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Most of this follows Owen and Shubik and Wooldridge et al.
When we extend two person game theory to consider n person games for

n ≥ 3, there is little difference from non-cooperative game theory point of
view. Existence of Nash equilibrium follows from similar arguments and all
the difficulties we had with two person nonzero sum games show up here as
well. But there is a new phenomenon here that must be taken into account:—
that of coalition formation. Subsets of players could form a "cartel" and act
in unison to gain more than they could if they acted independently. This
forms one essential aspect of the game here. And this requires having binding
contracts, using correlated mixed strategies, and transferable utility (so that
the gain could be shared between the colluders in some way that all agree to).
The main study here is to model the coalition formation, and gain sharing
process. So we abstract away details and concentrate on important parts of
the game.

Game Representation: Characteristic Function Forms Let N =
{1, 2, ..., n} be the set of players. Any nonempty subset S of N is called
a coalition.

Definition 1 By a characteristic function of an n-person game we mean
a function v that assigns a value to each subset of players; i.e v : 2N �→ R.
We think of v(S) as the payoff to the subset S of N if it acts in unison; some
times it is also assumed that this is maximin payoff in that we also think all
of N − S act in unison (against S). v(S) is called the value of the coalition
S.

When we go from games in extensive forms to normal forms, we abstract
some details and only look at strategies to obtain a (mixed) equilibrium (for
which we do not need the details that have been abstracted away). Similarly,
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in n person cooperative games where the study focuses on stable coalition
formations, we abstract away even further and look only at the characteristic
function form. It is implicitly assumed that a coalition S can distribute its
value v(S) to its members in any way they choose. Hence these are also
called transferable utility games (TU games for short). How the distribution
takes place is the main interest in these games. It is generally assume that
v({φ}) = 0; v(S) ≥ 0 ∀S ⊆ N .

Outcomes/Solutions An outcome of a game in characteristic form con-
sists of:

(i)A partition of N into coalitions, called a coalition structure, and
(ii) a payoff vector, whic distributes the value of each coalition to its

members.
A coalition structure CS over N is a nonempty collection of nonempty

subsets CS = {S1, S2, ..., Sk} satisfying the relations:

∪ki=1Si = N ;Si ∩ Sj = φ if i �= j

The set of all coalition structures for a given set N of players is denoted by
CSN . v(CS) denotes the sum

∑k

j=1 v(Sj).
A vector x = (x1, x2, ..., xn) is payoff vector for a coalition structure

CS = {S1, S2, ..., Sk}, over N = {1, 2, ..., n} if

xi ≥ 0 ∀i ∈ N
∑

i∈Sj

xi ≤ v(Sj) 1 ≤ j ≤ k

An outcome is a apir [CS, x]. x(S) =
∑

i∈S xi is called the payoff for the
coalition S under x. x is said to be efficient in the outcome [CS, x] if

∑

i∈Sj

xi = v(Sj) 1 ≤ j ≤ k

A payoff vector x for a coalition structure CSN is called an imputation if
it is efficent and individually rational.

xi ≥ v({i}) ∀i ∈ N
∑

i∈Sj

xi = v(Sj) 1 ≤ j ≤ k
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The set of all imputations for a coalition structure CS ∈ CSN is denoted by
E(CS). If CS = {N}, then this is denoted by E(N) or E(v). If a payoff
vector is an imputation, then each player prefers this to being alone. Howver,
a group of players may want to deviate since it might be better for them and
this would result in unstable conditions.

Subclasses of games in characteristic form:

Monotone Games: A game [N, v] in characteristic form is monotone
if

[S ⊆ T ]⇒ v(S) ≤ v(T )

Most games are montone; nonmonotonicuty may arise because some players
intesely dislike each other or becuase of the overhead charges for communi-
cation increase nonlinearly with size of the coaltion.

