
Parallel, Real-Time Monocular Visual Odometry

Shiyu Song
University of California, San Diego

shs012@ucsd.edu

Manmohan Chandraker
NEC Labs America

manu@nec-labs.com

Clark C. Guest
University of California, San Diego

cguest@ucsd.edu

Abstract—We present a real-time, accurate, large-scale monoc-
ular visual odometry system for real-world autonomous outdoor
driving applications. The key contributions of our work are a
series of architectural innovations that address the challenge
of robust multithreading even for scenes with large motions
and rapidly changing imagery. Our design is extensible for
three or more parallel CPU threads. The system uses 3D-2D
correspondences for robust pose estimation across all threads,
followed by local bundle adjustment in the primary thread. In
contrast to prior work, epipolar search operates in parallel
in other threads to generate new 3D points at every frame.
This significantly boosts robustness and accuracy, since only
extensively validated 3D points with long tracks are inserted
at keyframes. Fast-moving vehicles also necessitate immediate
global bundle adjustment, which is triggered by our novel
keyframe design in parallel with pose estimation in a thread-safe
architecture. To handle inevitable tracking failures, a recovery
method is provided. Scale drift is corrected only occasionally,
using a novel mechanism that detects (rather than assumes) local
planarity of the road by combining information from triangulated
3D points and the inter-image planar homography. Our system
is optimized to output pose within 50 ms in the worst case, while
average case operation is over 30 fps. Evaluations are presented
on the challenging KITTI dataset for autonomous driving, where
we achieve better rotation and translation accuracy than other
state-of-the-art systems.

I. INTRODUCTION

Visual odometry for real-world autonomous outdoor driving
is a problem that had gained immense traction in recent years.
We present a real-time, monocular visual odometry system that
relies on several innovations in multithreaded structure-from-
motion (SFM) architecture to achieve excellent performance
in terms of both timing and accuracy.

While stereo SLAM systems routinely achieve high accuracy
and real-time performance, the challenge remains daunting
for monocular ones. Yet, monocular systems are attractive
for the automobile industry since they are cheaper and the
calibration effort is lower. Costs of consumer cameras have
steadily declined in recent years, but cameras for practical
visual odometry in automobiles are expensive since they are
produced in lesser volume, must support high frame rates and
be robust to extreme temperatures, weather and jitters.

The challenges of monocular visual odometry for au-
tonomous driving are both fundamental and practical. For
instance, it has been observed empirically and theoretically that
forward motion with epipoles within the image is a “high error”
situation for SFM [15]. Vehicle speeds in outdoor environments
can be high, so even with cameras that capture imagery at
high frame rates, large motions may occur between consecutive

frames. This places severe demands on an autonomous driving
visual odometry system, necessitating extensive validation
and refinement mechanisms that conventional systems do
not require. Our system makes judicious use of a novel
multihtreaded design to ensure that motion estimates (and
the underlying structure variables) become available only after
extensive validation with long-range constraints and thorough
bundle adjustments, but without delay.

The timing requirements for visual odometry in autonomous
driving are equally stringent – a pose must be output at
every frame in a fixed amount of time. Thus, our system
is optimized for worst-case timing scenarios, rather than the
average-case optimization for most traditional systems. For
instance, traditional systems may produce a spike in timings
when keyframes are added, or loop closure is performed [2].
In particular, our multithreaded system produces pose outputs
in at most 50ms, regardless of whether a keyframe is added
or scale correction performed. The average frame rate of our
system is much higher, at above 30 fps.

Visual odometry is an inherently sequential operation. This
is especially true for outdoors autonomous driving, as opposed
to indoor or desktop applications where the possibility of
repeatedly viewing the same scene structures is high. For our
application, with rapidly changing points in the visible field
of view, bundle adjustment must be per-frame, while highly
accurate new 3D points must be added to the system with
no luxury of off-cycles or revisited regions of the map to
perform delayed refinements (unlike [8]). Thus, designing a
multithreaded system requires achieving a delicate balance
between accuracy and latency. A high redundancy epipolar
search mechanism, novel keyframe architectures that allow
updating trackable 3D points with reliable long tracks and
thread safe modules that allow online global bundle adjustment
are some of the innovations that allow our system to meet the
competing demands of speed, accuracy and robustness.

