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Abstract. Ecosystem models have been developed for assessment and management in a
wide variety of environments. As model complexity increases, it becomes more difficult to
trace how imperfect knowledge of internal model parameters, data inputs, or relationships
among parameters might impact model results, affecting predictions and subsequent
management decisions. Sensitivity analysis is an essential component of model evaluation,
particularly when models are used to make management decisions. Results should be
expressed as probabilities and should realistically account for uncertainty. When models are
particularly complex, this can be difficult to do and to present in ways that do not obfuscate
essential results. We conducted a sensitivity analysis of the Ecosystem Diagnosis and
Treatment (EDT) model, which predicts salmon productivity and capacity as a function of
ecosystem conditions. We used a novel ‘‘structured sensitivity analysis’’ approach that is
particularly useful for very complex models or those with an abundance of interconnected
parameters. We identified small, medium, and large plausible ranges for both input data and
model parameters. Using a Monte Carlo approach, we explored the variation in output,
prediction intervals, and sensitivity indices, given these plausible input distributions. The
analyses indicated that, as a consequence of internal parameter uncertainty, EDT productivity
and capacity predictions lack the precision needed for many management applications.
However, EDT prioritization of reaches for preservation or restoration was more robust to
given input uncertainties, indicating that EDT may be more useful as a relative measure of fish
performance than as an absolute measure. Like all large models, if EDT output is to be used as
input to other models or management tools it is important to explicitly incorporate the
uncertainty and sensitivity analyses into such secondary analyses. Sensitivity analyses should
become standard operating procedure for evaluation of ecosystem models.

Key words: Ecosystem Diagnosis and Treatment (EDT) model; ecosystem model; Pacific Northwest,
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INTRODUCTION

Scientists and managers have increasingly recognized

that conservation concerns, including endangered spe-

cies management, need to be addressed in the context of

entire ecosystems (Beechie et al. 2003, DEFRA 2005,

Harssan et al. 2005). Concurrently, technological

advances have enabled the development of increasingly

complex mathematical and statistical models for de-

scribing these ecosystems and aiding conservation

planning. In the realm of aquatic ecosystems, the

EcoPath/EcoSim framework alone has been applied to

several hundred marine, estuarine, and freshwater food

webs (Pauly et al. 2000). A number of terrestrial

ecosystem models have been developed to examine

forest dynamics (Chertov et al. 2006, Johnson et al.

2007). At an even larger scale, global climate change

models (23 models in the latest report from the

Intergovernmental Panel on Climate Change [IPCC]

[Randall et al. 2007]) are a major research and policy

focus with broad implications. All of these ecosystem

models are diverse in terms of scope and approach, but

share the general feature of a large number of

parameters with complex interactions. These models

are necessarily built with imperfect information. Model

inputs such as environmental data or population

abundance estimates are often fraught with errors both

known and unknown. Given these inevitable uncertain-

ties, large and complex ecosystem models must be

evaluated through sensitivity analyses before their

output can be effectively applied to conservation

problems (Hilborn and Mangel 1997, Saltelli et al.

2000b, Regan et al. 2002, Clark 2003, Harwood and

Stokes 2003, Pielke and Conant 2003, Tang et al. 2006).
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Sensitivity analysis is a systematic exploration of how

model results change in response to changes in the model

input and parameters. It can improve the interpretation

of modeled output and aid in reducing model complex-

ity. Knowing which parameters have little influence on

model output and whether parameter interactions are

additive (i.e., parameters are independent), synergistic

(i.e., parameters combine for an exaggerated effect on

output), or compensatory (i.e., parameters ‘‘cancel each

other out’’ for reduced effect on output) can help

identify which parameters can be removed from the

model without changing its predictive capabilities and

where to focus additional field sampling resources for

improved model precision. Since model inputs are

themselves only estimates, we need to understand how

model output, and therefore management recommenda-

tions, might change as a result of alternative reasonable

estimates.

Despite the need for sensitivity analyses, tools and

technologies for evaluating large ecosystem models have

lagged behind model development and usage. Technical

challenges have certainly played a role in this lag, but an

additional factor may be reluctance by both managers

and modelers to fully incorporate uncertainty into

analyses, for fear that wide prediction intervals will

render a model less valuable as a management tool. We

argue that information about prediction intervals and

model sensitivity will make a model more valuable and

sensitivity analysis should become standard operating

procedure. In our experience, managers often have no

idea what to do with uncertainty estimates, so it is

important that modelers communicate uncertainty

results clearly and with examples of how uncertainty

may affect decision making.

In this paper, we used a novel, structured approach to

conduct a full sensitivity analysis of a large, complex,

and widely used model employed for managing Pacific

salmon populations. The Ecosystem Diagnosis and

Treatment (EDT) model (Lichatowich et al. 1995,

Mobrand et al. 1997) is used to estimate salmon

abundance and productivity and as an approach for

identifying and prioritizing the manner in which

recovery funds should be allocated to specific habitat

restoration and preservation actions. The model con-

tains a large number of parameters characterizing both

the environment and relationships between the environ-

ment and salmon, most of which are estimated with

considerable uncertainty. For example, the model

includes parameters describing the level of total pollut-

ants in the water column and the sublethal effects of

those pollutants on salmon; neither the amount nor

effect of pollution can be estimated with much precision.

Although there have been some other efforts at partial

sensitivity analysis of EDT (Steel et al. 2009), the

uncertainty in input parameters has not been explicitly

taken into account and the EDT model currently

provides only point estimate predictions. We argue that

current model output is unsatisfactory for making

informed management decisions.

As model complexity increases, it becomes more

difficult to trace how imperfect knowledge of internal

model parameters or data inputs might impact model

predictions, causing many modelers to give the problem

short shrift. A thorough sensitivity analysis often

requires a Monte Carlo approach in which the model

is run many times, with each run using random samples

drawn from the input parameter probability distribu-

tions. This process can be extremely time-consuming for

complex model applications; our approach reduces this

limitation. We provide prediction intervals for key

model outputs, such as estimated salmon capacity, and

compare the sensitivity of modeled output to groups of

different types of parameters. Our goals in this analysis

were twofold. First, we wanted to develop and

implement a method for evaluating the EDT model as

a means for improving endangered salmon population

management. Second, we wanted to use the EDT

analysis as the basis for a general evaluation of how

uncertainty analysis can be applied to large ecosystem

models to make better management decisions.

Pacific salmon

Pacific salmon are an ideal species for building and

evaluating ecosystem models due to their complex life

history strategies and known dependency on habitat

quality, which is the focus of most recovery efforts

(Quinn 2004). There are six species of Pacific salmonids

in the Pacific Northwest (PNW; Washington, Oregon,

Idaho) of the United States that are predominantly

anadromous and semmelparous, Oncorhynchus tshawyt-

scha (chinook), O. kisutch (coho), O. mykiss (steelhead),

O. nerka (sockeye), O. keta (chum), and O. gorbuscha

(pink) (Groot and Margolis 1991), and two other

species, O. clarki (cutthroat) and Salvelinus confluentus

(bull trout), that are less frequently anadromous (Quinn

and Myers 2007). Pacific salmon are of considerable

cultural and economic importance to communities in the

PNW, particularly native communities. Because of

habitat degradation, dam construction, overfishing,

hatchery production, and other threats, many salmon

populations in the PNW and in California are currently

listed as threatened or endangered under the U.S.