Superadditive Games: A game [N, v] in characteristic form is said to
be superadditive if

[S ∩ T = φ]⇒ v(S ∪ T ) ≥ v(S) + v(T )

It comes from the fact that S can assure itself v(S) without help from any one
and so also T can assure itself v(T ), then S∪T can assure itself the sum. Since
we have assumed that characteristic function is nonnengative, it follows that
superadditivity implies monotonicity. Most games are superadditive; indeed
older books did not consider any others. Non-superadditive games arise from
anit-trust or anti-monopoly regualtions.

In superadditive games, there is no compelling reason for players to form
any coalition structure except CS = {N} called the "grand" coalition. Hence
the outcome for such a game is of the form [N, x] where

∑
xi = v(N)

A non-superaddtive game cna be transformed into a superadditive game
by the following process: Let T ⊆ N be any coalition. Let CST denote
all coalition structures over T . Given a game [N, v] we define a new game
[N∗, v∗] by

v∗(T ) = max
CS∈CST

v(CS)
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G∗ is called the superadditive cover of the game G. v∗(T ) is the maximum
that the players in set T cna achive by forming their own coalition structure
in G.

Convex (Supermodualr) Games: A game is said to be convex or
supermodular if

v(S ∪ T ) + v(s ∩ T ) ≥ v(S0 + v(T ) ∀S, T ⊆ N

Theorem 2 A game G = [N, v] is convex iff

[T ⊂ S; i /∈ S]⇒ [v(S ∪ {i})− v(S) ≥ v(T ∪ {i})− v(T )]

A convex game is superadditive.

Definition 3 A game v in characteristic function form is called a constant
sum game if

v(S) + v(N − S) = v(N) ∀S ⊆ N

It is clear from the super-additivity condition that the maximum the
entire set of players can get is v(N). Now we look into the questions of how
to divide this total — it what does each player get — in a stable situation. Let
(x1, x2, ..., xn) denote the payoff to the players. Clearly no player will accept
less than what he can get for himself with no help from others. Hence one
condition that this vector must satisfy (called individual rationality) is

xi ≥ v({i}) ∀i

The second condition that is normally imposed (known as pareto-optimality)
is to require

n∑

i=1

xi = v(N)

Any vector that satisfies these two conditions is called an imputation. The
main question now is which of these in the set

E(v) = {x : xi ≥ v({i}); 1 ≤ i ≤ n;
n∑

i=1

xi = v(N)}

should the predicted outcome of this game be? The answer is easy in one
case (this is the most uninteresting case!)
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Definition 4 A game is said to be inessential if v(N) =
∑n

i=1 v({i}).

By superadditivity, we have v(N) ≥
∑n

i=1 v({i}). If equality holds, E(v)
contains only one point —

xi = v({i}) ∀i

Hence this the outcome of such games. From now on, we are interested only
in essential games where v(N) >

∑n

i=1 v({i}).

Definition 5 Let x, y ∈ E(v). We say that x dominates y via the coalition
S [denoted by x ≻S y] if

xi > yi ∀i ∈ S
∑

i∈S

xi ≤ v(S)

Each player in S gets more under x than in y and the coalition S has
enough to give its members the amount specified in x.

Definition 6 We say x dominates y if the above is true for some S.

If x dominates y then y is not stable. Games with same domination
structure are in some sense equivalent and we make this precise by:

Definition 7 Two n-person games u and v are said to be isomorphic if
there is a function f : E(u) �→ E(v) such that

[x, y ∈ E(u); x ≻S y]⇔ [f(x) ≻S f(y)]

We are preserving the domination structure.

Definition 8 Two n−person games u and v are S−equivalent if there exists
numbers (a1, a2, ..., an) and β > 0 such that

v(S) = βu(S) +
∑

i∈S

ai ∀S ⊆ N

Theorem 9 If u and v are S-equivalent, then they are isomorphic. The
converse is true for all constant sum games.
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Proof. Use the function f(x) = βx+ a.
Since S-equivalence is indeed an equivalence relations, it is sufficient to

study one member of each of its equivalence classes. Such representatives are
called normalized games.