A key emphasis of this work is to illustrate that besides
the obvious speed advantages, well-designed multithreading
can also greatly contribute to the accuracy and robustness of
the system. This is best illustrated by our epipolar search and
keyframe insertion architectures – Sections III and IV explore
this theme in greater detail. But the accuracy of our system
is also borne out by our experiments in Section VI that show
the system to be resilient in retaining highly accurate scale
over long periods. To handle inevitable scale drift over long
sequences, Section V presents a mechanism for scale correction
using local planarity of the ground plane, but it does not require



the assumption to be true or enforced at every frame. Instead,
it automatically determines the validity of the assumption and
the need for scale correction, ensuring that the system only
uses reliable scale information.

Our system architecture is intricately designed to meet the
challenge of accurate and efficient monocular autonomous
driving. In Section II-A, we discuss how our design is
fundamentally different from prior works, better suited to the
application and easily extensible.

II. RELATED WORK

A. Comparison to Other Monocular Architectures

PTAM: An elegant two-thread architecture separating the
tracking and mapping aspects of monocular visual SLAM
has been proposed by Klein and Murray [8]. However, it
is designed for small workspace environments and relies
extensively on repeatedly observing a small set of 3D points
(“loopy browsing motions”). This does not scale well to large
outdoor environments or driving situations where scene points
rapidly disappear from the field of view. The latter is an
important restriction that motivates our improved architecture.

As an example, consider the epipolar search mechanism
to add new points to the map. PTAM uses the existing
distribution of points to restrict the epipolar search range,
but such constraints are not possible in our system since the
distribution changes dramatically per-frame. Moreover, PTAM
performs epipolar search on demand and data association
refinement is used to validate the point in other frames during
free time on the mapping thread when exploring already seen
regions. Again, our system does not have the leeway to revisit
regions of the map, so all our refinement must be online.
These considerations lead us to move epipolar search to a
separate thread of its own, but it presents a unique opportunity
for enhancing robustness. As described in Section III-B, we
perform epipolar search per-frame, which allows only those
points to be added to the map that have been validated multiple
times and effectively tracked over a desired number of frames.
This innovation is crucial in ensuring high accuracy for a
system like ours that primarily relies on rapidly moving 3D
points for pose computations.

Several other aspects differentiate our system from PTAM’s
parallel architecture, such as global bundle adjustment, which
may take several seconds for PTAM while looping over already
seen regions. The computational demands on our system are
much higher at every frame due to changing imagery, so this
is neither possible nor desired. Instead, a small global bundle
adjustment over the previous few keyframes suffices. The need
to do this in parallel with pose computations requires novel
keyframe architectures to accommodate timing constraints, as
well as to maintain thread safety, as discussed in Section IV.

2D-2D Matching (Libviso): A system for autonomous
driving that is a counterpoint to ours is proposed by Geiger
et al. in [6]. It relies on matching and computing relative
pose between every consecutive pair of frames through a
fundamental matrix estimation and uses continuous scale

correction against a locally planar ground. There are several
drawbacks of such an approach: it is known that two-view
estimation leads to high translational errors in the case of
narrow baseline forward motion [15] and there is higher drift
since distant constraints from long tracks are not used.

In constrast, our approach is carefully designed to introduce
long-range constraints while maintaining efficiency and relies
on 3D-2D pose estimation rather than narrow baseline fun-
damental matrix estimation. Further, our system is accurate
enough to hold the correct scale for lengthy intervals while
ground plane estimation on low texture roads is noisy, so
using that information for scale correction at every frame is
likely to cause higher errors. Instead, we implement an error-
tolerant scale correction mechanism in Section V-B that needs
to be invoked only occasionally (once every 100 frames in our
experiments, see Figure 8). Thus, it is worth emphasizing that
we do not enforce local planarity as a hard assumption, rather
only seek to use it when true.

B. Other Related Work

Binocular stereo is one of the success stories of visual
SLAM, providing real-time localization in environments as
diverse as indoors [2], outdoors [14], or even extraterrestrial
terrains [16]. Parallel implementations for visual stereo SLAM
that harness the power of GPUs have been demonstrated to
achieve frame rates exceeding 30 fps in indoor environments
[2]. Several approaches have also been proposed that use or
combine information from alternate acquisition modalities such
as omnidirectional [23], ultrasound [1] or depth sensors [4].

