDK has been developed for installing JModelica on Windows, so much less
footwork has to done to make a successful installation. This SDK is bundled
with most of the required third-party software, namely

• MinGW, MSYS (http://www.mingw.org/)

• Ipopt (http://www.coin-or.org/Ipopt/)

• JPype (http://jpype.sourceforge.net/)

• lxml (http://codespeak.net/lxml)

• nose (http://somethingaboutorange.com/mrl/projects/nose/)

• SUNDIALS (https://computation.llnl.gov/casc/sundials)

• PySUNDIALS (http://pysundials.sourceforge.net/)

Before running this windows executable, the user still need to install

• Python 2.5 (http://www.python.org/)

• IPython (http://ipython.scipy.org/moin/Download)

http://macinscience.org/
http://www.mingw.org/
http://www.coin-or.org/Ipopt/
http://jpype.sourceforge.net/
http://codespeak.net/lxml
http://somethingaboutorange.com/mrl/projects/nose/
https://computation.llnl.gov/casc/sundials
http://pysundials.sourceforge.net/
http://www.python.org/
http://ipython.scipy.org/moin/Download
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• Java Runtime Environment (http://java.sun.com/javase/downloads/)

• NumPy 1.2.0 (http://numpy.scipy.org/)

• SciPy 0.7 (http://www.scipy.org/)

• pyreadline >=1.5 (http://ipython.scipy.org/dist/)

• Matplotlib (http://matplotlib.sourceforge.net/)

7.1.2 Running a program file in JModelica

JModelica supplies two bash files for setting up Python and IPython. These
bash files automatically links to the required libraries when using JModelica.
Windows users can just double click one of these from the JModelica program
folders. Using a unix terminal, prompt

> sh /path/to/JModelica/build/Python/jm_python.sh

or

> sh /path/to/JModelica/build/Python/jm_ipython.sh

Start by testing that all packages has been installed successfully by prompting
in the python shell

> > > import jmodelica as jm

> > > jm.check_packages()

The capabilities of JModelica can be tested by running the models from the
JModelica model library (this will produce a lot of output files, so make sure
your in a proper directory). The JModelica model library can be located at the
directory "JModelica/Python/src/jmodelica/examples". These models can
be run by prompting

> > > from jmodelica.examples import NameOfModel as model

> > > model.run_demo()

When writing ones own JModelica program, two files has to be supplied. First a
Modelica package file with the extension .mo, defining the parameters , objective
(if there is one), the system equations, and the constraints. The second file is
then the Python script code, which construct, simulate, solve and plot the model.

http://java.sun.com/javase/downloads/
http://numpy.scipy.org/
http://www.scipy.org/
http://ipython.scipy.org/dist/
http://matplotlib.sourceforge.net/
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I will demonstrate this using the Optimal Time of Rocket model introduced in
chapter 1 of the thesis. The model is given as (1.6a) - (1.6m) and the imple-
mentation looks as below. First, the Modelica package file is formulated.

The objective value is a parameter in the model. Since it is a parameter, I need
to set it to a fixed value using the Modelica model language. But the value
is in reality unknown before the problems is solved and I can therefore set the
parameter to be a free parameter. The Optimal Time of Rocket model is only
provided as a way of getting started with JModelica. Detailed informations
on how to formulate these model files is provided in the section regarding the
implementation of the Four Tank model.

package Rocket_pack
2

opt imiza t i on Rocket_Min_Time ( ob j e c t i v e = t f , startTime = 0 ,
f ina lTime = 10)

4

// The parameters
6 parameter Real t f ( f r e e=true , min=2)=10 " Fina l time " ;

8 // The s t a t e s
Real s ( s t a r t =0) ;

10 Real v ( s t a r t =0) ;
Real m( s t a r t =1.0) ;

12

// The con t r o l s i g n a l with bounds
14 input Real u(min=−1.1 ,max=1.1) ;

16 equat ion
der ( s ) = (v ) ;

18 der ( v ) = ( ( u)−0.2∗ ( v ) ^2)/ ( (m) +0.01) ;
der (m) = −0.01∗ (u) ^2;

20

c on s t r a i n t
22 s ( f ina lTime ) =10.0;

v ( f ina lTime )=0;
24 v<=1.7;

v>=−0.1;
26

end Rocket_Min_Time ;
28

end Rocket_pack ;

Then the Python script

1 #!/usr/bin/python
# −∗− coding : utf−8 −∗−

3

# Import the JModelica . org Python packages
5 import jmode l i ca

import jmode l i ca . jmi as jmi
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7 from jmode l i ca . compi le r import OptimicaCompiler
from jmode l i ca . opt imiza t i on import ipopt

9

# Import numerica l l i b r a r i e s
11 import numpy as N

import ctypes as ct
13 import matp lo t l i b . pyplot as p l t

15 def run ( with_p l o t s=True ) :
"""Demonstrate how to s o l v e a minimum time

17 dynamic opt imiza t i on problem based on a
s imp l i f i e d Rocket f l i g h t . """

19

oc = OptimicaCompiler ( )
21 oc . s e t_boolean_opt ion ( ’ s t a t e_s t a r t_va lue s_f i x e d ’ , True )

23 # Name o f .mo f i l e ( Modelica model package f i l e )
mo f i l e = ’ Rocket .mo ’

25 # Retr i ev ing the model named Rocket_Min_Time from
# the Modelica model package f i l e

27 model_name = ’ Rocket_pack . Rocket_Min_Time ’
# Name standard o f JModelica . Al l output f i l e s o f JModelica

29 # uses t h i s name standard matching the model name .
# The user can not d e f i n e h i s/her own package name .

