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Preface

The goal of this article is to provide an informal introduction to the world of
curve counting, paying particular attention to the role of the virtual fundamental
class. To fix ideas we focus on Gromov–Witten invariants, but the arguments
in the later sections (§§5–8) can be applied more or less unchanged to the other
curve counting theories.

Our main emphasis is on motivation, and we frequently sacrifice rigour for
the sake of clarity. Furthermore we do not (for our sins) always use primary
sources; we have often found later expositions more lucid, most likely because
they were written with the advantage of hindsight.

Prerequisites A complete understanding of the virtual fundamental class re-
quires familiarity with several somewhat specialised areas in algebraic geometry
(specialised in the sense that they will not necessarily be found in a standard
reference). This includes intersection theory, deformation theory, derived cat-
egories and the theory of stacks (though we will largely ignore this last one).
We try to motivate and explain these topics as they arise, but likely the curious
reader will find our coverage insufficient; therefore we also provide references to
more detailed treatments.

As far as basic algebraic geometry is concerned (schemes, cohomology, etc.)
there are many good sources: we mention [Vak] and [Har77], or for the analytic
point of view [GH78] and [Huy05]. Of course we use only a small subset of this
material.

Notational Conventions The usual algebro-geometric conventions are adopted:
e.g. by “scheme” we mean “scheme of finite type over an algebraically closed
field.” Given our informal approach we will not be too strict about these, relying
for the most part on the reader’s intuition and experience.

There is, however, one convention which may be unfamiliar to readers with-
out a background in intersection theory. We will refer frequently to the (co)homology
groups of complex varieties. In this situation we only really care about (co)homology
in even degree, since these are the only classes which can represent subvarieties.
Therefore we make the convention:

Ak(X) = H2k(X), Ak(X) = H2k(X)

More algebraically, we can think of these as Chow groups (see §1 of [Ful97]).
This approach is more appropriate for the constructions we are to undertake,
but has the downside of being less familiar than (co)homology.

That being said, there is an appropriate setting in which these groups co-
incide (the correct concept is Borel–Moore homology, see §19 of [Ful97]). In
general, then, we will be fairly vague about whether we are using (co)homology
or Chow groups. Though it is strictly speaking incorrect, we will use the terms
“homology class” and “algebraic class” interchangeably. The reader who prefers
one or the other can substitute in her prefered choice.
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1 Curve Counting

One of the distinguishing features of algebraic geometry is its rigidity. This
manifests itself in many different ways, most of which amount to the appearance
of certain objects in “small” (finite-dimensional or even finite) families. For
example, an algebraic vector bundle over any (reasonable) scheme will have a
finite-dimensional space of sections (this is almost never true in the topological
category, due to the existence of bump functions).

This rigidity is what makes so-called curve counting theories possible. It is
a common occurrence that (algebraic) curves on a variety fit into finite fam-
ilies. Here by “curve” we mean a nonsingular 1-dimensional subvariety, and
by “family” we mean some collection of curves which are of a fixed type and
satisfy some incidence conditions in the ambient variety. The basic example is
projective space, where our families consist of curves of a fixed degree passing
through some chosen subvarieties.

Example 1.1. A classical if somewhat simple example concerns curves in the
projective plane. Choose 9 generic points in P2 and consider the family of plane
cubics which pass through all of these points. It is a well-known fact, following
from the theory of linear systems, that there exists exactly one such cubic. Thus
the family in this example consists of a single point.

Example 1.2. Another classical example is the famous 27 lines on a cubic
surface (see for instance [Mat13]). Note that in this case there are no incidence
conditions: we don’t require the lines to pass through any chosen subvarieties
of the ambient cubic surface.

This is the idea of curve counting: to identify finite families of curves in
algebraic varieties, and to find their sizes. As indicated above, there are two
types of restrictions we place on our curves when forming these families: their
types and the incidence conditions they satisfy.

1.1 Curve Classes

We first explain what we mean by the “type” of a curve. The motivating example
is the degree of a curve in the projective plane. To generalise this to arbitrary
varieties, we observe that since A1(P2) = Z is generated by the class of a line,
a choice of degree is equivalent to a choice of homology class β ∈ A1(P2) which
the curve represents (in the sense that the pushforward of the fundamental class
along the inclusion equals β). This equivalent condition now makes sense on
any variety: we pick some homology class in A1(X) and consider only those
curves which represent that homology class.

Why do we make this restriction? There is certainly intrinsic interest in
distinguishing different homology classes: we can expect curves representing
different classes to look very different inside X, and so it is natural to separate
them and examine the different families which arise.
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There is also a practical reason. Consider again the case of P2; the space of
curves of a given degree d is

PH0(P2,O(d))

which has dimension
(
d+2
2

)
− 1. However, the space of all curves is given by

the product of the above spaces over all d, and so is infinite-dimensional. Thus
restricting to curves of a fixed degree ensures that our families are manageable
(i.e. not too big) which is important if we are trying to understand the geometry
of these families. A similar observation holds in the general setting.

Furthermore, as it turns out, the space of all curves has infinitely many
connected components, each corresponding to a fixed homology class; thus in
choosing a homology class we are really just restricting ourselves to a particular
connected component of the large moduli space.

1.2 Incidence Conditions

Once we have fixed a homology class for our curves, we then require them to
satisfy certain (possibly empty) incidence conditions, e.g. passing through 9
chosen points in P2. Of course for this to make sense our incidence conditions
have to be such that the corresponding family is finite: too few conditions and
we will have infinitely many curves (think of lines passing through a single
point in P2); too many conditions and we won’t have any (think of lines passing
through 3 non-collinear points in P2).

We also require our incidence conditions to be generic. To see why this is
important, look back at Example 1.1. Our “count” in this example is 1; however,
if we had chosen the 9 points as the intersection locus of two cubics (that is,
non-generically) then we would have obtained a whole 1-dimensional family of
curves (namely the pencil defined by the two cubics). In a sense this family is
“accidental”: if we were to slightly perturb our chosen points we’d return to a
finite family. Consequently we would like to exclude non-generic behaviour such
as this.

How do we ensure our conditions are generic in a non-ad-hoc manner? The
trick is to think topologically: we replace our subvarieties by the homology
classes they represent, and require that the curves pass through these homology
classes; more or less this is saying that the curves pass through some generic
representatives of the classes (see Lemma 14 of [FP95] for a precise statement
of this in the case of a homogeneous variety). Equivalently, using the language
of Chow groups: we work with algebraic classes, as opposed to algebraic cycles.

1.3 Compactness

How do we make sense of the stratum of curves passing through a given homol-
ogy class? As one might expect, this is also homological in nature – it exists as
an algebraic cycle but not as an algebraic class.

The idea is as follows. Let C(X,β) denote the moduli space of curves in X
of class β. Then given a homology class α ∈ A∗(X), we hope to be able to find
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a class α̃ ∈ A∗(C(X,β)) which represents the stratum of curves passing through
α. Unfortunately, there is no satisfactory way to obtain α̃ as a homology class.
Instead we must dualise and work with cohomology.

Using Poincaré duality on X we can think of α as a cohomology class. Af-
ter fixing a marked point on our curve, we get a tautological evaluation map
C(X,β) → X; we then obtain the appropriate class α̃ by pulling back α along
this map. A more detailed explanation of this will be given in §2.4.

More generally, we might wish to consider curves passing through multiple
classes α1, . . . , αn. In this situation we need to take the transverse intersection
of α̃1, . . . , α̃n (thinking of these as homology classes).

Under Poincaré duality intersection corresponds to cup product. Therefore
we form the class α̃1 ∪ . . . ∪ α̃n. Finally we obtain a homology class by passing
back through the Poincaré isomorphism (this time on C(X,β) rather than on
X), given by capping with the fundamental class:∫

C(X,β)
α̃1 ∪ . . . ∪ α̃n

But now we run into a problem. The space C(X,β) is usually noncompact;
as such, the above expression doesn’t really make any sense. Put differently:
Poincaré duality does not apply to C(X,β), so there is no satisfactory way of
thinking of the classes α̃i as living in homology.

Aside 1.3. Why did we not see this problem in the earlier examples? We were
lucky because the moduli spaces we were working with happened to be compact.
In general, however, this won’t be the case.

The solution to the problem is to compactify the moduli space. This allows
us to count curves (in the sense described above), but introduces an element of
danger: our counts may now differ from the classical “näıve” curve counts, due
to contributions from the boundary of the new moduli space.

