
 
 
Digital signatures- DSA 

 



Signatures vs. MACs 

Suppose parties A and B share the 
secret key K. Then M, MACK(M) 
convinces A that indeed M originated 
with B. But in case of dispute A cannot 
convince a judge that M, MACK (M) was 
sent by B, since A could generate it 
herself. 
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Problems with “Pure” DH Paradigm 

•  Easy to forge signatures of random 
messages even without holding DA: Bob 
picks R arbitrarily, computes S=EA(R). 

•  Then the pair (S, R) is a valid signature 
of Alice on the “message” S. 

•  Therefore the scheme is subject to 
existential forgery.  

April 2012 SiReSI slide set 6 3 



forgery 

ability to create a pair consisting of a 
message m and a signature (or MAC) σ 
that is valid for m, where m has not 
been signed in the past by the 
legitimate signer 
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Existential forgery 
•  adversary creates any message/

signature pair (m,σ), where σ was not 
produced by the legitimate signer 

•  adversary need not have any control 
over m; m need not have any particular 
meaning 

•  existential forgery is essentially the 
weakest adversarial goal, therefore the 
strongest schemes are those which are 
"existentially unforgeable" 
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Selective forgery 
•  adversary creates a message/signature pair 

(m,σ) where m has been chosen by the 
adversary prior to the attack  

•  m may be chosen to have interesting 
mathematical properties with respect to the 
signature algorithm; however, in selective 
forgery, m must be fixed before the start of 
the attack 

•  the ability to successfully conduct a selective 
forgery attack implies the ability to 
successfully conduct an existential forgery 
attack 
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Universal forgery 

•  adversary creates a valid signature σ 
for any given message m 

•  it is the strongest ability in forging 
and it implies the other types of 
forgery 
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Problems with “Pure” DH 
Paradigm 

•  Consider specifically RSA. Being 
multiplicative, we have (products mod 
N) 

DA(M1M2) = DA(M1)DA(M2) 

•  If M1=“I OWE BOB $20” and M2=“100” 
then under certain encoding of letters 
we could get M1M2 =“I OWE BOB 
$20100” 
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Standard Solution: Hash First 
•  Let EA be Alice’s public encryption key, and let DA be 

Alice’s private decryption key. 

•  To sign the message M, Alice first computes the 
strings y = H(M) and z = DA(y). Sends (M, z) to Bob 

•  To verify this is indeed Alice’s signature, Bob 
computes the string y = EA(z) and checks y = H(M) 

•  The function H should be collision resistant, so that 
cannot find another M’ with H(M) = H(M’) 
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General Structure: 
Signature Schemes 

•  Generation of private and public keys 
(randomized). 

•  Signing (either deterministic or 
randomized) 

•  Verification (accept/reject) - usually 
deterministic. 
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Schemes Used in Practice 

•  RSA 
•  El-Gamal Signature Scheme (85) 
•  The DSS (digital signature standard, 

adopted by NIST in 94 is based on a 
modification of El-Gamal signature) 
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RSA 
•  Signature: code hash of message using 

private key  
•  Only the person who knows the secret key 

can sign  
•  Everybody can verify the signature using 

the public key 
 
 
Instead of RSA we can use any Public Key 

cryptographic protocol 
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RSA: Public-Key Crypto. Standard 
(PKCS) 

•  Signature: code hash of message (“digest”) using 
private key 

•  PKCS-1: standard encrypt using secret key 

•  0||1||at least 8 byte FF base 16|| 0|| 
specification of used  hash function || hash(M) 

•  (M message to be signed) 
•  first byte 0 implies encoded message is less than  n   
•  second byte (=1) denotes signature (=2 encoding) 
•  bytes 11111111 imply encoded message is large 
•  specification of used hash function increases security 
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El-Gamal Signature Scheme 
[KPS §6.4.4] 

Generation 
•  Pick a prime p of length 1024 bits such 

that DL in Zp
* is hard 

•  Let g be a generator of Zp
* 

•  Pick x in [2, p-2] at random 
•  Compute y = gx mod p 
•  Public key: (p, g, y) 
•  Private key: x 
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El-Gamal Signature Scheme 
Signing M [a per-message public/private key 

pair (r, k) is also generated] 
•  Hash: Let m = H(M) 
•  Pick k in [1, p-2] relatively prime to p-1  at 

random 
•  Compute r = gk mod p 
•  Compute s = (m-rx)k-1 mod (p-1)   (***) 
•  if s is zero, restart 