31 model_package = ’ Rocket_pack_Rocket_Min_Time ’

33 # Compile the Optimica model f i r s t to C code and
# then to a dynamic l i b r a r y

35 oc . compi le_model ( mof i l e , model_name , t a r g e t=’ ipopt ’ )

37 # Load the dynamic l i b r a r y and XML data
rc=jmi . Model ( model_package )

39

# I n i t i a l i z e the mesh
41 n_e = 50 # Number o f e lements

hs = N. ones (n_e )∗ 1 ./n_e # Equid i s tant po in t s
43 n_cp = 3 ; # Number o f c o l l o c a t i o n po in t s in each element

45 # Create an NLP ob j e c t
nlp = ipopt . NLPCollocationLagrangePolynomials ( rc , n_e , hs , n_cp )

47

# Create an Ipopt NLP ob j e c t
49 nlp_ipopt = ipopt . Co l l ocat ionOpt imize r ( nlp )

51 # Solve the opt imiza t i on problem
nlp_ipopt . opt_sim_ipopt_s o l v e ( )

53

# Write to f i l e . The r e s u l t i n g f i l e can a l s o be
55 # loaded in to Dymola .

nlp . export_r e s u l t_dymola ( )
57

# Load the f i l e we j u s t wrote to f i l e
59 r e s = jmode l i ca . i o . ResultDymolaTextual ( ’ Rocket_pack_Rocket_Min_

Time_r e s u l t . txt ’ )
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61 # Extract v a r i a b l e p r o f i l e s
s=r e s . get_va r i ab l e_data ( ’ s ’ )

63 v=re s . get_va r i ab l e_data ( ’ v ’ )
m=re s . get_va r i ab l e_data ( ’m’ )

65 t f=r e s . get_va r i ab l e_data ( ’ t f ’ )

67

i f with_p l o t s :
69 # Plot

p l t . f i g u r e (1 )
71 p l t . c l f ( )

p l t . hold (True )
73 p l t . p l o t ( s . t , s . x )

p l t . p l o t ( v . t , v . x )
75 p l t . p l o t (m. t ,m. x )

p l t . y l ab e l ( ’Time [ s ] ’ )
77 p l t . g r i d ( )

p l t . show ( )
79

i f __name__ == "__main__" :
81 run ( )

I then go to my Rocket model directory and run the IPython startup script.
Within the IPython environment I then import my model and run it

> cd path/to/rocket_ocp-dir

> sh /path/to/jm_ipython.sh

> > > import rocket_ocp as rc

> > > rc.run()

7.2 Simulating the Four Tank System using JMod-
elica

Referring back to the Four Tank System from chapter 3, I will start by sum-
marizing the model which is to be implemented. Then I will meticulously go
through the implementation of the model using JModelica. Doing so, I will
focus on attention demanding challenges and there solutions.

The complete model is given as (3.19a) - (3.20n) and the parameter vector, p,
in the model is defined as

p = [a1 a2 a3 a4A1A2A3A4 γ1 γ2 g ρ r1 r2 s]T
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Using this notation, the system of differential equations determining the evolu-
tion of the system can then be represented as

dx(t)
dt

= f(t, x(t), u(t), p) x(t0) = x0 t ∈ [t0, tend]

7.2.1 Implementing the model

In the following I will build up the two Modelica model files and the Python
solver file for optimizing and simulating the Four Tank System seen as an optimal
control problem. First I present the main structure of the two Modelica files.
The first Modelica file consist of the main packages structure "FTS" and the
model structure "FTS_Opt", while the second Modelica file likewise consist of
the main packages structure "FTS" and the model structure "FTS_Sim".

I start by constructing the Modelica file optimization. The objective is defined
as part of the model structure definition. The objective is defined as the function
"cost". The objective is a Lagrange term and will be optimized over the time
interval 0 to 300 seconds. Since the "cost" function is an integrand, this function
will be defined as a derivative under the equations part of "FTS_Opt".

1 package FTS

3 opt imiza t i on FTS_Opt ( ob j e c t i v e = ( co s t ( f ina lTime ) ) ,
startTime = 0 , f ina lTime = 300)

5

// Parameters . . .
7

// Var iab l e s . . .
9

// Equations . . .
11

// Const ra in t s . . .
13

end FTS_Opt ;
15

end FTS;

I will now fill out the four content parts of the "FTS_Opt" structure. First, I
define the parameters.

JModelica supplies an archive of SI units that can be used as extra parameter in-
formation. The basic declaration call is "parameter Real". Using the SI unit li-
brary the declaration call could be "parameter Modelica.SIunits.Acceleration".
Finally, the user can define her own units using the for example the call "parameter
Real g(unit="cm/s2") = 981".
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I will just use the basic declaration call.

// −−−−−−−−−−−−−−−−−− Parameters −−−−−−−−−−−−−−−−−−
7 // Process parameters

parameter Real A1=380.1327 , A2=380.1327 , A3=380.1327 , A4
=380.1327;

9 parameter Real a1=1.2272 , a2=1.2272 , a3=1.2272 , a4 =1.2272;
parameter Real g=981 , s =0.1 , rho =1.0 ;

11 parameter Real gamma1=0.15 , gamma2=0.25;

13 // Reference va lue s
parameter Real r1 = 12 ;

15 parameter Real r2 = 12 ;

Secondly, I define the variables. The variable declarations can have four addi-
tional inputs, namely "initialGuess", "start", "min" and "max". These can
be defined in random succession. I implement my variable constraints, such that
no redundant constraint is defined. This means that I restrict the water levels
to by positive and and the tanks to have an upper bound of 20 cm. I do not
have to force the tanks to have a lower bound of 0, since I automatically gets
this from the water level constraint.

17 // −−−−−−−−−−−−−−−−−− Var iab l e s −−−−−−−−−−−−−−−−−−
// Liquid masses

19 Real m1(min=0.0) ;
Real m2(min=0.0) ;

21 Real m3(min=0.0) ;
Real m4(min=0.0) ;

23 // Tank l e v e l s
Real h1 (max=20) ;

25 Real h2 (max=20) ;
Real h3 (max=20) ;

27 Real h4 (max=20) ;
// Tank approximation l e v e l s

29 Real h1s ;
Real h2s ;

31 Real h3s ;
Real h4s ;

33

// Inputs ( Control v a r i a b l e s )
35 input Real u1 ( i n i t i a lGu e s s =150 ,min=0,max=300) ;

input Real u2 ( i n i t i a lGu e s s =150 ,min=0,max=300) ;
37

// Object ive
39 Real co s t ( s t a r t =0,min=0) ;

The I define the model equations. Derivatives is defined using the notation
"der(function)".

