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The background field approach to calculations in gauge field theories is presented.
Conventional functional techniques are reviewed and the background field method is intro­
duced. Feynman rules and renormalization are discussed and, as an example, the Yang­
-Mills f3 function is computed.

PACS numbers: 11.10.Np, 11.10.Gh

1. Introduction

The background field method is a technique for quantizing gauge field theories without
losing explicit gauge invariar~ce. It makes gauge theories easier to understand and greatly
simplifies computations. In this review I will present the formalism of this method and
show how it is applied to gauge theory calculations.

The background field method was introduced by DeWitt [I, 2] in a formalism which
was applicable to one-loop processes. The extension to multi-loop calculatior.s, which
involved a reformulation of the method, was first made by 't Hooft [3] and then discussed
in more detail by DeWitt [4], Boulware [5] and by myself [6]. It is this extension, valid
to all orders of perturbation theory, which I will present here. The background field method
is used extensively in gravity [7] and supergravity [8] theories. In addition, it has been
used to derive light-particle effective field theories from grand unified models [9], to com­
pute the Yang-Mills fJ fULction up to two loops [6] and to perform calculatioLs in lattice
gauge theories [10]. In all of these applications, the great simplifications introduced by the
method playa key role.

Any formulation of a gauge field theory begins with a gauge invariant Lagrangian.
However, in order to quantize the theory a gauge must be chosen. In the conventional
formulation, this means that the Lagrangian you actually use to derive Feynman rules
and perform calculations, consisting of the classical Lagrangian plus gauge-fixing and
ghost terms, is not gauge invariant. Of course, any physical quantity calculated will be
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gauge invariant and independent of the particular gauge chosen, but quantities with no
direct physical interpretation like off-shell Green's functions or divergent counterterms
will not be gauge invariaTtt. Green's functions in the conventional formulation do not
directly reflect the underlying gauge invariance of the theory but rather obey complicated
Slavnov-Taylor identities (I I] resultir:g from BRS invariar:ce (12]. In the background
field approach, one arranges things so that explicit gauge invariar:ce, present in the original
Lagrangian, is still present OLce gauge-fixing and ghost terms have been added. As a result,
in this formalism, Green's functions obey the naive Ward identities of gauge invariance
and even unphysical quantities like divergerit counterterms take a gauge invariant form.

To show what the reter;tion of explicit gauge ir,variance mears let me present a simple
"proof" of the rer,ormalizability of pure Yar g-Mills theory. Suppose by power counting
arguments you have convinced yourself that all of the divergences in Yang-Mills theory
can be cancelled by local counterterms of dimension four. You would then list all such
terms like

(1.1)

Next, using gauge invariance, you might argue that the orty term on this list which can
actually appear is F;'v since it alone is gauge invariant: Then, sir.ce F;v is also the bare
Lagrangian you would fir,d that the theory is renormalizable. Well, this is a nice argumer:t,
but the problem is that in the conver,tioral formulation of gauge theories it is completely
wrong. The reason for this is that the cour,terterms, beir g Ul physical, do not take the
gauge invariar.t form F;v' However, in the background field approach the divergences are
restricted by the requiremert of gauge invariaLce, and the above proof becomes correct.
In fact, argumer.ts exactly like this are used to prove the abser_ce of divergerces in various
orders for gravity [7] and supergravity [8] theories. These proofs of course rely on the back­
ground field method for their validity.

This introduction COl:sists of two main parts. In the first part I will develop the back­
ground field formalism._ This formalism relies heavily on cor,ver,tional fULctioLal methods
in field theory. Therefore I will begin by reviewing standard fULctional techniques, intro­
ducing the geLerating fu!:ctiorals for disconnected, connected aLd one-particle-irreducible
graphs. Then I will iLtroduce the backgrourd field method aLd show how it is related to
the conver,tior:al approach. In the secor d part I -will discuss how to apply the method to
actual calculatioLs. I will give the Feynman rules, show how the rer,ormalization programme
works and, as an explicit example, describe the calculation of the Yang-Mills fJ fur.ction
in the background field method.

