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Data Dependences�

•  The correctness of many many loop transformations can be
 decided using dependences. 


•  Still a good introduction to the notion of dependence and its
 applications can be found in D. Kuck, R. Kuhn, D. Padua, B.
 Leasure, M. Wolfe: Dependence Graphs and Compiler
 Optimizations. POPL 1981.


•   For a longer discussion see:U. Banerjee. Dependence
 Analysis for Supercomputing. Kluwer Academic Publish- ers,
 Norwell, Mass., 1988
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Compiler Optimizations


1)  Advanced Compiler Optimizations for Supercomputers, by
 David Padua and Michael Wolfe in Communications of the
 ACM, December 1986, Volume 29, Number 12. 


2)  Compiler Transformations for High-Performance Computing,
 by David Bacon, Susan Graham and Oliver Sharp, in ACM
 Computing Surveys, Vol. 26, No. 4, December 1994. 
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Dependences
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Dependences and ILP 
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Removal of Output and Antidependences


•  Variable Renaming

•  Scalar Expansion

•  Node Splitting
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Renaming
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Data Dependences�

•  Data dependences between statement instances that belong to the
 same loop iteration are called loop-independent. 


•  Data dependences between statements instances that belong to
 different loop iterations are called loop-carried. 


for (i=0; i<4; i++) { 
  a[i]= b[i]; 
  c[i] = c[i+1] + a[i]; 
} 
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Scalar expansion 
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Node Splitting


•  Some loops contain data-dependence cycles that can be easily
 eliminated by copying data. 

 for (i=0; i<N; i++){ 
S1:   a[i]= b[i] + c[i]; 
S2:   d[i] = (a[i] + a[i+1])/2; 
} 

 for (i=0; i<N; i++){ 
   temp[i] = a[i+1] 
   a[i] = b[i+ c[i]; 
   d[i] = (a[i] + temp[i])/2; 
} 

S1 

S2 

S1 

S2 
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Node Splitting


for (i=0; i<N; i++){ 
S1:   a[i]= b[i] + c[i]; 
S2:   a[i+1] = a[i] + 2 * d[i]; 
} 

S1 

S2 

for (i=0; i<N; i++){ 
S1:   temp[i] = b[i] + c[i]; 
S2:   a[i+1]= temp[i]+ 2 * d[i];; 
S3:   a[i]= temp[i]; 
} 

S1 

S2 

S3 

Removal of output dependences in  
data-dependence cycles 
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Loop Optimizations 



•  Loop Distribution or loop fission

•  Loop Fusion

•  Loop Peeling

•  Loop Unrolling

•  Unroll and Jam

•  Loop Interchaging

•  Loop reversal

•  Strip Mining

•  Loop Tiling

•  Software Pipelining
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Loop Distribution 


•  It is also called loop fission. 

•  Divides loop control over different statement in the loop body. 


for (i=1; i<100; i++) { 
  a[i]= b[i]; 
  c[i] = c[i-1] + 1; 
} 

for (i=1; i<100; i++)  
  a[i]= b[i]; 

for (i=1; i<100; i++)  
  c[i] = c[i-1] + 1; 
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Loop Distribution 


•  It is valid if no loop-carried data dependences exist that are
 lexically backward, that is, going from one statement instance
 to an instance of a statement that appears earlier in the loop
 body. 


for (i=0; i<100; i++) { 
  a[i]= b[i] + c[i] 
  d[i] = a[i+1]; 
} 
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Loop Distribution 


•  This transformation is useful for

–  Isolating data dependences cycles in preparation for loop

 vectorization 

–  Enabling other transformations, such as loop interchanging

–  Improving locality by reducing the total amount of data that

 is referenced during complete execution of each loop. 