A few purely vision-based monocular systems have achieved
good localization accuracy, but mainly for smaller indoor
environments [3], [8], [9] (in the case of [9], impressive
agility is further attained by incorporating edgelets in the map).
Systems using only monocular input are rarer for large-scale
autonomous navigation, due to the well-documented problem
of scale drift. Loop closure is a popular technique used for
scale correction in SLAM [25], which is exploited by the large-
scale monocular system of [22]. However, in our application,
one cannot rely on the vehicle encountering loops and it is
expensive to maintain such global information of the trajectory.
Moreover, loop closure is suitable for map building, however,
autonomous driving requires accurate online localization.

Several works have attempted to alleviate the difficulty of
monocular visual odometry by incorporating prior information
about the environment. For instance, Scaramuzza et al. use
nonholonomic constraints for wheeled robots, along with a
planar motion model to restrict the solution space [20] . Royer
et al. present an outdoor system where the robot is guided
along a path by a human to enable a learning step that builds
a 3D map of the environment for future navigation [18]. A
method specialized for monocular robot localization in circular
pipes that exploits the simpler geometry of the environment is
presented by Hansen et al. in [7]. Compared to the above, our
system returns full 6 degrees of freedom pose information at
every frame without any assumptions on the camera motion
and only polls to detect local planarity on the road.



Fig. 1. System architecture for every steady state frame. The acronyms
above represent PGM: Pose-guided matching, LBA: local bundle adjustment,
R: re-finding, U: Update motion model, ECS: Epipolar constrained search, T:
triangulation. The modules are depicted in their multithreading arrangement,
in correct synchronization order but not to scale.

III. STEADY STATE ARCHITECTURE

To initialize, the system extracts FAST corners [17] with
ORB descriptors [19] and matches between consecutive frames
using locality sensitive hashing (LSH). With sufficient baseline
(around 5 frames), a set of 3D points is initialized by relative
pose estimation [13], triangulation and bundle adjustment. Each
frame during initialization is processed within 10 ms.

At steady state, the system has access to a stable set of at least
Ns 3D points that have undergone extensive bundle adjustment
in prior frames (we choose Ns = 100). The preceding poses
have also undergone multiple non-linear refinements, so can be
considered highly accurate. The system architecture at every
frame in steady state operation is illustrated in Figure 1.

A. Pose Module

Around 2000 FAST corners with Shi-Tomasi filtering [21]
are extracted from a typical outdoors image and ORB de-
scriptors are computed. Using the pose of the previous frame,
the pose of the current frame is predicted, assuming constant
velocity. Note that we explicitly compute the camera pose
at each frame using correspondences, the motion model is
only used as guidance to expedite matching. The existing set
of stable 3D points are projected into the image using the
predicted pose and the ORB descriptor for each is compared to
those within a square of side 2rs pixels (we choose rs = 15).
Given these 2D − 3D point correspondences, we compute
the actual camera pose using perspective n-point (PnP) pose
estimation in a robust RANSAC framework. The particular
implementation we use is EPnP with a model size of 4 points
[11]. The RANSAC pose with the largest consensus set is
refined using a Levenberg-Marquardt nonlinear optimization.

Our system can easily handle other choices for matching, in
particular, we have achieved similar results using normalized
cross-correlation (NCC) instead of ORB. But assocaiting a
descriptor like ORB with a 3D point can have ancillary benefits,
as we will observe in the following sections.

Feature and descriptor extraction, pose-guided matching and
pose estimation are all easily parallelizable across multiple
threads, using a shared memory multiprocessing platform
like OpenMP. Across three threads, the timings for various
components of the pose module are summarized in Table I.

FAST corner detection + Shi-Tomasi 1 ms
ORB descriptor extraction 5 ms
Pose-guided matching 1 ms
PnP (RANSAC, 500 iterations) 15 ms
Nonlinear pose refinement 1 ms

TABLE I
TIMINGS FOR VARIOUS STAGES OF THE POSE MODULE.

B. Epipolar Update Module

If the application scenario involves scenes where the set
of 3D points being viewed remains unchanged, then the pose
module by itself would be sufficient to maintain the camera
pose over extended periods. However, in outdoor applications
like autonomous navigation, 3D scene points rapidly move out
of view within a few frames. Thus, the stable set of points
used for pose computation must be continually updated, which
is the task entrusted to our epipolar search module.