2. The background field formalism

2.1. Review of functional methods

In any field theory, the ultimate goal of one's calculatiol~s is the S matrix. The S matrix
can be obtail ed from the Greer's functions of the theory by LSZ reduction [13]. In the
functional approach, the Green's functions are determined by takir,g functio1>al derivatives
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with respect to the source function J of the generating functional

Z[J] = JbQ exp i[S[Q] +J . Q].

In this formula, Q is a field with classical action Sand

(2.1.1)

(2.1.2)

Z[J] is determined by performil1g the fUI:ctional integral over all cOl1figurations of the
field Q. The Green's fULctions are defined by

(OIT{Q ... Q} 10) = fbQ(Q ... Q) exp is[Q] = (~ ~)n Z[J]! .
In_times1 Ln_times1 l bJ J=O

(2.1.3)

In the discussion here, I will suppress all ir:dices and arguments of Q and J. The meaning
of the various formulae will be clarified by writirg them in diagrammatic form in figures.
In Sectior.s 2.1 aLd 2.2 I Willl:0t be discussilg gauge theories so Q might be taken to be
a scalar field. The complications introduced by a gauge theory will be discussed in Sec­
tion 2.3.

The Green's fur.ctions defined in Eq. (2.1.3) are the disconnected Green's functions,
that is, (hey contain completely disjoined pieces. The relation between disconnected and
connected Green's fU1:ctions is illustrated in Fig. 1. The disconnected pieces of Green's

Fig. 1. The relation between connected and disconnected graphs. D = disconnected, C = connected

furctions do not contribute to the S matrix. Therefore, it is better to work only with con­
nected Green's fur,ctiol1s. These are ger..erated by takir:g J derivatives of

W[J] = -iln Z[J]. (2.1.4)

At first sight it may seem surprisil1g that the disconnected pieces can be removed just by
takirg the logarithm in Eq. (2.1.4). Let me show how this works by cor structirg the first
few Green's fULctioi,s from (2.1.4). TakiLg a derivative of (2.1.4) with respect to J we find
from Eq. (2.1.3)

bW (OIQIO)
Jj. = «10) ,

(2.1.5)
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which is just the normalized vacuum expectation value of Q in the presence of the source J.
Taking a second derivative gives,

~ e5
2
W = [<01T{QQ} 10) _ «OIQIO) )2J .

i e5J2 <010) \ <010)
(2.1.6)

The term in brackets is just the full two-point Green's function minus its disconnected part.
The factor of Iii is just part of the definition of the conr:ected two-point function, so the

Fig. 2. The relation between the connected (C) and disconnected (D) two-point functions

second derivative of W is the connected two-point function as promised. Equation (2.1.6)
is displayed graphically in Fig. 2. Now let us take one more J derivative,

(~)2 e53W = <O\T{QQQ} \0) -3 <OIT{QQ} \0) <O\Q\O) 2 «0IQ10»)3
i e5J3 <010) (010)2 + <010)

= <OIT{QQQ} 10) -3 (~ e5
2
W) <OIQIO) _ (~IQI0»)3.

<010) i e5J2 <010) <010) (2.1.7)

To see the significance of this Equation, we draw it out graphically in Fig. 3. Clearly the
third derivative of W is just the connected three-point Green's fur.ction, all disconnected
pieces have been correctly removed. I will not bother to prove that W ~enerates all the

-Y>- 3 > ©-

©-

Fig. 3. The relation between connected (C) and disconnected (D) three-point functions

connected Green's functions. I hope my derivation of the first three shows you how things
work. It is not too difficult to complete the proof for all Green's functions inductively.

The connected Green's fUEctioLs can further be simplified by expressing them in terms
of one-particle-irreducible pieces as is shown in Fig. 4. A diagram is called one-particle
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reducible if it can be split into two disjoined pieces by cutting a single internal line. It is
more economical to compute only one-particle-irreducible (IPI) graphs and then string
these together into trees of IPI parts than it is to compute all the connected Green's functions

= +

+ +

Fig. 4. The relation between connected (C) and lPI graphs

directly. The IPI Green's functions are generated by a functional called the effective action.
It is defined as

where

rem = W[J]-J' Q,

_ .bW
Q=-.