41 // −−−−−−−−−−−−−−−−−− Equation c on s t r a i n t s −−−−−−−−−−−−−−−−−−
equat ion
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43 der ( co s t ) = ( ( h1 ) − r1 )^2 + ( ( h2 ) − r2 ) ^2;

45 h1 = (m1)/(A1∗rho ) ;
h2 = (m2)/(A2∗rho ) ;

47 h3 = (m3)/(A3∗rho ) ;
h4 = (m4)/(A4∗rho ) ;

49

h1s = (h1 )/( s q r t ( s∗ l og ( exp ( ( h1 )/s )+1) ) ) ;
51 h2s = (h2 )/( s q r t ( s∗ l og ( exp ( ( h2 )/s )+1) ) ) ;

h3s = (h3 )/( s q r t ( s∗ l og ( exp ( ( h3 )/s )+1) ) ) ;
53 h4s = (h4 )/( s q r t ( s∗ l og ( exp ( ( h4 )/s )+1) ) ) ;

55 // System d i f f e r e n t i a l equat ions
der (m1) = −rho∗a1∗ s q r t (2∗g )∗ ( h1s ) + rho∗a3∗ s q r t (2∗g )∗ ( h3s )

+ rho∗gamma1∗u1 ;
57 der (m2) = −rho∗a2∗ s q r t (2∗g )∗ ( h2s ) + rho∗a4∗ s q r t (2∗g )∗ ( h4s )

+ rho∗gamma2∗u2 ;
der (m3) = −rho∗a3∗ s q r t (2∗g )∗ ( h3s ) + rho∗(1−gamma2)∗u2 ;

59 der (m4) = −rho∗a4∗ s q r t (2∗g )∗ ( h4s ) + rho∗(1−gamma1)∗u1 ;

Lastly, I define the variable constraints.

61 // −−−−−−−−−−−−−−−−−− I n i t i a l c ond i t i on s −−−−−−−−−−−−−−−−−−
c on s t r a i n t

63 m1( startTime ) = 0 . 0 ;
m2( startTime ) = 0 . 0 ;

65 m3( startTime ) = 0 . 0 ;
m4( startTime ) = 0 . 0 ;

My second Modelica file is for simulating the found solution of the control vari-
ables. The file consisting of the main packages structure "FTS" and the model
structure "FTS_Sim". This file only separate itself from the first Modelica file
by having no objective function defined. The parameters, variables, equations
constraints are the same giving the structure

package FTS
2

model FTS_Sim
4 // Process parameters

parameter Real A1=380.1327 , A2=380.1327 , A3=380.1327 , A4
=380.1327;

6 parameter Real a1=1.2272 , a2=1.2272 , a3=1.2272 , a4 =1.2272;
parameter Real g=981 , s =0.1 , rho =1.0 ;

8 parameter Real gamma1=0.15 , gamma2=0.25;

10 // Liquid masses
Real m1;

12 Real m2;
Real m3;

14 Real m4;
// Tank l e v e l s
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16 Real h1 ;
Real h2 ;

18 Real h3 ;
Real h4 ;

20 // Tank approximation l e v e l s
Real h1s ;

22 Real h2s ;
Real h3s ;

24 Real h4s ;

26 // Inputs
input Real u1 ;

28 input Real u2 ;

30 equat ion
h1 = (m1)/(A1∗rho ) ;

32 h2 = (m2)/(A2∗rho ) ;
h3 = (m3)/(A3∗rho ) ;

34 h4 = (m4)/(A4∗rho ) ;

36 h1s = (h1 )/( s q r t ( s∗ l og ( exp ( ( h1 )/s )+1) ) ) ;
h2s = (h2 )/( s q r t ( s∗ l og ( exp ( ( h2 )/s )+1) ) ) ;

38 h3s = (h3 )/( s q r t ( s∗ l og ( exp ( ( h3 )/s )+1) ) ) ;
h4s = (h4 )/( s q r t ( s∗ l og ( exp ( ( h4 )/s )+1) ) ) ;

40

// System d i f f e r e n t i a l equat ions
42 der (m1) = −rho∗a1∗ s q r t (2∗g )∗ ( h1s ) + rho∗a3∗ s q r t (2∗g )∗ ( h3s )

+ rho∗gamma1∗u1 ;
der (m2) = −rho∗a2∗ s q r t (2∗g )∗ ( h2s ) + rho∗a4∗ s q r t (2∗g )∗ ( h4s )

+ rho∗gamma2∗u2 ;
44 der (m3) = −rho∗a3∗ s q r t (2∗g )∗ ( h3s ) + rho∗(1−gamma2)∗u2 ;

der (m4) = −rho∗a4∗ s q r t (2∗g )∗ ( h4s ) + rho∗(1−gamma1)∗u1 ;
46 end FTS_Sim ;

48 end FTS;

The Python solver script now have to be created.