Endangered Species Act (Good et al. 2007).

As a consequence, extensive efforts are underway to

recover threatened populations and protect existing

healthy populations. In response to salmon population

declines, a great deal of money has been and will likely

continue to be spent on actions to restore and protect

critical freshwater habitat for salmonids. Between 2000

and 2006, the federal Pacific Coastal Salmon Recovery

Fund alone allocated over US$500 million to salmon

recovery (NOAA 2007), and millions more from state,

local, and private sources have been spent to recover

salmon. The types of restoration and management

actions that are prescribed for salmon recovery are
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often very precise and on small scales, which means that

models to predict the effects of those actions or prioritize

them must be on similar spatiotemporal scales (and

hence, very complex).

The EDT model

The Ecosystem Diagnosis and Treatment model was

developed by Mobrand Biometrics (now Mobrand,

Jones and Stokes) to predict salmon performance

(primarily abundance and productivity) as a function

of ecosystem conditions (primarily freshwater habitat)

in order to identify environmental features for protec-

tion or restoration. The EDT model also provides

estimates of population characteristics for cases in which

little or no empirical fish data exist (Lichatowich et al.

1995, Mobrand et al. 1997, Lestelle et al. 2004, Mobrand

Biometrics 2005). The model is proprietary and we did

not have access to the code used to implement the

mathematical algorithms. However, in cooperation with

Mobrand Biometrics, we obtained a compiled copy of

the program, which allowed us to manipulate the

internal parameters.

The EDT model has been used in over 100 watersheds

in the PNW to evaluate hundreds of individual salmonid

populations. The evaluations include an estimate of

population abundance, productivity, capacity, and

diversity under four different environmental scenarios.

The evaluations also include an assessment of which

freshwater habitat attributes in which reaches are most

important for either restoration or preservation. This

reach/attribute prioritization might be expressed, for

example, as ‘‘The greatest increase in chinook salmon

abundance would likely occur if stream substrate

embeddedness were reduced to historical levels between

river km 7 and river km 9.’’ Both the fish performance

and reach/attribute prioritization predictions have been

widely incorporated into PNW salmon and ecosystem

management plans (e.g., Lower Columbia Fish Recov-

ery Board 2004, Shared Strategy for Puget Sound 2007).

The predictions of fish performance have been used to

inform recovery goals and harvest management deci-

sions and the reach/attribute prioritizations have been

used to help guide the funding of recovery actions.

Recently, the EDT model results have been widely used

as inputs to the All H Analyzer (AHA) salmon life cycle

model (Hatchery Scientific Review Group 2009a). The

AHA model evaluates the impact of habitat, hatcheries,

harvest, and hydrosystem operations (the ‘‘H’s’’) on

salmon populations. Through this AHA model, EDT is

anticipated to have additional influence on the prioriti-

zation of management actions for threatened and

endangered salmon (Hatchery Scientific Review Group

2009b).

A recent paper by Blair et al. (2009) provides an

overview description of the EDT model and its

conceptual underpinnings. An electronic library of

EDT documentation is available from Mobrand, Jones

and Stokes (MJS) (available online).5 Here, we provide a

brief overview of the model, focusing on the mechanics

of the equations that are needed to understand the

sensitivity analysis. A summary of parameter groups in
the EDT model is provided in Table 1.

The EDT model is an ecosystem model taken from the

perspective of a single salmonid species. The species life

cycle is broken into a number of life stages, and survival

and capacity of each stage are characterized by a

Beverton-Holt function in which the number of recruits
(R) is a function of the number of spawners (S ), the

intrinsic productivity (a), and the maximum number of

recruits (b):

R ¼ aS

1þ a

b
S
: ð1Þ

These life-stage-specific Beverton-Holt functions are
coupled together to estimate the overall productivity

and capacity for the population (Moussalli and Hilborn

1986). The life stage productivity and capacity estimates

are generated in EDT as a function of the condition of

the ecosystem. The EDT model describes the condition
of the ecosystem by first partitioning the freshwater

habitat into stream reaches, which are then character-

ized by the status of 43 specific attributes, such as

maximum temperature or percentage of pools. To

estimate the survival of a particular life stage in a
particular reach, the survival of that life stage under

ideal conditions (the ‘‘benchmark’’ parameter) is decre-

mented based on a function describing the extent to

which existing habitat conditions reduce productivity

from the ideal (these are the productivity ‘‘rule’’
parameters). A somewhat similar process is used to

estimate river-reach specific life stage capacities in which

the capacity is reduced from ideal benchmark densities

based on habitat condition. Marine survival is modeled
assuming density-independent mortality.

For a given population, there is usually a large
amount of variability in spawning location, travel speed,

and life stage transition timing (Groot and Margolis

1991, Quinn 2004). The EDT model describes the

different potential life history paths through the
landscape (i.e., the amount of time a population stays

in a particular river reach at a particular life stage) as

‘‘trajectories.’’ To estimate the impact of habitat quality

on the total population in the watershed, the EDT

model estimates an average productivity and capacity
estimate across a large number (about 500) of randomly

selected trajectories. A number of model parameters

define temporal windows for life stage transitions and

ranges of travel time that are used in a stochastic process

to produce the sample of possible trajectories. The
population abundance and capacity for each trajectory

are calculated assuming that the trajectory describes a

single population. To obtain the overall population

5 hhttp://www.mobrand.com/MBI/library.htmli
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productivity and capacity, all of the individual trajectory

populations are combined using one of four methods (or

‘‘integration types’’).

The model is typically run under four environmental

scenarios: (1) current habitat condition with ocean

harvest, (2) current habitat condition without ocean

harvest, (3) historical habitat condition, based on

habitat reconstruction, and (4) a ‘‘degraded’’ habitat

condition. These scenarios differ in the reach-specific

habitat attribute parameter values and whether a

density-independent harvest mortality is included in

adult survival. The model identifies highest priority

reaches for restoration as those reaches that would result

in the greatest improvement in population abundance

and productivity if changed from current conditions to

historical conditions, while all other reaches remain at

current conditions. High-priority reaches for preserva-

tion are identified as those reaches that would cause the

greatest reduction in population abundance and pro-

ductivity if changed from current conditions to degraded

TABLE 1. Parameters in the Ecosystem Diagnosis and Treatment (EDT) model.