Definition 10 An essential (characteristic function) game is said to be (0, 1)-
normalized if

v({i)} = 0 ∀i

v(N) = 1

Lemma 11 A game is S−equivalent to exactly one game in (0, 1) normalized
form.

Another normalization used in the literature is the (−1, 0) normalization
where

v({i}) = −1 ∀i

v(N) = 0

We use the (0, 1) normalization. Thus, the set of all (0, 1) normalized
games consist of v ∈ 2N that satisfy

v(φ) = 0

v({i}) = 0 ∀i

v(N) = 1

[S ∩ T = φ]⇒ v(S ∪ T ) ≥ v(S) + v(T )

If the game is also a constant sum game it satisfies the relation

v(S) + v(N − S) = v(N)

Any (n− 1)− person game u in (0, 1) normalization can be converted to an
equivalent n-person constant sum game v in (0, 1) normalization as follows:

v(S) =
u(S)

1− u(N − S)
if n /∈ S
if n ∈ S

Here N = {1, 2, ..., n}.
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Definition 12 A game v is symmetric if v(S) depends only on |S|.

Definition 13 A game v in (0, 1) normalization is called a simple game if

v(S) ∈ {0, 1} ∀S

Coalitions S with v(S) = 1 are called winning coalitions and those with
v(S) = 0 are called losing coalitions.

Definition 14 Let (p1, p2, .., pn) be a nonnegative vector and let q satisfy the
relation

0 < q <
n∑

i=1

pi

The weighted majority game (q; p1, p2, ..., pn) is defined as a simple game
v in (0, 1) normalization where

v(S) =
1
0

if
∑

i∈S pi ≥ q
else

Definition 15 The set of undominated imputations C(v) of a game v is
called the core of a game.

Theorem 16 C(v) is the set of n-vectors x satisfying the relations;

∑

i∈S

xi ≥ v(S) ∀S ⊆ N

n∑

i=1

xi = v(N)

Proof. Clearly, the first condition implies the result that

xi ≥ v({i}) ∀i

Hence any vector that satisfies both relations above is an imputation. Suppose
x satisfies both relations. Let y be an n-vector satisfying the relation

yi > xi ∀i ∈ S
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for some S ⊆ N . Then
∑

i∈S

yi >
∑

i∈S

xi ≥ v(S)

Hence there is no vector y that dominates x. Hence vectors that satisfy both
relations are undominated.
Conversely, suppose we have an n-vector y that does not satisfy both re-

lations. If
n∑

i=1

yi �= v(N)

then y is not an imputation and hence not in the core. Suppose
n∑

i=1

yi = v(N)

∑

i∈S

yi = v(S)− ǫ

for some ǫ > 0 and some nonempty set S ⊂ N . By superadditivity it follows
that

α = v(N)− v(S)−
∑

i∈N−S

v({i}) ≥ 0

Let |S| = s; [note that 0 < s < n]. Consider an n-vector z defined as follows:

zi =
yi +

ǫ
s

v({i}) + α
n−s

It is easy to verify that z is an imputation and that z ≻S y and hence y can
not be in the core.

This result shows that the core is a closed convex polyhedral set.

Example 1 Player 1 (seller) has a horse which is of no value to him. There
are two buyers #2, #3 who want to buy the horse. #2 has a value of $90
and #3 has value of 100 for the horse. The characteristic function form for
this game is

v({i}) = 0 ∀i

v({2, 3}) = 0

v({1, 2}) = 90

v({1, 3}) = v({1, 2, 3}) = 100
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Hence the core consists of vectors x satisfying the relations:

x1 + x2 ≥ 90

x1 + x3 ≥ 100

x1 + x2 + x3 = 100

xi ≥ 0 ∀i

The core for this game is given by

C(v) = {(t, 0, 100− t) : 90 ≤ t ≤ 100}

Exercise 17 What is the non-cooperative solution to this game?
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