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Abstract

Detecting failures is a fundamental issue for fault-tabeein distributed systems. Recently, many people have
come to realize that failure detection ought to be provided@me form of generic service, similar to IP address
lookup or time synchronization. However, this has not bastsssful so far. One of the reasons is the difficulty to
satisfy several application requirements simultaneousign using classical failure detectors.

We present a novel abstraction, called accrual failurectiete, that emphasizes flexibility and expressiveness
and can serve as a basic building block to implementingraitietectors in distributed systems. Instead of providing
information of a boolean nature (trust vs. suspect), at¢dailare detectors output a suspicion level on a continuous
scale. The principal merit of this approach is that it favarsiearly complete decoupling between application
requirements and the monitoring of the environment.

In this paper, we describe an implementation of such an atdailure detector, that we call the failure
detector. The particularity of the failure detector is that it dynamically adjusts to curreetwork conditions
the scale on which the suspicion level is expressed. We a@dlthe behavior of oup failure detector over an
intercontinental communication link during several dagsir experimental results show that aprfailure detector

performs equally well as other known adaptive failure dé@cmechanisms, with an improved flexibility.
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The ¢ Accrual Failure Detector

. INTRODUCTION

It is well-known that failure detection constitutes a fundantal building block for ensuring fault tolerance in
distributed systems. For this reason, many people have dxb@tating that failure detection should be provided as
a service [1]-[5], similar to IP address lookup (DNS) or tiljachronization (e.g., NTP). Unfortunately, in spite of
important technical breakthroughs, this view has meelisiliccess so far. We believe that one of the main reasons
is that the conventional boolean interaction (i.e., trust suspect) makes it difficult to meet the requirements of
several distributed applications running simultaneauBlyr this reason, we advocate a different abstraction that
helps decoupling application requirements from issuestedlto the underlying system.

It is well-known that there exists an inherent tradeoff esw (1)conservativefailure detection (i.e., reducing
the risk of wrongly suspecting a running process), andaffjressivefailure detection (i.e., quickly detecting the
occurrence of a real crash). There exists a continuum of ehliices between these two extremes, and what defines
an appropriate choice is strongly related to applicatiaquirements.

One of the major obstacles to building a failure detectiorvise is that simultaneously running distributed
applications with different quality-of-service requiremnis must be able to tune the service to meet their own needs
without interfering with each other. Furthermore, somegs#af distributed applications require the use of differen
gualities of service of failure detection to trigger diffet reactions (e.g., [6]-[8]). For instance, an applicatan
take precautionary measures when the confidence in a suspaaches a given level, and then take more drastic
actions once the confidence raises above a second (much )higpedr

Accrual failure detectors:Failure detectors are traditionally based on a boolearraaot®n model wherein
processes can only either trust or suspect the procesdethélyaare monitoring. In contrast, we propose a novel
abstraction, called accrual failure detector, wherebyilarEamonitor service outputs a value orcantinuous scale
rather than information of a boolean nature. Roughly spmakinis value captures the degree of confidence that
a corresponding monitored process has crashed. If the sg@®ually crashes, the value is guaranteedctoue
over time and tend toward infinity, hence the name. It is théntteapplication processes to set an appropriate
suspicion threshold according to their own quality-ofvsee requirements. A low threshold is prone to generate
many wrong suspicions but ensures a quick detection in teatesf a real crash. Conversely, a high threshold

generates fewer mistakes but needs more time to detect acashes.



Example: Let us now illustrate the advantage of this approach with gkirexample. Consider a distributed
application in which one of the processes is designated asstemwhile all other processes play the role of workers.
The master holds a list of jobs that needs to be computed anctaires a list of available worker processes. As
long as jobs remain in its list, the master sends jobs to idlekers and collects the results after they have been
computed. Assume now that some of the workers might craghs(foplicity, we assume that the master never
crashes). Let some worker process crash during the execution; the master must be able to detacp,, has
crashed and take appropriate actions, otherwise the sysight block forever. With accrual failure detectors, this
could be realized as follows. When the confidence level reasbene low threshold, the master simply flags the
worker process,, and temporarily stops sending new jobsztp. Then, when reaching a moderate threshold,
the master cancels all unfinished computations that wereirrgron p,, and resubmit them to some other worker
processes. Finally, when reaching a high threshold, the md@thap,, has crashed is high, so the master removes
py from its list of available workers and releases all corresiiog resources. Using conventional failure detectors
to implement such a simple behavior would be quite a chaieng

Contribution: In this paper, we present the abstraction of accrual faitle®ctors and describe an adaptive
implementation called the failure detector. Briefly speaking, thefailure detector works as follows. The protocol
samples the arrival time of heartbeats and maintains anglidindow of the most recent samples. This window is
used to estimate the arrival time of the next heartbeat |ailyito conventional adaptive failure detectors [9], [10]
The distribution of past samples is used as an approximatiothe probabilistic distribution of future heartbeat
messages. With this information, it is possible to computalae o with a scale that changes dynamically to match
recent network conditions.