()J

(2.1.8)

(2.1.9)

(1.2.10)

One should be careful to distinguish between the original field variable Q, and Q which
from Eqs. (2.1.9) and (2.1.5) can be seen to be the vacuum expectation value of Q in the
presence of the source J. It is quite remarkable that the simple transformation of Eqs.
(2.1.8) and (2.1.9) is enough to assure that the Qderivatives of reQ] will be the 1PI Green's
functions. Again I will not prove that this is so for all Green's functions, but just consider
the first few cases [14]. The first derivative of Eq. (2.1.8) gives

(jr
-= -J(jQ .
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This is just the quantum-mechanical field equation for Qwhich replaces the classical field
equation oSjoQ = -J in the quantized theory. Taking a derivative of (2.1.10) we find

However, recall that

_ oW
Q = OJ

so that

oj _ [ oQJ-
1

_ [ 02 WJ- 1
_. -1--- -- - -- -ID

c5Q OJ oJ2
'

(2.1.11)

(2.1.12)

(2.1.13)

where D is just the full propagator. Thus we find that the second derivative of r is the
inverse propagator (up to a factor of i which is conventionally absorbed into the definition
of the IPI Green's functions)

(2.1.14)

It is easy to see why the IPl two-point function is the inverse propagator. Write
Eq. (2.1.14) as

(2.1.15)

As shown in Fig. 5, this equation just means that the full propagator is obtained from the
IPl two-point function by dressing the two external legs with propagators. Equation (2.1.13)
can also be used to derive the identity

o OJ 0 -1 1 0
-=--=D --oQ oQ oj i oj (2.1.16)

This equation is really the reason why the effective action generates IPI graphs. When
operating on W, ojoJ adds an external line to a Green's function. Then, by (2.1.16), ojoQ

---<D- -
Fig. 5. The relation between connected (C) and IPI two-point functions

when operating on r adds an external line and removes the propagator from this line. This
continual amputation of the external propagators is what keeps the diagrams IPI. For
example, let us consider the third derivative of the effective action. From Eqs. (2.1.11)
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and (2.1.13) we find that

(2.1.17)

or equivalently

(~)2 ~3W = I'D 3 b
3_r .

3 3 ( 2.1.18)
.j bJ bQ

This equation, expressed graphically in Fig. 6, just states that the connected three-point

Fig. 6. The relation between connected (C) and IPl three-point functions

function is obtai ned from the IPI three-point function by adding propagators to the"external
legs. Finally, consider

b
4r _lIb [b

3
W(b

2
W)-3] _4b4W . _s(b

3
W)2-- = D - - -- -- = D - +31D -

bi;r j bJ bJ3 bJ2 bJ4 bJ3

= D_4b4~ _3iD(b~)2. (2.1.19)
bJ4 bQ3

This can also be written as

(2.1.20)

= 3

Fig. 7. The relation between connected (C) and IPI four-point functions

This equation is drawn out in Fig. 7 and clearly shows how the full connected four-point
function is correctly constructed from its IPI parts.
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2.2. The background field method

We have seen in the last Section that an important quantity to calculate in a field
theory is the effective action, nQ]. Once this is known, the S matrix can be constructed
by stringing together trees of IPI parts to generate the full connected Green's functions, then
amputating external propagators, putting all momenta on shell and adding appropriate
external wave-fur:ction factors. The background field method is a convenient way of
computing the effective action. I will begin by considering non-gauge theories. For these
theories, the background field method is identical to the conventional "field-shifting"
method which has frequently been used to compute the effective action and, in particular,
the effective potential [IS].

Recall that the generating functional for disconnected graphs was

Z[JJ = JoQ exp i[S[QJ +J . Q]. (2.2.1)

Let us define an analogous quantity in which we write the classical action S as a function
of the field Q plus an arbitrary background field </>. Thus

i[J, </>J = JOQ exp i[S[Q+</>J +J' QJ, (2.2.2)

i depends both on the conventional source J and on the background field cjJ which can be
thought of as an alternate source. Also, by analogy with the conventional generator of
connect~d graphs,

W[J] = i In Z[J]

we define

W[J, </>] = -i In i[J, </>].