As depicted in Figure 1, the epipolar search module is
parallelized across two threads and follows pose estimation at
each frame. The mechanism for epipolar search is illustrated
in Figure 2. Let the most recent prior keyframe be frame 0.
After pose computation at frame n, for every feature f0 in the
keyframe at location (x0, y0), we consider a square of side 2re
centered at (x0, y0) in frame n. We consider the intersection
region of this square with a rectilinear band p pixels wide,
centered around the epipolar line corresponding to f0 in frame
n. The ORB descriptors for all FAST corners that lie within this
intersection region are compared to the descriptor for f0. The
closest match, fn, is found in terms of Hamming distance. This
epipolar matching procedure is also repeated by computing
the closest match to fn in frame n− 1, call it fn−1. A match
is accepted only if fn−1 also matches f0. Note that only two
sets of matches with respect to frames (0, n) and (n − 1, n)
must be computed at the frame n, since the matches between
(0, n− 1) have already been computed at frame n− 1.

The parameter re is automatically determined by the size of
the motion, we use re = min{1200‖ω‖2, 10}, where ω is the
differential rotation between frames n− 1 and n. Since pose
estimates are highly accurate due to continuous refinement by
bundle adjustment (Section III-C), epipolar lines are deemed
accurate and we choose a stringent value of p = 3 to impose
the epipolar constraint. The Hamming distance computation for
256-bit ORB descriptors in a region of interest is performed as
a block, with a fast SSE implementation. To rapidly search for
features that lie within the above region of interest, the detected
features in an image are stored in a lookup table data structure.
The key into the table is the column index of the feature and
within each bucket, features are stored in sorted row order.
Across two threads, this allows circular matching for a triplet
of images, with up to 500 features in each, in 10− 15 ms. As
opposed to brute-force searching, the lookup table results in
speedups by up to a factor of 10, especially in our autonomous
driving application where the images traditionally have wide
aspect ratios (to cover greater field of view while limiting
uninformative regions like sky).

The features that are circularly matched in frame n are



Fig. 2. Mechanism of epipolar constrained search, triangulation and validation
by reprojection to existing poses. For current frame n, only 3D points that are
validated against all frames 1 to n− 1 are retained. Only persistent 3D points
that survive for greater than L frames may be collected by the next keyframe.

triangulated with respect to the most recent keyframe (frame
0). This two-view triangulation requires approximately 2 ms
per frame. The reconstructed 3D point is back-projected in
all the frames 1, · · · , n− 1 and is retained only if a matching
ORB descriptor is found within a very tight square of side 2rb
pixels (we choose rb = 3). This acts as a replacement for a
more accurate, but expensive, multiview triangulation and is
satisfactory since epipolar search produces a large number of
3D points, but only the most reliable ones may be used for
pose estimation. However, these 3D points are not added to
the stable point cloud yet. For that they must first undergo a
local bundle adjustment and be collected by the main thread
at a keyframe, which are aspects explained in the following
sections. Also, note in Figure 2, the exception for the keyframe
and frame 1, where validation is not possible. However, this is
not an issue since only long tracks are eventually collected by
the next keyframe, as explained in Section IV.

C. Local Bundle Adjustment Module

To refine camera poses and 3D points incorporating infor-
mation from multiple frames, we implement a sliding window
local bundle adjustment. The key data structure is the local
bundle cache, which is composed of a frame cache and a match
cache. The frame cache stores feature locations, descriptors
and camera poses from the most recent N frames. It also
stores images for those N frames, for display and debugging
purposes. In our system, N = 10. The match cache is a list of
tables, one element corresponding to each frame. The key into
the table is the identity of a 3D point visible in the frame and
the stored entries are the identities of the corresponding 2D
features in various frames.

The local bundle adjustment module also has other functions.
After bundle adjustment, we give the system a chance to re-
find lost 3D points using the optimized pose. Since the system
spends considerable effort in maintaining a high-quality set of
3D points for pose compuation, it is worthwhile to incur a small
overhead to recover any temporarily lost ones (due to image
artifacts like blur, specularities or shadows). In fact, a stable
3D point is permanently discarded only when its projection

Module Operation Timing

Epipolar Update Constrained search 10− 15 ms
Triangulation 1− 3 ms

Local Bundle
Windowed bundle adjustment 10− 20 ms
Re-find 3D points 1 ms
Update motion model 0 ms

TABLE II
EPIPOLAR UPDATE AND LOCAL BUNDLE TIMINGS IN STEADY STATE

(PARALLEL MODULES)

using the current pose falls outside the image boundaries. Since
the bundle adjusted pose is highly accurate, we can perform re-
finding by matching ORB descriptors on FAST corners within
a very tight square of side 2rf pixels (we choose rf = 10).
This ensures re-finding is rapidly achieved within 1 ms.

