
Branch Prediction Techniques and Optimizations

Raj Parihar
University of Rochester, NY, USA

parihar@ece.rochester.edu

Abstract

Branch prediction is one of the ancient
performance improving techniques which still finds
relevance into modern architectures. While the simple
prediction techniques provide fast lookup and power
efficiency they suffer from high misprediction rate. On
the other hand, complex branch predictions – either
neural based or variants of two-level branch
prediction – provide better prediction accuracy but
consume more power and complexity increases
exponentially. In addition to this, in complex
prediction techniques the time taken to predict the
branches is itself very high – ranging from 2 to 5
cycles – which is comparable to the execution time of
actual branches.

Branch prediction is essentially an optimization

(minimization) problem where the emphasis is on to
achieve lowest possible miss rate, low power
consumption and low complexity with minimum
resources. In this survey paper we review the
traditional Two-level branch prediction techniques;
their variants and the underlying principles which
make them predict accurately. We also briefly discuss
the Perceptron based technique which uses lightweight
neural network technique to predict the outcome of
branches.

Keywords: Two-Level branch prediction, Global –

History Register (GHR), Pattern History Table (PHT),
Neural Branch Predictors

1. Introduction

Branches change the normal flow of control
in programs in unexpected manner which interrupts the
normal fetch and issue operation of instructions. To
resume the normal fetch it takes considerable number
of cycles until the outcome of branches and new target
is known. Branches are very frequent in general

purpose programs – around 20% of the instructions are
branches – and simplest solution to deal with branches
is to stall the pipeline. Stalling pipeline doesn’t violate
the correctness of program. However, it does degrade
the overall IPC which is even severe in longer
pipelines. In order to maintain the high throughput
branch prediction in modern high performance
microarchitecture has become essential.

Static branches are not hard to predict and in

most of the systems, compilers can provide very good
coverage for such branches. Branches whose outcome
is determined on run-time behavior are difficult to
predict using compilers. In general, the branch
outcomes are not random and they do have some sort
of bimodal distribution. For such dynamic branches it
is advantages to use a prediction mechanism which
adapts in runtime and captures the run-time state of the
system in order to make the predictions [1]. Although
dynamic branch prediction techniques do provide very
good prediction accuracy but there are still some
caveats.

The thrust for higher performance coupled

with the predictability of branch outcomes suggest to
use some prediction mechanism to know the branch
outcome even before the branches are executed. Even
after having a good predictor, in most of the cases, the
penalty of branch misprediction is as bad as stalling the
pipeline. This is the reason precisely why we need
really smart branch predictors.

Section 2 is an overview of basic branch

prediction techniques. Section 3 presents a brief
description of branch predictors which are
incorporated in various commercial designs. In section
4, some of the performances impacting factors are
discussed. Overview of neural-based branch predictors
is presented in section 5. Section 6 concludes the
survey and serves as high-level guideline for designing
the more accurate branch predictors.

2. Basic Branch Prediction Schemes

2.1. Bi-Model Branch Predictors

A bimodal branch predictor has a table of n-

bit entries, indexed with the least significant bits of the
branch addresses. Unlike the caches, bimodal predictor
entries typically do not have tags, and so a particular
entry may be mapped to different branch instructions
(this is called branch interference or branch aliasing),
in which case it is likely to be less accurate.

Fig1: Bimodal branch predictor

The typical hit rate of bimodal branch predictors

with 4KB entries is around 90% for SPEC95
benchmarks [2].

2.2. Local Branch Predictors

Bimodal branch predictors mispredict the exit
of every loop. For loops which tend to have the same
loop count every time (and for many other branches
with repetitive behavior), we can do much better.
Local branch predictors keep two tables [2]. The first
table is the local branch history table. It is indexed by
the low-order bits of each branch instruction's address,
and it records the taken/not-taken history of the n most
recent executions of the branch.

The other table is the pattern history table.

Like the bimodal predictor, this table contains bimodal
counters; however, its index is generated from the
branch history in the first table. To predict a branch,
the branch history is looked up, and that history is then
used to look up a bimodal counter which makes a
prediction.

Fig2: Local branch predictor

Local branch predictors provide slightly better hit

rate than bimodal predictors.