In the conventional approach we defined

oW
oj

so here we write

Finally, to replace the conventional effective action

nQ] = W[J]-J. Q

we define the background field effective action

f[Q,</>] = W[J,</>]-J' Q.

(2.2.3)

(2.2.4)

(2.2.5)

(2.2.6)

(2.2.7)

(2.2.8)

To see what the point of all these definitions is, we shift the variable of integration
in Eq. (2.2.2), Q ~ Q-</>. This allows us to relate the conventional and background field
generating functions. One immediately finds

i[J, </>] = Z[J] exp - if· </>. (2.2.9)
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Taking a logarithm of this equation gives

W(J,cfJ] W(Jj-J ·cfJ· (2.2.10)

Next, differentiate Eq. (2.2.10) with respect to J. Recalling the definitions (2.2.5) and (2.2.6),
we obtain the relation

Q = Q-cfJ·

Finally, from Eqs. (2.2.8) and (2.2.7) we see that

(2.2.11)

f(Q,cfJ] W(Jj-J' cfJ-J· Q+ J. cfJ = r[Q]. (2.2.12)

But from Eq. (2.2.11) Q = Q+cfJ so

f(Q, cfJ] = r[Q+cfJ].

This is our main result. As a special case of (2.2.13), take Q = 0 so that

fro, cfJ] = r[cfJ].

(2.2.13)

(2.2.14)

This equation means that the effective action can be determined by computing fro, cfJ].
The background field effective action f[Q, cfJ] is just a conventional effective action

computed in the presence of the background field cfJ. It therefore consists of all IPI graphs
contributing to Green's functions. Recall that the IPI Green's functions are generated by
taking derivatives ofthe effective action. In this case, the derivatives of f(Q, cfJ] with respect
to Qwould generate IPI Green's functions in the presence of the background field cfJ. Now
fro, cfJ] has no dependence on Q so it generates no graphs with external lines. Instead,
fro, cfJ] it the sum of all IPI vacuum graphs in the presence of the cfJ field. This is one advan­
tage of the background field approach: it allows you to calculate the effective action by
summing only vacuum graphs (graphs with no external lines). Equation (2.2.14) then
assures you of getting the correct effective action with this method.

There are two quite different approaches to the calculation of fro, cfJ]. The first is to
treat the cfJ field exaetly. One sums all IPI vacuum graphs using the shifted Lagrangian
S[Q +cfJ] to generate Feynman rules. One must use the exact Q field propagator in the
presence of the background field cfJ. Then one computes the usual cfJ field diagrams with
vertices that depend on cfJ. Of course, this approach is only possible for very simple baek­
ground fields. For example, it is used to generate the effective potential for scalar field
theories [15, 16] when cfJ is taken to be a constant, and has been used to calculate the effective
action for covariantly constant gauge fields [17].

The second approach, which is the one used in this paper, is to treat the background
field cfJ perturbatively. Thus, we consider IPI vacuum graphs of the Q field with cfJ fields
appearing as external lines. In this approach the background field is arbitrary and in fact
does not have to be specified. Instead, we proceed as follows. We use the action S(Q+cfJ]
to generate Feynman rules. We take from the part of S quadratic in Q the ordinary Q field
propagator. Then, the non-quadratic parts of S generate interactions. Interactions among
the Q fields are used inside diagrams while interactions involving Q fields and cfJ fields
are used to generate external lines. In this way, any of the IPI Green's functions can be
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computed. For example, imagine that S[Q+4Jl contained a term aQ3 and another term
bQ24J. Suppose you wanted to calculate the lPI three-point fUfiction for this theory. One
graph contributing to this Green's function would be that of Fig. 8. In this graph all the
internal lines would be ordinary Q field propagators obtained from the part of S quadratic
in Q. The two three-point vertices joining three internal lines would be given by the interac­
tion term aQ3. However, the three-point vertices in this diagram which connect two internal

Fig. 8. A sample graph for background field calculation

lines to one external line would be given by the interaction bQ24J. Thus in the background
field approach you end up calculating diagrams identical to those you would have calculated
in a conventional approach. The only difference is that in the background field approach
the Feynman rules for vertices inside diagrams may differ from those for vertices connected
to external lines. These Feynman rules for gauge theories are given in Section 3.1.