•  Output signature (r, s) 
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El-Gamal Signature Scheme 

Verify M, r, s, p, k 
•  Compute m = H(M) 
•  Accept if (0 < r < p) ∧ (0 < s < p–1) ∧ 

(yrrs = gm) mod p, else reject 
•  What’s going on? 
•  By (***) s = (m-rx)k-1 mod p-1, so  

sk + rx = m. Now r = gk so rs = gks, and 
y = gx so yr = grx, implying yrrs = gm 
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Digital Signature Standard 
(DSS) 

•  NIST, FIPS PUB 186 
•  DSS uses SHA as hash function and 

DSA as signature 
•  DSA inspired by El Gamal 

see [KPS §6.5] 
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The Digital Signature 
Algorithm (DSA) 

•  Let p be an L bit prime such that the 
discrete log problem mod p is 
intractable  

•  Let q be a 160 bit prime that divides  
p – 1: p = j·q + 1 

•  Let α be a q-th root of 1 modulo p:  
α = 11/q mod p, or αq = 1 mod p 

How do we compute α? 
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computing α 
•  take a random number h  

s.t. 1 < h < p - 1 and compute g = h(p-1)/q 
mod p = hj mod p 

•  if g = 1 try a different h 
•  things would be unsecure 

•  it holds gq = hp-1 

•  by Fermat's theorem hp-1 = 1 mod p 
•  p is prime 

•  choose α = g 
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The Digital Signature Algorithm 
(DSA) 

p prime, q prime, p – 1 = 0 mod q, α = 1(1/q) mod p 
Private key: secret s, random 1 ≤ s ≤ q-1. 
Public key: (p, q, α, y = αs mod p) 
Signature on message M: 

Choose a random 1 ≤ k ≤ q-1, secret!! 
Part I: (αk mod p) mod q 
Part II: (SHA(M) + s (PART I)) k-1 mod q 

Signature <Part I , Part II> 
Note that Part I Does not depend on M (preprocessing) 
Part II is fast to compute 
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The Digital Signature 
Algorithm (DSA) 

p prime, q prime, p – 1 = 0 mod q, α = 1(1/q) mod p, 
Private key: random 1 ≤ s ≤ q-1. Public key: (p, q, α, y 
= αs mod p). Signature on message M: 

Choose a random 1 ≤ k ≤ q-1, secret!! 
Part I: (αk mod p) mod q 
Part II: (SHA(M) + s (PART I)) k-1 mod q 

Verification:  
e1 = SHA(M) (PART II)-1 mod q 
e2 = (PART I) (PART II)-1 mod q 
ACCEPT Signature if  

 (αe1 ye2 mod p) mod q = PART I  
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Digital Signature-correctness  
Accept if   (αe1 ye2 mod p) mod q = PART I  

  e1 = SHA(M) / (PART II)  mod q  
  e2 = (PART I) / (PART II) mod q 

Proof : 1. definition of PART I and PART II implies 
SHA(M)= (- s (PART I) + k(PART II))  mod q hence 
SHA(M)/(PART II)+ s (PART I)/(PART II)=k mod q  
2. Definit. of y = α s mod p implies  αe1 y e2 mod p = αe1α (s e2) mod p 	

= α SHA(M)/ (PART II) + s (PART I) /(PART II) mod q mod p =α (k+ cq) mod p	

= α k mod p ( since α q = 1).  
3. Execution of  mod q implies  
(α e1 y e2 mod p) mod q = (α k mod p ) mod q = PART I  
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DSS: security [KPS §6.5.5] 
Secret key s is not revealed and it cannot be forged 

without knowing it 
Use of a random number for signing- not revealed (k) 
•  There are no duplicates of the same signature (even of same 

messages) 
•  If k is known then you can compute s mod q = s (s is  

chosen < q) 
•  make s explicit from PART II 

•  Two messages signed with same k can reveal the value k and 
therefore s mod q 
•  2 equations (Part II and Part II'), 2 unknowns (s and k) 

