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Abstract 
 

Branch prediction is one of the ancient 
performance improving techniques which still finds 
relevance into modern architectures. While the simple 
prediction techniques provide fast lookup and power 
efficiency they suffer from high misprediction rate. On 
the other hand, complex branch predictions – either 
neural based or variants of two-level branch 
prediction – provide better prediction accuracy but 
consume more power and complexity increases 
exponentially. In addition to this, in complex 
prediction techniques the time taken to predict the 
branches is itself very high – ranging from 2 to 5 
cycles – which is comparable to the execution time of 
actual branches.  

 
Branch prediction is essentially an optimization 

(minimization) problem where the emphasis is on to 
achieve lowest possible miss rate, low power 
consumption and low complexity with minimum 
resources. In this survey paper we review the 
traditional Two-level branch prediction techniques; 
their variants and the underlying principles which 
make them predict accurately. We also briefly discuss 
the Perceptron based technique which uses lightweight 
neural network technique to predict the outcome of 
branches.  
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1. Introduction 
 

Branches change the normal flow of control 
in programs in unexpected manner which interrupts the 
normal fetch and issue operation of instructions. To 
resume the normal fetch it takes considerable number 
of cycles until the outcome of branches and new target 
is known. Branches are very frequent in general 

purpose programs – around 20% of the instructions are 
branches – and simplest solution to deal with branches 
is to stall the pipeline. Stalling pipeline doesn’t violate 
the correctness of program. However, it does degrade 
the overall IPC which is even severe in longer 
pipelines. In order to maintain the high throughput 
branch prediction in modern high performance 
microarchitecture has become essential. 

 
Static branches are not hard to predict and in 

most of the systems, compilers can provide very good 
coverage for such branches. Branches whose outcome 
is determined on run-time behavior are difficult to 
predict using compilers. In general, the branch 
outcomes are not random and they do have some sort 
of bimodal distribution. For such dynamic branches it 
is advantages to use a prediction mechanism which 
adapts in runtime and captures the run-time state of the 
system in order to make the predictions [1]. Although 
dynamic branch prediction techniques do provide very 
good prediction accuracy but there are still some 
caveats.  

 
The thrust for higher performance coupled 

with the predictability of branch outcomes suggest to 
use some prediction mechanism to know the branch 
outcome even before the branches are executed. Even 
after having a good predictor, in most of the cases, the 
penalty of branch misprediction is as bad as stalling the 
pipeline. This is the reason precisely why we need 
really smart branch predictors. 

 
Section 2 is an overview of basic branch 

prediction techniques. Section 3 presents a brief 
description of branch predictors which are 
incorporated in various commercial designs. In section 
4, some of the performances impacting factors are 
discussed. Overview of neural-based branch predictors 
is presented in section 5. Section 6 concludes the 
survey and serves as high-level guideline for designing 
the more accurate branch predictors.  

 



 
 

2. Basic Branch Prediction Schemes 
 
2.1. Bi-Model Branch Predictors 

 
A bimodal branch predictor has a table of n-

bit entries, indexed with the least significant bits of the 
branch addresses. Unlike the caches, bimodal predictor 
entries typically do not have tags, and so a particular 
entry may be mapped to different branch instructions 
(this is called branch interference or branch aliasing), 
in which case it is likely to be less accurate.  

 
Fig1: Bimodal branch predictor 

 
The typical hit rate of bimodal branch predictors 

with 4KB entries is around 90% for SPEC95 
benchmarks [2].  
 
2.2. Local Branch Predictors 
 

Bimodal branch predictors mispredict the exit 
of every loop. For loops which tend to have the same 
loop count every time (and for many other branches 
with repetitive behavior), we can do much better. 
Local branch predictors keep two tables [2]. The first 
table is the local branch history table. It is indexed by 
the low-order bits of each branch instruction's address, 
and it records the taken/not-taken history of the n most 
recent executions of the branch. 

 
The other table is the pattern history table. 

Like the bimodal predictor, this table contains bimodal 
counters; however, its index is generated from the 
branch history in the first table. To predict a branch, 
the branch history is looked up, and that history is then 
used to look up a bimodal counter which makes a 
prediction. 
 

