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We introduce the first-price, sealed-bid auction. This auction format
requires auction winners to pay their bid. We go over the strategic
consequences of this payment rule.

1 The First-Price Sealed-Bid Auction

We have N = {1, . . . , n} bidders, where each bidder has a private
valuation vi drawn from distribution Fi

1 with strictly positive den- 1 Here, we assume that valuations
follow the IPV model.sity, fi : Ti → R>0, for a good up for sale by the auctioneer, agent

0. In a first-price, sealed-bid auction, each agent has a type vi ∈ Ti,
and submits a bid bi to the auctioneer, without revealing what the
contents of the bid are to any other bidder. Using the submitted bids
b = (b1, . . . , bn), the auctioneer then decides on the winner. In this
setting, the winner of the auction is the bidder with the highest bid,
maxi∈N bi. 2 Let i∗ ∈ arg maxN bi denote the winner of the auction. 2 This is the nth order statistic, b(n).

The kth order statistic, X(k), is the
kth smallest value amongst a set of
n random variables X1, . . . , Xn, so
mini∈N = b(1).

Should there be a tie, i∗ is randomly determined by the auctioneer.
The auctioneer could, for example, select a bidder uniformly at ran-
dom, or break ties using an alphanumeric schema. The winner is
allocated with probability xi∗(bi∗ , b−i∗) = 1, and all other bidders
i∗ 6= i ∈ N are allocated with probability xi(bi, b−i) = 0. The winner,
bidder i∗, pays her bid, bi∗ , and all other bidders pay nothing.

xi(bi, b−i)

bib(n−1)

1

0
0

Figure 1: Bidder i’s allocation function
for a given b−i . Once bidder i submits a
bid larger than the second highest bid,
b(n−1), she is allocated with probability
xi(bi , b−i) = 1.

1.1 Computational Complexity

With n bidders, determining the winner takes O(n) time, as this is
the complexity of an arg max function. Given the winner, we can
determine payments in O(1) time. Therefore, this auction can be run
in polynomial time.
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1.2 Solving for the Bayes-Nash Equilibrium

In this setting, we assume bidders have a risk-neutral, quasi-linear
utility functions of the form

ui(bi, b−i) = vixi(bi, b−i)− pi(bi, b−i). (1)

This means, that the resulting payoff each bidder receives is

ui(bi, b−i) =

vi − bi, if i = i∗

0, otherwise.
(2)

If all bidders bid their valuation (i.e., they are truthful in their
reports), then all bidders will receive zero payoff. Consequently, it is
in each bidder’s interest to shade their bid: each bidder will want to
report a bid so that in expectation, they receive positive payoff. That
is, bidders are solving for the following:

bi = max
x∈R

(vi − x) ∏
i 6=j∈N

Pr
(

x ≥ bj
)

. (3)

In settings where there are many bidders, one natural thing to as-
sume is that bidders shade less. When there are many bidders, it
becomes more likely that someone with a high type is amongst them.
Furthermore, we expect that bids increase as a bidder’s type in-
creases: it makes no sense for a bidder with high type to bid close to
nothing, and vice-versa. We now show what a symmetric Bayes-Nash
equilibrium looks like, and formally show how much each bidder
should shade their bids by. Here, we assume that all n > 1 bidders
are symmetric, meaning that Fi = Fj, for all i, j ∈ N, distributions are
continuous, and, for simplicity of presentation, that the smallest val-
uation any bidder can have is 0. Finally, we abuse notation slightly,
and express bids as functions.

Theorem 1.1. In a symmetric Bayes-Nash equilibrium of a first-price,
sealed bid auction with n > 1 symmetric bidders where valuations are iid
random variables, each bidder i will bid

b(vi) =

vi −
∫ vi

0 F(x)n−1 dx
F(vi)n−1 , if vi > 0

0, otherwise.
(4)

Proof. To show that the given symmetric strategy is optimal, we have
to show that it maximizes expected utility. Since we are looking for a
symmetric Bayes-Nash equilibrium, each bidder must decide on how
to use a bid function b : R → R based on her type vi. That is, each
bidder will place bid bi = b(vi). The expected payoff of bidder i for
using strategy b with type vi, ui(b, vi), is

ui(b, vi) = (vi − bi) ∏
i 6=j∈N

Pr
(
bi ≥ bj

)
(5)
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= (vi − bi) ∏
i 6=j∈N

Pr
(
vi ≥ vj

)
Every bidder is using the same increas-
ing bidding function.