There exists other sophisticated attacks depending 
on implementation  
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if adversary knows k… 
[Part II] = (SHA(M) + s [Part I]) k-1 mod q 
[Part II] k = (SHA(M) + s [Part I]) mod q 
([Part II] k – SHA(M)) [Part I]-1 = s mod q = s (since s < q) 
then adv knows s 
now adv. wants to sign M’ 
•  Part I = (αk mod p) mod q (independent on M’) 
•  Part II = ((SHA(M’) + s [Part I]) k-1) mod q  
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DSS: efficiency 
•  Finding two primes p and q such that  

p – 1 = 0 mod q is not easy and takes time 
•  p and q are public: they can be used by many 

persons 

•  DSS slower than RSA in signature verification  
•  DSS and RSA same speed for signing  (DSS faster 

if you use  preprocessing) 
•  DSS requires random numbers: not always easy to 

generate 
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DSS versus RSA 
DSS: (+) faster than  RSA for signing 

(preprocessing- suitable for smart card)  
(+?) uses random numbers to sign  (+)  
Implementation problems:  
•  To generate random numbers you need special hardware 

(no smartcard);  
•  pseudo random generator requires memory  (no smart 

card) 
•  Random number depending by messages does not allow 

preprocessing and slow the process 
 (+) standard RSA: (+) known since many years and 
studied - no attacks 
 (+) faster in signature verification 
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DSA vs RSA 

DSA: signature only 
RSA: signature + key management 
DH: Key management 
DSA: patent free (RSA patented until 

2000) 
DSA: short signatures (RSA 5 times 

longer: 40 vs 200 bytes) 
DSA faster 
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Timestamping a document 
TimeStamping Authority (TSA): guarantees timestamp 

of a document 
Alice wants to timestamp a document  
1.  A compute hash of document and sends to TSA 
2.  TSA adds timestamp, computes new hash (of 

timestamp and received hash) and SIGNS the 
obtained hash; sends back to A  

3.  A keeps TSA’s signature as a proof  
•  Everybody can check the signature  
•  TSA does not know Alice’s document  
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More problems 
•  How to be sure you receive a document? 

  (registered mail or registered mail with receipt) 
•  Contract signature: signature should be done at the 

very same time by both partners 
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PEC 
•  Dà alla e-mail lo stesso valore legale di una raccomandata con avviso 

di ricevimento.  
•  Può aggiungere inoltre la certificazione del contenuto del messaggio 

solo se in combinazione con un certificato digitale.  
•  Non certifica l'identità del mittente, se questi omette di usare la 

propria firma digitale. 
•  All'invio di una mail PEC il gestore PEC del mittente si occuperà di 

inviare al mittente una ricevuta che costituirà valore legale 
dell'avvenuta (o mancata) trasmissione del messaggio con precisa 
indicazione temporale del momento in cui la mail PEC è stata inviata.  

•  Il gestore del destinatario, dopo aver depositato il messaggio PEC 
nella casella del destinatario, fornirà al mittente una ricevuta di 
avvenuta consegna, con l'indicazione del momento temporale nel 
quale tale consegna è avvenuta.  

•  La normativa sulla PEC attribuisce al CNIPA vari compiti ed indica 
tale soggetto come custode e gestore delle regole tecniche.  
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DSA Exercises  
1. If you solve the discrete log problem then you break DSA 

–  If you solve DSA then you can compute k knowing PartI 
–  Then the definition of PartII gives 

  PartII = (SHA (M) + s (PART I)) /k mod q 
 an equation with 1 unknown (s) that can be easily solved 

2. Show that if the same k is used twice then you can falsify 
signatures (even without solving the discrete log problem) 
–  Let Ma and Mb the two messages and <PartI-a, PartII-a> 

<PartI-b ,PartII-b> be  the two signatures 
–  If the same k is used then both signatures have the same PartI 
–  Hence  PartII-a= (SHA (Ma) + s (PART I-a)) /k mod q 

   PartII-b= (SHA (Mb) + s (PART I-a)) /k mod q 
–  Note that Ma and Mb are known; therefore we have a system 

with two equations and two unknowns (k and s) 
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