
Lecture 7: �
Loop Transformations

Spring 2010

Maria J. Garzaran

Data Dependences�

•  The correctness of many many loop transformations can be
 decided using dependences.

•  Still a good introduction to the notion of dependence and its
 applications can be found in D. Kuck, R. Kuhn, D. Padua, B.
 Leasure, M. Wolfe: Dependence Graphs and Compiler
 Optimizations. POPL 1981.

•  For a longer discussion see:U. Banerjee. Dependence
 Analysis for Supercomputing. Kluwer Academic Publish- ers,
 Norwell, Mass., 1988

2

Compiler Optimizations

1)  Advanced Compiler Optimizations for Supercomputers, by
 David Padua and Michael Wolfe in Communications of the
 ACM, December 1986, Volume 29, Number 12.

2)  Compiler Transformations for High-Performance Computing,
 by David Bacon, Susan Graham and Oliver Sharp, in ACM
 Computing Surveys, Vol. 26, No. 4, December 1994.

3

Dependences

4

Dependences and ILP

5

Removal of Output and Antidependences

•  Variable Renaming

•  Scalar Expansion

•  Node Splitting

6

Renaming

7

Data Dependences�

•  Data dependences between statement instances that belong to the
 same loop iteration are called loop-independent.

•  Data dependences between statements instances that belong to
 different loop iterations are called loop-carried.

for (i=0; i<4; i++) {
 a[i]= b[i];
 c[i] = c[i+1] + a[i];
}

8

Scalar expansion

9

Node Splitting

•  Some loops contain data-dependence cycles that can be easily
 eliminated by copying data.

 for (i=0; i<N; i++){
S1: a[i]= b[i] + c[i];
S2: d[i] = (a[i] + a[i+1])/2;
}

 for (i=0; i<N; i++){
 temp[i] = a[i+1]
 a[i] = b[i+ c[i];
 d[i] = (a[i] + temp[i])/2;
}

S1

S2

S1

S2

S3 10

Node Splitting

for (i=0; i<N; i++){
S1: a[i]= b[i] + c[i];
S2: a[i+1] = a[i] + 2 * d[i];
}

S1

S2

for (i=0; i<N; i++){
S1: temp[i] = b[i] + c[i];
S2: a[i+1]= temp[i]+ 2 * d[i];;
S3: a[i]= temp[i];
}

S1

S2

S3

Removal of output dependences in
data-dependence cycles

11

Loop Optimizations

•  Loop Distribution or loop fission

•  Loop Fusion

•  Loop Peeling

•  Loop Unrolling

•  Unroll and Jam

•  Loop Interchaging

•  Loop reversal

•  Strip Mining

•  Loop Tiling

•  Software Pipelining

12

Loop Distribution

•  It is also called loop fission.

•  Divides loop control over different statement in the loop body.

for (i=1; i<100; i++) {
 a[i]= b[i];
 c[i] = c[i-1] + 1;
}

for (i=1; i<100; i++)
 a[i]= b[i];

for (i=1; i<100; i++)
 c[i] = c[i-1] + 1;

13

Loop Distribution

•  It is valid if no loop-carried data dependences exist that are
 lexically backward, that is, going from one statement instance
 to an instance of a statement that appears earlier in the loop
 body.

for (i=0; i<100; i++) {
 a[i]= b[i] + c[i]
 d[i] = a[i+1];
}

14

Loop Distribution

•  This transformation is useful for

–  Isolating data dependences cycles in preparation for loop

 vectorization

–  Enabling other transformations, such as loop interchanging

–  Improving locality by reducing the total amount of data that

 is referenced during complete execution of each loop.