We have evaluated our failure detection scheme on a tratiseatal link between Japan and Switzerland.
Heartbeat messages were sent using the user datagramopr@i@P) at a rate of about ten per second. The
experiment ran uninterruptedly for a period of one weekhegang a total of nearly 6 million samples. Using these
samples, we have analyzed the behavior ofhailure detector, and compared it with traditional adapfigilure
detectors [9], [10]. By providing exactly the same input tery failure detector, we could ensure the fairness
of the comparison. The results show that the enhanced flayilpitovided by our approach does not induce any
significant overhead.

Structure: The rest of the paper is organized as follows. Section Il redaiportant concepts and definitions
regarding failure detectors. Section Il describes therab8on of accrual failure detectors. Section IV presents an
implementation of accrual failure detectors called thé&ilure detector. The behavior of the failure detector is

evaluated in Section V, where it is compared with other exgsfailure detector implementations on a wide-area



network. Section VI discusses other related work. FinallytiSecvIl concludes the paper.

Il. FAILURE DETECTORS BASIC CONCEPTS& IMPLEMENTATIONS

This section briefly reviews important results concernindufai detection. We first outline the basic concepts,
describe important metrics, and discuss basic aspectsedf ithplementations. At the end of the section, we
describe two prior implementations of adaptive failureedstrs that we later use as a reference to compare with

our ¢ failure detector.

A. Unreliable failure detectors

Being able to detect the crash of other processes is a fundalriesue in distributed systems. In particular,
several distributed agreement problems, such as Conserausot be solved deterministically in asynchrortous
systems if even a single process might crash [11]. The imipitigsiis based on the fact that, in such a system, a
crashed process cannot be distinguished from a very slow one

The impossibility result mentioned above no longer holdshié system is augmented with some unreliable
failure detector oracle [12]. An unreliable failure detwds one that can make mistakes, to a certain degree. As an
example, we present here the properties of a failure deteftolassOP (eventually perfect), which is sufficient
to solve the Consensus problem:

Property 1 (Strong completenesshhere is a time after which every process that crashes is pemis sus-
pected by all correct processes.

Property 2 (Eventual strong accuracyfhere is a time after which correct processes are not suspbgtany

correct process.

B. Quality of service of failure detectors

Chen et al. [10] propose a set of metrics to evaluate thetgualservice (QoS) of failure detectors. For simplicity
and without loss of generality, they consider a simple sysais follows. The system consist of only two processes
calledp and ¢, where procesg monitors proces®. Procesp can possibly be subject to crash failures, in which
case the crash is permanent. In the sequel, we consider it $gstem, and use the following subset of Chen’s
metrics.

Definition 1 (Detection timd@’p): The detection time is the time that elapses since the craghaofd until ¢
begins to suspeg permanently.

1An asynchronous distributed system is one in which there are no boundsnemunication delays and on the speed of processes.
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Fig. 1. Heartbeat failure detection and its main parameters.

Definition 2 (Average mistake ratey): This measures the rate at which a failure detector generatesgw
suspicions.
Notice that the first definition relates to the completenessredsethe other one relates to the accuracy of the

failure detector.

C. Heartbeat failure detectors

In this section, we present a brief overview of heartbeaetdamplementations of failure detectors. Assume that
processes have also access to some local physical cloclgghvem the ability to measure time. These clocks may
or may not be synchronized.

Using heartbeat messages is a common approach to implemdatiure detectors. It works as follows (see
Fig. 1): procesg—i.e., the monitored process—periodically sends a heattimessage to processinforming ¢
thatp is still alive. The period is called the heartbeat intergl Process; suspects procegsif it fails to receive
any heartbeat message frgimfor a period of time determined by a timeoit;,, with A;, > A;. A third value
of importance is the network transmission delay of messages convenience, we denote ky;. the average
transmission time experienced by messages.