–  Separate different data streams in a loop to improve

 hardware prefetch
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Loop Distribution


for (i=0; i<N; i++) { 
  buff1[i]= 0; 
  buff2[i] = 0; 

  …. 
  buffn[i]=0; 
} 

for (i=0; i<N; i++) { 
  buff1[i] = 0; 
  …. 
  buff4[i] = 0; 
} 

for (i=0; i<N; i++) { 
  buff5[i] = 0; 
  …. 
  buff8[i] = 0; 
} 
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Loop Distribution 


•  Plot from the book
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Loop Fusion 


•  This transformation merges adjacent loops with identical
 control into one loop. 


for (i=0; i<N; i++) { 
  a[i]=0; 
  b[i]=0; 
} 

for (i=0; i<N; i++)  
  a[i]=0; 
for (i=0; i<N; i++) 
  b[i]=0; 
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Loop Fusion 


•  This transformation is valid if the fusion does not introduce
 any lexically backward data dependence. 


for (i=2; i<N; i++)  
  a[i]= b[i]+ c[i]; 
for (i=2; i<N; i++) 
  d[i]=a[i-1];; 
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Loop Fusion 


•  This transformation is useful for

–  Reducing loop overhead

–  Increasing the granularity of work done in a loop 

–  Improving locality by combining loops that reference the

 same array
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Loop Peeling�

•  Remove the first/s or the last/s iteration of the loop into
 separate code outside the loop


•  It is always legal, provided that no additional iterations are
 introduced.


•  When the trip count of the loop is not constant the peeled loop
 has to be protected with additional runtime tests.   


for (i=0; i<N; i++)  
  A[i] = B[i] + C[i]; 

if (N>=1) 
  A[0]= B[0] + C[0]; 
for (i=1; i<N; i++)  
  A[i] = B[i] + C[i]; 
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Loop Peeling


•  This transformation is useful to enforce a particular initial
 memory alignment on array references prior to loop
 vectorization. 
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Loop Unrolling�

•  Combination of two or more loop iterations together with a
 corresponding reduction of the trip count. 


sum =0; 
for (i=0; i<N; i++)  
  sum += array[i]; 

sum =0; 
for (i=0; i<N; i+=4) {  
  sum += array[i]; 
  sum += array[i+1]; 
  sum += array[i+2]; 
  sum += array[i+3]; 
} 
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Loop Unrolling


•  This transformation is useful 

–  To expose more ILP. 

–  Reduce overhead instructions


•  Register pressure increases, so register spilling is possible 

•  The unrolled code has a larger size
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Unroll and Jam


•  Unroll and jam involves partially unrolling one or more loops
 higher in the nest than the innermost loop, and fusing
 (“jamming”) the resulting loops back together.


for (i=0; i<N; i++) { 
  for (j=0; j<N; j++) { 
    for (k=0; k<N; k++) { 
      C[i,j] += A[i,k] * B[k,j]; 
   }}} 

for (i=0; i<N; i+=2) { 
  for (j=0; j<N; j++) { 
    for (k=0; k<N; k++) { 
      C[i,j] += A[i,k] * B[k,j]; 
   }} 
   for (j=0; j<N; j++) { 
    for (k=0; k<N; k++) { 
      C[i+1,j] += A[i+1,k] * B[k,j]; 
   }} 
} 

for (i=0; i<N; i+=2) { 
  for (j=0; j<N; j++) { 
    for (k=0; k<N; k++) { 
      C[i,j] += A[i,k] * B[k,j]; 
      C[i+1,j] += A[i+1,k] * B[k,j]; 
   }} 
} 
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Loop Interchanging


•  This transformation switches the positions of one loop that is
 tightly nested within another loop. 


for (i=0; i<M; i++)  
  for (j=0; j<N; j++)  
    A[i,j]=0.0; 

for (j=0; j<M; j++)  
  for (i=0; i<N; i++)  
    A[i,j]=0.0; 
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Loop Interchanging


•  This transformation is legal if the outermost loop does not
 carry any data dependence going from one statement instance
 executed for i  and j to another statement instance executed
 for i’and j’where i<i’ and j>j’


 for (i=1; i<3; i++){ 
   for (j=1; j<3; j++){ 
       A[i,j] = A[i-1, j+1] 

 for (i=1; i<3; i++){ 
   for (j=1; j<3; j++){ 
       A[i,j] = A[i-1, j-1] 
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Loop Interchanging


 for (j=1; j<N; j++) 
   for (i=2; i<N; i++) 
     A[i,j] = A [i-1, j] + B[i] 

 for (i=2; i<N; i++) 
   for (j=1; j<N; j++) 
     A[i,j] = A [i-1, j] + B[i] 

 for (i=2; i<N; i++) 
    A[i,1:N] = A [i-1, 1:N] + B[1:N] 
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Loop Interchanging


 for (i=0; i<4; i++){ 
   a[i] =0; 
   for (j=0; j<4; j++) 
     a[i]+= b[j][i]; 
} 

 for (i=0; i<4; i++) 
   a[i] =0; 
 for (i=0; i<4; i++) 
    for (j=0; j<4; j++) 
     a[i]+= b[j][i]; 

 for (i=0; i<4; i++) 
   a[i] =0; 
 for (j=0; j<4; j++) 
    for (i=0; i<4; i++) 
     a[i]+= b[j][i]; 
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Loop Reversal