I make my Python script directly executable and define the source code encoding
as UTF-8. All the needed python libraries is then imported. If your are susing
Mac OS X it is possible that a backend for plotting should be defined, Python
will always self provide one using Windows and Linux. I use "TkAgg", which is
my x11 graphical terminal. The Modelica compiler is for simulating the system
together with SUNDIALS and the Optimica compiler is for solving the system
together with IPOPT.
#!/usr/bin/python

2 # −∗− coding : utf−8 −∗−

4 # Import numerica l l i b r a r i e s
import numpy as N

6 import ctypes as ct
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import matp lo t l i b
8 matp lo t l i b . use ( ’TkAgg ’ )

from pylab import f i gu r e , show
10

# Import the JModelica . org Python packages
12 import jmode l i ca

import jmode l i ca . jmi as jmi
14 from jmode l i ca . compi le r import ModelicaCompiler

from jmode l i ca . compi le r import OptimicaCompiler
16 from jmode l i ca . opt imiza t i on import ipopt

from jmode l i ca . i n i t i a l i z a t i o n . ipopt import NLPIn i t i a l i z a t i on
18 from jmode l i ca . i n i t i a l i z a t i o n . ipopt import I n i t i a l i z a t i o nOp t im i z e r

from jmode l i ca . s imu la t i on . s und i a l s import
Tra j e c t o r yL in ea r I n t e rpo l a t i on

20 from jmode l i ca . s imu la t i on . s und i a l s import SundialsDAESimulator

I then initiate my Python execution environment, which can then be executed
using the call "run()". The "model_name" refer to the Modelica model within the
main packages structure "FTS". The "model_package" is a naming convention
and has to reflect the package - and model name using underscores. JModelica
creates a lot of output files using this exact naming convention. The user can
not choose her own model package name. I then define a compiler instance and
finally a nlp object, which is then solved.

def run ( with_p l o t s=True ) :
23

# Create a Modelica compi le r i n s t ance
25 oc = OptimicaCompiler ( )

27 # Compile the s t a t i ona ry i n i t i a l i z a t i o n model i n to a DLL
mof i l e = ’ FourTankSystem .mo ’

29 model_name = ’FTS.FTS_Opt ’
model_package = ’FTS_FTS_Opt ’

31

oc . compi le_model ( mof i l e , model_name , t a r g e t=’ ipopt ’ )
33

# Load a model i n s t ance in to Python
35 ocp = jmi . Model ( model_package )

37 # I n i t i a l i z e the mesh
n_e = 100 # Number o f e lements

39 hs = N. ones (n_e )∗ 1 ./n_e # Equid i s tant po in t s
n_cp = 3 ; # Number o f c o l l o c a t i o n po in t s in each element

41

# Create an NLP ob j e c t
43 nlp = ipopt . NLPCollocationLagrangePolynomials ( ocp , n_e , hs , n_cp )

45 # Create an Ipopt NLP ob j e c t
nlp_ipopt = ipopt . Co l l ocat ionOpt imize r ( nlp )

47

nlp_ipopt . opt_sim_ipopt_s e t_i n t_opt ion ( "max_i t e r " ,300)
49
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# Solve the opt imiza t i on problem
51 nlp_ipopt . opt_sim_ipopt_s o l v e ( )

The result is then written into an output file, which I again load and plot. The
matplotlib packages supplies Matlab like plotting commands for Python and
further commands can be seen at http://matplotlib.sourceforge.net/

53 # Write to f i l e . The r e s u l t i n g f i l e can a l s o be
# loaded in to Dymola .

55 nlp . export_r e s u l t_dymola ( )

57 # Load the f i l e we j u s t wrote to f i l e
r e s = jmode l i ca . i o . ResultDymolaTextual ( ’FTS_FTS_Opt_r e s u l t . txt ’

)
59

# Extract v a r i a b l e p r o f i l e s
61 h1=re s . get_va r i ab l e_data ( ’ h1 ’ )

h2=re s . get_va r i ab l e_data ( ’ h2 ’ )
63 h3=re s . get_va r i ab l e_data ( ’ h3 ’ )

h4=re s . get_va r i ab l e_data ( ’ h4 ’ )
65 u1=re s . get_va r i ab l e_data ( ’ u1 ’ )

u2=re s . get_va r i ab l e_data ( ’ u2 ’ )
67

co s t=r e s . get_va r i ab l e_data ( ’ co s t ’ )
69

i f with_p l o t s :
71 # Plot

f i g = f i g u r e (1 )
73 p l t = f i g . add_subp lot (111)

p l t . p l o t ( h1 . t , h1 . x )
75 p l t . p l o t ( h2 . t , h2 . x )

p l t . p l o t ( h3 . t , h3 . x )
77 p l t . p l o t ( h4 . t , h4 . x )

p l t . l egend ( ( ’Tank 1 ’ , ’Tank 2 ’ , ’Tank 3 ’ , ’Tank 4 ’ ) )
79 p l t . s e t_x l ab e l ( ’Time [ s ] ’ )

p l t . s e t_y l ab e l ( ’Water l e v e l [ cm ] ’ )
81 p l t . s e t_t i t l e ( ’Tank Leve l s So lu t i on ’ )

p l t . g r i d ( )
83

f i g 2 = f i g u r e (2 )
85 p l t 2 = f i g 2 . add_subplot (111)

p l t 2 . p l o t ( u1 . t , u1 . x )
87 p l t 2 . p l o t ( u2 . t , u2 . x )

p l t 2 . l egend ( ( ’Pump 1 ’ , ’Pump 2 ’ ) )
89 p l t 2 . s e t_x l ab e l ( ’Time [ s ] ’ )

p l t 2 . s e t_y l ab e l ( ’ Pres sure [ cm3/s ] ’ )
91 p l t 2 . s e t_t i t l e ( ’ Control Var i ab l e s So lu t i on ’ )

p l t 2 . g r id ( )
93 show ( )

I then simulate the output control variable data using Sundials. A Modelica

http://matplotlib.sourceforge.net/
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instance is created and the required data is extracted. The control variables is
transformed into a Trajectory object that can be passed to the simulator and a
differential algebraic equation system is initialized and solved.