In the conventional implementation of heartbeat-basddraidetection protocols, the timeod;, is fixed as a
constant value. Upon receiving a heartbeat, progeasits for the next heartbeat for at maat, units of time,
after which it begins to suspect proces# no new heartbeat has been received.

Obviously, the choice of a timeout value must be larger thanand is dictated by the following tradeoff. If the
timeout (A;,) is short, crashes are detected quickly but the likelindssrong suspicions is high. Conversely, if
the timeout is long, wrong suspicions become less frequrrttthis comes at the expense of detection time.

An alternative implementation of heartbeat failure daiectsets a timeout based on the transmission time of

the heartbeat. The advantage of this approach is that thenmahxlietection time is bounded, but its drawback is



that it relies on clocks with negligible drfftand a shared knowledge of the heartbeat intefval This last point
can become a problem in practice, when the regularity of émeling of heartbeats cannot be ensured and a short
interval makes the timing inaccuracies due to operatingesyscheduling take more importance (i.e., the actual
interval differs from the target one as a result).

Each of the two approaches has its own merits that depend aothiext, so we believe that there is no clearcut

answer to the question of choosing one over the other.

D. Adaptive failure detectors

The goal of adaptive failure detectors is to adapt to changetgiork conditions. Most adaptive failure detectors
presented in the literature are based on a heartbeat stri@itigough nothing seems to preclude a query-response
interaction style, for instance). The principal differengith using a fixed heartbeat strategy is that the timeout is
modified dynamically according to network conditions.

1) Chen-FD: Chen et al. [10] propose an approach based on a probabdisttysis of network traffic. The
protocol uses arrival times sampled in the recent past topatenan estimation of the arrival time of the next
heartbeat. The timeouf;, is set according to this estimation and a constant safetygimar is added. The
estimation of the next heartbeat arrival time is recompuiter each new heartbeat arrival. The safety margin is
computed once, based on quality-of-service requiremdimis.authors propose two versions of their protocol; one
that relies on synchronized clocks, and a second one thatwnsynchronized clocks with negligible drift. We have
done our comparisons based on the second version of theacpio

2) Bertier-FD: Bertier et al. [9] propose an adaptive failure detector Bame the same approach, but using a
different estimation function. Their estimation combinelse@'s estimation with a dynamic estimation based on
Jacobson’s estimation of the round-trip time [13]. The résglfailure detector provides a shorter detection time,
but generates more wrong suspicions than Chen'’s estimattmording to their measurements on a LAN.

3) Note on setting the heartbeat periott: is clear that the heartbeat perias; is a factor that contributes to
the detection time. However, in contrast to a common belidfller [14] shows that, on several different networks,
A; is not much determined by quality-of-service requiremghtg rather by the characteristics of the underlying
system.

An informal argument is as follows. Roughly speaking, thdéedigon time is equally determined by three
parametersA;, A;., and some additional margin (with A;, =~ A; + «). Ay is caused by the network and
cannot really be tuned.

2A straightforward implementation requires synchronized clocks. Chah §0] show how to do it with unsynchronized clocks, but this
still requires a negligible drift between the clocks.



« On the one hand, i\; is a lot smaller tha\,,., then reducing it will have little effect on reducing the elgtion
time. Indeed, the detection time cannot possibly be shaoingm the transmission time. In fact, reducidg
further would generate both a larger amount of traffic on thisvokk and a higher activity in the network
stacks. This could in turn increags;,.

« On the other hand, if\; is a lot larger thamA,., then A; will almost entirely determine the detection time.
Increasing it further will increase the detection time adawgly, but it will have nearly no effect in reducing
the already low load on the network.

Hence, we can conclude that any reasonable valuéo6hould be roughly equal to the average transmission
time Ay-. The only exception that we could see is when an upper limieisoa the acceptable usage of network
bandwidth for control messages.

Although the above argument is rather informal, it sugg#sds there exists, with every network, some nominal

range for the parametek; with little or no impact on the accuracy of the failure detecin other words, we
can consider that the parametdr; is given by the underlying system rather than computed frqplieation

requirements.

IIl. ACCRUAL FAILURE DETECTORS

The principle of accrual failure detectors is simple. Indtedoutputting information of a boolean nature, accrual
failure detectors output suspicion information on a carmuns scale. Roughly speaking, the higher the value, the
higher the chance that the monitored process has crashed.

In this section, we first describe the use of accrual failuteaers from an architectural perspective, and put this
in contrast with conventional failure detectors. Then, weeg more precise definition of accrual failure detectors.
Finally, we conclude the section by showing the relation leetwaccrual failure detectors and conventional ones.