 
Fig2: Local branch predictor 

 
Local branch predictors provide slightly better hit 

rate than bimodal predictors. 
 
2.3. Global Branch Predictors 
 

Global branch predictors make use of the fact 
that the behavior of many branches is strongly 
correlated with the history of other recently taken 
branches [1]. We can keep a single shift register 
updated with the recent history of every branch 
executed, and use this value to index into a table of 
bimodal counters. This scheme, by itself, is only better 
than the bimodal scheme for large table sizes.  

 
Fig3: Global branch predictor 

 
 
2.4. Combining Branch Predictors 
 

Scott McFarling proposed combined branch 
prediction in his 1993 paper [2]. Combined branch 
prediction is about as accurate as local prediction, and 
almost as fast as global prediction. Combined branch 
prediction uses three predictors in parallel: bimodal, 
gshare, and a bimodal-like predictor to pick which of 
bimodal or gshare to use on a branch-by-branch basis. 

 
 The choice predictor is yet another 2-bit 

up/down saturating counter, in this case the MSB 
choosing the prediction to use. In this case the counter 



is updated whenever the bimodal and gshare 
predictions disagree, to favor whichever predictor was 
actually right. 

 
Fig4: Combined branch predictor 

 
 
2.4. Agree Branch Prediction  

 
Another technique to reduce destructive 

aliasing within the pattern history tables is an agree 
predictor [3]. In this technique, a predictor (e.g. a 
gskew predictor) makes predictions, but rather than 
predicting taken/not-taken, the predictor predicts 
agree/disagree with the base prediction. The intention 
is that if branches covered by the gskew predictor tend 
to be a bit biased in one direction, perhaps 70%/30%, 
then all those biases can be aligned so that the gskew 
pattern history table will tend to have more agree 
entries than disagree entries.  

 
This reduces the likelihood that two aliasing 

branches would best have opposite values in the PHT. 

 
Fig5: Agree branch predictor 

 
The focus is on to reduce the amount of 

negative aliasing and either to convert it to positive of 
neutral. Agree predictors work well with combined 
predictors, because the combined predictor usually has 
a bimodal predictor which can be used as the base for 
the agree predictor. Agree predictors do less well with 
branches that are not biased in one direction, if that 

causes the base predictor to give changing predictions. 
So an agree predictor may work best as part of a three-
predictor scheme, with one agree predictor and another 
non-agree type predictor. 

 
 
3. Commercial Branch Predictors 
 

This section presents a brief overview of 
some of the state-of-art branch predictors which has 
been incorporated into the commercial designs. 

 
3.1. POWER4 Branch Prediction 
 

POWER4 prediction unit is very similar to 
combined predictor proposed by McFarling. POWER4 
branch prediction unit consist of three set of branch 
history tables. First one is called local predictor (or 
Branch history table) which has 16 K entry and each 
entry is 1 bit. Second table is called global predictor 
which has 11-bit history register (or history vector).  
The content of history vector is XORed with branch 
address before indexing the history table. Apart from 
these two tables there is another table which is known 
as selector table. This has 16 K 1-bit entries and keeps 
track of better predictor.   
 

In POWER4, fetching is re-directed based on 
prediction outcome. Eventually few cycle later 
branches are executed in BR unit. Upon execution of 
branches the predictor tables are updated if the 
prediction was not correct.  Another feature which 
POWER4 provides is that dynamic branch prediction 
can be overdriven by software, if needed. In order to 
know the target of branch Link stack predict the target 
of branches. 
 
3.2. Alpha 21264 Branch Predictors 
 

Similar to POWER4 Alpha 21264 branch 
predictor is also composed of three units – Local 
predictor, Global predictor, and Choice predictor. 
Local predictor maintains the per-branch history and 
each entry is 2-bit saturation counter. There are total 1 
K entries in local predictor. Global predictor uses 12 
most recent branches to predict the outcome of a 
branch. There are total 4K entries in global predictor 
and each entry is 2-bit wide.  
 

Choice predictor monitors the history of local 
and global predictors and chooses the best of two. It 
has 4K entry and each entry is 2-bit saturation counter. 
Block diagram of Alpha 21264 is shown in Fig 6. 
 