2.3. Global Branch Predictors

Global branch predictors make use of the fact
that the behavior of many branches is strongly
correlated with the history of other recently taken
branches [1]. We can keep a single shift register
updated with the recent history of every branch
executed, and use this value to index into a table of
bimodal counters. This scheme, by itself, is only better
than the bimodal scheme for large table sizes.

Fig3: Global branch predictor

2.4. Combining Branch Predictors

Scott McFarling proposed combined branch
prediction in his 1993 paper [2]. Combined branch
prediction is about as accurate as local prediction, and
almost as fast as global prediction. Combined branch
prediction uses three predictors in parallel: bimodal,
gshare, and a bimodal-like predictor to pick which of
bimodal or gshare to use on a branch-by-branch basis.

 The choice predictor is yet another 2-bit

up/down saturating counter, in this case the MSB
choosing the prediction to use. In this case the counter

is updated whenever the bimodal and gshare
predictions disagree, to favor whichever predictor was
actually right.

Fig4: Combined branch predictor

2.4. Agree Branch Prediction

Another technique to reduce destructive

aliasing within the pattern history tables is an agree
predictor [3]. In this technique, a predictor (e.g. a
gskew predictor) makes predictions, but rather than
predicting taken/not-taken, the predictor predicts
agree/disagree with the base prediction. The intention
is that if branches covered by the gskew predictor tend
to be a bit biased in one direction, perhaps 70%/30%,
then all those biases can be aligned so that the gskew
pattern history table will tend to have more agree
entries than disagree entries.

This reduces the likelihood that two aliasing

branches would best have opposite values in the PHT.

Fig5: Agree branch predictor

The focus is on to reduce the amount of

negative aliasing and either to convert it to positive of
neutral. Agree predictors work well with combined
predictors, because the combined predictor usually has
a bimodal predictor which can be used as the base for
the agree predictor. Agree predictors do less well with
branches that are not biased in one direction, if that

causes the base predictor to give changing predictions.
So an agree predictor may work best as part of a three-
predictor scheme, with one agree predictor and another
non-agree type predictor.

3. Commercial Branch Predictors

This section presents a brief overview of
some of the state-of-art branch predictors which has
been incorporated into the commercial designs.

3.1. POWER4 Branch Prediction

POWER4 prediction unit is very similar to
combined predictor proposed by McFarling. POWER4
branch prediction unit consist of three set of branch
history tables. First one is called local predictor (or
Branch history table) which has 16 K entry and each
entry is 1 bit. Second table is called global predictor
which has 11-bit history register (or history vector).
The content of history vector is XORed with branch
address before indexing the history table. Apart from
these two tables there is another table which is known
as selector table. This has 16 K 1-bit entries and keeps
track of better predictor.

In POWER4, fetching is re-directed based on
prediction outcome. Eventually few cycle later
branches are executed in BR unit. Upon execution of
branches the predictor tables are updated if the
prediction was not correct. Another feature which
POWER4 provides is that dynamic branch prediction
can be overdriven by software, if needed. In order to
know the target of branch Link stack predict the target
of branches.

3.2. Alpha 21264 Branch Predictors

Similar to POWER4 Alpha 21264 branch
predictor is also composed of three units – Local
predictor, Global predictor, and Choice predictor.
Local predictor maintains the per-branch history and
each entry is 2-bit saturation counter. There are total 1
K entries in local predictor. Global predictor uses 12
most recent branches to predict the outcome of a
branch. There are total 4K entries in global predictor
and each entry is 2-bit wide.

Choice predictor monitors the history of local
and global predictors and chooses the best of two. It
has 4K entry and each entry is 2-bit saturation counter.
Block diagram of Alpha 21264 is shown in Fig 6.

Fig6: Alpha 21264 branch prediction unit

3.3. Intel Branch Predictors

386 and 486 didn’t have any sort of hardware
based dynamic branch prediction block. All branches
were statically predicted as NOT TAKEN. Pentium III
has a two-level of local history based branch predictor
where each entry is 2-bit saturating counter (also
known as Lee-smith counter). Pentium M combines
three branch predictors together – Bimodal, Global and
Loop predictor. Loop predictor analyzes the branches
to see if they have loop behavior.

4. Branch Prediction: Insights

This section presents some of the key factors
which have great impact on performance of branch
predictors.