•  Run a loop backward

•  All dependence directions are reversed

•  Its is only legal for loops that have no loop carried dependences


 for (i=0; i<N; i++){ 
   a[i]=b[i]+1; 
   c[i]=a[i]/2; 
} 
for (j=0; j<N; j++) 
     d[j]+=1/c[j+1]; 

 for (i=N-1; i<=0; i--){ 
   a[i]=b[i]+1; 
   c[i]=a[i]/2; 
} 
for (j=N-1; j<=0; j--) 
     d[j]+=1/c[j+1]; 

 for (i=N-1; i<=0; i--){ 
   a[i]=b[i]+1; 
   c[i]=a[i]/2; 
   d[i]+=1/c[i+1]; 
} 
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Strip Mining


•  Strip mining transforms a singly nested loop into a doubly
 nested one


•  The outer loop steps through the index set in blocks of some
 size, and the inner loop steps through each block. 


for (i=0; i<M; i++) {  
  A[i] = B[i] +1; 
  D[i] = B[i] -1; 
} 

for (j=0; j<M; j+=32)  
  for (i=j; i< min(j+31, M); i++){  
    A[i] = B[i] +1; 
    D[i] = B[i] -1; 
} 
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Strip Mining�

•  The block size of the outer block loops is determined by some
 characteristic of the target machine, such as the vector register
 length or the cache memory size. 
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Loop Tiling
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Iteration Space and Loop Transformations
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Software Pipelining


•  Code reorganization technique to uncover parallelism


•  Idea: each iteration contains instructions from several different
 iterations in the original loop


•  The reason: separate the dependent instructions that occur
 within a single loop iteration


•  We need some start-up code (prolog) before the loop begins
 and some code to finish up after the loop is completed (epilog)
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•  The instructions in a loop are taken from several iterations in the
 original loop 


Software Pipelining
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Software Pipelining

Loop:  LD        F0,0(R1) 

            ADDD F4,F0,F2 

            SD       F4,0(R1) 

            DADDUI   R1,R1,#-8 

            BNE  R1,R2,Loop 

It i:      LD F0,0(R1) 

           ADDD F4,F0,F2 

           SD F4,0(R1) 

It I+1: LD F0,0(R1) 

           ADDD F4,F0,F2 

           SD F4,0(R1) 

It I+2: LD F0,0(R1) 

           ADDD F4,F0,F2 

           SD F4,0(R1) 

Loop:  SD F4,16(R1)        ;stores into M[i] 

           ADDD F4,F0,F2    ;adds to M[i-1] 

           LD F0,0(R1)          ;loads M[i-2] 

           DADDUI  R1,R1,#-8 

           BNE  R1,R2,Loop 
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Software Pipelining

         LD F0,0(R1) 

           ADD F4,F0,F2  

           LD F0,8(R1) 

           DADDUI  R1,R1,#-16 

Loop:  SD F4,16(R1)        ;stores into M[i] 

           ADDD F4,F0,F2   ; adds to M[i-1] 

           LD F0,0(R1)          ; loads M[i-2] 

           DADDUI  R1,R1,#-8 

           BNE  R1,R2,Loop 

           SD F4, 16(R1) 

           ADD  F4,F0,F2 

    SD F4, 16(R1)  

Prolog 

Epilog 

Loop 
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Software Pipelining


•  Notice that the three instructions in the loop are totally independent, as they
 are working on different elements of the array. 


