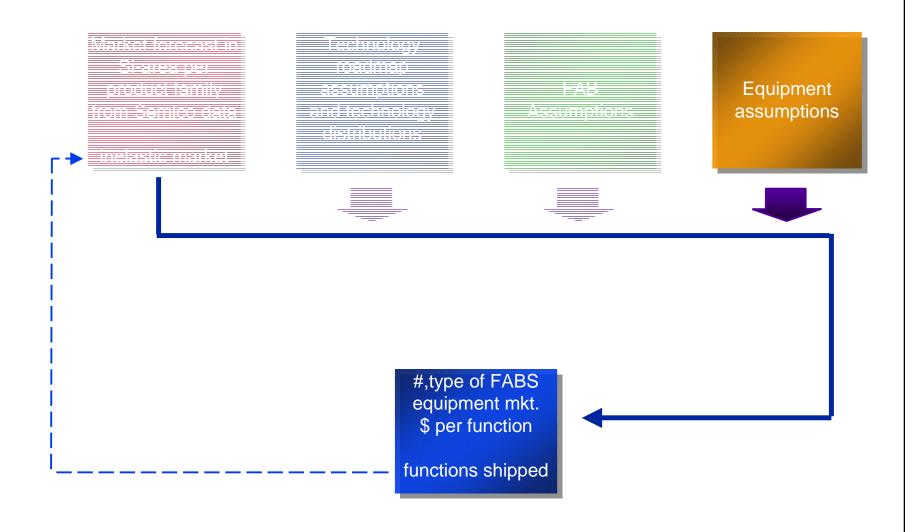
Global Economic Workshop - Sunnyvale, California


Lithography Equipment Analysis Assumptions

Walt Trybula

November 9, 2000

Presentation Overview

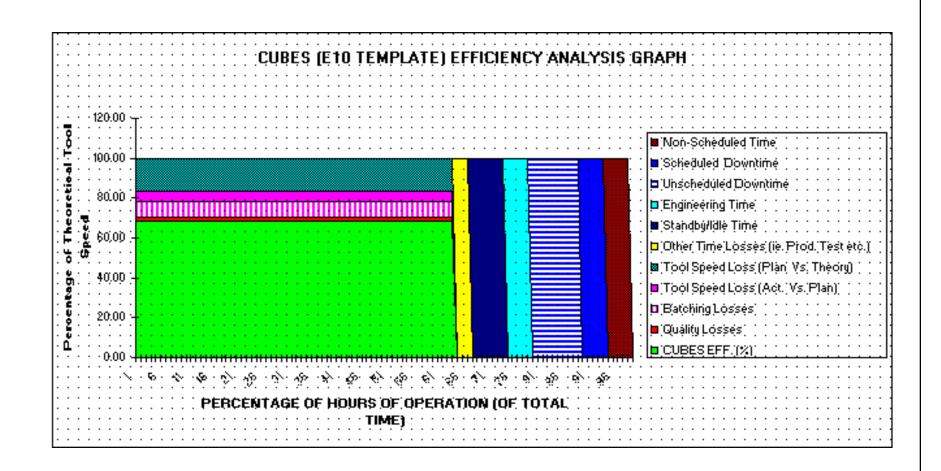
Assumptions- Equipment Speed

200mm Litho tools – number of fields per wafer

- 25mm x 25mm die size has 37 steps per wafer
- 22mm x 22mm die size has 45 steps per wafer
- 20mm x 20mm die size has 57 steps per wafer

200mm Litho tools – Throughput (planned)

- 25mm x 25mm die size 62.7 wafers per hour
- 22mm x 22mm die size 59.6 wafers per hour
- 20mm x 20mm die size 52.3 wafers per hour