4.1. Interference in Branch Predictions

Interference or branch aliasing refers to a
situation where prediction mechanism uses same
resource to predict the outcome of two branches
(possibly two un-related and contradicting branches).
Depending upon the correlation between those two
branches interference could be either positive or
negative. Two branches which behave completely
different, if use the same resource, would create
negative interference and the prediction accuracy
would suffer. On the other hand, positive interference
could improve the prediction accuracy. Neutral
interference refers to a situation where two branches
don’t have any impact on each other.

From various studies it has been found out
that in branch predictions the negative interference is
more dominant than positive or neutral interference.
Two-level branch prediction techniques with limited
hardware resources suffered mainly because of
negative interferences and subsequent research work

tried to address this problem. The focus was to reduce
the more dominant negative interference and convert it
to either positive or neutral interferences. The
techniques which tried to solve the problem of
negative interferences i.e. Agree predictor, Skew
predictor etc. achieved 30-50% improvement in
misprediction rate over baseline two-level branch
predictors.

4.2. Adaptive GHR Length

In general, branches show some sort of co-
relation with their own previous outcomes or with the
outcome of other branches. Co-relation with their own
outcome is known as local co-relation whereas
branches which are related with other branches known
as globally correlation. Two-level techniques and their
variant tried to exploit this behavior and achieved
significant improvement on baseline branch predictor.

The branch predictors which exploit either the
local or global co-relation use some sort of history
table to make use of past outcomes. However, the main
problem with the history based predictors is to
determine the “appropriate amount” of history to
predict the outcome. Determining the right history is
not trivial and may require the profiling [6]. The
following data shows the absolute number of
Misprediction for 10 million instructions of various
applications for different amount of history.

0

10000

20000

30000

40000

50000

60000

70000

ammp applu apsi art bzip2 swim twolf vortex

Applications

of

 M
is

pr
ed

ic
tio

ns

Baseline (GHR13) GHR10 GHR16 GHR20 GHR26

c

Fig 7: Misprediction for various history lengths

As we can see that by varying the amount of

history used does improve or degrades the prediction
accuracy. It is intuitive to think that larger history
would give better accuracy which is not always true.
The accuracy improves if we keep a larger history and
then based on branch behavior use the appropriate
amount of history. Neural branch prediction techniques
try to use the appropriate amount of history by
assigning the weights to them [5].

In another proposal branch predictor uses
variable history register (table) size (lower or higher
than PHT index) which is adjusted dynamically. Each
branch address maintains an entry which tells the
appropriate size of history to be used for that particular
branch [6].

4.3. Utilization of Pattern History Table

Pattern History Table (PHT) keeps track of
particular pattern and tries to use it for prediction when
a similar pattern occurs again. The problem with PHT
is that not all the entries are used uniformly. In general,
some of the entries are used more often than others and
which might be the cause for negative interference as
well. The figure below shows the distribution of
accesses of 8KB pattern history table for art
application.

0

20000

40000

60000

80000

100000

120000

1 533 1065 1597 2129 2661 3193 3725 4257 4789 5321 5853 6385 6917 7449 7981

PHT Entry

N
um

be
r

of
 B

R
/M

IS
S

BR_Baseline Miss_Baseline

Fig8: PHT Utilization – Distribution of branches and
misprediction per entry

Fig 9: (Zoomed version of fig 8) PHT Utilization

4.4. Efficient Hash Function

The negative interference could be due to
addressing of history table. The simplest form of
history table addressing is indexing using branch
addresses. If branch address merged with global
history register it reduces the misprediction rate
further. Another variation of this, known as gshare,
does the XOR of branch history and branch address
and then indexes the history table. Some of the more
efficient hash functions enable the better use of PHT
and the history is evenly distributed in table.

The key thing is that entries in PHT need to
be distributed in uniform manner in order to avoid the
negative interference. For this purpose variety of hash
functions can be used. XOR is the simplest hash
function but not efficient enough to provide the better
scattering or allocations. Some of the common hash
functions implements 6 to 7 level of shifting and XOR
operations.