More importantly there is a choice to be made, since many possible compact-
ifications exist. Of course, not all of these are equally “sensible”: as we will see
shortly, there is a geometric reason behind the noncompactness of the moduli
space; as such we should at least restrict ourselves to those compactifications
which reflect this geometry.

However even after making this restriction, there are still many suitable
candidates. Different compactifications yield different curve counting theories:
Gromov–Witten theory, Donaldson–Thomas theory, the theory of BPS invari-
ants, etc. They are all (at least conjecturally) related, though usually in quite
subtle ways (see [PT14]).
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2 Stable Maps

In this article our main focus will be on Gromov–Witten theory. This is the
oldest of the curve counting theories, arising from a compactification of the space
of smooth curves in X called the moduli space of stable maps. Our primary
reference for this section is the excellent [FP95]. A good source for a broader
look at Gromov–Witten theory is [CK99].

2.1 Parametrised Curves

To motivate the compactification, we think in terms of parametrisations. That
is, we associate to each smooth 1-dimensional subvariety of X an embedding
C → X of some abstract Riemann surface C.

This embedding is unique up to composition with automorphisms of C.
Therefore we can describe the moduli space C(X,β) (at least set-theoretically)
as follows: it is the set of isomorphism classes of embeddings µ : C → X with
C a Riemann surface and µ∗[C] = β, where two embeddings are isomorphic if
there is an isomorphism of their domains making the obvious diagram commute.

When constructing moduli spaces in algebraic geometry it is customary be-
forehand to fix as many topological invariants as possible. Therefore we restrict
ourselves to domain curves having a fixed genus g. Notice that in our motivat-
ing example of curves in P2 this is not really a restriction, since the degree of a
plane curve determines the genus. Furthermore this is a natural restriction to
make when considering moduli spaces of stable curves: see §A.

The resulting moduli space is denoted Cg(X,β). The restrictions on the
genus and the homology class ensure that this space usually has good proper-
ties (e.g. finite-dimensionality).

Before describing the compactification, let us briefly discuss the origins of
these ideas. Certainly the use of parametrisations is not the most natural ap-
proach for an algebraic geometer. However it is very natural in symplectic
geometry, which is where the theory of stable maps originated: specifically in
Gromov’s study of J-holomorphic curves (for a comprehensive treatment see
[MS12]). Later on it was realised that these constructions could be understood
from a purely algebraic viewpoint, which is the approach taken in this article.

Perhaps a more natural approach from the point of view of algebraic ge-
ometry is to study smooth 1-dimensional subvarieties in terms of their ideal
sheaves. This leads to a different compactification of the moduli space, provid-
ing the starting point for Donaldson–Thomas theory (see §3 1

2 of [PT14]).

2.2 Compactification

To see how the moduli space can fail to be compact, we consider sequences of
curves in Cg(X,β) which have no limit inside this space (more rigorously, we
use the valuative criterion for properness: see [Har77] §II.4).
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One possibility is that the domain curves degenerate towards something
which is singular. When this happens there are often several candidates for
what the limiting curve should be, but we can always choose one which has at
worst nodal singularities.

Topologically, the picture is something like this:

Whereas the algebraic description is:

The nodal curve may have a number of smooth irreducible components which
intersect each other transversally, and could also have some singular components
with self-intersections (both possibilities are illustrated in the examples above).
Crucially, though, it must always have the same (arithmetic) genus as the orig-
inal smooth curve.

The other possibility occurs when we fix the domain curve and allow the
map itself to degenerate from an embedding to something more wild. In this
case it can be difficult to control what happens; however at the very least we
can always find a limiting map which has only finitely many automorphisms
(note that an embedding has no nontrivial automorphisms). This requirement
is also helpful in establishing regularity properties of the moduli space (see §A).

Our compactification of the moduli space will be obtained by adding in all of
these degenerations. We are therefore led to the following definition: a stable
map to X of genus g and class β is a map µ : C → X where C is a projective
curve of arithmetic genus g with at worst nodal singularities, µ∗[C] = β and µ
has only finitely many automorphisms.

The corresponding moduli space is denotedMg(X,β). It contains Cg(X,β),
as well as the space Mg(X,β) consisting of those stable maps with smooth
domains.
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2.3 Marked Points

It is helpful when dealing with incidence conditions to introduce marked points.
Given everything we have already said, this is a relatively simple matter.

We define a stable map to X of genus g and class β with n marked points
to be the data (C, p1, . . . , pn, µ) where µ : C → X is a stable map as above, and
p1, . . . , pn ∈ C are n distinct, nonsingular marked points (where we also require
automorphisms of the map to preserve the marked points).

The moduli space of stable maps with nmarked points is denotedMg,n(X,β).
This is also compact, although the compactness causes some limiting behaviour
which at first seems counterintuitive. For instance, suppose that two marked
points approach each other on the domain curve; in the limit what happens is
that an additional P1 containing the two marked points “bubbles” off from the
curve. This keeps the marked points distinct, so what we end up with is still
a stable map with n marked points, i.e. the limit still belongs to the moduli
space.

Of course if set n = 0 we recover the space Mg(X,β). From now on all the
stable maps we deal with will be understood to have some number n of marked
points. As we are about to see, the number of marked points we choose will be
equal to the number of incidence conditions we wish to impose.

2.4 Defining Gromov–Witten Invariants

A fundamental fact, mentioned above, is that the moduli space Mg,n(X,β) is
compact. Therefore we can apply our discussion in §1.3 to define curve counts.

Choose the cohomology classes α1, . . . , αn ∈ A∗(X) which we want our
curves to pass through. There are tautological evaluation maps

ev1, . . . , evn : Mg,n(X,β)→ X

defined by evaluating on the different marked points. We obtain the classes α̃i
of §1.3 by pulling back along these maps:

α̃i = ev∗iαi

Finally we define the associated Gromov-Witten invariant to be the resulting
curve count:

NGW
g,β (α1, . . . , αn) =

∫
Mg,n(X,β)

ev∗1α1 ∪ . . . ∪ ev∗nαn

However, this definition is wrong in one very important respect. Instead of
integrating over the whole moduli space Mg,n(X,β), we should integrate over
a so-called virtual fundamental homology class:

[Mg,n(X,β)]vir ∈ A∗(Mg,n(X,β))

The remainder of the article will be devoted to this problem: explaining what
virtual fundamental classes are, why they are needed, and how they are con-
structed.
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3 Deformation Theory of Stable Maps

In order to understand the need for a virtual fundamental class we need to study
the moduli space of stable maps. In this section we undertake this on the first-
order infinitesimal level: that is, we study the tangent spaces to Mg,n(X,β) at
various points.

Given that we haven’t actually constructed the moduli space, this informa-
tion may seem hopelessly out of reach. However, as we will see, the single fact
we do know about it – namely that it represents the moduli functor of stable
maps – is enough to determine several of its most basic features.

3.1 Tangent Space and Dual Numbers

Fix a stable map (C, p1, . . . , pn, µ) in Mg,n(X,β) and consider the Zariski tan-
gent space at this point. We know that this is supposed to give a first-order
picture of the moduli space local to the chosen point.

How do we compute this? The key is the following general fact.

Proposition 3.1. Let M be a scheme over k. For p ∈ M the tangent
space TM,p of M at p is naturally isomorphic to the space of morphisms
Spec k[x]/(x2)→M whose image is p.

Some remarks are in order. The ring k[x]/(x2) is called the ring of dual
numbers and is usually denoted k[ε]. The idea is that ε ∈ k[ε] is an infinitesi-
mally small number, so that its square vanishes.

The dual numbers form an Artinian local ring, which means that topologi-
cally Spec k[ε] is just a single point. However its structure sheaf is bigger than
that of the honest point Spec k. We think of it as a point with a first-order
1-dimensional thickening. Consequently a morphism Spec k[ε]→M whose set-
theoretic image is p should be thought of as a first-order “shred” of a curve in
M as it passes through p. This justifies (though certainly doesn’t prove) the
above result.

3.2 Families of Stable Maps

How does this help? In our situation,M =Mg,n(X,β). Suppose more generally
that M is a (fine) moduli space for some moduli problem, call it the moduli
problem of widgets. Since M represents the corresponding moduli functor of
widgets, we know that a morphism Spec k[ε]→M is the same thing as a family
of widgets over Spec k[ε].