–  Separate different data streams in a loop to improve

 hardware prefetch

15

Loop Distribution

for (i=0; i<N; i++) {
 buff1[i]= 0;
 buff2[i] = 0;

 ….
 buffn[i]=0;
}

for (i=0; i<N; i++) {
 buff1[i] = 0;
 ….
 buff4[i] = 0;
}

for (i=0; i<N; i++) {
 buff5[i] = 0;
 ….
 buff8[i] = 0;
}

16

Loop Distribution

•  Plot from the book

17

Loop Fusion

•  This transformation merges adjacent loops with identical
 control into one loop.

for (i=0; i<N; i++) {
 a[i]=0;
 b[i]=0;
}

for (i=0; i<N; i++)
 a[i]=0;
for (i=0; i<N; i++)
 b[i]=0;

18

Loop Fusion

•  This transformation is valid if the fusion does not introduce
 any lexically backward data dependence.

for (i=2; i<N; i++)
 a[i]= b[i]+ c[i];
for (i=2; i<N; i++)
 d[i]=a[i-1];;

19

Loop Fusion

•  This transformation is useful for

–  Reducing loop overhead

–  Increasing the granularity of work done in a loop

–  Improving locality by combining loops that reference the

 same array

20

Loop Peeling�

•  Remove the first/s or the last/s iteration of the loop into
 separate code outside the loop

•  It is always legal, provided that no additional iterations are
 introduced.

•  When the trip count of the loop is not constant the peeled loop
 has to be protected with additional runtime tests.

for (i=0; i<N; i++)
 A[i] = B[i] + C[i];

if (N>=1)
 A[0]= B[0] + C[0];
for (i=1; i<N; i++)
 A[i] = B[i] + C[i];

21

Loop Peeling

•  This transformation is useful to enforce a particular initial
 memory alignment on array references prior to loop
 vectorization.

22

Loop Unrolling�

•  Combination of two or more loop iterations together with a
 corresponding reduction of the trip count.

sum =0;
for (i=0; i<N; i++)
 sum += array[i];

sum =0;
for (i=0; i<N; i+=4) {
 sum += array[i];
 sum += array[i+1];
 sum += array[i+2];
 sum += array[i+3];
}

23

Loop Unrolling

•  This transformation is useful

–  To expose more ILP.

–  Reduce overhead instructions

•  Register pressure increases, so register spilling is possible

•  The unrolled code has a larger size

24

Unroll and Jam

•  Unroll and jam involves partially unrolling one or more loops
 higher in the nest than the innermost loop, and fusing
 (“jamming”) the resulting loops back together.

for (i=0; i<N; i++) {
 for (j=0; j<N; j++) {
 for (k=0; k<N; k++) {
 C[i,j] += A[i,k] * B[k,j];
 }}}

for (i=0; i<N; i+=2) {
 for (j=0; j<N; j++) {
 for (k=0; k<N; k++) {
 C[i,j] += A[i,k] * B[k,j];
 }}
 for (j=0; j<N; j++) {
 for (k=0; k<N; k++) {
 C[i+1,j] += A[i+1,k] * B[k,j];
 }}
}

for (i=0; i<N; i+=2) {
 for (j=0; j<N; j++) {
 for (k=0; k<N; k++) {
 C[i,j] += A[i,k] * B[k,j];
 C[i+1,j] += A[i+1,k] * B[k,j];
 }}
}

25

Loop Interchanging

•  This transformation switches the positions of one loop that is
 tightly nested within another loop.

for (i=0; i<M; i++)
 for (j=0; j<N; j++)
 A[i,j]=0.0;

for (j=0; j<M; j++)
 for (i=0; i<N; i++)
 A[i,j]=0.0;

26

Loop Interchanging

•  This transformation is legal if the outermost loop does not
 carry any data dependence going from one statement instance
 executed for i and j to another statement instance executed
 for i’and j’where i<i’ and j>j’

 for (i=1; i<3; i++){
 for (j=1; j<3; j++){
 A[i,j] = A[i-1, j+1]

 for (i=1; i<3; i++){
 for (j=1; j<3; j++){
 A[i,j] = A[i-1, j-1]

27

Loop Interchanging

 for (j=1; j<N; j++)
 for (i=2; i<N; i++)
 A[i,j] = A [i-1, j] + B[i]

 for (i=2; i<N; i++)
 for (j=1; j<N; j++)
 A[i,j] = A [i-1, j] + B[i]

 for (i=2; i<N; i++)
 A[i,1:N] = A [i-1, 1:N] + B[1:N]