Parameter and subparameter groups
User
access

No. individual
parameters

Habitat attributes

Habitat attributes accessible thousands
Habitat types accessible hundreds to thousands
Gradient accessible tens to low hundreds
Off-channel factor accessible tens to low hundreds
Channel length accessible tens to low hundreds
Width minimum and maximum accessible tens to hundreds

Benchmarks

Productivity Mobrand ;10
Density Mobrand ;10
Life stage duration Mobrand low tens
Growth factor Mobrand low tens

Rules

Key habitat weights Mobrand high hundreds to thousands
g value Mobrand 1
Factor Mobrand thousands
Exponent Mobrand thousands

Month weights accessible hundreds to thousands

Food multiplier curve Mobrand low tens

Fraction of life history types accessible ,10

Reach data global

Length database tens
Gradient database tens
Month weights database tens to low hundreds
Width minimum and maximum database tens

Adult age

Ocean survival multiplier database ,10
Ocean age database ,10
Fecundity database ,10
Sex ratio database ,10

Juvenile age (steelhead only)

Marine survival multiplier database ,10
Proportion smolt database ,10

Life stage pattern and population description

Spawn window accessible tens
Life stage window accessible tens to low hundreds
Life stage duration accessible tens to low hundreds
Smolt migration Mobrand ,10
Transitional season Mobrand 1

Integration method

Productivity database 2
Capacity database 2

Trajectory seed Mobrand 1

Notes: The groups and subgroup categories were the units for sensitivity analysis. Parameters with ‘‘accessible’’ user access could
be readily modified by users via a graphical interface, those with ‘‘database’’ access could be modified by the model developer within
the program database at user request, and those with ‘‘Mobrand’’ access were set by the model developer. The number of individual
parameters in each of the subparameter groups for a single population application is presented as a range because parameter
number varies by watershed and species.
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conditions, while holding all other reaches at current

conditions. In a similar comparison of current, historic,

and degraded scenarios, the model is also used to

prioritize specific habitat attributes (e.g., maximum

temperature) in specific reaches for restoration or

preservation, but we have not conducted sensitivity

analyses on these attribute prioritizations.

The EDT model has three classes of input parameters

based on the whether they can be modified by model

users (Table 1). The ‘‘user modifiable via interface’’

parameters can be readily entered and edited by EDT

users through a graphical interface. These parameters

include the reach-specific habitat attributes. The ‘‘user

modifiable in database’’ parameters may be adjusted at

user request but must be manually changed by Mobrand

Biometrics in the program database. Examples of this

type of parameter are the density-independent adult

ocean survivals. The ‘‘Mobrand-defined’’ parameters are

based on estimates from Mobrand Biometrics and are

not modifiable by the model users. These parameters

include the benchmarks and productivity rules. This

distinction becomes important when considering model

sensitivity and whether model precision is best improved

by reducing uncertainty in user-modifiable or user-

inaccessible parameters.

METHODS

The goals of the uncertainty and sensitivity analyses

were to understand the extent to which the model output

might vary given the uncertainties in the inputs and

parameters and, further, which of the input or param-

eter uncertainties causes the most uncertainty in model

predictions. We used prediction intervals to describe the

uncertainty in model output under a range of realistic

input uncertainty scenarios and sensitivity indices to

describe which parameters were responsible for the

greatest prediction uncertainty. For our analysis, we

looked only at the uncertainty that arose when we did

not have exact information on the model inputs or

parameters, i.e., precision. We were not testing whether

or not the model is accurate (i.e., whether the model

makes predictions that are true). This is a critical issue;

prediction intervals and sensitivity indices describe the

behavior of the model, not whether the model correctly

describes the behavior of the real world.

To generate the large number of input data sets and

conduct the Monte Carlo models runs described here,

we developed a Java computer program that interacted

with the compiled EDT program from Mobrand

Biometrics.

Input distributions

Our analyses required estimating plausible input

parameter error distributions. This was a challenging

step in the evaluation process. Example input distribu-

tions used for our analyses and a description of all the

input parameter distributions used for the analyses are

found in the Appendix. The EDT input parameters

came from a number of sources. Ideally, the inputs

would all have been based on measurement techniques

with quantitative estimates of precision (e.g., sample

counts with precision 6X%). More commonly, inputs

were derived from a synthesis of literature values,

extrapolation from data collected in neighboring re-

gions, techniques with unknown precision, or simply

expert opinion. For estimating input distributions for

the reach-specific habitat attribute parameters, we

utilized the results of a survey of eight biologists with

EDT experience (Busack and Thompson 2006). The

respondents were asked to provide a maximum and

minimum habitat score for a particular attribute, given

its point estimate value and the attribute’s ‘‘level of

proof.’’ In the EDT model, a level of proof value can be

assigned to each habitat input parameter where level of

proof describes the general method used to estimate the

parameter (e.g., empirical data or expert opinion). The

‘‘level of proof ’’ is a qualitative description of the input

precision. The survey was used to convert this qualita-

tive description into a quantitative estimate precision for

habitat attribute parameters. The survey included 1520

questions, and the results were used to generate

triangular distributions around the point estimate values

for reach-specific habitat attribute parameters in our

analysis.

No ‘‘level of proof ’’ ratings were available for the

non-habitat parameters. To estimate input distributions

for these attributes, we relied on the expertise of a group

of biologists with experience in developing and using

EDT and in salmon ecology (see author list of Steel et al.

[2009]). Since there was little, if any, quantitative

analysis of precision for many of the parameters (e.g.,

the productivity rules), we often used a simple uniform

distribution with (6) some percentage error, where the

percentage error value used was deemed a plausible level

of error by the group. To explore the manner in which

the analysis results would differ with different input

distribution assumptions, we considered our best esti-

mate as a medium error distribution and also explored

smaller and larger errors. A small error was half the

range of the medium error and a large error was twice

the range of the medium error.

For the Monte Carlo runs in our analysis, parameters

were independently drawn from the distributions of the

individual parameters. However, there was some filter-

ing that removed parameter combinations for which

EDT would not generate productivity or capacity

estimates. These included parameter combinations with

impossible life history trajectories or capacity–survival

characteristics. Examples of excluded trajectories were

scenarios in which random draws from migration timing

windows placed a life stage in a location deemed by the

model structure to be impossible.

Prediction intervals

We generated prediction intervals by drawing random

values from the plausible input distributions to create a
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large number (hundreds) of alternative plausible data

sets that included input data and internal model

parameters (hereafter referred to as inputs). We ran

each of these data sets through the EDT model and

derived the prediction interval from the resulting

distribution of model outputs (hereafter referred to as

outputs). For example, a 90% prediction interval on

population abundance would be the abundance range

containing 90% of the output model predictions. For

generating output prediction intervals, we included

probability distributions for all of the available EDT

input parameters (see Table 1 and Appendix).

Structured sensitivity analysis

The purpose of the sensitivity analysis was to

determine how much uncertainty in each of the input

parameters contributed to the overall uncertainty in

outputs. Given the large number of parameters in the

EDT model it would not have been practical or

particularly informative to evaluate the sensitivity of

every single parameter. Therefore, we took a structured

approach to the sensitivity analysis (Fig. 1). A number

of parameters were initially grouped together and

analyses were conducted to determine the sensitivities

of each of these groups. Once the sensitivities to these

initial groups were determined, we then conducted

another analysis in which the most sensitive groups

were broken up into smaller subgroups to determine the

most sensitive components. The initial groups that

showed less sensitivity were either pooled into a new

single group or fixed at point estimate values. This

process of grouping and regrouping was repeated several

times to identify individual parameters or groups

containing only a small number of parameters that

had the most influence on model precision.

For the initial analysis, the input parameters were

divided into 13 groups (Table 1). These 13 groupings

were based on both logical groups and on the internal

structure of the EDT program. Consequently, some of

the groups, such as habitat attributes and productivity

rules, contained many individual parameters, while

other groups, such as food multiplier or trajectory seed,

contained only one or a very few parameters. Defining

all EDT parameters is beyond the scope of this paper,

and the reader is referred to the EDT documentation

(see Blair et al. 2009) for more details.