2.3. Gauge theories and the background field gauge

The discussion of the last Section was concerned with non-gauge theories. For gauge
theories there is the important distinction that one must choose a gauge. In place of Eq.
(2.2.1) defining the generating functional, one has for a gauge theory

Z[J] = Jc5Q det [~~;J exp i [S[Q] - :rx G . G+J' QJ, (2.3.1)

where Q is now a gauge field Q:. In this equation S is the gauge field action

S - i Jd4x(F:v)2 (2.3.2)
with

Fa = 0 Qa _ 0 Qa + gfabcQbQc/lV /l v v /l /l v

for a group with structure constants jabc. In addition,

J . Q == Jd
4xJ:Q:

and

(2.3.3)

(2.3.4)

(2.3.5)

Ga is the gauge-fixing term: for example, Ga = 0/lQ: is a common choice. Finally, c5Gajc5o}
is the derivative of Ga with respect to a gauge transformation

(2.3.6)
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The background field generating functional, (2.2.2), is, for a gauge theory,

- f [De;a] [ 1 - - ]Z[J, AJ = bQ det bwb exp i S[Q+AJ- 21X G' G+J' Q , (2.3.7)

where Mja/bwb is the derivative of the gauge-fixing term under the infinitesimal gauge
transformation

1
bQ~ = _rbCwb(Q~+A~)+ g o#wa. (2.3.8)

We can now define the various quantities of Section 2.2 and relate them. Recall that the
relation between background field quantities and conventional quantities in Section 2.2
was derived by shifting the integration variable in the functional integral. With this in mind,
it is straightforward to derive in analogy with Eq. (2.2.14)

ito, A] = F[A] (2.3.9)

with the following provision. If 1[0, A] on the left-hand side of Eq. (2.3.9) is calculated
using a gauge-fixing term (ja = (jacQ, A), then it will be equal to the conventional effective
action F[Q] calculated with the gauge-fixing term Ga = (ja(Q_A, A) and evaluated
at Q = A. The gauge Ga = (ja(Q_A, A) may be an unusual gauge for the conventional
approach. Nevertheless, Eq. (2.3.9) and the gauge independence of physical quantities
assures us that the background field method, although it will give different Green's functions
than the conventional approach in a conventional gauge, will give us the same S matrix.
Thus it is a valid method for performing gauge theory calculations.

As was stated in the introduction, the great advantage of the background field method
is that it retains explicit gauge invariance. What this means is that there exists a choice
of gauge fixing term (ja for which the background field effective action 1[0; A] is a gauge
invariant functional of A. As a result its form is severely restricted. This gauge choice is

(2.3.10)

It is easy to see that with this choice of gauge, the background field generating functional
(2.3.7) is invariant under the transformations

bJ~ = - rbcwbJ~.

To show this, make the change of integration variables in Eq. (2.3.7)

Q~ ~ Q~ _ rbcwbQ~.

(2.3.11)

(2.3.12)

(2.3.13)

(2.3.14)

Equations (2.3.12) and (2.2.13) represent an adjoint group rotation so the term J. Q in
(2.3.7) is clearly invariant. Adding (2.3.Il) and (2.3.13) we find

1
b(Q~+A~) = _rbCwb(Q~+A~)+ - o#wa.

g
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This is just a gauge transformation on the field variable (Q~+A:) so the action S[Q+A]
is also invariant. Finally, (2.3.11) is a gauge transformation on A while (2.3.13) is an adjoint
rotation of Q. The gauge fixing term Ga of Eq. (2.3.10) is just the background field co­
variant derivative of Q. By definition, this is invariant under such transformations. Likewise,
it can easily be shown that the determinant factor in (2.3.7) is invariant. Thus t is invariant
under (2.3.11) and (2.3.12).