95 # Simulat ing the con t r o l va lue s

97 # Create a Modelica compi le r i n s t ance f o r s imu la t i on
oc2 = ModelicaCompiler ( )

99

# Simulate to v e r i f y the optimal s o l u t i o n
101 mof i l e2 = ’FourTankSystemSIM .mo ’

sim_name2 = ’FTS.FTS_Sim ’
103 sim_package2 = ’FTS_FTS_Sim ’

105 # Load the f i l e we j u s t wrote to f i l e
r e s = jmode l i ca . i o . ResultDymolaTextual ( ’FTS_FTS_Opt_r e s u l t . txt ’

)
107

# Extract v a r i a b l e p r o f i l e s
109 u1_r e s=r e s . get_va r i ab l e_data ( ’ u1 ’ )

u2_r e s=r e s . get_va r i ab l e_data ( ’ u2 ’ )
111

# Set up input t r a j e c t o r y
113 t = u1_r e s . t

u1 = u1_r e s . x
115 u2 = u2_r e s . x

u = N. array ( [ u1 , u2 ] )
117 u = N. t ranspose (u)

u_t r a j = Tra j e c t o r yL in ea r I n t e rpo l a t i on ( t , u )
119

# Comile the Modelica model f i r s t to C code and
121 # then to a dynamic l i b r a r y

oc2 . compi le_model ( mof i l e2 , sim_name2 , t a r g e t=’ ipopt ’ )
123

# Load the dynamic l i b r a r y and XML data
125 sim_model=jmi . Model ( sim_package2 )

127 # Create DAE i n i t i a l i z a t i o n ob j e c t .
i n i t_nlp = NLPIn i t i a l i z a t i on ( sim_model )

129

# Create an Ipopt s o l v e r ob j e c t f o r the DAE i n i t i a l i z a t i o n
system

131 i n i t_nlp_ipopt = I n i t i a l i z a t i o nOp t im i z e r ( i n i t_nlp )

133 # Solve the DAE i n i t i a l i z a t i o n system with Ipopt
i n i t_nlp_ipopt . i n i t_opt_ipopt_s o l v e ( )

This model is then simulated using Sundials

s imu la to r = SundialsDAESimulator ( sim_model , v e rbo s i t y =3, s t a r t_
time=0, f i n a l_time=300 , time_s tep =0.01 , input=u_t r a j )

137 # Run s imu la t i on
s imula to r . run ( )
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Finally the result is plotted and the Python execution environment is finalized.

140 # Store s imu la t i on data to f i l e
s imu la to r . wr i t e_data ( )

142

# Load the f i l e we j u s t wrote to f i l e
144 r e s = jmode l i ca . i o . ResultDymolaTextual ( ’FTS_FTS_Sim_r e s u l t . txt ’

)

146 # Extract v a r i a b l e p r o f i l e s
h1=re s . get_va r i ab l e_data ( ’ h1 ’ )

148 h2=re s . get_va r i ab l e_data ( ’ h2 ’ )
h3=re s . get_va r i ab l e_data ( ’ h3 ’ )

150 h4=re s . get_va r i ab l e_data ( ’ h4 ’ )
u1=re s . get_va r i ab l e_data ( ’ u1 ’ )

152 u2=re s . get_va r i ab l e_data ( ’ u2 ’ )

154 i f with_p l o t s :
# Plot

156 f i g 3 = f i g u r e ( )
p l t 3 = f i g 3 . add_subplot (111)

158 p l t 3 . p l o t ( h1 . t , h1 . x )
p l t 3 . p l o t ( h2 . t , h2 . x )

160 p l t 3 . p l o t ( h3 . t , h3 . x )
p l t 3 . p l o t ( h4 . t , h4 . x )

162 p l t 3 . l egend ( ( ’Tank 1 ’ , ’Tank 2 ’ , ’Tank 3 ’ , ’Tank 4 ’ ) )
p l t 3 . s e t_x l ab e l ( ’Time [ s ] ’ )

164 p l t 3 . s e t_y l ab e l ( ’Water l e v e l [ cm ] ’ )
p l t 3 . s e t_t i t l e ( ’Tank Leve l s Simulated ’ )

166 p l t 3 . g r id ( )
show ( )

168

i f __name__ == "__main__" :
170 run ( )

I go to my model directory and use the JModelica supplied bash file (Python
startup script) to initiates a Python session. I load the model Python script
and run the model. Using MA27 the outputs of the model can be seen in Table
7.1.

Sparse linear Time Steps # Iter. CPU Time [sec] Obj. valueeq. solver

MA27 300 98 22.569 5.3449e+03
MA27 100 168 13.909 5.3450e+03
MA27 30 72 1.818 5.3499e+03

Table 7.1: Iterations Statistics of JModelica

For more information on the output values see section 6 of the IPOPT Docu-

http://www.coin-or.org/Ipopt/documentation/
http://www.coin-or.org/Ipopt/documentation/
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mentation.

The solution to the model, I just presented, is provided in Figure 7.1, 7.2, and
7.3.
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Figure 7.1: Height of liquid in the four tanks from the optimization

http://www.coin-or.org/Ipopt/documentation/
http://www.coin-or.org/Ipopt/documentation/
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Figure 7.2: Control variables (pump flow) from the optimization
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Chapter 8

A preconfigured OS for
distribution

In this chapter, I will go through the creation of a preconfigured operating
system, where all softwares mentioned in this thesis is preinstalled together
with model libraries, all within the frames of an open-source alternative. The
purpose of this is to provide a simple way of getting started with with the
softwares described in the thesis. Installing most of the softwares from this
thesis is very time demanding of can be technical challenging. A preconfigured
OS, where all the softwares already are installed and ready for use, can therefore
be an attractive alternative for users that wish to get started in a fast and less
demanding way.

URLs: [OVF Info] http://www.vmware.com/appliances/getting-started/
learn/ovf.html,

[Ubuntu Home] http://www.ubuntu.com/,

[Sun Hypervisor] http://www.virtualbox.org/

http://www.vmware.com/appliances/getting-started/learn/ovf.html
http://www.vmware.com/appliances/getting-started/learn/ovf.html
http://www.ubuntu.com/
http://www.virtualbox.org/
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8.1 Building a virtual machine

A system virtual machine provides a complete system platform which supports
the execution of a complete operating system (OS). An essential characteristic of
a virtual machine is that the software running inside is limited to the resources
and abstractions provided by the virtual machine, meaning that the operating
system on the virtual machine is completely isolated from the host machine. A
virtual machine running a operating system is called a guest operating system.