28

Loop Interchanging

 for (i=0; i<4; i++){
 a[i] =0;
 for (j=0; j<4; j++)
 a[i]+= b[j][i];
}

 for (i=0; i<4; i++)
 a[i] =0;
 for (i=0; i<4; i++)
 for (j=0; j<4; j++)
 a[i]+= b[j][i];

 for (i=0; i<4; i++)
 a[i] =0;
 for (j=0; j<4; j++)
 for (i=0; i<4; i++)
 a[i]+= b[j][i];

29

Loop Reversal

•  Run a loop backward

•  All dependence directions are reversed

•  Its is only legal for loops that have no loop carried dependences

 for (i=0; i<N; i++){
 a[i]=b[i]+1;
 c[i]=a[i]/2;
}
for (j=0; j<N; j++)
 d[j]+=1/c[j+1];

 for (i=N-1; i<=0; i--){
 a[i]=b[i]+1;
 c[i]=a[i]/2;
}
for (j=N-1; j<=0; j--)
 d[j]+=1/c[j+1];

 for (i=N-1; i<=0; i--){
 a[i]=b[i]+1;
 c[i]=a[i]/2;
 d[i]+=1/c[i+1];
}

30

Strip Mining

•  Strip mining transforms a singly nested loop into a doubly
 nested one

•  The outer loop steps through the index set in blocks of some
 size, and the inner loop steps through each block.

for (i=0; i<M; i++) {
 A[i] = B[i] +1;
 D[i] = B[i] -1;
}

for (j=0; j<M; j+=32)
 for (i=j; i< min(j+31, M); i++){
 A[i] = B[i] +1;
 D[i] = B[i] -1;
}

31

Strip Mining�

•  The block size of the outer block loops is determined by some
 characteristic of the target machine, such as the vector register
 length or the cache memory size.

32

Loop Tiling

33

Iteration Space and Loop Transformations

34

 35

Software Pipelining

•  Code reorganization technique to uncover parallelism

•  Idea: each iteration contains instructions from several different
 iterations in the original loop

•  The reason: separate the dependent instructions that occur
 within a single loop iteration

•  We need some start-up code (prolog) before the loop begins
 and some code to finish up after the loop is completed (epilog)

 36

•  The instructions in a loop are taken from several iterations in the
 original loop

Software Pipelining

 37

Software Pipelining

Loop: LD F0,0(R1)

 ADDD F4,F0,F2

 SD F4,0(R1)

 DADDUI R1,R1,#-8

 BNE R1,R2,Loop

It i: LD F0,0(R1)

 ADDD F4,F0,F2

 SD F4,0(R1)

It I+1: LD F0,0(R1)

 ADDD F4,F0,F2

 SD F4,0(R1)

It I+2: LD F0,0(R1)

 ADDD F4,F0,F2

 SD F4,0(R1)

Loop: SD F4,16(R1) ;stores into M[i]

 ADDD F4,F0,F2 ;adds to M[i-1]

 LD F0,0(R1) ;loads M[i-2]

 DADDUI R1,R1,#-8

 BNE R1,R2,Loop

 38

Software Pipelining

 LD F0,0(R1)

 ADD F4,F0,F2

 LD F0,8(R1)

 DADDUI R1,R1,#-16

Loop: SD F4,16(R1) ;stores into M[i]

 ADDD F4,F0,F2 ; adds to M[i-1]

 LD F0,0(R1) ; loads M[i-2]

 DADDUI R1,R1,#-8

 BNE R1,R2,Loop

 SD F4, 16(R1)

 ADD F4,F0,F2

 SD F4, 16(R1)

Prolog

Epilog

Loop

 39

Software Pipelining

•  Notice that the three instructions in the loop are totally independent, as they
 are working on different elements of the array.