One-at-a-time (OAT) analysis

In an OAT analysis, the focal parameter, or group of

parameters, is varied while all other parameters and

groups are held at their point estimate values (Saltelli et

al. 2000a). The OAT analyses are local sensitivity

analyses because they explore sensitivities locally around

the point estimate inputs. Since our analyses were

conducted on groups of parameters rather than individ-

ual parameters, many of the quantitative local OAT

indices methods, such as simple regression, were not

available. Therefore, we present OAT results simply in

the form of prediction intervals and graphs of distribu-

tions generated by varying only the focal input

parameter group.

Global variance partitioning sensitivity analysis

To identify the input parameters with greatest effect

on output precision, we applied a global sensitivity

analysis method based on the work of Sobol (Sobol

1993, Saltelli et al. 2000a, Fieberg and Jenkins 2005,

Tang et al. 2006). With a global sensitivity analysis, the

variability in the model output is partitioned among

groups of input parameters in an approach analogous to

an analysis of variance (ANOVA) in experimental

design (Table 2). A global sensitivity analysis recognizes

that all of the parameters in a model are estimated with

error. The sensitivity index for a focal parameter is

calculated by integrating the variation in model output

caused by variation in model input across the distribu-

tion of all possible parameter values for the other

parameters. The analysis is ‘‘global’’ in that the

sensitivity indices consider the entire joint parameter

space. As with ANOVA, the total variability in the

model prediction can be broken down into main effects

and interaction effects among the parameters. The Sobol

method allows identification of ‘‘main effects’’ and

‘‘total effects,’’ in which total effects include the main

effect for a given parameter and all the interaction terms

of which that parameter is a part. If the model is

additive, the main effect and total effect indices will be

equal. Otherwise, the difference in the indices is a

measure of the interaction between the focal parameter

and all other parameters. The main effect sensitivity

index of a parameter can be interpreted as the expected

proportion that the model output variance could be

reduced if that parameter alone were known without

error. The total effect sensitivity index for a particular

parameter can be interpreted as the total proportion of

variance that would remain if all the parameters except

the focal parameter were known without error. In other

words, the main effect describes how much one could

improve the prediction precision if one were to know

only the focal parameter, and the complement of the

total effects describes the best improvement in precision

that would be possible if one doesn’t know the focal

parameter. Knowing both of these is important for

deciding how to prioritize monitoring for improved

model precision since they may differ from one another

if there are significant interactions among parameters.

Applying the method of Sobol requires a relatively

large number of model runs, on the order of N(2Kþ 2),

where N is the number of model runs needed to estimate

the output variance (several hundred) and K is the

number of model parameters or parameter groups

(Saltelli 2002). As noted above, a given application of

EDT has thousands of parameters. A single run of the

model takes between two and 100 minutes, depending
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upon the watershed. The structured sequential approach

using parameter groups allows us to reduce the

computational requirements to a (barely) plausible level.

Populations evaluated

For this analysis, we explored uncertainty and

sensitivity of the EDT model as applied to three salmon

populations; East Fork Lewis River fall chinook,

Germany Creek coho, and West Fork Washougal River

mainstem steelhead. These populations are located in

the Lower Columbia River region of Washington State.

The baseline, or point estimate, parameterization of the

EDT model for these populations was conducted by the

Washington Department of Fish and Wildlife (Lower

Columbia Fish Recovery Board 2004). These popula-

tions were selected to provide a diversity of species and

watersheds in the analysis. The populations were also

selected because they have a relatively small number of

EDT reaches and therefore required less computer time.

RESULTS

Prediction intervals

When all input parameters were varied based on

plausible distributions, the EDT fish performance

outputs were highly variable and generated wide

prediction intervals (Table 3). The most likely output

values differed substantially from the EDT point

estimate (Fig. 2). There was some variation in reach

prioritization caused by input uncertainty, but in

general, there was less variability in the reach prioriti-

zation results than for the performance measures. For

the East Fork Lewis chinook, high priority preservation

reaches tended to be within one or two rank values of

one another and corresponded well to the point estimate

FIG. 1. Conceptual diagram of the structured variance partitioning approach, which is used for sensitivity analysis of models
with a large number of parameters. Model parameters are first organized hierarchally. Variance partitioning sensitivity analysis is
then applied, starting at the highest level in the hierarchy. The parameter group that has the greatest influence on output variance at
a given level (pie charts) is examined in the next stage of the hierarchy. This is repeated at all stages to drill down to the individual
parameters having the most influence on model output variability. The most influential parameter group and parameter in this
example is indicated with hatching. Other parameter groups and parameters used in sensitivity analysis are shown with solid gray
shading. Each of the individual parameters has an estimate input distribution, as shown in the thumbnail graphs.

TABLE 2. Example of global variance partitioning sensitivity analysis, where V is variance and A, B, and C are model input
parameters.

Global sensitivity analysis term Equation

Total model output variance Vtotal ¼ VA þ VB þ VC þ VAB þ VAC þ VBC þ VABC

Main effects sensitivity index for parameter A SA ¼
VA

Vtotal

Total effects sensitivity index for parameter A SA�total ¼
VA þ VAB þ VAC þ VABC

Vtotal

Notes: Variance in the model output is decomposed using the Sobol method into the variance contribution from each of the
input parameters and their interactions. The main effects sensitivity index is the fraction of the variability attributable to the focal
parameter alone, and the total effects sensitivity index is the fraction of variability attributable to the focal parameter and all of the
interactions involving the focal parameter.
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rankings for the highest priority reaches (Fig. 3). The

East Fork Lewis chinook restoration prioritizations

were less consentient, but the top three priority reaches

could be identified. The Germany coho and Washougal

steelhead ranking outputs showed a bit more variability

in prioritizations than the East Fork Lewis chinook, and

there was some switching of ranks among the top four

reaches (see Appendix).

Note that the term ‘‘prediction interval,’’ as used here,

was a measure of model precision, not model accuracy.

We simply do not know from this analysis whether the

true value (e.g., abundance) was likely to be contained

by the prediction interval because we have not evaluated

model accuracy by comparing predictions to empirical

data.

Prediction intervals and distribution graphs can be

developed when the outputs are a series of single values

(e.g., population performance values such as adult

abundance or juvenile productivity). However, for the

stream reach prioritization (restoration and preservation

scenarios) an output was a list of ranks, not a single

value. To display the output distribution from the reach

rankings, we developed bubble graphs (Fig. 3) in which

the size of the bubble indicates the number of output

values for a reach at that rank.

The OAT results

There was considerable variation in the output

distributions among parameter groups (Fig. 4). Param-

eter groups that tended to show relatively narrow output

TABLE 3. Prediction intervals for Ecosystem Diagnosis and Treatment (EDT) output with different populations, input errors, and
parameter groups varied.