In particular, we show how an accrual failure detector camused to implement a failure detector of clasB.

A. Architecture overview

Conceptually, the implementation of failure detectors lo@ teceiving side can be decomposed into three basic
parts as follows.
1) Monitoring. The failure detector gathers information from other preessusually through the network, such
as heartbeat arrivals or query-response delays.
2) Interpretation Monitoring information is used and interpreted, for imgta to decide that a process should

be suspected.
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Fig. 2.  Structure of traditional failure detectors. Monitoring andfig. 3.  Structure of accrual failure detectors. Monitoring and
interpretation are combined. Interactions with applications and prioterpretation are decoupled. Applications interpret a common value
tocols is boolean. based on their own interpretation.

3) Action Actions are executed as a response to triggered suspidibissis normally done within applications.

The main difference between traditional failure detectord accrual failure detectors is which component of the
system does what part of failure detection.

In traditional timeout-based implementations of failuretettors, the monitoring and interpretation parts are
combined within the failure detector (see Fig. 2). The outgduhe failure detector is of boolean natutegst or
suspect An elapsing timeout is equated to suspecting the monitpredess, that is, the monitoring information
is already being interpreted. Applications cannot do angrpretation, and thus are left with what to do with the
suspicion. Unfortunately, suspicion tradeoffs largelpeled on the nature of the triggered action, as well as its cost
in terms of performance or resource usage.

In contrast, accrual failure detectors provide a loweel@bstraction that avoids the interpretation of monitgrin
information (see Fig. 3). Some value is associated with eaotegs that represents a suspicion level. This value is
then left for the applications to interpret. For instanceg sbtting an appropriate threshold, applications can érigg
suspicions and perform appropriate actions. Alternatjvapplications can directly use the value output by the
accrual failure detector as a parameter to their actionasidering the example of master/worker described in the
introduction, the master could decide to allocate the mmgtnt jobs only to worker processes with a low suspicion

level.

B. Definition

An accrual failure detector is defined as a failure detectat thutputs a value associated with each of the
monitored processes, instead of a set of suspected precéssbe simplified model considered in this paper (two
processe® and g, whereq monitorsp), the output of the failure detector gfover time can be represented by the

following function (“suspicion level op”).



susp_level,,(t) > 0 1)

The values output by an accrual failure detector module defirefunction susp_level, and must satisfy the
properties below. The first two properties specify what thepaudf susp_level,,(t) should be if the procesg is
faulty, whereas the remaining two properties specify whatdutput should be if is correct.

Property 3 (Asymptotic completenessf);processp is faulty, the suspicion levelusp_level,(t) tends to infinity
as time goes to infinity.

Property 4 (Eventual monotony)f processp is faulty, there is a time after whickusp level,,(t) is monotonic
increasing.

Property 5 (Upper bound)Procesg is correct if and only ifsusp_level () has an upper bound over an infinite
execution.

Property 6 (Reset)if processp is correct, then for any timeé, susp_level,(t) = 0 for some timet > t,.

C. Transformation into conventional failure detection

Given the definitions of accrual failure detectors, it easyge them to construct existing failure detectors such
as one of clas®P. The algorithm below is similar to one proposed by Fetzer eflai.
Consider the following transformation algorithm descdler the situation where procegsmonitors processg.
Process; maintains two dynamic thresholds,;,, andT;,,, initialized to the same arbitrary value greater tiian
« S-transition Whenever the value ofusp_level,, crosses the upper threshdl@;,, upward,q updates the value
Of Thign t0 Thign + 1, and begins to suspept(or continues to suspegtif it does so already).
o T-transition Whenever the value ofusp_level, crosses the lower thresholfi,,, downward,q updates the
value ofT},,, to that ofT},,,, and stops suspecting
It is rather straightforward to prove that the above tramsfiion satisfies the properties OfP. Informally,
strong completeness is ensured because the thre$pgldis always finite (consequence of Prop. 4) and must be
eventually crossed (S-transition and Prop. 3). Similarlynayaly strong completeness is ensured becausg, if
is correct, there is a time after which,, is never crossed (S-transition and Prop. 5), artbes not suspegt
(T-transition and Prop. 6).
Now, it is important to stress that the above result does patecin contradiction with the FLP impossibility
of Consensus [11]. Accrual failure detectors merely defineabstraction, and are hence subject to the same
restrictions as conventional failure detectors. It is vkelbwn that it is impossible to implement a failure detector

of classQP deterministically in asynchronous systems. Likewise, @alcfailure detectors cannot be implemented



deterministically in all possible asynchronous systenmuvéler, both kinds of failure detectors can be implemented

probabilistically.