•  Because the load and store are separated by two iterations:

–  The loop should run for two fewer iterations

–  The startup code is: LD of iterations 1 and 2, ADDD of iteration 1

–  The cleanup code is: ADDD for last iteration and SD for the last two

 iterations

 40

Software Pipelining

•  Register management can be tricky

•  Example shown is not hard: registers that are written in one

 iteration are read in the next one

•  If we have long latencies of the dependences:

–  May need to increase the number of iterations between when we write a
 register and use it

–  May have to manage the register use

–  May have to combine software pipelining and loop unrolling

 41

Software Pipelining + Loop Unrolling

 LD F0,0(R1)

 ADD F4,F0,F2

 LD F0,8(R1)

 DADDUI R1,R1,#-16

Loop: SD F4,16(R1) ;stores into M[i]

 ADDD F4,F0,F2 ; adds to M[i-1]

 LD F0,0(R1) ; loads M[i-2]

 DADDUI R1,R1,#-8

 BNE R1,R2,Loop

 SD F4, 16(R1)

 ADD F4,F0,F2

 SD F4, 16(R1)

 LD F6,0(R1)

 ADD F4,F6,F2

 LD F0,8(R1)

 DADDUI R1,R1,#-16

Loop: SD F4,16(R1)

 ADDD F4,F0,F2

 LD F0,0(R1)

 SD F4,8(R1)

 ADDD F4,F0,F2

 LD F0,-8(R1)

 DADDUI R1,R1,#-16

 BNE R1,R2,Loop

 SD F4, 16(R1)

 ADD F4,F0,F2

 SD F4, 16(R1)

Loop

 42

Software Pipelining vs Loop Unrolling

•  Software pipelining consumes less code space

•  Both yield a better scheduled inner loop

•  Each reduces a different type of overhead:

–  Loop Unroll: branch and counter update code

–  Software Pipelining: reduces the time when the loop is not

 running at peak speed (only once at the beginning and once at
 the end)

 43

Software Pipelining with higher latencies

 LD F0,0(R1)

 ADD F4,F0,F2

 LD F0,8(R1)

 ADD F10,F0,F2

 LD F0,16(R1)

 LD F8,24(R1)

 DADDUI R1,R1,#-32

Loop: SD F4,32(R1) ;stores into M[i]

 ADD F4,F0,F2 ; adds to M[i-2]

 LD F0,0(R1) ; loads M[i-4]

 SD F10,24(R1) ;stores into M[i-1]

 ADDD F10,F8,F2 ; adds to M[i-3]

 LD F8,8(R1) ; loads M[i-5]

 DADDUI R1,R1,#-16

 BNE R1,R2,Loop

Prolog

Other Loop Optimizations

•  Removal of Loop Invariant Computations

•  Induction variable recognition

•  Wraparound variable recognition

44

Loop Invariant Computations

•  Calculations that do not change between loop iterations are
 called loop invariant computations

•  These computations can be moved outside the loop to improve
 performance.

for (x=0; x<end; x++)
 array[x] = x * val/3;

for (x=0; x,100; x++)
 array[x] = x * foo (val);

45

Loop Invariant

int FactorialArray[12];

FactorialArray[0] =1;
for (i=1; i<12; i++)
 FactorialArray[i] = FactoriaArray[i-1] * i;

int FactorialArray[12]= {
 1, 1, 2, 6, 24, 120, 720, 5040,
 40320, 362880, 3628800, 39916800};

46

Induction Variable Recognition

•  Induction variables – A variable whose values form an
 arithmetic progression

k=0;
for (i=1; i<N; i++){
 k=k+3
 A[k]= B[k] +1;
}

for (i=1; i<N; i++){
 A[3*i]= B[3*i] +1;
}

47

Wraparound Variable Recognition

•  A variable that looks like an induction variable , but does not
 quite qualify

•  j is a wraparound variable because the values assigned to it are
 not used until the next iteration of the loop.

j=N;
for (i=0; i<N; i++){
 b[i]= (a[j] + a[i])/2;
 j = i;
}

if (N>=1)
 b[1] = (a[N] + a[1])/2;
for (i=2; i<N; i++){
 b[i]= (a[i-1] + a[i])/2;
}

48