In order to run a virtual machine, a hypervisor or virtualization software is
required. This hypervisor runs on the host machine.

I have used VirtualBox as my hypervisor for building and running my virtual
machine. VirtualBox is provided by Sun Microsystems and is compatible with
many operating systems. VirtualBox is freely available as Open Source Software
under the terms of the GNU General Public License (GPL).

As the operating system, I installed Ubuntu 9.10. Ubuntu is a complete Linux-
based operating system containing free and open source software applications.
Ubuntu is provided under the terms of the GNU General Public License (GPL).
Ubuntu can be downloaded as an ISO file from http://www.ubuntu.com/getubuntu/
download.

Using my hypervisor, I created a hard disk, defining the size and system re-
sources allocated for the virtual machine. The hard disk was created as a dy-
namic disc image, meaning that it only allocates the space that it currently
uses. My hard disk has a maximum capacity of 10 GB. This upper bound can
not be adjusted. If more space is needed, a new hard disk has to be created.
All other system resources can be adjusted continuously by the user. I then in-
stalled the operating system by adding the Ubuntu ISO image as a CD storage
device, initiating the first virtual session, and following the guided installation
procedure.

8.2 Distributing a virtual machine using OVF

In order for the virtual machine to be packaged and distributed in a practical
way, I have chosen the Open Virtualization Format (OVF) format. OVF is
an open packaging and distribution format for virtual machines. The Open
Virtualization Format (OVF) standard provides a way for developers to create
a single pre-packaged virtual appliance that can run on any users virtualization

http://www.ubuntu.com/getubuntu/download
http://www.ubuntu.com/getubuntu/download
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platforms of choice.

8.3 Using the system

Start by opening your preferred hypervisor. Import the preconfigured operating
system by choosing the option "import" and selecting the OVF file provided
together with this thesis. The hypervisor will then unpack the hard disk and
create a virtual machine with the name "OCP" (Optimal Control Problems).
A system requirement is that the system should have 6 GB of free hard disk
space. When the import is completed, the virtual machine can be turned on.

The user profile for the operating system is

• User: imm

• Password: dtu12345

8.3.1 Using ACADO Toolkit

The directory of ACADO Toolkit is located at

/home/imm/Optimization/ACADOtoolkit

and my model library can be found at

/home/imm/Optimization/ACADOtoolkit/examples/MyACADO

In order to run my implementation of the Four Tank System just open the
terminal and prompt

> cd /home/imm/Optimization/ACADOtoolkit/examples/MyACADO

> ./tank_system_control

ACADO will then solve the problem and plot the results using Gnuplot.
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8.3.2 Using IPOPT

The directory of IPOPT is located at

/home/imm/Optimization/Ipopt

and my model library can be found at

/home/imm/Optimization/Ipopt/build/Ipopt/examples/MyIpopt

In order to run my C++ implementation of the Four Tank System just open
the terminal and prompt

> cd /home/imm/Optimization/Ipopt/build/Ipopt/examples/MyIpopt/CPP

> ./FourTankSystem

IPOPT will then solve the problem. The results can then be plotted using the
Gnuplot script fts.gp, by prompting

> gnuplot fts.gp

8.3.3 Using CppAD

The directory of CppAD is located at

/home/imm/Optimization/CppAD

and my model library can be found at

/home/imm/Optimization/CppAD/cppad_ipopt/MyCppAD

I have written my very own makefile which is easy to re-use with your own
models. The directory contain a hidden folder called .deps, where the portable
object files of the models is contained.

In order to run my implementation of the Four Tank System just open the
terminal and prompt

> cd /home/imm/Optimization/CppAD/cppad_ipopt/MyCppAD

> ./FourTankSystem
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CppAD’s IPOPT solver will then solve the problem. This particular imple-
mentation only have 30 time steps, since CppAD requires a lot of memory for
running larger models and the virtual machine have very limited memory. The
results can then be plotted using the Gnuplot script fts.gp, by prompting

> gnuplot fts.gp

The makefile is written in such a way that different commands will compile the
model. The prompt command

> make test

will compile and run models at the same time, while the prompt command

> make FourTankSystem

will simply compile the model.

8.3.4 Using SUNDIALS

The directory of SUNDIALS is located at

/home/imm/Optimization/Sundials-2.3.0

and my model library can be found at

/home/imm/Optimization/Sundials-2.3.0/build/examples/MySundials

In order to run my implementation of the Four Tank System, as a differential
equations system with fixed control variable values, just open the terminal and
prompt

> cd /home/imm/Optimization/Sundials-2.3.0/build/examples/MySundials

> ./FourTankSystemDiff

SUNDIALS will then solve the differential equations system, while also finding
roots of the objective function of the Four Tank System model.
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8.3.5 Using JModelica

The directory of JModelica is located at

/home/imm/Optimization/JModelica

and my model library can be found at

/home/imm/Optimization/JModelica/Python/src/jmodelica/examples/MyJModelica

In order to run my implementation of the Four Tank System start by going to
the model library directory. Then initiate a python session using the bash file
(Python startup script) provided by JModelica. The Python or IPython startup
script can be run either by specifying the complete path to the file and using
the "sh" execute command, or by using the unix scripts I have created for this
purpose. The two options looks as follows

> cd /home/imm/Optimization/JModelica/Python/src/jmodelica/examples/

MyJModelica/FourTankSystem

> ../IPython

> > > import FourTankSystem as fts

> > > fts.run()

or

> cd /home/imm/Optimization/JModelica/Python/src/jmodelica/examples/

MyJModelica/FourTankSystem

> sh /home/imm/Optimization/JModelica/build/Python/jm_ipython.sh

> > > import FourTankSystem as fts

> > > fts.run()

JModelica will then solve and thereafter simulate the problem. All results will
also be plotted.
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Conclusion

The key goal of this thesis was to investigate, test and supply a user guide for
using open source mathematical programming software for modeling and solving
constrained dynamic optimization problems with fixed time horizon.