IV. IMPLEMENTATION OF THE ¢p ACCRUAL FAILURE DETECTOR

In the previous section, we have presented the genericaalisti of accrual failure detectors. Accrual failure
detectors can be implemented in many different ways. Inghidion, we present a practical implementation that

we call they failure detector, and that we had outlined in earlier wor&][1

A. Meaning of the value

As mentioned,p failure detector implements the abstraction of an accradre detector. The suspicion level
of accrual failure detector is given by a value calledThe basic idea of the» failure detector is to express the
value of » on a scale that is dynamically adjusted to reflect current odwonditions.

Let Tiusts tnow, @aNd Pye-(t) denote respectively: the time when the most recent heartiees received 1j,5:),
the current time #,,,,), and the probability that a heartbeat will arrive more thaime units after the previous

one (Pjuer(t)). Then, the value of is calculated as follows.

def
Sp(tnow) :e - 1Ogl()(Plater(tnow - Tlast)) (2)

Roughly speaking, with the above formulatakes the following meaning. Given some threshbjc&nd assuming
that we decide to suspeptwhenp > & = 1, then the likeliness that we will make a mistake (i.e., theiglen
will be contradicted in the future by the reception of a latatbeat) is about0 %. The likeliness is about %

with ® =2, 0.1 % with ® = 3, and so on.

B. Calculatingy

The method used for estimating is in fact rather simple. This is done in three phases. Firsirtheat arrive
and their arrival times are stored in a sampling window. Sdcdinese past samples are used to determine the
distribution of inter-arrival times. Third, the distribati is in turn used to compute the current valuexfThe
overall mechanism is described in Figure 4.

1) Sampling heartbeat arrivalsThe monitored processp (in our model) adds a sequence number to each
heartbeat message. The monitoring process pur model) stores heartbeat arrival times into a samphinglow
of fixed sizeWS. Whenever a new heartbeat arrives, its arrival time is dtor® the window, and the data regarding

the oldest heartbeat is deleted from the window. Arrivakivals are easily computed. In addition, to constantly
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Fig. 4. Information flow in the proposed implementation of ¢héailure detector, as seen at processleartbeat
arrivals arrive from the network and their arrival time are stored insdmpling window. Past samples are used
to estimate some arrival distribution. The time of last arri¥al,;, the current timet,.., and the estimated
distribution are used to compute the current value oApplications trigger suspicions based on some threshold
(P, for App. 1 and®, for App. 2), or execute some actions as a functionpafApp. 3).

determine the meap and the variance?, two other variables are used to keep track of the sum and $um o
squares of all samples in the window.

2) Estimating the distribution and computing The estimation of the distribution of inter-arrival timesasies
that inter-arrivals follow a normal distribution. The parater of the distribution are estimated from the sampling
window, by determining the meanand the variance? of the samples. Then, the probabiliy,;.(t) that a given

heartbeat will arrive more thantime units later than the previous heartbeat is given by dieviing formula®

+oo
1 _@=w?
Plater(t) = O‘\/ﬁ e =7 dr )
t
= 1-F(t) (4)

where F(t) is the cumulative distribution function of a normal distriton with meany and variancer?.

Then, the value ofy at timet,,,, is computed by applying Equation 2 described in Section IV-A.

V. EXPERIMENTAL RESULTS

In this section, we study the behavior of thefailure detector when used over a wide-area network. The
measurements have been taken in a rather extreme envirorfmee area network, short heartbeat interval) to
assess both the robustness and the scope of applicabilibedhilure detector.

First, we describe the environment in which the experimentsebeen conducted. Second, we study the effect
of several parameters on the behavior of ¢héailure detector. Third, we compare the results obtainedguge

3The formula is simplified assuming that crashes are rare events.
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o failure detector with that of Chen and Bertier (SgeD).

A. Environment

Our experiments involved two computers, with one locatedbipan and the other located in Switzerland. The two
computers were communicating through a normal intercental Internet connection. One machine was running
program sending heartbeats (thus acting like propgsghile the other one was recording the arrival times of each
heartbeat (thus acting like procegs Neither machine failed during the experiment.

1) Hardware/software/network:

« Computerp (monitored; Switzerland)The sending host was located in Switzerland, at the Swiss Federal
Institute of Technology in Lausanne (EPFL). The machine was egqdippith a Pentium IIl processor at
766 MHz and 128 MB of memory. The operating system was Red Haitxd.ih2 (with Linux kernel 2.4.9).