= (vi − bi) F
(

b−1(bi)
)n−1

. b−1(b(vi)) = vi . The probability of
winning is a function of what one bids,
which is why we explicitly write this
out with the bid function.We seek to maximize the expected utility, so we take derivatives

and solve for the first order condition:

dui(b, vi)

dbi
=

d (vi − bi) F
(
b−1(bi)

)n−1

dbi
. Notice that if we tried to start with

ui(b, vi) = (vi − bi) F (vi)
n−1, we would

have u′i(b, vi) = −F (vi)
n−1.Recall that for two functions f (x) and g(x), chain rule tells us that

[ f (g(x))]′ = f ′(g(x))g′(x), (6)

and that for function inverse settings 3 , 3 By chain rule, 1 = [ f ( f−1(x))]′ =
f ′( f−1(x))[ f−1(x)]′.

[ f−1(x)]′ =
1

f ′( f−1(x))
. (7)

This means

dF
(
b−1(bi)

)n−1

dbi
= (n− 1) F

(
b−1(bi)

)n−2
f
(

b−1(bi)
) 1

b′(b−1(bi))
.

(8)

We simplify the notation, as b−1(bi) = vi, leaving us with

dui(b, vi)

dbi
= (vi − bi) (n− 1) F

(
b−1(bi)

)n−2
f
(

b−1(bi)
) 1

b′(b−1(bi))
− F

(
b−1(bi)

)n−1

(9)

= (vi − b(vi)) (n− 1) F (vi)
n−2 f (vi)

1
b′(vi)

− F (vi)
n−1

(10)

= 0. (11)

What’s left is to solve a differential equation of form

[b(vi)]
′ F (vi)

n−1 = (vi − b(vi))
[

F (vi)
n−1
]′

. (12)

One way to approach this is to observe that[
b(vi)F (vi)

n−1
]′

= b(vi)
[

F (vi)
n−1
]′
+ [b(vi)]

′ F (vi)
n−1 , (13)

so we have[
b(vi)F (vi)

n−1
]′

= b(vi)
[

F (vi)
n−1
]′
+ (vi − b(vi))

[
F (vi)

n−1
]′

(14)

= vi

[
F (vi)

n−1
]′

. (15)

We want to find a function that tells us how to bid for some bidder
i. That is, something that bids b(vi). Currently, the notation tells
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us to take derivatives with respect to vi, but we’re going to want to
integrate up to it, so change the notation to read[

b(x)F (x)n−1
]′

= x
[

F (x)n−1
]′

. (16)

By the fundamental theorem of calculus4, 4

∫ b
a f ′(x)dx = f (b)− f (a)∫ vi

0

[
b(x)F (x)n−1

]′
dx = b(x)F (x)n−1

∣∣∣vi

0
(17)

= b(vi)F (vi)
n−1 . (18)

Integrate the right-hand side by parts5: 5

∫ b
a u(x)v′(x)dx = u(x)v(x)|ba −∫ b

a v(x)u′(x)dx∫ vi

0
x
[

F (x)n−1
]′

dx = xF (x)n−1
∣∣∣vi

0
−
∫ vi

0
F (x)n−1 dx (19)

= viF (vi)
n−1 −

∫ vi

0
F (x)n−1 dx. (20)

With the left-hand side and right-hand side, we now arrive at a much
simpler equation to work with:

b(vi)F (vi)
n−1 = viF (vi)

n−1 −
∫ vi

0
F (x)n−1 dx. (21)

Dividing by F (vi)
n−1 gets us a function of form

b(vi) = vi −
∫ vi

0 F(x)n−1 dx
F(vi)n−1 . (22)

We know that our bid function evaluated at vi is a critical point.
What’s left? The second order conditions, which tell us whether we
are minimizing, or maximizing. Formally, we need to verify that

d2ui(b, vi)

db2
i

< 0. (23)

Rather than taking the straight-forward approach, and differentiat-
ing by bi twice, we will approach this subject in a slightly different
manner. Given that each bidder is using the same bidding function
that we have derived, we can ask how should a bidder be using it?
If bidder i submits bid b(ti), then it should be that utility, ui(b, vi, ti),
is maximized when ti = vi. This means that the first derivative of
the utility function with respect to a reported type ti should be zero
when ti = vi, and the second derivative should be strictly negative
when ti = vi. Alternatively, if we find that the first derivative is posi-
tive when ti < vi, and negative when ti > vi, then we know bidding
b(vi) maximizes expected utility.