The choice of using open-source software, for solving constrained dynamic opti-
mization problems based on general-purpose programming languages, was mo-
tivated in such a way that the advantages was clear compared to conventional
commercial software. The branch of models investigated in the thesis was thor-
oughly presented and the relevant solution methods for solving them was intro-
duced. This was done in such a way that the reader was able to connect the
solution strategies, to the software packages presented in the thesis.

The Quadruple Tank Process was formulated as a mathematical model, with the
aim of using it as a comparison test model for the software packages presented in
the thesis. The Four Tank System represented a sufficiently complex model that
was able to illustrate the capabilities and limitations of the softwares packages.

The software packages ACADO Toolkit, IPOPT, CppAD and JModelica was
each thoroughly introduced. A detailed installation guide was given, support-
ing a range of operating platforms, which enabled the reader to follow these
instruction and be able to use all software packages. A short example, on how
to use the software and how to implement a model, was then given. This was
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followed up be a thoroughly implementation of the Quadruple Tank Process.
This implementation was then tested and the outputs from the software was
presented and analyzed.

In comparison, all software packages solved the model to the same degree of
satisfaction. ACADO Toolkit have a very intuitive and easy to use syntax, with
many solver options. On the negative side, the user is not able to adjust the
fineness of the discretization grid and it is not possible to add discontinuous
constraints, as well as partial differential equation constraints. IPOPT is a very
fast solver depending on the choice of sparse symmetric indefinite linear solver.
IPOPT is able to handle all types of constraints and can be used together with
a wide range of programming languages, as well as mathematical modeling lan-
guages. On the negative side, it is a very extensive task to implement models
using general programming languages. A way of easing this task, is to use
CppAD. The problem of using CppAD is though that what you gain in imple-
mentation simplicity is lost to computational time and memory requirements.
Finally, JModelica also had a very intuitive way of formulating models. The
extensive task of installing JModelica can though be a barrier for new users. In
terms of solver options, JModelica provides a large range of tools.

Finally, a preconfigured operating system was offered to the reader, enabling
the reader to test and run the models and implementations from the thesis
without having to install the software packages. This was all offered within the
framework of open-source licenses.
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Appendix

A.1 IPOPT - GAMS

∗ Four_tank_system . gms
2 ∗ Author : Rune Brus

∗ Date : 07−02−2010
4 ∗

∗ This GAMS s c r i p t i n c l ud e s a model , the " s o l v e " command , and a
c a l l

6 ∗ to gnuplot . You can "run" a l l t h i s by j u s t typing
∗

8 ∗ $ gams Four_tank_system . gms

10 $eolcom //
opt ion i t e r l im =999999999; // avoid l im i t on i t e r a t i o n s

12 opt ion r e s l im =300; // t ime l im i t f o r s o l v e r in sec .
opt ion optcr =0.0 ; // gap t o l e r an c e

14 opt ion s o l p r i n t=ON; // i n c lude s o l u t i o n p r in t in . l s t f i l e
opt ion limrow=100; // l im i t number o f rows in . l s t f i l e

16 opt ion l imco l =100; // l im i t number o f columns in . l s t f i l e
opt ion nlp=Ipopt ;

18

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
20

s e t s
22 i d i s c r e t i z a t i o n /0∗10/
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24 s c a l a r s
N Number o f d i s c r e t i z a t i o n i n t e r v a l s /10/

26 ao1 Cross s e c t i o n a l area o f ou t l e t 1 /1 .2272/
ao2 Cross s e c t i o n a l area o f ou t l e t 2 /1 .2272/

28 ao3 Cross s e c t i o n a l area o f ou t l e t 3 /1 .2272/
ao4 Cross s e c t i o n a l area o f ou t l e t 4 /1 .2272/

30 A1 Cross s e c t i o n a l area o f i n l e t 1 /380.1327/
A2 Cross s e c t i o n a l area o f i n l e t 2 /380.1327/

32 A3 Cross s e c t i o n a l area o f i n l e t 3 /380.1327/
A4 Cross s e c t i o n a l area o f i n l e t 4 /380.1327/

34 H1 Height o f tank 1 /20/
H2 Height o f tank 2 /20/

36 H3 Height o f tank 3 /20/
H4 Height o f tank 4 /20/

38 gamma1 Valve pre sure 1 /0 .15/
gamma2 Valve pre sure 2 /0 .25/

40 g Acce l e r a t i on o f g rav i ty /981/
rho Density o f water /1 .00/

42 s Approximation constant /0 .1/
r1 Optimizat ion goa l 1 /12/

44 r2 Optimizat ion goa l 2 /12/
t f time hor i zont /300/

46 ;

48 va r i a b l e s
z ob j e c t i v e func t i on

50 F1( i ) Control Var iab le 1
F2( i ) Control Var iab le 2

52 m1( i ) Mass 1
m2( i ) Mass 2

54 m3( i ) Mass 3
m4( i ) Mass 4

56 h1t ( i ) Water l e v e l tank 1
h2t ( i ) Water l e v e l tank 2

58 h3t ( i ) Water l e v e l tank 3
h4t ( i ) Water l e v e l tank 4

60 q1 i ( i ) In f l ow tank 1
q2 i ( i ) In f l ow tank 2

62 q3 i ( i ) In f l ow tank 3
q4 i ( i ) In f l ow tank 4

64 q1 ( i ) Outflow tank 1
q2 ( i ) Outflow tank 2

66 q3 ( i ) Outflow tank 3
q4 ( i ) Outflow tank 4

68 ;

70 p o s i t i v e v a r i a b l e s F1 , F2 , h1t , h2t , h3t , h4t ;

72 equat ions
Wate r l eve lde l t a ob j e c t i v e func t i on

74 Di f f 1 ( i ) Mass balance 1 at i
D i f f 2 ( i ) Mass balance 2 at i

76 Di f f 3 ( i ) Mass balance 3 at i
D i f f 4 ( i ) Mass balance 4 at i

78 Height1 ( i ) Water l e v e l 1 at i
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Height2 ( i ) Water l e v e l 2 at i
80 Height3 ( i ) Water l e v e l 3 at i