Population
Input
error Parameters

Productivity (recruits/
spawner at low abundance) Capacity (no. fish)

Equilibrium abundance
(no. fish)

Mean Median
80%

interval Mean Median
80%

interval Mean Median
80%

interval

Germany coho small all 5.47 5.24 2.55–8.89 955 877 386–1560 771 707 238–1338
Germany coho medium all 3.64 3.19 1.45–6.42 326 288 110–585 225 185 35–877
Germany coho large all 2.09 1.17 0.00–5.63 125 37 1–379 77 2 0–253
East Fork Lewis
chinook

small all 2.43 2.04 1.30–4.22 819 708 265–1554 498 341 70–1164

East Fork Lewis
chinook

medium all 4.14 3.21 1.17–8.47 1281 983 245–2666 941 635 35–2274

East Fork Lewis
chinook

large all 2.06 0.25 0.00–6.79 185 28 1–319 114 0 0–159

East Fork Lewis
chinook

medium adult age 4.79 4.30 1.98–7.95 3237 3073 1204–5407 2564 2376 591–4737

East Fork Lewis
chinook

medium benchmark 3.11 3.08 2.29–3.96 2214 2221 1577–2818 1501 1499 896–2093

East Fork Lewis
chinook

medium food
multiplier

3.32 ��� 3.32–3.32 2338 ��� 2106–2548 1633 ��� 1471–1780

East Fork Lewis
chinook

medium habitat 3.31 3.30 2.97–3.67 2267 2264 2127–2418 1578 1580 1436–1736

East Fork Lewis
chinook

medium integration
type

3.11 2.91 2.91–3.32 2205 2333 2054–2333 1492 1531 1348–1630

East Fork Lewis
chinook

medium life history 3.32 ��� 3.26–3.35 2338 2333 2296–2377 1633 1630 1609–1661

East Fork Lewis
chinook

medium month
pattern

3.32 ��� 3.26–3.38 2294 2307 2196–2369 1603 1618 1533–1646

East Fork Lewis
chinook

medium pattern life
stage

3.31 3.27 2.72–3.89 2013 1950 1542–2620 1406 1353 988–1921

East Fork Lewis
chinook

medium population
description

3.32 ��� 3.08–3.56 2301 2319 2214–2353 1606 1628 1495–1692

East Fork Lewis
chinook

medium reach data
global

3.30 ��� 3.27–3.32 1373 1455 694–1791 957 1014 483–1250

East Fork Lewis
chinook

medium rules 3.40 3.36 1.97–4.87 1820 1774 1375–2291 1248 1228 737–1788

East Fork Lewis
chinook

medium trajectory
seed

3.49 3.48 3.18–3.81 1920 1918 1692–2140 1370 1367 1181–1570

Washougal
steelhead

small all 2.92 2.58 0.92–4.92 139 125 78–234 83 72 1–149

Washougal
steelhead

medium all 2.58 1.93 0.23–5.60 81 61 21–153 46 25 0–115

Washougal
steelhead

large all 1.10 0.01 0.00–3.60 24 2 0–54 16 0 0–23

Notes: The productivity, capacity, and equilibrium are as defined for the Beverton-Holt function. In analyses highlighted in
boldface, the range of the 80% prediction interval is larger than the mean value. The three salmon populations were Germany Creek
coho, East Fork Lewis River fall chinook, and West Fork Washougal River mainstem winter steelhead.
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distributions included the trajectory seed, habitat

attributes, food multiplier, monthly pattern, life history

percentage, and global reach data. Parameter groups

that tended to show higher levels of variation included

the adult parameters, productivity rules, life stage

pattern, benchmarks, and integration type. The popula-

tions differed in which parameter group produced the

greatest ranges in output.

Global sensitivity analysis

The results of the global sensitivity analysis are

displayed in a pie chart in which the relative contribu-

tion of each parameter is indicated by the size of the

wedge (see Saltelli et al. 2000b). The global sensitivity

indices for the parameter groups in the three popula-

tions are shown in Fig. 5. For the East Fork Lewis River

fall chinook population, the primary (.10%) main effect

FIG. 2. Monte Carlo results for Ecosystem Diagnosis and Treatment (EDT) capacity and productivity output (at low
abundance, current without harvest) for three salmon populations with small, medium, and large input errors for all model
parameters: (A, B, and C) East Fork Lewis River fall chinook salmon; (D, E, and F) Germany Creek coho salmon; (G, H, and I)
West Fork Washougal River mainstem winter steelhead salmon. Capacity and productivity are based on the Beverton-Holt
function definitions as used in EDT. The 3’s are the individual outputs from the model runs and show the range of outputs and
specific outliers, but point overlap in the area of most frequent occurrence prevents clear visualization of the output distribution.
The gray-scale contour shows the frequency of capacity and productivity output from the simulations, with darker areas showing
the most common capacity and productivity combinations. The diamonds are the EDT point estimates generated using the point
estimate inputs. Some of the data points of the EDT models run are omitted from view in the figures because the results were
outside the range of the axes presented. The Monte Carlo sample sizes for panels A–I are: (A) 247; (B) 894, 14 data points omitted
from view; (C) 218, three data points omitted from view; (D) 198; (E) 967; (F) 84; (G) 80; (H) 476, nine data points omitted from
view; (I) 209, three data points omitted from view.
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parameter groups contributing to output variance in

productivity were the adult parameters, benchmarks,

and rules and for capacity output variance, the primary

contributors were adult parameters, benchmarks, and

the global reach data. For the Germany Creek coho

population, the primary parameter groups contributing

to output variance in productivity were adult pattern life

stage and rules and for capacity output variance, the

primary contributors were pattern life stage and global

reach data. For the West Fork Washougal River

mainstem steelhead population, the primary parameter

groups contributing to output variance in productivity

FIG. 3. Bubble graphs of Ecosystem Diagnosis and Treatment (EDT) (A) reach restoration and (B) preservation prioritizations
for East Fork Lewis River fall chinook salmon using medium input error. This output is for the ‘‘combined’’ EDT rank metric,
which is the mean of the diversity index, productivity, and abundance ranks. For a given reach, the bubbles show the relative
number of simulations in each rank category. Rank ‘‘1’’ is the highest priority for restoration or preservation. If a reach has a single
large bubble at a particular rank, then all of the simulations gave that reach the same rank. If a reach has a number of smaller
bubbles spread out over many ranks, then the reach was ranked in many different categories in different simulations. The numbers
in the circles indicate the EDT prioritizations based on point estimate inputs. The analysis was based on 476 Monte Carlo
simulations.

PAUL MCELHANY ET AL.474 Ecological Applications
Vol. 20, No. 2



were the juvenile parameters, life history parameter, and

rules. For capacity output variance, the primary

contributors were integration type, juvenile parameters,

and life history parameters. In the three populations, the

parameter groups food multiplier, habitat, monthly

pattern data, population description, and trajectory

seed were never major contributors to the output

variance for either productivity or capacity.

Fig. 6 shows variance partitioning results for sub-

parameters of the groups that were the primary

contributors to variance for the East Fork Lewis

chinook population: adult parameters, benchmarks,

and rules. Within the adult parameter group, the ocean

survival parameters had the greatest influence on EDT

productivity estimate variability. For the benchmark

group, the benchmark productivity parameters had the

greatest influence. In the rule parameter group, the most

influential parameter was the ‘‘g value.’’ The g value is a

single number, 0.37, that controls the amount of

‘‘synergy’’ as different habitat attributes are combined

to affect survival. Fig. 6 indicates some interaction

among the parameter groups, as shown by the difference

between the main effects and total effects results.