 
Fig6: Alpha 21264 branch prediction unit 

 
 
3.3. Intel Branch Predictors 
 

386 and 486 didn’t have any sort of hardware 
based dynamic branch prediction block. All branches 
were statically predicted as NOT TAKEN. Pentium III 
has a two-level of local history based branch predictor 
where each entry is 2-bit saturating counter (also 
known as Lee-smith counter). Pentium M combines 
three branch predictors together – Bimodal, Global and 
Loop predictor. Loop predictor analyzes the branches 
to see if they have loop behavior.  
 
 
4. Branch Prediction: Insights  
 

This section presents some of the key factors 
which have great impact on performance of branch 
predictors. 
 
4.1. Interference in Branch Predictions 
 

Interference or branch aliasing refers to a 
situation where prediction mechanism uses same 
resource to predict the outcome of two branches 
(possibly two un-related and contradicting branches). 
Depending upon the correlation between those two 
branches interference could be either positive or 
negative. Two branches which behave completely 
different, if use the same resource, would create 
negative interference and the prediction accuracy 
would suffer. On the other hand, positive interference 
could improve the prediction accuracy. Neutral 
interference refers to a situation where two branches 
don’t have any impact on each other. 
 

From various studies it has been found out 
that in branch predictions the negative interference is 
more dominant than positive or neutral interference. 
Two-level branch prediction techniques with limited 
hardware resources suffered mainly because of 
negative interferences and subsequent research work 

tried to address this problem. The focus was to reduce 
the more dominant negative interference and convert it 
to either positive or neutral interferences. The 
techniques which tried to solve the problem of 
negative interferences i.e. Agree predictor, Skew 
predictor etc. achieved 30-50% improvement in 
misprediction rate over baseline two-level branch 
predictors.      
       
 
4.2. Adaptive GHR Length 
 

In general, branches show some sort of co-
relation with their own previous outcomes or with the 
outcome of other branches. Co-relation with their own 
outcome is known as local co-relation whereas 
branches which are related with other branches known 
as globally correlation. Two-level techniques and their 
variant tried to exploit this behavior and achieved 
significant improvement on baseline branch predictor.  
 

The branch predictors which exploit either the 
local or global co-relation use some sort of history 
table to make use of past outcomes. However, the main 
problem with the history based predictors is to 
determine the “appropriate amount” of history to 
predict the outcome. Determining the right history is 
not trivial and may require the profiling [6]. The 
following data shows the absolute number of 
Misprediction for 10 million instructions of various 
applications for different amount of history.  
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Fig 7: Misprediction for various history lengths 

 
As we can see that by varying the amount of 

history used does improve or degrades the prediction 
accuracy. It is intuitive to think that larger history 
would give better accuracy which is not always true. 
The accuracy improves if we keep a larger history and 
then based on branch behavior use the appropriate 
amount of history. Neural branch prediction techniques 
try to use the appropriate amount of history by 
assigning the weights to them [5].  
 



In another proposal branch predictor uses 
variable history register (table) size (lower or higher 
than PHT index) which is adjusted dynamically. Each 
branch address maintains an entry which tells the 
appropriate size of history to be used for that particular 
branch [6].   
 
 
4.3. Utilization of Pattern History Table  
 

Pattern History Table (PHT) keeps track of 
particular pattern and tries to use it for prediction when 
a similar pattern occurs again. The problem with PHT 
is that not all the entries are used uniformly. In general, 
some of the entries are used more often than others and 
which might be the cause for negative interference as 
well. The figure below shows the distribution of 
accesses of 8KB pattern history table for art 
application. 
   

0

20000

40000

60000

80000

100000

120000

1 533 1065 1597 2129 2661 3193 3725 4257 4789 5321 5853 6385 6917 7449 7981

PHT Entry

N
um

be
r 

of
 B

R
/M

IS
S

BR_Baseline Miss_Baseline

 
Fig8: PHT Utilization – Distribution of branches and 
misprediction per entry 
 

 
Fig 9: (Zoomed version of fig 8) PHT Utilization 

4.4. Efficient Hash Function 
 

The negative interference could be due to 
addressing of history table. The simplest form of 
history table addressing is indexing using branch 
addresses. If branch address merged with global 
history register it reduces the misprediction rate 
further. Another variation of this, known as gshare, 
does the XOR of branch history and branch address 
and then indexes the history table. Some of the more 
efficient hash functions enable the better use of PHT 
and the history is evenly distributed in table. 
 