We should explain what this means in our case. In §2 we defined stable maps,
but from the point of view of a moduli problem this definition was incomplete,
since we didn’t define what a family of stable maps should be. Put differently,
we defined the moduli functor on the single scheme Spec k, but not on other
more complicated schemes.

Let us rectify this omission; again we refer to [FP95] for full details. A
family of stable maps (with n marked points) over a scheme S consists of a
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diagram

C X

S

µ

π

where π is a flat, projective morphism with n sections p1, . . . , pn : S → C such
that for each geometric point s ∈ S the data

(Cs, p1(s), . . . , pn(s), µ|Cs)

is a stable map. The moduli functor of stable maps Schemes→ Sets sends each
scheme S to the set of (isomorphism classes of) families of stable maps over S,
and the statement that Mg,n(X,β) is a fine moduli space means that it is a
representing object for this functor (see §A for results concerning the existence
of this space).

3.3 First-Order Deformations of Stable Maps

We now bring the discussions of §3.1 and §3.2 together. Given a stable map
(C, p1, . . . , pn, µ) we see from Proposition 3.1 and the definition of a family of
stable maps that a tangent vector to the moduli space at this point is the same
thing as a family

C X

Spec k[ε]

µ

π

over Spec k[ε] whose restriction to the single geometric fibre of π gives (C, p1, . . . , pn, µ).
This is what we call a first-order deformation of the stable map. For gener-
alities on deformations see [Har12] or [Ser06].

We will now compute the space of such first-order deformations in terms of
data intrinsic to (C, p1, . . . , pn, µ). For this we will rely somewhat on intuition,
though of course all the arguments can be made rigorous. Our main reference
is §3.B of [HM98].

The deformations of (C, p1, . . . , pn, µ) can be split into deformations of the
domain (C, p1, . . . , pn) and deformations of the map µ. This approach is reminis-
cent of the discussion in §2.2 where we considered different ways of degenerating
a smooth embedded curve.

We first focus on deformations of the domain. There is the following well-
known result:

Theorem 3.2. Let X be a smooth variety. Then the space of first-order defor-
mations of X is H1(X,TX).

Sketch proof. For a full proof see Theorem 5.3 of [Har12]. We sketch an ar-
gument in the case where X is a complex manifold. The idea is to deform
the complex structure of X by modifying the transition maps of some atlas
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(Ui, ϕi). These deformations are holomorphic automorphisms of the pairwise
intersections Uij . To first-order therefore (and remember we are dealing with
first-order deformations here) they are sections in H0(Uij , TX). This gives a
Čech 1-cocycle, defining an element of H1(X,TX). Conversely any such ele-
ment gives compatible first-order deformations of the transition maps.

The curve C also has marked points, and we want our deformations to keep
track of these. Therefore we require a modification of the above theorem.

Theorem 3.3. Let (C, p1, . . . , pn) be a smooth curve with n distinct marked
points. The space of first-order deformations of (C, p1, . . . , pn) is:

H1(C, TC(−p1 − . . .− pn))

Sketch proof. Modifying the proof of Theorem 3.2, we again deform the transi-
tion maps to get holomorphic automorphisms of the pairwise intersections Uij .
However we now require these maps to preserve the marked points; this means
that the corresponding vector fields vanish at the marked points. Therefore our
cocycle gives an element in H1(C, TC(−p1− . . .− pn)), the sheaf of vector fields
vanishing at p1, . . . , pn. For more details see §3.B of [HM98].

Aside 3.4. Of course for us the curve C is not necessarily smooth, since we
allow nodal singularities. The computations in the singular case are significantly
more involved, involving certain Ext groups and the so-called dualising sheaf of
the curve. To keep things simple we will restrict to the smooth case; that is, we
will work over the open stratum:

Mg,n(X,β) ⊆Mg,n(X,β)

Nevertheless, all the virtual dimension calculations carried out in §3.4 can be
extended to the singular case, and the final result is the same.

Having dealt with deformations of the domain curve, we now focus on defor-
mations of the map µ. It is a fact that the space of such first-order deformations
is:

H0(C, µ∗TX)

This is clear in the case where µ is an embedding: then a section of µ∗TX is just a
vector field along C ↪→ X, and flowing along that vector field gives a deformation
of the embedded curve inside X, i.e. a deformation of the embedding.

We therefore arrive at the following result.

Theorem 3.5. The tangent space toMg,n(X,β) at the point (C, p1, . . . , pn, µ)
is:

H1(C, TC(−p1 − . . .− pn))⊕H0(C, µ∗TX)
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3.4 Virtual Dimension

The dimension of the tangent space is very hard to calculate (at least when
g ≥ 1), but we can find a natural approximation – called the virtual dimension
– which is more tractable. First note that by Serre duality we have

H1(C, TC(−p1 − . . .− pn)) ∼= H0(C,Ω⊗2C (p1 + . . .+ pn))

so that the dimension of the tangent space can be expressed in terms of global
sections:

h0(C,Ω⊗2C (p1 + . . .+ pn)) + h0(C, µ∗TX)

We know that a good approximation to h0 is given by the holomorphic Euler
characteristic χ (whose failure to equal h0 is measured by the higher derived
functors Hi). Since C is a curve the Euler characteristic is 2-term, i.e. we have:

χ(C,Ω⊗2C (p1 + . . .+ pn)) = h0(C,Ω⊗2C (p1 + . . .+ pn))− h1(C,Ω⊗2C (p1 + . . .+ pn))

χ(C, µ∗TX) = h0(C, µ∗TX)− h1(C, µ∗TX)

These provide an approximation (in fact a lower bound) for the dimension of
the tangent space, which we call the virtual dimension of Mg,n(X,β):

vdimMg,n(X,β) = χ(C,Ω⊗2C (p1 + . . .+ pn)) + χ(C, µ∗TX) (3.1)

The virtual dimension depends, a priori, on which point (C, p1, . . . , pn, µ) in
Mg,n(X,β) we are at. However, we know from Riemann–Roch that the holo-
morphic Euler characteristic is a topological invariant; consequently it should
not be too surprising that we can compute vdim entirely in terms of X and the
discrete invariants g, n, β. In particular it does not depend on the point in the
moduli space.

We start with the first term (the one corresponding to the curve C). The
Riemann–Roch theorem for curves gives:

χ(C,Ω⊗2C (p1 + . . .+ pn)) = deg Ω⊗2C (p1 + . . .+ pn) + 1− g

We compute the degree as follows:

deg Ω⊗2C (p1 + . . .+ pn) =

∫
C

c1(Ω⊗2C (p1 + . . .+ pn))

=

∫
C

−2c1(TC) + c1(O(p1 + . . .+ pn))

= −2χ(C) + n

= 4g − 4 + n

From which we obtain:

χ(C,Ω⊗2C (p1 + . . .+ pn)) = 3g − 3 + n
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For the second term of (3.1) (the one corresponding to the map µ) we use the
Hirzebruch–Riemann–Roch theorem. We see that

ch(µ∗TX) = µ∗ch(TX) = µ∗(dimX + c1(TX) + . . .) = dimX + µ∗c1(TX)

where the higher-order terms vanish because dimC = 1. We also have

td(C) = 1 + c1(TC)/2

and therefore we obtain:

χ(C, µ∗TX) =

∫
C

ch(µ∗TX) td(C)

=

∫
C

(
dimX

2

)
c1(TC) + µ∗c1(TX)

=

(
dimX

2

)
χ(C) +

∫
C

µ∗c1(TX)

= dimX(1− g) +

∫
β

c1(TX)

We have now arrived at the computation of the virtual dimension:

vdimMg,n(X,β) = 3g − 3 + n+ dimX(1− g) +

∫
β

c1(TX)

= (dimX − 3)(1− g) +

∫
β

c1(TX) + n

So far we have seen that the virtual dimension is a lower bound for the
dimension of the tangent space at each point. In §5 we will see that in fact

vdimMg,n(X,β) ≤ dimMg,n(X,β)

which is a much stronger result (since the moduli space will often be singular).
We therefore think of the virtual dimension as an “expectation” for the

true dimension; the failure of this expectation is measured by the difference
dim− vdim.

Perhaps the most important fact about the virtual dimension is that it is
deformation invariant : it remains unchanged under small deformations of the
variety X.

To see why, take some deformation of X (and accompanying deformation of
the map µ). Then the sheaf µ∗TX on C can vary, and consequently so too can
h0(C, µ∗TX). Therefore in this situation the dimension of the tangent space of
Mg,n(X,β), as well as its true dimension, may change; the true dimension is
not deformation invariant.