Interactions appeared particularly strong among the

rule parameters.

DISCUSSION

Our EDT sensitivity analysis provides nonintuitive

information for managers about appropriate and

inappropriate uses of the model, biases in mean model

predictions, and where increased data collection could

most improve the model design and precision. It is

possible (using a structured analysis) and necessary for

FIG. 4. Monte Carlo one-at-a-time (OAT) results for Ecosystem Diagnosis and Treatment (EDT) capacity and productivity
output (at low abundance, current without harvest) for the East Fork Lewis River fall chinook salmon with medium input errors.
Only one parameter group at a time was varied in each panel, with all other parameters held at their point estimates. The parameter
groups are (with sample sizes in parentheses): (A) adult parameters (250); (B) benchmarks (250); (C) food multiplier (250); (D)
habitat attributes (250); (E) integration type (250); (F) life history (250); (G) monthly pattern (250); (H) life stage pattern (214); (I)
spawning window (250, one data point omitted from view); (J) global reach data (250); (K) productivity rules (250); and (L)
trajectory seed (151). The3’s are the individual outputs from the model runs and show the range of outputs and specific outliners,
but point overlap in the area of most frequent occurrence prevents clear visualization of the output distribution. The gray-scale
contour shows the frequency of capacity and productivity output from the simulations, with darker areas showing the most
common capacity and productivity combinations. The diamonds are the EDT point estimates generated using the point estimate
inputs.
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this type of information to be regularly generated as part

of ecosystem model development.

Understanding the EDT prediction intervals

The prediction intervals for the fish performance

measures (productivity, capacity, and abundance) show

a relatively large range in model output. This may not be

surprising given the levels of uncertainty in many of the

input parameters. The output distributions also show a

marked shift in the mean relative to the EDT output

based on point estimates, which may not be as intuitive.

The likely reasons for this are twofold. The first reason is

nonlinearity between inputs and EDT predictions.

Jensen’s inequality states that a nonlinear function

(convex or concave) evaluated at the expected value of

the input distributions will not necessarily equal the

expected value of the function evaluated over the input

distribution (Jensen 1906). In other words, the shift

could arise from the nonlinearity of EDT. Although a

shift in the mean due to nonlinearity is not surprising,

the magnitude of the effect observed here was not

anticipated.

The second process contributing to the shift in mean

could be asymmetries in the input distributions. The

asymmetries in input distribution arise because many of

the input parameters are bounded. For example, the

percentage of a reach that is pools must be between 0

and 100%, and if a reach is estimated at 100% pools, any

error could only include the possibility that the plausible

percentage of pools value is lower, not higher. This

would produce an asymmetry in the input error

distribution that could shift the output distribution in

a particular direction. The population could be at a

lower bound for some parameters and the upper bound

for others. These effects could tend to cancel one

another out and not necessarily lead to a directional

shift in the output, but there may be an overall pattern

that affects the output mean.

The shift in mean is greatest for the model runs in

which all of the input parameters are varied compared to

FIG. 5. Variance partitioning global sensitivity analysis of Ecosystem Diagnosis and Treatment (EDT) productivity output
(current conditions without harvest) for three salmon populations: East Fork Lewis River fall chinook, Germany Creek coho, and
West Fork Washougal River mainstem steelhead. Model input parameters were drawn from the ‘‘medium’’ error distributions. The
size of the pie slice indicates the fraction of the output variance attributable to uncertainty in the input parameter group. This figure
shows the main effects of each parameter group (i.e., no interaction effects). In the pie charts, the sensitivity indices are normalized
to give relative percentage of contribution of each of the input parameter groups. This analysis used 13 parameter groups labeled A,
adult age; B, benchmarks; C, food multiplier; D, habitat; E, integration type; F, juvenile age; G, life history; H, monthly pattern
data; I, pattern life stage; J, population description; K, reach data global; L, productivity rules; and M, trajectory seed.
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model runs in which only one parameter group at a time

is varied as in the OAT analysis. Potentially, there is an

interaction among the parameter groups that is increas-

ing the shift in mean. This interaction is not measured by

the global variance partitioning. The variance partition-

ing is directed at parsing the variance observed in the

outputs generated when all the parameters are varied,

not in understanding the shift caused by Jensen’s

inequality.

So, which value, the point estimate or the Monte

Carlo output mean, is the ‘‘best’’ to present as the EDT

prediction for most likely fish performance? If the input

distributions truly reflect the possible values of the input

parameters, the Monte Carlo output is likely a better

FIG. 6. Variance partitioning global sensitivity analysis of Ecosystem Diagnosis and Treatment (EDT) productivity output
(current conditions without harvest) for East Fork Lewis River chinook salmon. This figure shows result for subparameters within
three of the larger parameter groups (adult parameters, benchmarks, and rules). Model input parameters were drawn from the
‘‘medium’’ error distributions. The size of the pie slice indicates the fraction of the output variance attributable to uncertainty in the
input parameter group. In each pie chart, the largest wedge belongs to the parameters not in the group being analyzed, so we only
discuss the remaining subparameters in the paper. This figure shows both main effects and total effects (i.e., main parameter effects
plus interactions). The bar graphs show the actual sensitivity index estimate and 90% bootstrap intervals on the index. In the pie
charts, the sensitivity indices are normalized to give relative percentage of contribution of each of the input parameter groups. For
adult parameters: A, eggs; B, non-adult parameters; C, ocean age; and D, ocean survival. For benchmark parameters: A, density; B,
non-benchmark parameters; C, life stage duration; D, productivity benchmark; and E, space. For rule parameters: A, constant; B,
non-rule parameters; C, exponent; D, factor 1; E, factor 2; and F, g value (a single number, 0.37, that controls the amount of
‘‘synergy’’ as different habitat attributes are combined to affect survival).
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reflection of the expected results of the model. However,

we are not confident that we fully understand the input

distributions, so it remains an open question as to how

best to characterize the expected value of the model

prediction.

In matters that require a relatively high degree of

confidence, such as harvest management or endangered

species goal setting, we urge caution in the use of EDT

abundance and productivity predictions. Also, if EDT is

to be used as input to other models, such as AHA, it is

important to explicitly incorporate the uncertainty in

EDT productivity and capacity into the secondary

analysis. The productivity and abundance output may

be more useful as a relative measure than as an absolute

measure. We suspect that the EDT productivity and

capacity predictions may be useful as a metric for

comparing relative potential among populations across

basins, but we did not evaluate this possibility.

In contrast to the absolute fish performance metrics,

the reach prioritizations for preservation and restoration

seem relatively robust to the input uncertainty. Reach

priorities tended not to shift by more than a couple of

ranks and the most important reaches could be

consistently identified. The restoration priorities are

determined by comparing the abundance and produc-

tivity of a population under current habitat conditions

to the abundance and productivity of a population

under historical habitat conditions. Thus, the only

parameters that vary in making the prioritization are

the habitat parameters. The habitat parameters are

estimated with relatively higher precision than many of

the other parameters. Differences in reach habitat values

for current vs. historical conditions persist despite the

input uncertainty.