Height4 ( i ) Water l e v e l 4 at i
82 In f low1 ( i ) In f l ow to tank 1 at i

In f low2 ( i ) In f l ow to tank 2 at i
84 In f low3 ( i ) In f l ow to tank 3 at i

In f low4 ( i ) In f l ow to tank 4 at i
86 Outflow1 ( i ) Outflow to tank 1 at i

Outflow2 ( i ) Outflow to tank 2 at i
88 Outflow3 ( i ) Outflow to tank 3 at i

Outflow4 ( i ) Outflow to tank 4 at i
90 h1 i n i t Boundary cond i t i on s f o r mass 1

h2 i n i t Boundary cond i t i on s f o r mass 2
92 h3 i n i t Boundary cond i t i on s f o r mass 3

h4 i n i t Boundary cond i t i on s f o r mass 4
94 F1 in i t Boundary cond i t i on s f o r va lve 1

F2 in i t Boundary cond i t i on s f o r va lve 2
96 h1max( i ) Water s tay s in tank 1

h2max( i ) Water s tay s in tank 2
98 h3max( i ) Water s tay s in tank 3

h4max( i ) Water s tay s in tank 4
100 F1max( i ) Maximum presure in va lve 1

F2max( i ) Maximum presure in va lve 2
102 ;

104 ∗ Object ive func t i on
Wate r l eve lde l t a . . z =e= ( t f/N)∗sum( i , ( h1t ( i )−r1 )∗ ( h1t

( i )−r1 ) + ( h2t ( i )−r2 )∗ ( h2t ( i )−r2 ) ) ;
106

∗ D i f f e r e n t i a l equat ions . Mass ba lances
108 Di f f 1 ( i )$( ord ( i )>0) . . (m1( i )−m1( i −1) )/( t f/N) =e= rho∗q1 i (

i ) + rho∗q3 ( i ) − rho∗q1 ( i ) ;

110 Di f f 2 ( i )$( ord ( i )>0) . . (m2( i )−m2( i −1) )/( t f/N) =e= rho∗q2 i (
i ) + rho∗q4 ( i ) − rho∗q2 ( i ) ;

112 Di f f 3 ( i )$( ord ( i )>0) . . (m3( i )−m3( i −1) )/( t f/N) =e= rho∗q3 i (
i ) − rho∗q3 ( i ) ;

D i f f 4 ( i )$( ord ( i )>0) . . (m4( i )−m4( i −1) )/( t f/N) =e= rho∗q4 i (
i ) − rho∗q4 ( i ) ;

114

∗ Water l e v e l s
116 Height1 ( i ) . . h1t ( i ) =e= m1( i )/( rho∗A1) ;

Height2 ( i ) . . h2t ( i ) =e= m2( i )/( rho∗A2) ;
118 Height3 ( i ) . . h3t ( i ) =e= m3( i )/( rho∗A3) ;

Height4 ( i ) . . h4t ( i ) =e= m4( i )/( rho∗A4) ;
120

∗ In f l ows
122 In f low1 ( i ) . . q1 i ( i ) =e= gamma1∗F1( i ) ;

In f low2 ( i ) . . q2 i ( i ) =e= gamma1∗F2( i ) ;
124 In f low3 ( i ) . . q3 i ( i ) =e= (1−gamma2)∗F2( i ) ;

In f low4 ( i ) . . q4 i ( i ) =e= (1−gamma1)∗F1( i ) ;
126

Outflow1 ( i ) . . q1 ( i ) =e= ao1∗ s q r t (2∗g∗h1t ( i ) ) ;
128 Outflow2 ( i ) . . q2 ( i ) =e= ao2∗ s q r t (2∗g∗h2t ( i ) ) ;
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Outflow3 ( i ) . . q3 ( i ) =e= ao3∗ s q r t (2∗g∗h3t ( i ) ) ;
130 Outflow4 ( i ) . . q4 ( i ) =e= ao4∗ s q r t (2∗g∗h4t ( i ) ) ;

132 ∗ Boundary cond i t i on s f o r masses
h 1 i n i t . . h1t ( ’ 0 ’ ) =e= 0 . 0 ;

134 h2 i n i t . . h2t ( ’ 0 ’ ) =e= 0 . 0 ;
h 3 i n i t . . h3t ( ’ 0 ’ ) =e= 0 . 0 ;

136 h4 i n i t . . h4t ( ’ 0 ’ ) =e= 0 . 0 ;

138 ∗ Boundary cond i t i on s f o r va lve s
F1 in i t . . F1( ’ 0 ’ ) =e= 300 ;

140 F2 in i t . . F2( ’ 0 ’ ) =e= 300 ;

142 ∗ Water s tay s in tanks
h1max( i ) . . h1t ( i ) =l= H1 ;

144 h2max( i ) . . h2t ( i ) =l= H2 ;
h3max( i ) . . h3t ( i ) =l= H3 ; ;

146 h4max( i ) . . h4t ( i ) =l= H4 ;

148 ∗ Maximum presure o f va lve s
F1max( i ) . . F1( i ) =l= 300 ;

150 F2max( i ) . . F2( i ) =l= 300 ;

152 model f our_tank_system / a l l / ;
s o l v e four_tank_system us ing nlp minimizing z ;

154

DISPLAY F1 .L , F2 . L , h1t . L , h2t . L , h3t . L , h4t . L ;
156

FILE Front ierHandle /"OutputFM . txt "/ ;
158

Front ierHandle . pc = 7 ;
160 Front ierHandle .pw = 1048 ;

162 PUT Front ierHandle ;

164 LOOP ( i , PUT i . t l , h1t . L( i ) , h2t . L( i ) , h3t . L( i ) , h4t . L( i ) ,F1 .L( i ) ,F2 .L(
i )/) ;

166 PUTCLOSE;
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