« Computerg (monitoring; Japan):The receiving host was located in Japan, at the Japan Advdneétlite
of Science and Technology (JAIST). The machine was equippedaviRlentium Ill processor at 1 GHz and

512 MB of memory. The running operating system was Red Hat LBwgwith Linux kernel 2.4.20).

All messages were transmitted using the UDP/IP protocoéréstingly, using thé r acer out e command has
shown us that most of the traffic was actually routed throughUhited States, rather than directly between Asia
and Europe.

In addition, we have monitored the CPU load average on the t@ohmes during the whole period of the
experiments. We observed that the load was nearly constemughout, and well below the full capacity of the
machines.

2) Heartbeat sampling:The experiment started on April 2, 2004 at 17:56 UTC, and finishettly one full
week later. During the one week that the experiment lastedrtbeat messages were generated at a target rate
of one heartbeat every 100 ms. The average sending rate laanedsured was of one heartbeat evédg.5 ms
(standard deviationd.19 ms; min.: 101.7 ms; max.:234.3ms). In total,5, 845, 712 heartbeat messages were sent
among which only5, 822,521 were received (about.4 % of message loss).

We observed that message losses tended to occur in buestentiest of which wa$093 heartbeats long (i.e., it
lasted for about 2 minutes). We observ&ld different bursts of consecutively lost messages. The Higidn of
burst lengths is represented on Figure 5. Beyond 25, therdflat il of 48 bursts that are not depicted on the
figure. After 25, the next burst is 34 heartbeats long, and ¢hgths of the five longest bursts were respectively

495, 503, 621, 819, and 1093 heartbeats.
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Fig. 7. Arrival intervals and time of occurrence. Each dot reprssen

a received heartbeat. The horizontal position denotes the time of
arrival. The vertical coordinate denotes the time elapsed since the
reception of the previous heartbeat.

The mean of inter-arrival times of received heartbeats 089 ms with a standard deviation of abol{i4.1 ms.
The distribution of the inter-arrival times is representedrigure 6.

A different view of inter-arrival times is given in Figure 7. &Higure relates arrival intervals (vertical axis) with
the time when the second heartbeat of the interval arrivedZdntal), over the whole duration of the experiment.
Very long intervals are not depicted. The first (thick) line oings at the bottom of the graph represents heartbeat
that arrived normally within about00 ms. The second (thinner) line represents intervals obtaaftedt a single
heartbeat was lost, and so on with the other lines above ithdttfrequency, losing a single heartbeat seems to be

a normal situation. There is a period (April 6 and 7) where nmmessages were lost.
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3) Round-trip times:During the experiment, we have also measured the rounditnip (RTT), albeit at a low
rate. We have measured an average RT283t3 ms with a standard deviation 6.3 ms, a minimum o270.2 ms,
and a maximum of’17.8 ms.

4) Experiment: To conduct the experiments, we have recorded heartbeaingeadd arrival times using the
experimental setup described above. We have used the getmties to compute the statistics mentioned above.
Then, we replayed the receiving times recorded for eachrdiffdailure detector implementation and every different
value of the parameters. As a result, the failure detectere wompared based exactlythe same scenarios, thus
resulting in a fair comparison.

All three failure detectors considered in these experisiealy on a window of past samples to compute their
estimations. Unless stated otherwise, the failure deteetere set using the same window sizelpof00 samples.
As the behavior of the failure detectors is stable only afterwindow is full, we have excluded from the analysis

all data obtained during the warmup period—i.e., the peliefbre the window is full.

B. Experiment 1: average mistake rate

In the first experiment, we have measured the average mistéde y; obtained with thep failure detector. In
particular, we have measured the evolution of the mistaie when the threshol@®, used to trigger suspicions,
increases.

Figure 8 shows the results obtained when plotting the mistate2 on a logarithmic scale. The figure shows a
clear improvement in the mistake rate when the thresholceases fromb = 0.5 to & = 2. This improvement is
due to the fact that most late heartbeat messages are caughhbeshold of two or more. The second significant
improvement comes wheh € [8; 12]. This corresponds to the large number of individually losirtteeat messages
(i.e., loss bursts of length 1). As those messages no longdriloute to generating suspicions, the mistake rate

drops significantly.