Since Q is just the conjugate variable to J, it follows immediately from the invariance
of t that f[Q, A] is invariant under

1
bAa = _fabc()JbAC+ _ a ap. p. p.()J ,

g

JQ: = - rbC()JbQ~. (2.3,16)

Note that Eq. (2.3.16) is a homogeneous transformation so fro, A] is invariant under
the transformation (2.3.15) alone. Since this is just an ordinary gauge transformation
of A, we see that fro, A] is a gauge invariant functional of A. As a result, IPI Green's
functions generated by differentiating fro, A] with respect to A will obey the naive Ward
identities of gauge invariance as stated in the introduction. Thus our goal has been accom­
plished. What remains is to see how the effective action fro, A] is computed.

3. Background field calculations

3.1. Feynman rules

The background field effective action fro, A] ger.erates IPI Green's functions. These
are calculated using Feynman rules derived from the shifted action S[Q +A], the gauge
fixing term (2.3.10) and the determinant factor in Eq. (2.3.7) which is written in terms of an
anti-commuting scalar ghost field in the usual way. Vertices involving Q fields are used
inside diagrams while vertices involving A fields are used for external lines. All propagators
appearing in these IPI graphs are Q field propagators. This is essential since the A field
propagator is undefined because A field gauge invariance has not been broken. Since only
IPI graphs are being considered, vertices involving only one Q field will never contribute
and so can be ignored.

The complete Feynman rules are given in Fig. 9. The lines terminating in the letter
A denote external lUles. The procedure for calculating an S matrix element from these
Feynman rules is the following. Write down all IPI graphs for a given Green's function.
Apply the Feynman rules of Fig. 9 using the vertices with lines terminating in A's for
external lines and the plain lines for internal lines. Once the IPI Green's function has
been computed the hard work is over, rer.ormalization has been carried out and the simple
Ward identities can be checked. At this point, you must choose a gauge for the background
field A. It does not have to be related to the original background field gauge choice. The
advantage of this method is that the fixing of a gauge for the A field could be postponed
until this point. Now, the A field propagator is defined and using it to connect IPI parts,
trees are built up to generate the connected Green's functioTis. Finally, the S matrix is deter­
mined by LSZ reduction.
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Fig. 9. Feynman rules for background field calculations in Yang-Mills theory. Wavy lines are Q field propagators,
wavy lines terminating in an A represent external gauge particles and dashed lines represent ghost propagators
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3.2. Renormalization

During the calculation of the effective actio'a, fro, A], divergences will be encountered
which must be renormalized. This is done by relating bare and rercormalized quantities by

(AIl)o = Z~/2All'

go = Zgg,

(3.2.1)

These field, coupling constant and gauge fixing parameter renormalizatiOI;s are sufficient
to renormalize the theory. There are two more fields, the Q field and the ghost field, which
do not have to be rer.ormalized. This is because they oLly appear ir:side loops. If these
fields were normalized we would fir.d that the renormalization factors appearing at the
vertices would caLcel those of the propagator, so renormalization of these fields is irrelevant.

Because explicit gauge invariaLce is retained in the background field method, the
renormalization factors Zg and ZA are, in fact, related. The ilJfirtities appearing in the gauge­
-invarialit effective action fro, A] must take the gauge invariant form of a divergent con­
stant times (F~v)Z' Now, accordh)g to (3.2.1), F~v is renormalized by

(F~.)o = Z~/2[oIlA~-avA~+ZgZ~/2grbcAtA~]. (3.2.2)

This will only take on the gauge covariant form of a constant times F~v if

Z = Z- 1/2
9 A' (3.2.3)

This is the relation between charge and background field renormalizations in the back­
ground field method.