Information on uncertainty in reach prioritizations

can be used to improve management decisions. A major

task in managing endangered species is deciding how to

allocate money for restoration and preservation. Funds

are generally scarce and allocation often seems to be

driven more by opportunity than by rigorous analysis.

For example, funds may tend to be allocated preferen-

tially to locations with willing land owners regardless of

biological importance (Roni 2004). However, there is

some discretion for managers, and EDT has been a

primary tool for prioritization of salmon restoration

activities in many PNW watersheds. Our analysis

indicates that the EDT model provides relatively

consistent prioritizations, even in the face of sizable

input uncertainties. However, these prioritizations are

not absolute. For example, based on the EDT model,

the top three reaches to restore for recovery of fall

chinook in the East Fork Lewis River would be reaches

5, 7, and 8, though there is a possibility that the top

three would include reach 1 (Fig. 3). None of these top

three reaches is clearly the highest priority, so within this

set of reaches managers may want to give higher weight

in prioritization to other factors, such as cost or political

acceptability. This is in contrast to the results for

preservation of Lewis River fall chinook, where reach 8

is considered the highest priority under any plausible

parameterization of the model (Fig. 3). This suggests

that, based on EDT analysis, managers would have less

room for discretion: to protect fall chinook, a method

for safeguarding reach 8 must be found. Using the

information from the uncertainty analysis, a formal

decision framework could be developed that explicitly

considers the probability of biological response as

predicted by the model and the expected cost of

proposed actions. Steel et al. (2008) provide an example

of this type of decision analysis that also incorporates

consideration of multiple models. Although evaluating

precision of a single model is a vast improvement over

the use of point estimates, the possibility that the model

construct itself may be inaccurate must also be taken

into account. The question of model accuracy can be

addressed by comparing multiple models (as was done in

Steel et al. [2008]) and, more directly, by model

calibration.

Implications of the prediction intervals

for model calibration

During development, the EDT model was not

statistically calibrated in a formal fitting procedure.

Instead, point estimate parameters were considered

adequate by Mobrand if EDT abundance and produc-

tivity predictions were ‘‘reasonably close’’ to empirical

estimates of abundance and productivity derived from

fish count data. Given the size and dimensionality of the

potential parameter space, it would be possible to find

many plausible parameters sets that would produce

predictions considered ‘‘reasonably close’’ to the fish

count predictions. It is a problem of fitting many

(thousands of ) parameters to only a few data points (fish

count estimates); there is no unique solution. With this

large plausible parameter space, it is quite possible to get

a qualitatively determined reasonable fit with the wrong

combination of input parameters.

The analyses we conducted bear on the potential for

misparameterizing the model. Preliminary comparisons

of the EDT output distributions to fish count data

indicate that the EDT predictions based on plausible

input likely encompass both reasonable and unreason-

able fits to the fish count data. Because the plausible

input space generates such a wide range of possible

outputs, the model could be credibly parameterized in a

way that was consistently biased high, biased low, or

gave inconsistent results relative to the empirical fish

count data, all the while being within the loosely defined

bounds of ‘‘reasonable.’’ This is especially true because

the fish count estimates themselves are often very

imprecise (McElhany et al. 2007).

The range constituting reasonably close to empirical

fish count data seems sufficiently broad that EDT could

predict values with significantly different management

implications and still be considered adequately param-

eterized using these standards. Depending upon how
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model results are used, relatively small differences in

predictions could have important management implica-

tions. For example, the Beverton-Holt equilibrium

maximum sustainable harvest rate for a population with

productivity of 2 is 29% and the harvest rate for a

population with productivity 3 is 42%. When consider-

ing parameter uncertainty, the different estimates (i.e.,

productivity of 2 or 3) are well within the range of

possible EDT outputs but would imply quite different

harvest policies. To our knowledge, no one is directly

using EDT to set harvest policy in this way, but some

applications of EDT do seem to rely on this level of

precision for making policy recommendations regarding

populations for which no empirical fish count data are

available (e.g., AHA applications; Hatchery Scientific

Review Group 2009b).

Parameter sensitivity

In addition to the evaluation of prediction intervals, it

is useful to know which of the input parameters are

responsible for the majority of the output variability. If

we know, for example, that the majority of the

uncertainty in the output is caused by uncertainty in

the effect of toxic chemicals on survival, we can focus

efforts to improve our estimation of that parameter in

order to reduce the range of the prediction interval. In

some cases, it may not be practical to reduce the

uncertainty in a sensitive parameter, indicating that

model prediction uncertainty cannot be reduced. The

identification of parameters that are insensitive is also

useful. If reducing the uncertainty in an input parameter

does not have much effect on the distribution of the

output, there is little to be gained (from the perspective

of reducing EDT model prediction uncertainty) by

improving the precision of the parameter estimate.

Identification of an insensitive parameter may also raise

questions about the general behavior of the model if

there is an expectation that fish performance should

respond to changes in the parameter. For example, if the

distribution of model output is little affected by the

juvenile age structure, but it is reasonable to expect that

the length of time fish spend in fresh water is important,

further investigation of the model behavior is needed

before applying model results to management decisions

expected to affect freshwater residency time. Insensitiv-

ity may also occur when some other quantity or quality

limits model output. In this case, the sensitivity analysis

also informs our understanding of how the model

works.

The input parameters having the greatest effect on the

precision of abundance and productivity predictions

were typically those that served as general scalars to the

output (e.g., adult survival parameters, benchmarks, and

the productivity rules’ ‘‘g’’ parameter). These parameters

describe ideal theoretical generic conditions (e.g.,

benchmarks), poorly estimated and highly variable

values (e.g., adult survival), or somewhat arbitrary

constants (e.g., ‘‘g’’) and, as a consequence, there is a

relatively high level of uncertainty in these input

parameters. Discouragingly, it is not immediately clear

how to improve the precision of these input parameters.

Habitat conditions had little effect on model output

precision. This is largely a consequence of the relatively

high precision with which habitat attributes are believed

to be estimated relative to the other parameters in the

model. Our result does not suggest that habitat is

unimportant to salmon, nor does it suggest that model

output is unaffected by the habitat parameters; fish need

habitat, and if you make changes in habitat input, the

model output generally changes. The results do suggest

that improvements in the precision of the habitat

attribute estimation are unlikely to do very much for

improving the precision of the EDT abundance and

productivity predictions unless precision in some of the

other input parameters is substantially improved. It

should be noted that improvement in EDT precision is

obviously not the only motivation for increased

collection of habitat data and we do not want to suggest

that current habitat monitoring efforts are sufficient.

The lack of sensitivity to habitat parameters is an

interesting result because previous criticisms of EDT

have focused on the model’s reliance on expert opinion

for habitat parameter estimates as a major weakness

(e.g., Ruckelshaus et al. 2002), but our analysis indicates

that habitat estimates are not the primary source of

model imprecision for commonly used output.