We use the publicly available SBA package for bundle
adjustment [12]. In parallel, the motion model for predicting
the pose of the next frame is also updated in this module.
The timings for the parallel epipolar update and local bundle
adjustment modules are summarized in Table II.

IV. KEYFRAME ARCHITECTURE

The system cannot maintain steady state indefinitely, since
3D points are gradually lost due to tracking failures or when
they move out of the field of view. The latter is an important
consideration in “forward moving” systems for autonomous
driving (as opposed to “browsing” systems such as PTAM), so
the role of keyframes is very important in keeping the system
alive. The purpose of a keyframe is threefold:
• Collect 3D points with long tracks from the epipolar

thread, refine them with local bundle adjustment and add
to the set of stable points in the main thread.

• Trigger global bundle adjustment based on previous few
keyframes that refines 3D points and keyframe poses.

• Provide the frame where newly added 3D points “reside”.
The modules that define operations at a keyframe are

illustrated in Figure 3. The pose module remains unchanged
from the steady state. It is followed by a collection stage, where
3D points triangulated at each frame in the epipolar thread
are gathered by the main thread. Only persistent 3D points
that stem from features matched over at least L frames are
collected (our circular matching for epipolar search ensures
this is easily achieved by seeking 3D points only from at
least L frames after the previous keyframe). Note that this
mechanism imposes two necessary conditions for a point to be
considered for inclusion into the stable set – it must be visible
in at least two keyframes and must be tracked over at least L
frames. While stringent, these conditions inherently enhance
the chances that only reliable 3D points are added into the
main thread. In our system, L = 3 regardless of environment.

The collected 3D points must reside on a keyframe for all
subsequent operations, so a re-finding operation is performed
by projecting them using the estimated pose for the frame and
finding the best ORB match in a circular region of radius 10
pixels. Now the existing stable 3D points, the collected 3D
points from the epipolar thread, their projections in all the
frames within the local bundle cache and the corresponding
cameras undergo local bundle adjustment. Note that the bundle



Fig. 3. System architecture for keyframes. C+R stands for a collection and
refinding module. It collates persistent 3D points tracked over at least L frames
in the epipolar thread and re-finds them in the current frame using the output
of the pose module. The LBA is now different from that for steady state,
since its cache has been updated with 3D points and their corresponding 2D
locations in all the relevant frames on the epipolar thread.

Fig. 4. System architecture for frame following a keyframe. GBA stands
for global bundle adjustment. Note that GBA usually finishes within the time
consumed by the pose module. The cache update module reconciles the 3D
points modified by both PnP and GBA, before it is used by LBA.

adjustment at keyframes differs from steady state operation, but
adding long tracks into the bundle adjustment at keyframes is
a reason we can avoid more expensive multiview triangulation
at each frame in the epipolar thread. The refined 3D points
are now ready to be added to the stable set.

The modules that define operations at the frame immediately
after a keyframe are illustrated in Figure 4. The pose module re-
finds the (new) set of stable 3D points. The pose module is now
split across only two threads, in order to accommodate a global
bundle adjustment in the main thread. This bundle adjustment
involves the previous K keyframes and their associated 3D
points, in order to introduce long-range constraints to better
optimize the newly added set of 3D points. For our system,
choosing K = 5 allows the global bundle adjustment to finish
within 15 ms. There are two reasons a more expensive bundle
adjustment involving a much larger set of previous keyframes
(or even the whole map) is not necessary to refine 3D points
with long-range constraints. First, the imagery in autonomous
driving applications is fast moving and does not involve
repetitions, so introducing more keyframes into the global
bundle adjustment yields at best marginal benefits. Second, our
goal is instantaneous pose output rather than map-building, so
even keyframes are not afforded the luxury of delayed output.
This is in contrast to parallel systems like [2] where keyframes
may produce a noticeable spike in the per-frame timings.