The easiest way to renormalize a Yang-Mills theory is to use dimensional regulariza­
tion [18] and minimal subtraction [19]. In this scheme we perform all loop momeLtum
ir.tegrals in 4--2e dimeLsiOl,s and write the rellormalization COLstallts as sums over poles
in e such as

(3.2.4)

In ger~eral, if we calculate to r loops we will get contributions in Eq. (3.2.4) to
lie, l/e2

, ••. , IV.
b the dimensional regularization scheme, the bare couplirg cor stant is not dimension­

less. This is because the action in 4--28 dimertsions involves terms like

(3.2.5)

and

(3.2.6)

From (3.2.5) we fil~d that if the action is to be dimensioIiless, A must have dimer,sions of
(mass)l-•. Then Eq. (3.2.6) tells us that go has dimensiorcs (mass)'. If we still wish to use
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a dimensionless renormalized coupling constant, then we must introduce an arbitrary mass
parameter Jl and replace the coupling constant renormalization in Eq. (3.2.1) by

(3.2.7)

The introduction of this Jl parameter is the reason why Yang-Mills theory is not characteri­
zed by a dimensionless coupling constant, but rather by a mass parameter which is a partic­
ular combination of Jl and g usually called A. Sil.ce Jl is arbitrary, we must require that
go be independent of Jl which gives [20]

(3.2.8)

Now, by definition,

(3.2.9)

so we find that

(3.2.10)

Finally, using the chain rule

(3.2.10) can be written in the simpler form

oIn Zg
P=-8g-gP--·cg

From Eq. (3.2.3) this can also be written, in the background field gauge, as

loin ZA
P = -8g+z gp -ag .

(3.2.11)

(3.2.12)

(3.2.13)

Now ZA, from Eq. (3.2.4), is a sum ofpowers of 1/8. If the pfunction is to be finite, as it must
be, these various powers must cOLspire to car cel in (3.2.13). From this O1:e can derive
important relatior.s [20, 6] between the coefficieLts Z<;). The 0_ Iy fiuite term in pcan come
when 'the -8g term of p hits the 1/8 term in ZA on the right-hand side of (3.2.13). Thus,
taking the limit 8 -+ 0 we find that

op = _1- g2 -Z(l)
2 og A'

(3.2.14)

Thus, the pfunction can be determined from a howledge of the coefficierit of the 1/8 term
in the background field re1.ormalization factor. This is calculated in the next section.
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3.3. Calculation of the Yang-Mills f3 function

A good example of the tremendous simplifications introduced by the background
field method is provided by a computation of the Yang-Mills f3 function. Because the
divergences in this method are forced to take a gauge invariant form the f3 function can
be determined from the background field renormalization factor ZA through Eq. (3.2.14).
ZA can be obtained just by calculating loop corrections to the gauge field propagator [6].

,+-,
/'" '\

@--{, )-0
"". '"............

(0)

(b)

Fig. 10. Graphs for a one-loop calculation of the Yang-Mills f3 function

No vertex corrections need to be considered. This is in contrast to the conventional approach
[21, 22] where the gauge propagator, ghost propagator and gauge-ghost-ghost vertex all
must be computed.

For example, the one-loop Yang-Mills f3 function can be determined just by calculating
the two graphs of Fig. 10. The first graph, Fig. lOa, gives for the 1/8 pole (remembering
a factor -1 for the ghost loop)

ig
2
C (jab ( 1)

A e kk
(4n)2 38 [gllv - Il vJ

while Fig. 1Db gives

(3.3.2)

where CA is defined by
(3.3.3)

and is N for SU(N). Adding (3.3.1) and (3.3.2) together, we find that the divergences are
cancelled by defining

IlCA g2

ZA= 1+----.
38 (4n)2

When substituted into Eq. (3.2.14) this gives the well-known result [21]

IlCA g3

f3 = - -3- (4n)2 .

(3.3.4)

(3.3.5)
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Fig. 11. Graphs for a two-loop calculation of the Yang-Mills (! function. Boxes represent gauge-fixing term insertions resulting from renormalization of the gauge-fixing parameter.
Details of this calculation are given in Ref. [6]
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I have also calculated the two-loop contribution to the Yang-Mills f3 function [6J
from the graphs of Fig. 11. Here, the background field method results in an enormous
reduction in labour over conventional methods [22].

4. Conclusions

The background field formalism now exists for calculations in gauge theories to arbi­
trary numbers of loops. The method can be used for general discussions about the structure
and particularly about the diverger.ces of gauge theories, and for specific calculations.
In both of these applications, the retention of explicit gauge invariance made possible
by the background field gauge should be extremely useful.

I am very grateful to the organizers of the Cracow School for their hospitality.
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