Limitations of the analysis

As described in Methods, a key challenge in the

analysis was estimating the input parameter distribu-

tions. Errors in estimating input distributions could

affect the sensitivity analysis results. One particularly

difficult issue to address was interactions among

parameters. For our analysis, all input parameters were

sampled independently, which is probably appropriate

for most parameters. For example, the error in

estimating stream temperature is likely to be indepen-

dent of the error in estimating stream heavy metals

contamination. However, the error distributions of some

parameters may depend on which value is sampled from

a different parameter. In other words, our independent

sampling assumption may not define the appropriate

input parameter space. Saltelli and Tarantola (2002)

evaluated strategies for assessing nonadditive models

with correlated inputs and show that modeling the

correlation structure can impact the results of a

sensitivity analysis. We suspect that this issue is minor

in our analysis given the relatively modest errors

assigned to many of the input parameters, but we did

not evaluate this. We also note that the issue is

somewhat managed because we deleted combinations

of input parameters for which the model failed to

compute productivity and abundance estimates. These

failed runs served to trim the multidimensional param-

eter space.
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The computational time required for the model runs

severely limited the analysis. Even deploying 16 CPUs

full time on the project, it has taken thousands of hours

of computer time for these analyses. This constraint has

prevented drilling down with more detail into specific

parameters using the Sobol method. Including a

correlation structure in the sampling distribution would

have substantially increased computational times, even

when incorporating shortcuts such as those suggested by

Saltelli and Tarantola (2002). The Sobol method is very

powerful, but it is computationally intensive.

Understanding the behavior of the model is a crucial

step in understanding whether the model has the

potential to provide useful insights into the workings

of the real world. Knowing how the model behaves is

crucial, but an equally crucial step is determining

whether the model provides an accurate (i.e., true)

description of the processes being modeled. Model

validation is the process of evaluating whether model

predictions match empirical data. Because of their

complexity and the spatial scales involved, it is often

even more difficult to validate an ecosystem model than

it is to evaluate its sensitivity. The EDT model is no

exception to this pattern.

EDT analysis summary

With slightly different yet plausible inputs, the EDT

model could produce quite different results for two

commonly used model outputs: capacity and productiv-

ity. However, the model was reasonably robust with

respect to ranking stream reaches for preservation and

restoration. With different plausible inputs, the model

produced similar reach rankings, indicating the model

may be more appropriate for relative prediction as

compared to absolute predictions. Our confidence in

these results is increased because we examined three

populations of different species in different watersheds.

It is important to note again that we are testing precision,

not accuracy. The model predicts the same priority

reaches given plausible input, but we have not evaluated

whether those are the ‘‘right’’ reaches from a biological

perspective. The model capacity and productivity output

seems most sensitive to uncertainties in input from the

‘‘user-modifiable-in-database’’ (e.g., adult parameters)

and ‘‘Mobrand-defined’’ parameters (e.g., rules), rather

than the user-modified-via-interface parameters (e.g.,

habitat attributes). Knowing many of the user-modified

parameters perfectly, such as the habitat attributes,

would likely not greatly improve the precision of the

capacity and productivity predictions. The analysis also

indicated that many parameter groups (e.g., food

multiplier) have little influence on model output and

may potentially be removed from the model to reduce

complexity without reducing predictive capability.

Lessons for evaluating complex environmental models

Many environmental questions can only be addressed

using complex models involving hundreds or thousands

of parameters. Environmental models may need to

include so many parameters because there are many

interacting components or because the models need to

integrate information over large spatial scales. As an

example of a model with a large number of parameters

both because of spatial scale and complex interactions,

the Geophysical Fluid Dynamics Laboratory Coupled

Model, version 2 (GFDL CM2) breaks the world in to a

grid with 12 960 cells and contains many parameters

associated with each cell (Delworth et al. 2006). Despite

the inherent difficulties in structuring and parameteriz-

ing such models, the complexity is often necessary to

understand the consequences of important interactions

among different parts of the environment. However, the

interactions make it challenging to predict model

behavior over the potentially vast, yet plausible param-

eter space. If a model becomes so complex that it is

impossible to determine how the results would change

with different inputs, we have lost the ability to

understand how the model works and how it might (or

might not) reflect the actual ecosystem.

Major impediments to conducting sensitivity analysis

on ecosystem models include the lack of information on

input uncertainties and the sheer computational effort

required for the analysis, given that a single model run

may take hours or days. These limitations can be

overcome using our structured approach, and our

analyses demonstrate the value in addressing model

sensitivity. Many of the input distributions are based on

expert opinion rather than quantitative analysis, but

even these crude approximations provide useful infor-

mation for describing model precision. Estimating input

distributions has the added advantage of making the

state of knowledge of the system explicit.

Computational limitations are being continually

reduced by faster computers, but much can also be

done by building sensitivity analysis into the model

design from the start. The widespread availability of

distributional functions for most modeling environ-

ments (e.g., R, Matlab, Cþþ, Java, Excel using @risk,

etc.) makes it possible to add uncertainty analysis to

most projects. In this analysis, we conducted a post hoc

evaluation of an existing model that was not originally

developed with sensitivity analysis in mind. A more

efficient approach is to include sensitivity analysis from

the initial conception of the model. The EDT model is

by no means alone in not including sensitivity analysis;

for example, many existing marine ecosystem models do

not explicitly consider uncertainty, and sensitivity

analysis must be evaluated post hoc (Plaganyi 2007).

Models are often used to provide evidence for a specific

thesis or the results of specific actions. Under this

interpretation, a sensitivity analysis serves to provide

transparency to the analysis and should be included as

an important element of evidence building (Saltelli et al.

2000b).

Uncertainty and sensitivity analyses are a crucial step

in model development (Saltelli 2002) as well as in model
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calibration and validation. The uncertainty analysis

requires an explicit description of input parameter error

distributions. The uncertainty analysis results (i.e.,

prediction intervals) are also necessary for formal model

validation. There is uncertainty in both sides of the

validation process (i.e., in both the model and the

empirical data), and the appropriate statistical evalua-

tion is a comparison of the two distributions, not point

estimates (for EDT example, see Rawding 2004).The

analysis can be used to identify sensitive parameters in

which improved precision really improves the model

output precision (e.g., EDT adult survival parameters),

and it can be used to identify parameters that could be

held at a fixed value or perhaps eliminated from the

model altogether (e.g., EDT food multiplier).

Evaluation of ecosystem models using input distribu-

tions rather than point estimates can reveal bias in the

mean model predictions that arise from Jensen’s

inequality. This is important if managers are basing

their decisions on what they perceive to be the most

likely outcome predicted by the model. It is doubtful

that a model run only with point estimate inputs will

provide the best estimate of the mean model prediction.

The precision interval outputs from a sensitivity

analysis provide users with quantitative information

about model predictions that can inform how the model

output is used in making decisions. These precision

intervals can also enable model output to be honestly

funneled into secondary models. Ultimately, to affect

management decisions, ecosystem model results need to

be communicated to policy makers. Even for complex

models, developers can provide and managers should

expect model results that include an assessment of

prediction uncertainties and sensitivities. There is some

concern on the part of both model builders and users

alike that acknowledging uncertainty could result in

decision-making paralysis. However, there is a need for

complete transparency of the modeling process and

recognition that the false sense of precision that models

can generate may lead management down the wrong

course. Realistic incorporation of uncertainty through

sensitivity analysis can contribute greatly to our

confidence in model results by indicating the most likely

output values, rather than point estimates that imply a

precision that does not exist.
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