However by Riemann–Roch the Euler characteristic of µ∗TX depends only
on the topological structure. Since locally any deformation of a sheaf is topo-
logically trivial (see e.g. Corollary 6.9 of [BT82]) it follows that the virtual
dimension does not change.
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4 An Example

At this point we take a detour from the general theory to explore a particular
example of the moduli space of stable maps. As we will see, this is a case in
which the true dimension exceeds the virtual dimension.

The variety we consider is the blowup X = Blp(P2) of P2 at a single point.
We will see that stable maps to X can be understood quite well in terms of
stable maps to the varieties P2 and P1. This is useful because of the following
fact:

Proposition 4.1. The moduli space M0,n(Pk, d) has pure dimension equal to
the virtual dimension.

This holds in greater generality for any smooth convex variety, though we
will not need this here; for a proof see Theorem 2 of [FP95].

Using the above result we will be able to compute the true dimensions of
various strata of the moduli space of stable maps to X. On the other hand the
virtual dimension of the space will be found via a straightforward topological
computation.

4.1 Chow Group of the Blowup

Before doing anything we must choose a homology class for our maps to rep-
resent; thus we need some understanding of the Chow group of curves in X.
Unsurprisingly, this is closely related to the Chow group of curves in P2:

A1(X) = π∗A1(P2)⊕ ZE = Zπ∗H ⊕ ZE

Here π : X → P2 is the blowing up map, E ⊆ X is the exceptional divisor and
H ⊆ P2 is a hyperplane. This formula is certainly plausible: a curve in X that
doesn’t touch E will correspond to a curve in P2, which justifies the splitting.
For a complete proof, see [Har77] §V.3 or [GH78] §4.6.

The multiplicative structure on A1(X) is also easy to describe:

(π∗H)2 = 1, E2 = −1, (π∗H)E = 0 (4.1)

The first and third equations should be fairly clear. The second equation arises
from the following fact: Blp(A2) is equal to the total space of O(−1)→ P1, and
therefore a neighbourhood of E ⊆ X is isomorphic (in the topological category)
to a neighbourhood of the zero section P1 ⊆ O(−1). Thus:

E2 =

∫
E

c1(NE/X) =

∫
P1

c1(NP1/O(−1)) =

∫
P1

c1(O(−1)) = −1

We will make use of this multiplicative structure later on, when we compute the
virtual dimension of the moduli space.

There is one more property of the Chow group which we must explain, and
that is its behaviour with respect to strict and total transforms. If we have a
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curve C in P2 we can take its strict transform C̃ in X, which is isomorphic to
the blow up of C at p (see [EH00] §IV.2). This is related to the total transform
π∗C by the relation

π∗C = C̃ + rE (4.2)

where r is the multiplicity of p on C. Again this formula is fairly intuitive: the
difference between the total transform and the strict transform is a collection
of copies of the exceptional divisor, one for each time C passes through p. For
a proof see [Har77] §V.3.

As long as p ∈ C is a nonsingular point the blow up of C at p is equal to
C (since p is a smooth hypersurface), and so C̃ ∼= C. We will always be in this
situation, since for stable maps the marked points must be nonsingular.

4.2 Stable Maps of Class 3π∗H

We will be considering the moduli spaceM0,0(X, 3π∗H). Roughly speaking this
consists of those curves which blow down to cubics in P2 not passing through p.

The above information on the Chow group makes it straightforward to cal-
culate the virtual dimension. We have:

vdimM0,0(X, 3π∗H) =

∫
3π∗H

c1(X)− 1

But clearly ∫
π∗H

c1(X) =

∫
H

c1(P2) =

∫
P1

c1O(3) = 3

so that we obtain:

vdimM0,0(X, 3π∗H) = 3

∫
π∗H

c1(X)− 1 = 8

In what follows we will compute the true dimensions of various strata of this
moduli space, and find that they are in excess of this virtual dimension.

4.3 Singular Strata of the Moduli Space

The singular strata will be constructed by considering different types of cubics
downstairs.

4.3.1 Maps of Type 3π∗H

Consider therefore a stable map (C, µ) in M0,0(P2, 3H) such that p /∈ µ(C).
Then by (4.2):

µ̃(C) = π∗3H = 3π∗H

Clearly we can lift µ to a map C → µ̃(C) ↪→ X and by the above this rep-
resents the class 3π∗H. This process gives us a large stratum of elements in
M0,0(X, 3π∗H), corresponding to maps in M0,0(P2, 3H) which do not meet p.

15



To calculate the dimension of this stratum, we observe that the collection of
maps inM0,0(P2, 3H) which do not meet p forms a (nonempty) open subset of
the moduli space. Thus it has dimension equal to:

dim M0,0(P2, 3H) = vdimM0,0(P2, 3H) =

∫
3H

c1(P2)−1 =

∫
3H

c1O(3)−1 = 8

Here we have equated the true dimension with the virtual dimension by Proposi-
tion 4.1. So we have found an open stratum of the moduli spaceM0,0(X, 3π∗H)
whose true dimension equals the virtual dimension.

4.3.2 Maps of Type 3π∗H − E + E

Let us start again, this time considering stable maps (C, µ) in M0,0(P2, 3H)
which pass through p with multiplicity 1. As before the formula relating strict
and total transforms gives:

µ̃(C) = 3π∗H − E

Now we can lift µ to a map Blq(C) = C → µ̃(C) ↪→ X to get a stable map of
class 3π∗H−E (here q is the point of C mapping to p ∈ X). To obtain a stable
map of class 3π∗H, we must add some P1 components to the domain C and
extend µ to the larger curve so that when restricted to these new components
it gives a stable map to X of class E. One might say that we are considering
maps of type “3π∗H − E + E.”

There are thus two choices to be made here. The first is in choosing a
stable map passing through p. Since p has codimension 2 in P2 the set of
stable maps satisfying the appropriate incidence condition has codimension 2
in M0,1(P2, 3H). Thus there is an 8 + 1 − 2 = 7-dimensional stratum of such
stable maps.

The second choice concerns the stable map to X of class E. Since E ∼= P1,
this is the same thing as an element of the moduli spaceM0,0(P1, 1), which has
dimension:

dim M0,0(P1, 1) = vdimM0,0(P1, 1) =

∫
P1

c1(P1)− 2 = 0

(Geometrically, there is only one degree 1 curve in P1 – namely the whole of
P1 – so this calculation is what we should expect.) So we have a 0-dimensional
space of choices here. Putting these two together, we obtain a 7-dimensional
stratum of maps of type 3π∗H − E + E.

4.3.3 Maps of Type 3π∗H − rE + rE

The previous examples naturally generalise to give strata of dimension larger
than the virtual dimension. We consider curves of type 3π∗H − rE + rE for
r = 0, 1, 2, 3 (we stop at r = 3 because beyond this the class 3π∗H − rE is not
effective, i.e. there are no stable maps representing it).

16



The set of curves inM0,r(P2, 3H) passing through p with multiplicity r has
dimension 8 + r − 2r = 8− r.

The remaining dimensions to add are:

dimM0,0(P1, r) = vdimM0,0(P1, r) =

∫
rP1

c1(P1)− 2 = 2r − 2

Therefore the true dimension of this stratum is 8 − r + 2r − 2 = r + 6. So for
r = 3 we have found a component of M0,0(X, 3π∗H) with true dimension 9,
greater than the virtual dimension 8.
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5 Virtual Fundamental Classes

We now return to the main discussion. Recall that in §3 we defined the virtual
dimension of the moduli space of stable maps, and said that it was always less
than or equal to the true dimension of the moduli space.

When the true dimension exceeds the virtual dimension (as in the example
of the previous section), we interpret this as being caused by a lack of genericity
in the moduli data (a failure of our “expectation”). Correspondingly when these
dimensions coincide we say that the moduli space has the correct dimension
(i.e. that the moduli data is generic).

5.1 Motivating the Virtual Fundamental Class

In a perfect world, we would like to perturb our moduli data so that the moduli
space has the correct dimension, and then do curve counts on this perturbed
space. Indeed in symplectic geometry this is often (though not always) possible:
one takes smooth deformations of the data to cut down the true dimension to
the virtual dimension. However it is clear that such an approach will not work
in algebraic geometry, since we only have access to algebraic functions.