The derivative of the bid function is

[b(v)]′ =

[
v −

∫ v
0 F(x)n−1 dx

F(v)n−1

]′
(24)
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= 1−
[
F(v)n−1] [∫ v

0 F(x)n−1 dx
]′ − [F(v)n−1]′ [∫ v

0 F(x)n−1 dx
]

[F(v)n−1]
2

(25)

= 1−
[
F(v)n−1] [F(v)n−1]− [(n− 1) f (v)F(v)n−2] [∫ v

0 F(x)n−1 dx
]

[F(v)n−1]
2

(26)

=

[
(n− 1) f (v)F(v)n−2] [∫ v

0 F(x)n−1 dx
]

[F(v)n−1]
2 . (27)

Plug this into the first derivative of the utility function for bidding
with type ti ∈ Ti:

dui(b, vi, ti)

dbi
= (vi − b(ti)) (n− 1) F (ti)

n−2 f (ti)
1

b′(ti)
− F (ti)

n−1

(28)

=

(
vi −

(
ti −

∫ ti
0 F(x)n−1 dx

F(ti)n−1

))
(n− 1) F (ti)

n−2 f (ti)

 [
F(ti)

n−1]2
[(n− 1) f (ti)F(ti)n−2]

[∫ ti
0 F(x)n−1 dx

]
− F (ti)

n−1

(29)

=

(
(vi − ti) +

(∫ ti
0 F(x)n−1 dx

F(ti)n−1

)) [
F(ti)

n−1]2[∫ ti
0 F(x)n−1 dx

]
− F (ti)

n−1

(30)

= (vi − ti)

 [
F(ti)

n−1]2[∫ ti
0 F(x)n−1 dx

]
+

(
F (ti)

n−1
)
− F (ti)

n−1

(31)

= (vi − ti)

 [
F(ti)

n−1]2[∫ ti
0 F(x)n−1 dx

]
 . (32)

We see that setting t = vi is a critical point, andu′i(b, vi, t) > 0 if t < vi

u′i(b, vi, t) < 0 if t > vi.
(33)

Therefore, if everyone is using this same bidding function, it is opti-
mal for all bidders to use it truthfully.

Notice that the optimality of a bid is based on how other bidders
act. Since strategies are based on how other bidders act, we say that
there is no dominant strategy in a first-price, sealed-bid auction.
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1.3 Properties of the Bid Function

Earlier we have argued that a bid function should be increasing with
respect to types, and that bids should be shaded less as the number
of bidders increase. Here we show formally that our solution does
indeed have these attributes.

Shading The bid function we have derived, Equation (4), can be
restated as

b(vi) =

vi −
∫ vi

0

(
F(x)
F(vi)

)n−1
dx, if vi > 0

0, otherwise.
(34)

We have said that the density function is strictly positive, so the dis-
tribution function is increasing. This means that for any x ∈ (0, vi],
F(x)
F(vi)

≤ 1, so as the number of bidders grows, the quantity
(

F(x)
F(vi)

)n−1

decreases. In the limit, as n goes to infinity, this term approaches
zero.

Monotonicity We now observe that our bid function is monotonic
(i.e., b(x) ≤ b(y) for x ≤ y. Analytically, we can see this by taking the
derivative and noticing that [b(v)]′ > 0 when v > 0. Combined with
the observation that b(ε) > b(0) for any ε > 0, we have that bids are
strictly increasing.

[b(v)]′ =

[
(n− 1) f (v)F(v)n−2] [∫ v

0 F(x)n−1 dx
]

[F(v)n−1]
2 (35)

> 0. (36)

1.4 An Alternative Solution Approach

Earlier we solved for the symmetric Bayes-Nash equilibrium directly.
We now present an alternative method. Rather than go through the
math, one can guess what the optimal strategy is, and then check that
it is optimal. We give an example of this below, for n symmetric
bidders, where valuations are drawn from a uniform U(0, 1) distribu-
tion.