4.4. Impact of GHR on PHT Utilization

An appropriate amount of history also improves the
utilizations of PHT which is shown in figure below.
For different GHR the some of the branches are
completely re-mapped into some other entries

0

20000

40000

60000

80000

100000

120000

1 508 1015 1522 2029 2536 3043 3550 4057 4564 5071 5578 6085 6592 7099 7606 8113

PHT Entry # (Total 8192)

of

 B
R

/M
is

pr
ed

ic
tio

ns

BR_Baseline Miss_Baseline BR_GHR20 Miss_GHR20

Fig 10: PHT Utilization – Distribution of branches and
misprediction per entry for various GHR size

BR
Baseline

Miss
Baseline

BR
GHR20

Miss
GHR20

63351 22526 23256 12536
65558 0 3 0

0 0 1 0
6 0 0 0
0 0 0 0

Table 1: Taken from the history trace of PHT

5. Neural Branch Prediction: A Machine
Learning Approach

The conditional branch prediction is a
Machine learning problem where machine learns to
predict the outcome of conditional branches. So the
first natural question which arises immediately is that
why not to apply a machine learning algorithm?

Artificial neural network tries to model the
neural networks in brain cells. It is very efficient to
learn to recognize and classify patterns. Similarly the
branch predictor also uses the classification of
branches and tries to keep the co-related branches
together [5].

5.1. Perceptron Based Predictors

The perceptron is the simplest version of the
neural methods. And for the even simplest perceptron,
a single-layer perceptron that consists of several input
units by weighted edges to one output unit as depicted
in figure 11. The inputs to a neuron are branch
outcome histories (x1,…,xn). A perceptron learns a
target Boolean function t(x1,…,xn) of n inputs as
shown in below.

In this case, the xi are the bits of a global HR,

and the target function predicts whether a particular
branch will be taken or not. Thus, intuitively, a
perceptron keeps track of positive and negative
correlations between branch outcomes in the global
HR and the branch being predicted.

Fig 11: Perceptron based branch predictor

5.2. Advantages and Disadvantages

Neural prediction could be incorporated into
future CPUs. Accuracy is very good however
complexity is still a bottleneck. The main advantage of
the neural predictor is its ability to exploit long
histories while requiring only linear resource growth.
Classical predictors require exponential resource
growth.

The main disadvantage of the perceptron

predictor is its high latency. Even after taking
advantage of high-speed arithmetic tricks, the
computation latency is relatively high compared to the
clock periods of even modern Microarchitectures.

6. Conclusion

 There are two aspects of branch predictions. First
is to determine the outcome (Taken or Not taken) of
branch and if taken then the knowledge of target
address. A static branch prediction scheme relies on
the information incorporated in prior to runtime
whereas the dynamic (adaptive) branch prediction
logic tries to extract the information and predicts the
behavior of branches in run-time. Most of the adaptive
predictors use two piece of information. The history of
last k branches and their specific behavior s is taken
into account in order to implement the high
performance branch prediction logic. The reason why
dynamic branch prediction beats static is because the
kind of data appears in run time is very much different
from the sample (trace) data which is used for
profiling.

Bi-model predictor is simplest kind of
predictor which uses the branch address and n-bit
saturating counter based pattern table to predict the
outcome. If miss predicted the pattern table entry is
corrected by incorporating the actual outcome. In such
predictors, the prediction accuracy is function of size
of pattern table and the maximum achievable hit rate is
93 – 94%. Local branch predictors add one more level
of hardware which is known as History Table in
addition to n-bit saturation counter based pattern table.
Saturation counter can be replaced by various state
machines which are described into YEH 1992 paper.

7. References

[1] “Alternative Implementations of Two-Level Adaptive

Branch Prediction” by Tse-Yu Yeh and Yale N. Patt

[2] “Combining Branch Predictors” by Scott McFarling

[3] “The Agree Predictor: A Mechanism for Reducing

Negative Branch History Interference” by Sprangle, et
al

[4] “Dynamic History-Length Fitting: A Third Level of

Adaptivity for Branch Prediction” by Toni Juan et al

[5] “Neural Methods for Dynamic Branch Predictor” by

Daniel A. Jimenez et al.

[6] Maria-Dana Tarlescu, Kevin B. Theobald, and Guang

R. Gao. Elastic History Buffer: A Low-Cost Method to
Improve Branch Prediction Accuracy. ICCD, October
1996.