A virtual fundamental class is a homological substitute for this perturbed
moduli space. It comes from the observation that in our initial (incorrect)
attempt at defining Gromov–Witten invariants (§2.4), we only made use of the
true dimension of Mg,n(X,β) once, when we integrated over its fundamental
class:

NGW
g,β (α1, . . . , αn) =

∫
Mg,n(X,β)

ev∗1α1 ∪ . . . ∪ ev∗nαn

A virtual fundamental class is a certain homology class

[Mg,n(X,β)]vir ∈ AvdimMg,n(X,β)
(Mg,n(X,β))

which when the true dimension equals the virtual dimension coincides with the
fundamental class of the moduli space. In general the virtual class should be
interpreted as the fundamental class of the perturbed moduli space which, if
it existed, would be a subscheme of the original moduli space of codimension
dim− vdim.

With this in hand we immediately arrive at the correct definition of the
Gromov–Witten invariants:

NGW
g,β (α1, . . . , αn) =

∫
[Mg,n(X,β)]vir

ev∗1α1 ∪ . . . ∪ ev∗nαn

At the end of §3.4 we saw that the virtual dimension was deformation in-
variant. It turns out that the same is true for the virtual fundamental class,
and so also for the Gromov–Witten invariants.

This deformation invariance is philosophically important, since we don’t
want our curve counts to depend on any accidental features of the moduli data.
It is also useful: in computations one can often deform to a nicer situation and
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compute the desired Gromov–Witten invariants there. Notice that we wouldn’t
have had this invariance under our old, näıve definition.

How do we go about constructing a suitable virtual class? There are several
different strategies, but in this article we focus on the approach of Behrend
and Fantechi [BF97]. Our aim is to convey (without rigour) some of the main
features of their construction, starting with a simple toy model before moving
on to the general case. Our primary reference is [PT14].

Although it is certainly our main concern, what follows is not specific to
Gromov–Witten theory: in each of the different curve counting theories, there
is a moduli space which has a natural virtual dimension and admits a virtual
class, and the construction of this class follows the same pattern in each case.

Because of this it is most natural to work in a general setting. The moduli
space will be denoted simply by M; for us of course M = Mg,n(X,β), but it
could equally well be a different (compact) moduli space of curves (e.g. if we
were doing Donaldson–Thomas theory then M would be a Hilbert scheme).

5.2 Toy Model

The starting point for the construction is an alternative way of thinking about
the virtual dimension, using a collection of data called a perfect obstruction
theory. This has the advantage of encompassing the various curve counting
theories at once. It also helps elucidate the close relationship between correct-
dimensionality and a property called unobstructedness.

We start with a toy example which illustrates the idea. Suppose that we
have r real-valued functions defined on a smooth manifold Y of dimension n.
The implicit function theorem tells us that, as long as a certain transversality
condition is satisfied, the common zero locus M of these functions will be a
smooth submanifold of dimension n − r (the number of generators minus the
number of relations).

What happens when this transversality condition fails? One possibility is
that M will no longer have the correct dimension, and another is that it will
no longer be smooth. Usually at least one of these will occur, but it is not
strictly necessary: correct-dimensionality and smoothness are implied by, but
not equivalent to, transversality.

We now adapt this discussion to algebraic geometry. Take any scheme M
(we will be thinking of the moduli space of stable maps) and suppose that there
exists an embedding of M into a smooth scheme Y (of dimension n) such that
M is the zero locus of a section s ∈ H0(Y,E) for some vector bundle E. We call
this set-up the toy model. It is a straightforward generalisation of the above
construction: locally s consists of r = rk E functions, and these local functions
are glued together to produce a global section of the bundle E.

The virtual dimension of M is dimY − rk E = n − r, but as above the
true dimension may be higher if transversality fails. Here the transversality
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condition means that the section s is transverse to the zero section of E; in this
situation we say that M is transverse or unobstructed.

What does all this mean for the structure of M? Locally E splits as a
direct sum of line bundles, so that M is locally an intersection of hypersur-
faces. Transversality means that these hypersurfaces are smooth and intersect
transversally, which implies that M is smooth and has the correct dimension.

On the other hand, having the correct dimension simply means that M is
a local complete intersection. Therefore taking M to be any nonsmooth local
complete intersection, we see that correct-dimensionality is a strictly weaker
condition than transversality.

Of course none of the above discussion is intrinsic to M: transversality,
correct-dimensionality and even the value of the virtual dimension depend on
the data Y,E and s. However regardless of this choice it is always the case that
the virtual dimension is less than or equal to the true dimension. The intuition
for this is given above: r equations can cut down the dimension by at most
r. More rigorously, it follows from an algebraic fact about regular sequences in
local rings: see Lemma A.7.1 of [Ful97].

So we have always have vdim ≤ dim. If the reader takes on trust for the
moment that this virtual dimension coincides (in some appropriate setting) with
the virtual dimension as defined in §3, then this proves the promised inequality
vdimMg,n(X,β) ≤ dim Mg,n(X,β).

What should a virtual fundamental class be in this context? The idea is to
perturb the moduli space until it becomes transverse (and so in particular has
the correct dimension). This perturbed space should be obtained as the zero
locus of a section in H0(Y,E) which is transverse to the zero section of E. In
other words: we deform the defining equations forM until they are sufficiently
generic.

Since the space H0(Y,E) is often very small, such a transverse perturbation
may not actually exist. Despite this, we know that topologically the zero locus
of a transverse section is given by the (Poincaré dual of the) top Chern class
cr(E), and this makes sense in all situations.

The reason we can’t take this as our virtual fundamental class is that it lives
in A∗(Y ) instead of A∗(M); this has happened because when we deformed M
to cut down its dimension we ended up moving around inside of Y . Instead
what we want to do is deform M inside itself, so that we get a homology class
on M (we need this in order for the integration formula for Gromov–Witten
invariants to make sense). In the language of intersection theory ([Ful97]) we
want to refine the class cr(E) to the subscheme M.

The rough idea is as follows: at the points of M where s is not transverse
(i.e. the points where its image lies flat on the zero section) we can attempt to
push it off the zero section by taking ts for some scalar t.

Of course this doesn’t actually work: it will still lie flat. However if we now
let t → ∞ and look at how the image of ts changes, we obtain in the limit a

20



cone Cs of dimension n living inside E|M. This is called the normal cone ofM
in Y ; it has an algebraic definition which we will meet in §7.

The cone Cs lives entirely over M because away from M the section s is
nonzero, so that in the limit ts becomes infinite and thus doesn’t appear in
the fibres of E. On M itself the section ts is zero; however its behaviour in
a neighbourhood of M causes the image to eventually “snap” in the limit,
resulting in the cone Cs. It is important to realise that this cone is the limit of
the images of the sections, rather than the image of their limit (which does not
exist).

Indeed Cs is not the image of any section of E|M. However let us pretend
that it is, and think of the corresponding section as the perturbation of s we
have been looking for. We know that the zero locus of any section is just the
intersection of its image with the zero section. Therefore the zero locus of the
(fictitious) section corresponding to Cs is

[M]vir = [Cs] ∩ [M] ∈ AvdimM(M)

which is what we take as the definition of our virtual class. We have to be
careful about what we mean by intersection: since E|M is not compact we do
not have access to the usual intersection product. Instead we have to make use
of the so-called Gysin map for vector bundles, which is a homological way of
making sense of intersecting with the zero section (see Definition 3.3 of [Ful97]).

A crucial fact about this virtual class, which in some sense justifies its name,
is that it refines the top Chern class of E:

i∗[M]vir = cr(E) ∈ A∗(Y )

A proof of this is given in [Ful97] (see Example 3.3.2), though it uses the language
of normal cones which we will not introduce until §7.

Admittedly the above discussion is quite vague. Fortunately this won’t mat-
ter, because we will not actually be applying the toy model (it is too restrictive
to deal with the cases of interest to us). The reason we have gone to the trouble
of presenting it at all is that some of its basic ideas (constructing a cone inside
a vector bundle, intersecting that cone with the zero section) are also found in
the general construction.

5.3 Working on the Level of Sheaves

The toy model is good for motivation but is limited, since it is rarely the case
that M appears as described.

There are at least two ways of dealing with this. One is to allow Y and E
to be infinite-dimensional; this is helpful because we are usually able to find
such an expression for M. However we then have to make sense of the virtual
dimension dimY − rk E = ∞ −∞. It turns out we can do this because the
section s is Fredholm (a property of linear operators originating in functional
analysis). This is the approach most often taken in symplectic formulations
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of Gromov–Witten theory (see [MS12] §3) and it requires significant analytic
machinery.