Following global bundle adjustment, the 3D coordinates of all
the points are updated. Note that overlapping sets of 3D points
are used by both global bundle adjustment and pose modules in
parallel, however, both may also cause this set to change (PnP

Fig. 5. System architecture for a recovery frame. FM stands for Feature
matching, BA-1 and BA-2 are bundle adjustments and S denotes scale recovery.

may reject 3D points that are outliers, while bundle adjustment
may move the position of 3D points). To ensure thread safety,
an update module is included that reconciles changes in the
3D point cloud from both the prior parallel modules. The local
bundle adjustment module, which simply reads in 3D point
identities, receives this updated set for optimization based on
the N frames in the local bundle cache. In parallel with local
bundle adjustment, the epipolar search also makes use of the
updated keyframe pose. Note that while the keyframe pose has
seen a global bundle adjustment, the pose of the subsequent
frame has not. This does not cause any inconsistency in practice
since poses tend to be much more stable than points – a camera
is constrained by hundreds of points, but a point is visible only
in a few cameras. Thereafter, the system resumes steady-state
operation until the next keyframe, unless a recovery or firewall
condition is triggered. The following sections explain those
concepts in detail.

V. ERROR-CORRECTING MECHANISMS

A. Recovery

On rare occasions, the system might encounter a frame
where pose-guided matching fails to find any features (due to
imaging artifacts or a sudden large motion). In such a situation,
a recovery mode is triggered, as illustrated in Figure 5. Let the
frame where system recovery initiates be n and let k be the
immediately preceding keyframe. During recovery, the frames
(n, n−1) are matched by comparing ORB descriptors over the
entire image using fast LSH and accepting only bidirectional
matches. Relative pose is computed using the 5-point algorithm
[13] in a robust RANSAC framework and inlier matches are
triangulated. However, scale information is lost in the process.
So, we also consider 3D points observed between frames (n−
1, k). Both the sets of 3D points are moved to the coordinate
system of frame n− 1 and a 1-point RANSAC is performed.
The hypothesis for the RANSAC is the ratio of the norms
of the sampled 3D point in the two sets. The corrected scale
factor between frames (n, n − 1) is assigned as the average
ratio in the largest consensus set. To ensure that 3D points used
for scale recovery are as accurate as possible, two instances of
bundle adjustments are run in parallel – one between frames
(n, n− 1) and another between frames (n− 1, k).

The system is designed to keep repeating the recovery
mechanism until a stable set of 3D points is found. In our
experiments, we always recover a stable set of 3D points after



only one frame of recovery. For sequences in the KITTI dataset,
recovery is required on an average once in 1500 frames.

B. Firewall

It is well-known that scale drift is a significant problem in
monocular visual odometry. As discussed previously, using
global knowledge of the trajectory for scale correction, such
as loop closure, is not an option for practical autonomous
driving applications. Instead, we use the fact that the camera
is mounted a fixed height above the road plane. Unlike prior
methods, we expect our system to be accurate enough to be
able to hold scale for extended periods, so while we compute
scale against the ground at every frame, the scale correction
mechanism is triggered sparingly. The system automatically
determines when scale correction may be required - in practice,
once in approximately 100 frames. Not requiring per-frame
scale correction also ensures that the system is able to tide
over regions where the road surface may not be planar.

Our scale detection is implemented in a separate thread. At
every frame, we consider a small region of interest closest to
the car (mid-section of the lower half of the image). Features
within this region that can be matched to the previous frame are
triangulated. We are constrained to using this narrow baseline
since matching is harder on low-textured roads and the features
in this region of interest rapidly move out of the field of view.
A 3-point RANSAC is used to find the best-fitting plane to
these triangulated points and the distance of the plane to the
camera is computed as h1. If the known height of the camera

mounting is h0, the scale correction factor is s1 =
h0

h1
.

However, since the 3D points are triangulated from a small
baseline, we cannot rely on s1 always being accurate. So, an
alternative mechanism is also considered that does not require
triangulation. We compute the planar homography between the
set of road points in the two frames, using a 4-point RANSAC
where hypotheses are generated by linear estimation of alge-
braic error. This is followed by Levenberg-Marquardt based
nonlinear optimization of the optimal symmetric reprojection
error over the largest consensus set:

min
H

∑
i

‖xi
′ −Hxi‖2 + ‖xi −H−1xi

′‖2, (1)

where H is the planar homography that maps homogeneous
inlier point set x in the previous frame to the corresponding
set x′ in the current frame. The form of the homography H is:

H = R+
1

h2
tn>, (2)

where (R, t) is the relative pose, n is the unit normal of the
proposed ground plane and h2 is the distance of the plane from
the camera. The height h2 may be recovered from H using a
singular value decomposition of H>H, as discussed in [24].