•  Because the load and store are separated by two iterations:

–  The loop should run for two fewer iterations 

–  The startup code is: LD of iterations 1 and 2, ADDD of iteration 1

–  The cleanup code is: ADDD for last iteration and SD for the last two

 iterations
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Software Pipelining


•  Register management can be tricky

•  Example shown is not hard: registers that are written in one

 iteration are read in the next one

•  If we have long latencies of the dependences:


–  May need to increase the number of iterations between when we write a
 register and use it


–  May have to manage the register use

–  May have to combine software pipelining and loop unrolling
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Software Pipelining + Loop Unrolling

         LD F0,0(R1) 

           ADD F4,F0,F2  

           LD F0,8(R1) 

           DADDUI  R1,R1,#-16 

Loop:  SD F4,16(R1)        ;stores into M[i] 

           ADDD F4,F0,F2   ; adds to M[i-1] 

           LD F0,0(R1)          ; loads M[i-2] 

           DADDUI  R1,R1,#-8 

           BNE  R1,R2,Loop 

           SD F4, 16(R1) 

           ADD  F4,F0,F2 

     SD F4, 16(R1)  

         LD F6,0(R1) 

           ADD F4,F6,F2  

           LD F0,8(R1) 

           DADDUI  R1,R1,#-16 

Loop:  SD F4,16(R1)         

           ADDD F4,F0,F2     

           LD F0,0(R1)           

           SD F4,8(R1)         

           ADDD F4,F0,F2    

           LD F0,-8(R1)  

           DADDUI  R1,R1,#-16 

           BNE  R1,R2,Loop 

           SD F4, 16(R1) 

           ADD  F4,F0,F2 

     SD F4, 16(R1)  

Loop 
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Software Pipelining vs Loop Unrolling


•  Software pipelining consumes less code space

•  Both yield a better scheduled inner loop

•  Each reduces a different type of overhead:


–  Loop Unroll: branch and counter update code

–  Software Pipelining: reduces the time when the loop is not

 running at peak speed (only once at the beginning and once at
 the end)
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Software Pipelining with higher latencies


         LD F0,0(R1) 

           ADD F4,F0,F2  

           LD F0,8(R1) 

    ADD F10,F0,F2 

    LD F0,16(R1) 

    LD F8,24(R1) 

           DADDUI  R1,R1,#-32 

Loop:  SD F4,32(R1)        ;stores into M[i] 

           ADD F4,F0,F2      ; adds to M[i-2] 

           LD F0,0(R1)          ; loads M[i-4] 

           SD F10,24(R1)        ;stores into M[i-1] 

           ADDD F10,F8,F2   ; adds to M[i-3] 

           LD F8,8(R1)          ; loads M[i-5] 

           DADDUI  R1,R1,#-16 

           BNE  R1,R2,Loop 

Prolog 



Other Loop Optimizations


•  Removal of Loop Invariant Computations

•  Induction variable recognition

•  Wraparound variable recognition


44 



Loop Invariant Computations


•  Calculations that do not change between loop iterations are
 called loop invariant computations


•  These computations can be moved outside the loop to improve
 performance. 


for (x=0; x<end; x++)  
 array[x] = x * val/3; 

for (x=0; x,100; x++) 
   array[x] = x * foo (val); 

45 



Loop Invariant


int FactorialArray[12]; 

FactorialArray[0] =1; 
for (i=1; i<12; i++) 
  FactorialArray[i] = FactoriaArray[i-1] * i; 

int FactorialArray[12]= { 
     1, 1, 2, 6, 24, 120, 720, 5040,  
     40320, 362880, 3628800, 39916800}; 
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Induction Variable Recognition


•  Induction variables – A variable whose values form an
 arithmetic progression


k=0;  
for (i=1; i<N; i++){ 
  k=k+3 
  A[k]= B[k] +1; 
} 

for (i=1; i<N; i++){ 
  A[3*i]= B[3*i] +1; 
} 
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Wraparound Variable Recognition


•  A variable that looks like an induction variable , but does not
 quite qualify


•  j is a wraparound variable because the values assigned to it are
 not used until the next iteration of the loop. 


j=N;  
for (i=0; i<N; i++){ 
  b[i]= (a[j] + a[i])/2; 
  j = i; 
} 

if (N>=1)  
  b[1] = (a[N] + a[1])/2; 
for (i=2; i<N; i++){ 
  b[i]= (a[i-1] + a[i])/2; 
} 
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