300mm Litho tools – 60% of 200mm Throughput

Equipment Efficiency – Scenario #1

CUBES v. 2.51 BET.	A (E10	TEMP	LATE) EFFICIENCY ANA	LYS	S TOOI		#######
TOOL: TOOL 1			SUPPLIER:		MODEL:		
TOOL ID:			SOURCE DATA DATE:				
BATCHSIZE: 5	•		SOURCE DATA FROM:				
SUMMARIZED INPUTS		INPUT	SUMMARIZED OUTPUTS	CUBES	EFFICIENCY	(%)	THRUPUT
		CHECKS	Actual Production		45.48		4791
						-	
							THRUPUT
Theoretical Tool Speed (UPH)	62.7		Speed Efficiency (%) 68.22		OVERALL	INDIVIDUAL	INCREASE
Total Time	168		Time Efficiency(%) 66.67		EFFECT	EFFECT	ANALYSIS
				_	(%)	(%)	IN UNITS
Plan Tool Speed (UPH)	52.3	TRUE	Tool Speed Loss (Plan Vs. Theory)		11.06	16.59	
Actual Tool Speed (UPH) ***	49	TRUE	Tool Speed Loss (Act. Vs. Plan)		3.51	6.31	323
Average Batch Size (% Full)	90	TRUE	Batching Losses		5.21	10.00	532
Quality Losses (% Loss)	3	TRUE	Quality Losses		1.41	3.00	148
Other Time Losses (ie. Prod. Test etc.)	4.00	TRUE	Other Time Losses (ie. Prod. Test etc.)		2.38	3.45	171
Standby / Idle Time	12.00	TRUE	Standby/ Idle Time		7.14	9.38	513
Engineering Time	8.00	TRUE	Engineering Time		4.76	5.88	342
Unscheduled Downtime	16.00	TRUE	Unsche dule d Downtime		9.52	10.53	684
Scheduled Downtime	8.00	TRUE	Scheduled Downtime		4.76	5.00	342
Non-Scheduled Time	8.00	TRUE	Non-Scheduled Time		4.76	4.76	342

Equipment Efficiency – Scenario #1

Summary of Daily Tool Throughput

200mm Tools (in wafers per 24 hours)

Effective	TPT	AltPSM	TPT

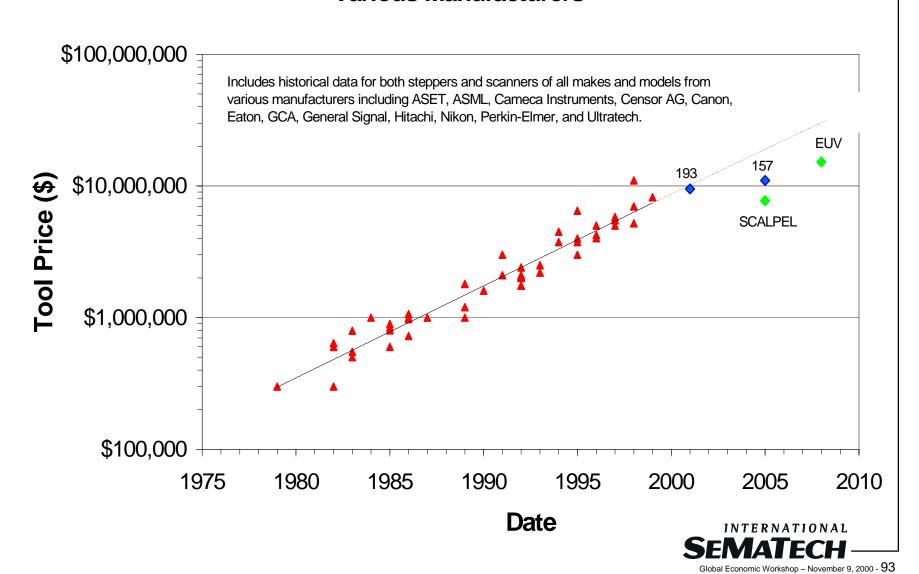
– ITRS Roadmap [C] 998	600
--	-----

2 year cycle [B]	684	410
------------------------------------	-----	-----

300mm Tools – 60% Throughput de-rating

Effective TPT AltPSM TF

- ITRS Roadmap [C] 600 360
- 2 year cycle [B] 247 410


Throughput Conclusions

- Manufacturer quoted equipment throughput is based on minimum number of fields per wafer and is otherwise optimized to provide the most favorable picture of operating conditions.
- Equipment claims do not consider availability or scheduling constraints in advertised throughput values.
- Static Modeling efforts must de-rate actual throughput to reflect "real" world experience. (Without de-rating, a Fab for devices with 19 levels would require 12 steppers – actual is 27 or 28.)

Exposure Tool Price vs. Time for Various Manufacturers

Exposure Tool Price versus Time Various Manufacturers

Stepper Projection Scenarios

	130nm	100(90)nm	70(65)nm
Throughput (wph)			
– ITRS Roadmap [C]	25/15	25/15	25/15
2 year scenario [B]	17/10	17/10	17/10
		(binary mask /double phase shift mask)	

Tool Cost (\$M)

ITRS Roadmap [C]	8/11	11/14	14
2 year scenario [B]	8/12	11/15	15
	(248nm/193nm)	(193nm/157nm)	(157nm)

Throughputs are a function of accelerated tool wavelength introduction.

Tool costs are a function of wavelength introduction.

Global Economic Workshop – November 9, 2000 - 94

Conclusions

- There is a penalty in stepper equipment cost due to acceleration of technology – 10% for each year of shortening
- Stepper throughput will change slightly due to technology acceleration - < 5%
- Other cost contributors, i.e., masks, resists, etc., will increase due to technology acceleration
 - These changes, which are anticipated to be small, are not modeled in today's presentations