C. Experiment 2: average detection time

In the second experiment, we have measured the averageiaetime obtained with the failure detector, and
how it evolves when changing the threshdid

We have computed aestimationfor the average detection tiniE, as follows. Assuming that a crash would
occur exactly after successfully sending a heartbeat, measure the time elapsed until the failure detector tepor

“This is a worst case situation because any crash that would occur latasefiore sending the next heartbeat) would be detected at the
same time, and any crash that would occur earlier would actually préveriast heartbeat from being sent. Either case would result in a
shorter detection time.
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Fig. 8. Exp. 1: average mistake rate as a function of thresfhold Fig. 9. Exp 2: average detection time as a function of thresfeold
Vertical axis is logarithmic.

a suspicion. With thep failure detector, we consider the threshdidand reverse the computation gfto obtain
the equivalent timeout. We compute this equivalent timesath time a new heartbeat is received and take the
mean valued, . We estimated the mean propagation tilag based on our measurements of the round-trip time.

Then, we have estimated the average (worst-case) detetiersimply as follows.
TD ~ Atr + Ato,@ (5)

Figure 9 depicts the evolution of the detection time as th@isim threshold® increases. The curve shows a

sharp increase in the average detection time for threshallces beyond 0 or 11.

D. Experiment 3: effect of window size

The third experiment measures the effect of the window sizéhermistake rate of the-failure detector. We
have set the window size from very small (20 samples) to vanye (10,000 samples) and measured the accuracy
obtained by the failure detector when run during the full kveéthe experiment. We have repeated the experiment
for three different values of the threshold namely® = 1, & = 3, and® = 5. Figure 10 shows the results, with
both axes expressed on a logarithmic scale.

The experiment confirms that the mistake rate of ¢gh&ailure detector improves as the window size increases
(see Fig. 10). The curve seems to flatten slightly for large wabfethe window size, suggesting that increasing
it further yields only little improvement. A second obsdiwa is that they failure detector seems to be affected

equally by the window size, regardless of the threshold.
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E. Experiment 4: comparison with Chen-FD and Bertier-FD

In this fourth experiment, we compare thefailure detector with two well-known adaptive failure detors,
namely the failure detector of Chen et al. [10] and that oftiBeet al. [9]. The goal of the comparison is to show
that the additional flexibility offered by the failure detector does not incur any significant performanust.c

The three failure detectors do not share any common tuningnpeter, which makes comparing them difficult.
To overcome this problem, we measured the behavior of eatiedathree failure detectors using several values of
their respective tuning parameters. We have then plottecctimbinations of QoS metrics (average mistake rate,
average worst-case detection time) obtained with eacheothiee failure detectors.

The tuning parameter for the failure detector was the threshold(values are also represented in Fig. 8 and 9).
The tuning parameter for Chen’s failure detector was thehgafarginq; this is simply an additional period of time
that is added to the estimate for the arrival of the next beatt Unlike the other two failure detectors, Bertier’s
has no tuning parameter. For this reason, its behavior itepl@as a single point on the graph. Finally, as already
mentioned, the window size for all three failure detectoeswset to the same value bf000 samples.

The results of the experiment are depicted on Figure 11. Thécaksxis, representing the mistake rate, is
expressed on a logarithmic scale. The horizontal axis, septeng the estimated average detection time, is on
a linear scale. Best values are located toward the lowerctafter because this means that the failure detector
provides a short detection time while keeping a low mistadte.r

The results show clearly that the failure detector does not incur any significant performanast.cWhen

compared with Chen'’s failure detector, both failure detecfollow the same general tendency. In our experiment,
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the ¢ failure detector behaves a little better in the aggressivige of failure detection, whereas Chen'’s failure
detector behaves a little better in the conservative range.

Quite interestingly, Bertier’s failure detector did notfeem very well in our experiments. By looking at the trace
files more closely, we observed that this failure detectormage sensitive than the other two (1) to message losses,
and (2) to large fluctuations in the receiving time of hearthekl is however important to note that, according to
their authors [9], Bertier's failure detector was primardesigned to be used ovéocal area networks (LANS),
that is, environments wherein messages are seldom lostnlinast, these experiments were done over a wide-area
network.

Putting too much emphasis on the difference between Chep avalild not be reasonable as other environments
might yield to other conclusions. It is however safe to cadel that the flexibility ofp does not come with any

drop in performance, especially when used over wide-aréaonks.

VI. RELATED WORK
A. Other adaptive failure detectors

There exists other adaptive failure detectors in additio€hen’s and Bertier's described in Section 1I-D.