As an alternative we can work infinitesimally, replacing the data of Y,E and
s by certain morphisms of sheaves. This is the algebro-geometric approach, and
the one we will pursue here.

Choose then an embedding of M into some smooth scheme Y (in the case
of stable maps, the moduli space is projective so we could take Y to be some
sufficiently large – but finite-dimensional – projective space). We don’t assume
anything about the existence of a bundle E. There is an exact sequence of
sheaves on M:

0→ TM → TY |M → NM/Y

Here TY |M is a bundle because Y is smooth, whereas TM is only a sheaf (its
rank jumps at the singular locus of M). The final term NM/Y is the normal
sheaf of M in Y , defined as the restriction to M of (I/I2)∨ where I ⊆ OY is
the ideal sheaf ofM in Y . In the case whereM is smooth it coincides with the
normal bundle. For more on the normal sheaf, see §7.

The sequence above can fail to be exact on the right: intuitively, if we are
at a singular point of M then the rank of TM can be strictly larger than the
dimension of the ambient space minus the number of equations. But this is just

rk TY |M − rk NM/Y

(where the ranks are taken pointwise), and so the sequence cannot be exact.
With this in mind, we define the cotangent sheaf T 1

M to be the cokernel
of the final map:

0→ TM → TY |M → NM/Y → T 1
M → 0

A priori this depends on the embedding M ↪→ Y , but it turns out this sheaf
is intrinsic to M. Indeed T 1

M is often defined as a sheaf encoding affine-local
first-order extensions of M. For details see [Ser06] §§1.1.2–1.1.3. It should be
clear that T 1

M is supported on the singular locus ofM, so that its vanishing is a
necessary condition for M to be smooth. (Those conversant with deformation
theory should relate this to the fact that a smooth affine scheme is rigid, see
[Har12] §4.)

So far the only thing we have assumed aboutM is that it admits an embed-
ding into a smooth Y . As such the situation is much more general than that of
the toy model. Most importantly it applies to the moduli space of stable maps
(as well as other moduli spaces of curves), whereas the toy model certainly does
not.

This will be crucial later on when we construct a virtual class for this moduli
space. But in order to understand how to get there, it is helpful to return
temporarily to the toy model, rephrasing everything in the language of sheaves.

Suppose then that as in §5.2 we have a vector bundle E on Y with a global
section s whose vanishing locus isM. There are then tautologically commuting
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sheaf morphisms:

E∨|M ΩY |M

N∨M/Y ΩY |M

ds

s Id

d

(5.1)

This dualises to give the following diagram:

TY |M E|M

TY |M NM/Y

Id

Completing this by taking kernels and cokernels gives a morphism of exact
sequences:

0 TM TY |M E|M (h−1)∨ 0

0 TM TY |M NM/Y T 1
M 0

Id Id

(The strange notation for the cokernel of the upper morphism will be explained
later.) The virtual dimension of M (with respect to Y and E) is:

vdimM = dimY − rk E = rk TY |M − rk E|M = rk TM − rk (h−1)∨

The sheaves TM and (h−1)∨ are not necessarily locally free, so their ranks only
make sense pointwise on M; however their difference will be constant by the
above equality.

The important point to take away from this is that in defining the virtual
dimension we didn’t need all of the data attached to M in the toy model: all
we needed was the embedding M ↪→ Y and the diagram (5.1). Thus we can
define the virtual dimension (and later on the virtual class) solely in terms of
this data. This is useful because the class of spaces admitting such data is much
larger than the class of those admitting toy models.

In fact it turns out that the embedding data is auxiliary, making no difference
to the virtual dimension or the virtual class. The diagram of sheaves, on the
other hand, is crucial: it is an example of a perfect obstruction theory, the
subject of the next section.

We will see there that there exists a natural perfect obstruction theory when
M is the moduli space of stable maps. Then the general recipe for constructing
a virtual class from a perfect obstruction theory (§8) will produce the virtual
class used for defining the Gromov–Witten invariants.
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6 Perfect Obstruction Theories

A perfect obstruction theory is a package of data which we attach to our moduli
space in order to define a virtual class. In §5.3 we saw how a perfect obstruction
theory arises naturally in the context of the toy model. We now deal with the
concept in full generality.

Roughly speaking a perfect obstruction theory onM is a diagram of sheaves

E−1 E0

N∨M/Y ΩY |M

where M ↪→ Y with Y smooth, E−1 and E0 are locally free, and the vertical
maps induce an isomorphism on h0(E•) and a surjection on h−1(E•).

The correct definition avoids dependence on the ambient space Y via the ma-
chinery of derived categories (for the basics of derived categories see [Tho01]).
To understand how to do this properly requires some familiarity with the trun-
cated cotangent complex.

6.1 Truncated Cotangent Complex

We assume that we can embed M into some smooth variety Y (again this is
certainly true when M is the moduli space of stable maps); doing so gives us
the so-called truncated cotangent complex of M in Y :

N∨M/Y → ΩY |M

Although this is just a single map, it is often helpful to think of it as a 2-term
complex of sheaves on M.

Of course this complex depends very much on the choice of Y . On the other
hand, its cohomology is intrinsic to M: the cohomology of a 2-term complex is
just the kernel and cokernel of the map, and these are given by the following
exact sequence (see §5.3):

0→
(
T 1
M
)∨ → N∨M/Y → ΩY |M → ΩM → 0

So if we only care about cohomology, then the truncated cotangent complex is
well-defined, independent of the choice of embedding. This should make us think
of the derived category, and it turns out this is the right point of view: given
two different embeddings of M into smooth varieties, the associated truncated
cotangent complexes are isomorphic as objects in the derived category of M.

Thus we have a well-defined truncated cotangent complex L•M ∈ Db(M),
independent of any choice of embedding.
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6.2 Definition of a Perfect Obstruction Theory

A perfect obstruction theory on M is then a morphism in the derived
category E• → L•M which induces an isomorphism on h0 and a surjection on
h−1 and such that the representatives E i can be chosen to be locally free sheaves.
Thus after choosing an embedding M ↪→ Y with Y smooth, it is a diagram:

E−1 E0

N∨M/Y ΩY |M

The virtual dimension of a perfect obstruction theory on M is defined (al-
lowing some abuse of notation) to be:

vdimM = rk E0 − rk E−1

(In the case of the perfect obstruction theory arising from the toy model, this
clearly agrees with the virtual dimension as defined in §5.2.)

To see how this relates to the true dimension of M, note first that since
the Euler characteristic of a complex is equal to the Euler characteristic of its
cohomology, we have

vdimM = rk h0 − rk h−1

where hi = hi(E•). As before, these ranks only make sense pointwise, but their
difference is constant on M.

From this and our assumptions on the induced cohomology maps it follows
that:

vdimM = rk TM − rk h−1 ≤ rk TM − rk T 1
M = rk ΩY |M − rk N∨M/Y

Now, this final expression is less than or equal to the true dimension of M,
essentially because it is the number of generators minus the number of relations
(the number of coordinates for Y minus the number of equations definingM in
Y ). Thus, as before, we have

vdimM≤ dimM

and in particular we know what it means to say that M has the correct di-
mension.

The next task is to make sense of transversality. In the toy model the map
E−1 → E0 is given by ds, so the failure of transversality is measured by its kernel.
In general, then, we say that a perfect obstruction theory is unobstructed (the
algebraic geometer’s word for “transverse”) if h−1 = 0.

Aside 6.1. The terminology comes from deformation theory, the idea being
that h−1 contains the obstructions to lifting first-order deformations; see §6.3
for a discussion of this in the case of stable maps.
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We now relate unobstructedness to the virtual dimension. Since at each
point of M we have

vdimM = rk TM − rk h−1 ≤ dim M≤ rk TM

it follows that in the unobstructed case we have

vdimM = dimM = rk TM

so M has the correct dimension and is smooth (because TM has constant rank
equal to dimM). This generalises the statement about transversality for the
toy model.

6.3 A Perfect Obstruction Theory for Stable Maps

Key to the definition of the Gromov–Witten invariants is the fact that the
moduli space Mg,n(X,β) admits a natural perfect obstruction theory, whose
virtual dimension is equal to the virtual dimension of Mg,n(X,β) in the sense
of §3.