Again, the scale factor may be computed as the ratio s2 =
h0

h2
.

Having computed s1 and s2 at current frame k, we compare
their values and consider them in mutual agreement when
they differ by less than 5%. When in mutual agreement, it

Seq
VISO2-S (Stereo) VISO2-M (Mono) Ours (Monocular)

Rot Trans Rot Trans Rot Trans
(deg/m) (%) (deg/m) (%) (deg/m) (%)

00 0.0183 1.71 0.0369 12.62 0.0142 7.14
02 0.0111 1.58 0.0194 3.71 0.0097 4.34
03 0.0127 1.81 0.0288 9.05 0.0093 2.90
04 0.0097 1.21 0.0163 7.58 0.0064 2.45
05 0.0160 1.35 0.0575 12.74 0.0107 8.13
06 0.0107 1.11 0.0275 3.71 0.0108 7.56
07 0.0256 1.72 0.1235 25.77 0.0234 9.92
08 0.0155 2.15 0.0369 16.88 0.0122 7.29
09 0.0126 1.57 0.0227 3.94 0.0096 5.14
10 0.0119 1.16 0.0596 29.36 0.0121 4.99

Avg 0.0149 1.65 0.0381 11.53 0.0119 6.42

TABLE III
COMPARISON OF ROTATION AND TRANSLATION ERRORS

is likely that the points in consideration actually belong to a
planar ground and a potential scale factor, sk = mean(s1, s2),
is available. If |sk − 1| > 0.1, the system polls for scale
correction. First, it seeks to confirm the computed scale sk
by verifying that the previous mutually agreed scale factor
was within 5% of sk. If not, it waits for the next mutually
agreed scale factor to confirm sk. Once confirmed, the system
inserts a firewall whereby the 3D points and camera poses in
the bundle cache are scale corrected. The frames preceding the
bundle cache are now fixed and play no further part in future
estimation (in effect, their data structures are emptied). The
ground detection and firewall estimation require about 30 ms.

VI. EXPERIMENTS

We present experimental results on the state-of-art KITTI
dataset [5], which is collected in real-world driving situations
and provides ground truth for evaluation. The sequences vary
in length from a few hundred meters to several kilometers,
covering urban, residential, countryside and highway roads.
Vehicle speeds range from 0 to 60 kmph at a relatively low
frame rate of 10 Hz, which results in large inter-frame motions.
Several instances of standing still and frequent presence of
other vehicles, bicycles and pedestrians add to the complexity.

The evaluation metrics are provided by Geiger et al. [5],
based on an extension of those proposed by Kümmerle et al.
in [10]. Rotation and translation errors are reported as averages
of all relative transformations at a fixed distance, as well as
functions of various subsequence lengths and vehicle speeds.
For timings, our experiments are performed on a laptop with
Intel Core i7 2.40 GHz processor with 8GB DDR3 RAM and
6M cache. The main modules occupy three parallel threads as
depicted in Sections III-V, while ground detection for scale
correction occupies a thread of its own.

We compare the performance of our system to state-of-the-
art stereo and monocular systems associated with the dataset,
namely VISO2-S and VISO2-M [6]. Rotation and translation
errors relative to ground truth, averaged over all subsequence
lengths and vehicle speeds, are presented in Table III. Note that
the rotation performance of our system is excellent, resulting in
error rates lower than even stereo. The translation performance
of our system is also significantlly better than VISO2-M,
resulting in error rates under 10% for all sequences except



(a) Rotation error across (b) Translation error across
various distances various distances

(c) Rotation error across (d) Translation error across
various speeds various speeds

Fig. 6. Comparison of our system against state-of-art stereo and monocular
systems. Solid red line corresponds to stereo output from VISO2-S, dotted
black to monocular output from VISO2-M and dashed blue to monocular
output from our system. Averages across all ten sequences are plotted, using
the evaluation of [5].

one.1 This demonstrates the effectiveness of our multithreaded
architecture, which adds only thoroughly validated long-tracked
3D points through a parallel epipolar search, as well as allows
for repeated local and global bundle adjustments without delay.