The key thing is that entries in PHT need to 
be distributed in uniform manner in order to avoid the 
negative interference. For this purpose variety of hash 
functions can be used. XOR is the simplest hash 
function but not efficient enough to provide the better 
scattering or allocations. Some of the common hash 
functions implements 6 to 7 level of shifting and XOR 
operations. 
 
4.4. Impact of GHR on PHT Utilization 
 
An appropriate amount of history also improves the 
utilizations of PHT which is shown in figure below. 
For different GHR the some of the branches are 
completely re-mapped into some other entries 
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Fig 10: PHT Utilization – Distribution of branches and 
misprediction per entry for various GHR size 
 

BR 
Baseline 

Miss 
Baseline 

BR 
GHR20 

Miss 
GHR20 

63351 22526 23256 12536 
65558 0 3 0 

0 0 1 0 
6 0 0 0 
0 0 0 0 

Table 1: Taken from the history trace of PHT 
 



5. Neural Branch Prediction: A Machine 
Learning Approach 
 

The conditional branch prediction is a 
Machine learning problem where machine learns to 
predict the outcome of conditional branches. So the 
first natural question which arises immediately is that 
why not to apply a machine learning algorithm? 
 

Artificial neural network tries to model the 
neural networks in brain cells.  It is very efficient to 
learn to recognize and classify patterns. Similarly the 
branch predictor also uses the classification of 
branches and tries to keep the co-related branches 
together [5].  
 
 
5.1. Perceptron Based Predictors 
 

The perceptron is the simplest version of the 
neural methods. And for the even simplest perceptron, 
a single-layer perceptron that consists of several input 
units by weighted edges to one output unit as depicted 
in figure 11. The inputs to a neuron are branch 
outcome histories (x1,…,xn). A perceptron learns a 
target Boolean function t(x1,…,xn) of n inputs as 
shown in below.  

 
 
In this case, the xi are the bits of a global HR, 

and the target function predicts whether a particular 
branch will be taken or not. Thus, intuitively, a 
perceptron keeps track of positive and negative 
correlations between branch outcomes in the global 
HR and the branch being predicted.  
 
 

 
Fig 11: Perceptron based branch predictor 

 

5.2. Advantages and Disadvantages 
 

Neural prediction could be incorporated into 
future CPUs. Accuracy is very good however 
complexity is still a bottleneck. The main advantage of 
the neural predictor is its ability to exploit long 
histories while requiring only linear resource growth. 
Classical predictors require exponential resource 
growth. 

 
The main disadvantage of the perceptron 

predictor is its high latency. Even after taking 
advantage of high-speed arithmetic tricks, the 
computation latency is relatively high compared to the 
clock periods of even modern Microarchitectures.  
 
 
6. Conclusion 
 
        There are two aspects of branch predictions. First 
is to determine the outcome (Taken or Not taken) of 
branch and if taken then the knowledge of target 
address. A static branch prediction scheme relies on 
the information incorporated in prior to runtime 
whereas the dynamic (adaptive) branch prediction 
logic tries to extract the information and predicts the 
behavior of branches in run-time. Most of the adaptive 
predictors use two piece of information. The history of 
last k branches and their specific behavior s is taken 
into account in order to implement the high 
performance branch prediction logic. The reason why 
dynamic branch prediction beats static is because the 
kind of data appears in run time is very much different 
from the sample (trace) data which is used for 
profiling.  
 

Bi-model predictor is simplest kind of 
predictor which uses the branch address and n-bit 
saturating counter based pattern table to predict the 
outcome. If miss predicted the pattern table entry is 
corrected by incorporating the actual outcome. In such 
predictors, the prediction accuracy is function of size 
of pattern table and the maximum achievable hit rate is 
93 – 94%. Local branch predictors add one more level 
of hardware which is known as History Table in 
addition to n-bit saturation counter based pattern table. 
Saturation counter can be replaced by various state 
machines which are described into YEH 1992 paper.  
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