How might we go about defining this? Note that given any perfect ob-
struction theory the conditions on the induced cohomology maps give a lot of
information about the cohomology sheaves: we have a diagram

h−1 h0

(T 1
M)∨ ΩM

where by assumption the left-hand vertical arrow is a surjection and the right-
hand vertical arrow is an isomorphism. So we have h0 ∼= ΩM and h−1 must
surject onto (T 1

M)∨ (equivalently T 1
M must include into (h−1)∨).

For the perfect obstruction theory on Mg,n(X,β), the map E−1 → E0 will
be zero, so we can identify E i with hi. Then the discussion above leads to the
following definition of the E i, which we give fibrewise for simplicity (though
there does exist a global definition): over each point (C, p1, . . . , pn, µ) we take

E0 = H1(C, TC(−p1 − . . .− pn))∨ ⊕H0(C, µ∗TX)∨

E−1 = H0(C, TC(−p1 − . . .− pn))∨ ⊕H1(C, µ∗TX)∨

(strictly speaking, these are the stalks of the sheaves viewed as modules over
the residue field). These sheaves are usually not vector bundles, because their
ranks can vary depending on the point (C, p1, . . . , pn, µ). However the virtual
dimension

rk E0 − rk E−1

is constant and clearly agrees with the virtual dimension in the sense of §3.
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Aside 6.2. There is a slight issue here: in our definition of a perfect obstruc-
tion theory we required the sheaves E i to be locally free. However this is not
really a problem: the complex we have written here is quasi-isomorphic to a 2-
term complex whose sheaves are locally free; since in the derived category these
complexes are then isomorphic, it doesn’t matter which one we work with.

Of course the above definition is incomplete, since we haven’t specified how
the stalks should fit together. In the case of E0 this is easy: the sheaf is just
ΩM. On the other hand the precise definition of E−1 is quite involved, and will
not be presented here (in any case, we won’t have any need for it).

The motivation for this definition comes from deformation theory; as before
our main references are [Har12] and [Ser06]. Theorem 3.5 tells us that E0 is
the cotangent sheaf, as required by the cohomology diagram above. As we saw
in §3 this (or, to be more precise, its dual) encodes first-order deformations of
stable maps.

The sheaf E−1 is a little harder to account for. Keeping in mind our use of
the holomorphic Euler characteristic when first defining the virtual dimension,
it is clear that this sheaf is the “correct” choice if we want our virtual dimen-
sions to agree. But this doesn’t really explain where it comes from, or why we
should expect the map h−1 → (T 1

M)∨ to be surjective.

To begin with let us focus on the second summand. It turns out that the
space H1(C, µ∗TX) contains obstructions to extending first-order deformations
of the map µ (keeping the domain fixed).

What does this mean? Suppose that we have a deformation of some object
over an Artinian local ring A, and suppose we also have an extension of A to a
larger Artinian local ring B. A natural question to ask is: can we extend our
deformation to a deformation over B?

As it happens this is not always possible, and the failure of such an extension
to exist is measured by a so-called “obstruction class.” In the special case when
A is the ring of dual numbers k[ε], these classes are obstructions to first-order
deformations.

A general heuristic in deformation theory is this: if the first-order deforma-
tions consist of a cohomology group (or more generally some derived functor)
then the obstructions to first-order deformations are contained in the next co-
homology group (or derived functor).

In the case of the map µ, the first-order deformations are given byH0(C, µ∗TX)
and consequently the obstructions live in H1(C, µ∗TX), which is a summand of
(h−1)∨.

As for the first summand, we know that first-order deformations of the
pointed curve (C, p1, . . . , pn) are given by H1(C, TC(−p1− . . .−pn)). Therefore
obstructions to first-order deformations live in H2(C, TC(−p1 − . . .− pn)). But
this is zero because C is 1-dimensional; there are no obstructions to first-order
deformations.
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What then does the space H0(C, TC(−p1 − . . . − pn)) signify? This is the
space of infinitesimal automorphisms of the curve. To properly explain why
it appears would take us too far off track, requiring an examination of a certain
exact triangle of cotangent complexes in the derived category. In any case,
this space vanishes whenever g ≥ 2 or n ≥ 3, so in most cases the interesting
behaviour concerns the space H1(C, µ∗TX). Thus we will for simplicity ignore
the first summand.

Philosophically then, (h−1)∨ contains obstructions. On the other hand T 1
M

consists of obstructions, and so there is an inclusion of T 1
M into (h−1)∨ which

dualises to give a surjection h−1 → (T 1
M)∨ as required.

This concludes the discussion of the perfect obstruction theory attached to
the moduli space of stable maps. The following sections return to the general
set-up, showing how a perfect obstruction theory leads naturally to a virtual
class.
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7 Normal Cones and Sheaves

Earlier we saw how to construct a virtual class in the special case of the toy
model (§5.2). To understand how to do this for a general perfect obstruction the-
ory, we first need a more conceptual description of this toy model construction.
This makes use of the normal cone of an embedding, an object ubiquitous in
modern intersection theory. Our primary references are [Ful97] and the briefer
[Ful84]. Another good reference, emphasising the more classical aspects of the
subject, is [EH].

7.1 Definition of the Normal Cone and Sheaf

We begin with a more familiar object: the normal sheaf of an embedding. This is
a scheme over the embedded variety which in the case when both the embedded
variety and the ambient variety are smooth coincides with the normal bundle.

The definition is as follows. Let M ↪→ Y be a closed subscheme, and let
I = IM/Y ⊆ OY be the ideal sheaf of the embedding. The normal sheaf of
M in Y is defined:

NM/Y = Spec Sym (I/I2) = Spec
⊕
k≥0

Symk(I/I2)

This is Spec of an OM-algebra, so there is a natural morphism NM/Y −→ M
(see [EH00] §I.3.3) which we think of as a bundle projection. We think of the
sheaf of sections of this projection as (I/I2)∨ = NM/Y , the normal sheaf of
M in Y viewed as a sheaf of OM-modules (see Theorem 7.2 for justification for
this).

Aside 7.1. There is a possible terminological confusion here, since we use the
same term to refer to the sheaf onM and the scheme overM. In keeping with
the notation of earlier sections, we will use NM/Y for the former and NM/Y for
the latter.

Thinking in terms of its sheaf of sections, there is a straightforward interpre-
tation for the normal sheaf. It consists, roughly speaking, of tangent vectors to
Y alongM, where we identify two tangent vectors if they agree on the functions
vanishing on M, i.e. if their components pointing outward from M agree.

To see how this relates to the normal bundle, we note the following result,
which also provides partial justification for our statement about the sections of
NM/Y .

Theorem 7.2. Let E be a vector bundle over a schemeM and let E denote its
(locally free) sheaf of sections. There is then an isomorphism of schemes over
M:

E = Spec Sym E∨

This proves that in the case of a smooth embedding the normal sheaf and
the normal bundle coincide. It also explains how the normal sheaf originally

29



came about: the theorem gives an alternative definition of the normal bundle of
a smooth embedding, a definition which then extends naturally to the general
case.

We now move on to the normal cone. This is a subscheme of the normal
sheaf, defined as follows:

CM/Y = Spec
⊕
k≥0

(Ik/Ik+1)

In general the structure of the normal cone is considerably more subtle than
that of the normal sheaf, since it involves higher-order information about the
equations defining the subscheme. The inclusion into the normal sheaf is induced
by the natural projection:⊕

k≥0

Symk(I/I2) −→
⊕
k≥0

(Ik/Ik+1)

Furthermore CM/Y is a cone, meaning that it is C∗-invariant. This follows from
the fact that its structure sheaf is a graded ring; had we taken Proj of this sheaf
this we would have obtained the C∗-quotient of the normal cone.

Thus we have a cone sitting naturally inside the normal sheaf. We now
explain the connection between this and the construction of the virtual class in
the setting of the toy model.

7.2 Normal Cone and the Toy Model

To begin let us briefly recall the construction of the virtual class given in §5.2.
By a limiting process we obtained a cone Cs living inside the vector bundle
E|M, and then defined the virtual class by intersecting this cone with the zero
section of the bundle.

As it turns out, the cone Cs is nothing but the normal cone CM/Y . It
includes into E|M via the composition

CM/Y ↪→ NM/Y ↪→ E|M

where the map NM/Y → E|M is given by the section s; formally, it is obtained
by applying Spec Sym to the sheaf morphism:

E∨|M
s−→ NM/Y

Notice that this morphism forms part of the perfect obstruction theory associ-
ated to the toy model (diagram (5.1)), and that this was all we needed in order
to get an embedding of the normal cone in a vector bundle over M.