Note that images in the dataset are recorded at only 10 Hz,
so it inherently favors systems such as VISO2-M [6] based on
per-frame 2D-2D matching rather than those tracking 3D-2D
correspondences. Nevertheless, our system is robust enough to
still produce results that outperform other state-of-the-art. In
Figure 6, we compare the rotation and translation errors for
the above systems across various subsequence lengths from
5 to 400 meters and speeds from 5 to 60 kmph. The plotted
values are averages across all ten sequences in Table III.

Figure 7 shows the recovered visual odometry path from our
monocular system, overlaid with the ground truth, for a few
example sequences. This also visualizes the excellent rotation
handling of our system, which manages to accurately recover
the pose even through several tight rotations in many sequences.
The translational error is also small and in most cases, occurs
due to difficult imaging conditions at a few isolated frames.

To illustrate our assertion that the system returns real-time
pose at an average of 30 fps and a worst-case timing of 50
ms per frame, Figure 8 provides the timing graphs of the
system on two sequences. In particular, note that the insertion
of keyframes, triggering bundle adjustments or error-correcting

1Sequence 01 has been omitted in the above since it involves a long section
on the highway at speeds 90 kmph recorded at only 10 Hz, causing all three
systems to break down. Translation errors for the three systems are 8% and
33% and 34%, respectively. This is an artifact of the low frame rate of the
acquisition, rather than an inherent limitation of the systems.

(a) Sequence 05

(b) Sequence 08
Fig. 8. The runtimes of our system for various types of frames. Blue denotes
steady state frame, red denotes a keyframe, magenta the frame after a keyframe
and green denotes a scale correction followed by firewall insertion. The black
line is the average time per frame, which correspondes to 33.7 fps for sequence
05 and 34.9 fps for sequence 08.

mechanisms do not result in significant spikes in our timings,
which is in contrast to several contemporary real-time systems.

It can also be observed that keyframes are inserted once in
about 5 and 6 frames for sequences 08 and 05, respectively.
This is expected since a fast moving vehicle will demand new
3D points from the epipolar update module at frequent intervals.
It does not affect the performance of our system since the global
bundle adjustment triggered after a keyframe finishes before
the next frame’s pose computation and runs in parallel to it.
In fact, keyframe insertion is an opportunity to introduce long-
range constraints in the optimization (so long as the epipolar
update module can return long enough tracks). Thus, to ensure
speed and accuracy, it is crucial for a multithreaded visual
odometry system to not only have a well-designed keyframe
architecture, but also to have its various modules like pose
estimation, epipolar search and various bundle adjustments
operating in optimal conjunction with each other.

Also note that scale correction is performed once approxi-
mately 100 frames for both the sequences in Figure 8. This
illustrates our observations that the proposed system is accurate
enough to hold scale for extended periods and that we use local
planarity information when available and appropriate, rather
than enforcing it as a hard assumption.
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(a) Sequence 10 (1201 frames) (b) Sequence 09 (1591 frames) (c) Sequence 08 (4071 frames)
Fig. 7. Monocular visual odometry localization results of our system compared to ground truth. Note the excellent rotation accuracy of our system and only
minor translation errors. The need for scale correction was automatically determined based on ground detection and performed only once in over 100 frames.

VII. DISCUSSIONS AND FUTURE WORK

We have presented a novel multithreaded system for large-
scale, real-time, monocular visual odometry, targeted towards
autonomous driving applications with fast-changing imagery.
Our key contribution is a demonstration that judicious mul-
tithreaded design can boost both the speed and accuracy for
handling challenging road conditions. Our system is optimized
to provide pose output in real-time at every frame, without
delays for keyframe insertion or global bundle adjustment.
This is achieved through a novel per-frame epipolar search
mechanism that generates redundantly validated 3D points
persistent across long tracks and an efficient keyframe archi-
tecture to perform online thread-safe global bundle adjustment
in parallel with pose computation. Further, we demonstrate
that our system is accurate enough to require only occasional
scale correction, for which we present an automatic mechanism
that detects planarity of the ground to compute reliable scale
factors. Currently, the timing bottleneck for our system is the
local bundle adjustment. For future work, we will explore
multithreaded bundle adjustment optimized for small-sized
problems that arise in autonomous driving applications. We
also plan to incorporate real-time detection of pedestrians and
cars for better handling crowded scenes.
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