MATH32031: Coding Theory • Part 9: Dual Code

8 The Dual code

The main idea here is to develop a dramatic speeding up of the previous decoding algorithm. The key concept here will be the use of the inner (or scalar) product on $F^{(n)}$, and the related notion of duality.

Inner product. For $\underline{u}, \underline{v} \in F^{(n)}$, the element of F

$$
\underline{u} \cdot \underline{v}=\sum u_{i} v_{i}
$$

is called the inner product of the vectors \underline{u} and \underline{v}.

Properties of the inner product.

(1)

$$
\begin{aligned}
\underline{u} \cdot \underline{v} & =\sum u_{i} v_{i} \\
& =\left(u_{1}, \ldots, u_{n}\right)\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right) \\
& =\underline{u} \underline{v}^{T}
\end{aligned}
$$

(matrix multiplication).
(2) $\underline{u} \cdot \underline{v}=\underline{v} \cdot \underline{u} \quad$ (symmetry).
(3) For scalars $\lambda, \mu \in F$ we have

$$
\begin{aligned}
(\lambda \underline{u}+\mu \underline{w}) \cdot \underline{v} & =\lambda(\underline{u} \cdot \underline{v})+\mu(\underline{w} \cdot \underline{v}), \\
\underline{u}(\lambda \underline{v}+\mu \underline{w}) & =\lambda(\underline{u} \cdot \underline{v})+\mu(\underline{u} \cdot \underline{w})
\end{aligned}
$$

(bilinearity).
Given a linear code $C \subset F^{(n)}$ we define the dual code (or orthogonal vector space) C^{\perp} as

$$
C^{\perp}=\left\{\underline{v} \in F^{(n)} \mid \underline{v} \cdot \underline{c}=0 \text { for every } \underline{c} \in C\right\}
$$

Proposition $15 C^{\perp}$ is a linear code.

Proof. If $\underline{x}, \underline{y} \in C^{\perp}$ then
$\underline{x} \cdot \underline{c}=\underline{y} \cdot \underline{c}=0$ for every $\underline{c} \in C$.
Thus

$$
(\lambda \underline{x}+\mu \underline{y}) \cdot \underline{c}=\lambda(\underline{x} \cdot \underline{c})+\mu(\underline{y} \cdot \underline{c})=0
$$

for every $\underline{c} \in C$.
This implies $\lambda \underline{x}+\mu \underline{y} \in C^{\perp}$.
Lemma 16 Let C be a linear code in $F^{(n)}$ with generator matrix G. Then $\underline{x} \in C^{\perp}$ if and only if $\underline{x} G^{T}=\underline{0}$.

Here G^{T} is the transpose of the matrix G.

Proof. Recall that

$$
G=\left[\begin{array}{c}
\underline{r}_{1} \\
\vdots \\
\underline{r}_{k}
\end{array}\right]
$$

where $\left\{\underline{r}_{i}\right\}$ is some basis of G. Also $\underline{x} G^{T}=\left(\underline{x} \cdot \underline{r}_{1}, \cdots, \underline{x} \cdot \underline{r}_{n}\right)$.
If $\underline{x} \in C^{\perp}$ then $\underline{x} \cdot \underline{r}_{i}=0$ for every i, so $\underline{x} G^{T}=\underline{0}$.
If $\underline{x} G^{T}=\underline{0}$ then $\underline{x} \cdot \underline{r}_{i}=0$ for every i. If $\underline{c} \in C$ then $\underline{c}=\sum_{i} \lambda_{i} \underline{r}_{i}$ for some $\lambda_{i} \in F$, so

$$
\underline{x} \cdot \underline{c}=\underline{x} \cdot\left(\sum \lambda_{i} \underline{r}_{i}\right)=\sum_{i} \lambda_{i}\left(\underline{x}_{i} \cdot \underline{r}_{i}\right)=0
$$

and $\underline{x} \in C^{\perp}$.
Theorem $17 \operatorname{dim}(C)+\operatorname{dim}\left(C^{\perp}\right)=n$. Thus if C is an $[n, k]$-code then C^{\perp} is an $[n, n-k]$ code.

Proof. It is a standard algebraic fact that for any non-degenerate bilinear form (such as our inner product) $\operatorname{dim}(C)+\operatorname{dim}\left(C^{\perp}\right)=n$.

In Part 10 we shall give another proof of this theorem, which is more adapted to our point of view.