It is worth discussing the philosophy behind the above construction. Under-
pinning the modern definition of intersection products in algebraic geometry is
the principle of deformation to the normal cone. The basic idea is as follows:
any embeddingM ↪→ Y can be deformed to the standard embedding ofM into
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CM/Y . Since intersection products (however we end up defining them) should
be invariant under deformations, it should be equivalent to compute them in Y
or in CM/Y .

With this in mind, we can define the intersection product in terms of classes
in CM/Y , which are easier to understand than classes on Y . For more details
see [Ful97] §§5–6, [Ful84] §2.6 or [EH] §15.3.1.

In the case of the toy model, the picture is this: instead of deforming the
section defining M, we deform the ambient space Y which M lives in, before
intersecting that space with the (non-deformed) zero section. This yields the
intersection formula

[M]vir = [CM/Y ] ∩ [M]

and helps to justify why it refines the Euler class of the bundle E.

7.3 Intrinsic Normal Cone and Sheaf

The general construction of the virtual class follows roughly the same pattern as
the one given above, with one major caveat: the construction is made intrinsic
toM by quotienting out the data of Y (we will say more about what this means
shortly). This is necessary since a perfect obstruction theory does not contain
the data of a particular embedding.

The objects we need to work with are the intrinsic normal cone and the
intrinsic normal sheaf. Understanding these properly requires some familiarity
with the notion of a stack quotient of schemes, which we will not go into. As
such the following discussion will be somewhat vague. Our main reference is
§7.1.4 of [CK99].

Consider then the scheme M and choose some embedding of M into a
smooth Y . There is a natural morphism

TY |M −→ CM/Y

induced by the morphism of OM-algebras arising from the Kähler differential
map: ⊕

k≥0

(Ik/Ik+1) −→
⊕
k≥0

Symk(ΩY |M)

The intrinsic normal cone is then defined to be the stack quotient of CM/Y

by TY |M (via the above morphism):

CM = CM/Y /TY |M

This is a stack over M of pure dimension dimCM/Y − rk TY |M = 0, and it
turns out that the definition is independent of Y .

The intrinsic normal sheaf is defined similarly; as before there is a natural
morphism

TY |M −→ NM/Y

from which we define:
NM = NM/Y /TY |M
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As with the relative versions, there is an inclusion of the intrinsic normal cone
into the intrinsic normal sheaf, induced by the commuting diagram:

TY |M TY |M

CM/Y NM/Y

Id

In the setting of the toy model we embed the normal cone CM/Y in a vector
bundle over M and then intersect it with the zero section of that bundle. For
the general case we will do more or less the same thing, except that we will
replace the normal cone CM/Y of M in Y by the intrinsic normal cone CM.
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8 Constructing the Virtual Class

In this section, at last, we sketch the general method for constructing a virtual
fundamental class from a perfect obstruction theory. Applying this construction
to the perfect obstruction theory on the moduli space of stable maps (§6.3) gives
the virtual fundamental class used in Gromov–Witten theory.

Recall that after choosing an embeddingM ↪→ Y with Y smooth our perfect
obstruction theory is a diagram:

E−1 E0

N∨M/Y ΩY |M

Applying Spec Sym to this diagram we obtain a diagram of schemes over M:

E1 E0

NM/Y TY |M

In §5.3 we took the kernels and cokernels of the corresponding diagram of
sheaves. We’d now like to do this on the level of schemes. The correct no-
tion is the stack quotient which we encountered in the previous section. We
write:

h1/h0((E•)∨) = E1/E0

NM = NM/Y /TY |M

The latter is nothing but the intrinsic normal sheaf we saw earlier. The former is
a so-called vector bundle stack ; the odd notation comes from the fact, familiar
from algebra and remaining true in the setting of stack quotients, that the
cokernel of a chain complex is equal to the cokernel of its cohomology.

Since E• → L•M is a surjection on h−1 we get an inclusion of the dual
cohomology schemes

NM ↪→ h1/h0((E•)∨)

and since CM ⊆ NM we obtain:

CM ↪→ h1/h0((E•)∨)

This is a (stacky) cone inside a (stacky) vector bundle. We’d like to somehow
intersect CM with the zero section of h1/h0((E•)∨). If this was an honest cone
in an honest vector bundle then we could apply the Gysin map as in the toy
model and be done. The stackiness which is stopping us from doing this can be
overcome in two possible ways.

The first approach is as follows: the fact that flat pullback on Chow groups
is an isomorphism for vector bundles extends to vector bundle stacks. Hence
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we can apply its inverse (which is the “stacky” Gysin map we are looking for)
to CM.

Alternatively, we can obtain an honest cone in an honest vector bundle by
forming the following fibre product:

C E1

CM h1/h0((E•)∨)

The inclusion CM ↪→ h1/h0((E•)∨) is a closed embedding of stacks, and this
implies that C is a scheme. Further, the projection E1 → h1/h0((E•)∨) is
smooth, which implies that C → CM is smooth. Since CM has pure dimension
(0, in fact) so does C. Thus we have an embedding C ↪→ E1, and we can apply
the (ordinary) Gysin map (remember that E−1 is locally free).

Whichever approach we choose to define it, the intersection of CM with the
zero section in h1/h0((E•)∨) is by definition the virtual fundamental class for
M. It lives in the homology of the base of E1 (which is M), and one can see
that it has dimension:

vdimM = rk E0 − rk E−1

Aside 8.1. The virtual class has values in homology with Q-coefficients, be-
cause the degree map is only well-defined for stacks when we work over Q. A
consequence of this is that the Gromov–Witten invariants are rational numbers,
rather than integers. The idea is that the “stacky” points (those with isotropy)
contribute rational values to the curve count. More concretely: a stable map
with automorphism group of size n contributes 1/n to the Gromov–Witten in-
variant.
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A Moduli Spaces

In this article we make constant use of the moduli space of stable maps, despite
never actually showing that such a space exists.

The omission is intentional: we wish to focus more on the properties of the
moduli space than on the details of its construction. Furthermore, as we see in
§3, many of these properties can be deduced without the need for an explicit
construction.

Nevertheless, the existence results are important foundationally. In this
appendix we collect (without proofs) the basic facts relevant to our discussion.

A.1 Moduli of Stable Maps

A general heuristic when dealing with moduli spaces for curve counting theories
is this: fine moduli spaces exist as stacks, coarse moduli spaces exist as schemes.
In the case of stable maps we have:

Theorem A.1. There is a Deligne–Mumford stack Mg,n(X,β) which is a fine
moduli space for the moduli problem of stable maps.

Theorem A.2. There is a projective scheme Mg,n(X,β) which is a coarse
moduli space for the moduli problem of stable maps.

The finite automorphism condition for stable maps implies certain regularity
properties of the moduli spaces. In the fine case in particular it ensures that
the moduli stack is Deligne–Mumford; the isotropy at each point is equal to the
automorphism group of the corresponding map, so finite automorphisms means
finite isotropy.

We will usually work with the fine moduli space, since we require the exis-
tence of a universal family (equivalently: we require the fact that the moduli
space represents the moduli functor). However, we will pretend throughout that
the fine moduli space is a scheme rather than a stack.

There is some justification for this: since the moduli stack is Deligne–
Mumford, it admits an étale open covering by schemes (in fact by open subsets
of the coarse moduli space, though this is nontrivial). So as long as we work
étale-locally, we are fine in thinking of our moduli space as a scheme. There
are certain constructions and arguments one must make in order to ensure that
this works, but we will ignore these.

A.2 Moduli of Curves

For readers familiar with moduli spaces of curves (see [HM98]), the comparison
to stable maps is instructive. The “fine is stack, coarse is scheme” mantra carries
over to this setting to give:

Theorem A.3. There is a smooth Deligne–Mumford stack Mg,n which is a
fine moduli space for the moduli problem of (pointed) stable curves.
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Theorem A.4. There is a projective variety Mg,n with orbifold singularities
(corresponding to curves with automorphisms), which is a coarse moduli space
for the moduli problem of (pointed) stable curves.

The link between Mg,n and Mg,n(X,β) is very strong, with properties of
the former often being used to prove properties of the latter. This provides
additional justification for the genus restriction on stable maps, since such a
restriction is certainly natural for moduli spaces of curves.
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