Fetzer et al. [15] have proposed a protocol using a simpletatiap mechanism. It adjusts the timeout by
using the maximum arrival interval of heartbeat messages. prbtocol supposes a partially synchronous system
model [17], wherein an unknown bound on message delayswalgnexists. The authors show that their algorithm
belongs to the claséP in this model. The proposed algorithm adapts only very sloagythis is not a focus of
that paper.

Sotoma et al. [4] propose an implementation of an adaptiveréidetector with CORBA. Their algorithm
computes the timeout based on the average time for arritevils of heartbeat messages, and some ratio between

arrival intervals.

B. Flexible failure detectors

As far as we know, there exists only a few failure detectorl@m@ntations that allow non-trivial tailoring by
applications, let alone the requirementsseteralapplications running simultaneously.

Cosquer et al. [18] propose configurable failure “suspettoh®se parameters can be fine tuned by a distributed
application. The suspectors can be tuned directly, but theyused only through a group membership service and
view synchronous communication. There is a wide range ofrpaters that can be set, but the proposed solution

remains unable to simultaneously support several apitatvith very different requirements.
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The failure detector implementation proposed by Chen etlél. §an also be tuned to application requirements.
However, the parameters must be dimensiatatically, and can only match the requirements sfragleapplication.

It can be said that they provide a “hardwired” degree of amcywhich must be shared by all applications.

The two timeout approach [7], [19] can also be seen as a firsttetegrd adapting to application requirements,
but the solution lacks generality. The two timeout approaes wroposed and discussed in relation with group
membership and consensus. In short, it was proposed torimepiefailure detection based on two different timeout
values; an aggressive and a conservative one. The approacdllisuited for building consensus-based group
communication systems. However, the protocol was not mrealdedaptive to changing network conditions (although
this would be feasible) and, more importantly, still lacke flexibility required by a generic service (it supports

only two applications).

C. Relation with group membership

Group membership is a popular approach to ensuring falgtatoce in distributed applications. In short, a group
membership keeps track of what process belongs to theldit#gd computation and what process does not. In
particular, a group membership usually needs to excludeegses that have crashed or partitioned away. For more
information on the subject, we refer to the excellent suivieghockler et al. [20]. A group membership can also be
seen as a high-level failure detection mechanism that gesvconsistent information about suspicions and failures
[8].

In a recent position paper, Friedman [21] proposed to inyasti the notion of a fuzzy group membership as
an interesting research direction. The idea is that each mewofbthe group is associated with a fuzziness level
instead of binary information (i.e., member or not membédjhough Friedman does not actually describe an
implementation, we believe that a fuzzy group membershigdcbe built based on accrual failure detectors.

Similarly, accrual failure detectors could also be usefulaatow-level building block for implementing a
partitionable group membership, such as Moshe [22]. Sucloapgmembership must indeed distinguish between
message losses, network partitions, and actual processesra-or instance, Keidar et al. [22] decide that a network
partition has occurred after more than three consecutivasayes have been lost. Typically, this could be done by

using accrual failure detector and setting an appropritateshold.

VIlI. CONCLUSION

We have presented the concept and the implementation ofptfeélure detector, an instance of the more
general abstraction of accrual failure detectors. We hanadyaed the behavior of the failure detector over

a transcontinental Internet link, based on nearly 6 milllwartbeat messages. Finally, we have compared the
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behavior of our failure detector with two important adaptiailure detectors, namely, Chen’s [10] and Bertier’s
[9] failure detectors.

By design,p-failure detectors can adapt equally well to changing netvemnditions, and the requirements of
any number of concurrently running applications. As far &skmow, this is currently the only failure detector that
addresses both problems and provides the flexibility reduioe implementing a truly generic failure detection
service. In particular, the two other failure detectorsdid in this paper do not address both probléms.

In addition to interesting observations about transcemtial network communication, our experimental results
show that our failure detector behave reasonably well ibpeaters are well-tuned. In particular, we see that the
impact of the window size is significant. Our comparisons wfitt other failure detectors show that theailure
detector does not induce any significant overhead as penfmenare similar. Nevertheless, we believe that there
is still room for improvement. In particular, we are invegtiing techniques and mechanisms to (1) improve the
estimation of the distribution when computigg (2) reduce the use of memory resources, and (3) better citpe w
message losses for highly conservative failure detection.

Concerning accrual failure detectors, we are currentlykimgr on a more thorough formalization of the ab-
straction. Some of those results have been briefly summaniedtis paper, but will be further developed in the

future.
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