Example 1.2. Assume that the optimal bidding strategy for each
bidder is

b(vi) =
n− 1

n
vi. (37)

The probability that bidder i wins the auction is

Pr (xi(bi, b−i) = 1) = Pr
(

max
i 6=j∈N

bj ≤ bi

)
(38)
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= Pr
(

max
i 6=j∈N

n− 1
n

vj ≤ bi

)
(39)

= Pr
(

max
i 6=j∈N

vj ≤
n

n− 1
bi

)
(40)

= ∏
i 6=j∈N

F
(

n
n− 1

bi

)
(41)

= ∏
i 6=j∈N

(
n

n− 1
bi

)
(42)

=

(
n

n− 1
bi

)n−1
. (43)

The expected utility of each bidder using this strategy is

ui = (vi − bi)Pr (xi(bi, b−i) = 1) (44)

= (vi − bi)

(
n

n− 1
bi

)n−1
(45)

= (vi − bi) bn−1
i

(
n

n− 1

)n−1
. (46)

To show that the bid function is optimal, we now differentiate
with respect to bi. It should be the case that the first derivative is zero
when bi =

n−1
n vi, and the second derivative is strictly negative. The

first derivative is

dui
dbi

=

(
n

n− 1

)n−1

[(vi − bi)]
′
[
bn−1

i

]
+

(
n

n− 1

)n−1

[(vi − bi)]
[
bn−1

i

]′
(47)

=

(
n

n− 1

)n−1

[−1]
[
bn−1

i

]
+

(
n

n− 1

)n−1

[(vi − bi)]
[
(n− 1)bn−2

i

]
(48)

= 0. (49)

This simplifies to

0 = [−1]′
[
bn−1

i

]
+ [(vi − bi)]

[
(n− 1)bn−2

i

]
(50)

= −bi + (vi − bi) (n− 1) (51)

= −bi + vin− vi − bin + bi (52)

= vin− vi − bin (53)

= vi(n− 1)− bin. (54)

Plug in the assumed solution to get

vi(n− 1)− bin = vi(n− 1)−
(

n− 1
n

vi

)
n (55)

= 0. (56)
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The second derivative is

d2ui

db2
i
=

(
n

n− 1

)n−1
(n− 1)bn−3

i ((n− 2)vi − nbi) . (57)

If a bidder has valuation vi = 0, then the second derivative is zero.
This is utility maximizing for a bidder of this type. Notice that ties
are zero-probability events, so any bidder with valuation zero is fated
to lose. Bidding more than zero results in a probability of having
negative utility. Thus, we focus on the setting where vi > 0. The
second order conditions are satisfied if

(n− 2)vi − nbi < 0. (58)

Plug in the assumed bid function to show that we satisfy the second
order condition:

(n− 2)vi − nbi = (n− 2)vi − n
(

n− 1
n

vi

)
(59)

= (n− 2)vi − (n− 1) vi (60)

= −vi (61)

≤ 0. (62)

For all vi ∈ (0, 1], the first and second order conditions are satisfied,
so we conclude that bidding bi =

n−1
n vi is optimal.

1.5 Total Welfare

Let the utility function of the auctioneer be

∑
i∈N

pi (bi, b−i) . (63)

Summing over the utility of the bidders and the auctioneer gives us
the total welfare of our agents:[

∑
i∈N

vixi(bi, b−i)− pi(bi, b−i)

]
+

[
∑
i∈N

pi (bi, b−i)

]
= ∑

i∈N
vixi(bi, b−i).

(64)

In a Bayes-Nash equilibrium, the bidder with the highest bid also
values the good the most:

xi(bi, b−i) =

1 if vi ≥ vj, ∀j ∈ N

0 otherwise.
(65)

This allocation scheme maximizes total welfare, so in a Bayes-Nash
equilibrium, the first-price, sealed-bid auction is a welfare maximiz-
ing auction.
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1.6 The Auctioneer and Revenue

We now turn to the auctioneer, who has utility

u0(bi, b−i) =
n

∑
i=1

pi(bi, b−i). (66)

The utility of the auctioneer is based on the distribution of the nth
order statistic of submitted bids, b(n). While you can immediately
invoke the density function of the kth order statistic to arrive at the
result,

fX(k)
(x) =

n!
(k− 1)!(n− k)!

(F(x))k−1 (1− F(x))n−k f (x), (67)

we will give a more intuitive explanation of the expected revenue of
the first-price, sealed-bid auction, R1, with the following Lemma:

Lemma 1.3. In the symmetric bidder setting, where distributions have
support [0, v ], the total expected revenue generated by a a first-price, sealed-
bid auction is:

R1 =
∫ v

0
b(z)n f (z)F(z)n−1 dz. (68)

Proof. The expected revenue generated is based on the distribution of
the highest type, v(n). The probability that type v is the highest type
amongst the bidders is F(v)n. This distribution has corresponding
density

[F(v)n]′ = n f (v)F(v)n−1. (69)

Thus, the expected revenue is

R1 =
∫ v

0
b(z)n f (z)F(z)n−1 dz. (70)
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